1 /* $NetBSD: ffs_bswap.c,v 1.28 2004/05/25 14:54:59 hannken Exp $ */ 2 3 /*- 4 * SPDX-License-Identifier: BSD-2-Clause-NetBSD 5 * 6 * Copyright (c) 1998 Manuel Bouyer. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #if defined(_KERNEL) 35 #include <sys/systm.h> 36 #endif 37 38 #if !defined(_KERNEL) 39 #include <stddef.h> 40 #include <stdint.h> 41 #include <stdio.h> 42 #include <stdlib.h> 43 #include <string.h> 44 #endif 45 46 #include <ufs/ufs/dinode.h> 47 #include "ffs/ufs_bswap.h" 48 #include <ufs/ffs/fs.h> 49 #include "ffs/ffs_extern.h" 50 51 #define fs_old_postbloff fs_spare5[0] 52 #define fs_old_rotbloff fs_spare5[1] 53 #define fs_old_postbl_start fs_maxbsize 54 #define fs_old_headswitch fs_id[0] 55 #define fs_old_trkseek fs_id[1] 56 #define fs_old_csmask fs_spare1[0] 57 #define fs_old_csshift fs_spare1[1] 58 59 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */ 60 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */ 61 62 void ffs_csum_swap(struct csum *o, struct csum *n, int size); 63 void ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n); 64 65 void 66 ffs_sb_swap(struct fs *o, struct fs *n) 67 { 68 size_t i; 69 u_int32_t *o32, *n32; 70 71 /* 72 * In order to avoid a lot of lines, as the first N fields (52) 73 * of the superblock up to fs_fmod are u_int32_t, we just loop 74 * here to convert them. 75 */ 76 o32 = (u_int32_t *)o; 77 n32 = (u_int32_t *)n; 78 for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++) 79 n32[i] = bswap32(o32[i]); 80 81 n->fs_swuid = bswap64(o->fs_swuid); 82 n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */ 83 n->fs_old_cpc = bswap32(o->fs_old_cpc); 84 85 /* These fields overlap with a possible location for the 86 * historic FS_DYNAMICPOSTBLFMT postbl table, and with the 87 * first half of the historic FS_42POSTBLFMT postbl table. 88 */ 89 n->fs_maxbsize = bswap32(o->fs_maxbsize); 90 n->fs_sblockloc = bswap64(o->fs_sblockloc); 91 ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal); 92 n->fs_time = bswap64(o->fs_time); 93 n->fs_size = bswap64(o->fs_size); 94 n->fs_dsize = bswap64(o->fs_dsize); 95 n->fs_csaddr = bswap64(o->fs_csaddr); 96 n->fs_pendingblocks = bswap64(o->fs_pendingblocks); 97 n->fs_pendinginodes = bswap32(o->fs_pendinginodes); 98 99 /* These fields overlap with the second half of the 100 * historic FS_42POSTBLFMT postbl table 101 */ 102 for (i = 0; i < FSMAXSNAP; i++) 103 n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]); 104 n->fs_avgfilesize = bswap32(o->fs_avgfilesize); 105 n->fs_avgfpdir = bswap32(o->fs_avgfpdir); 106 /* fs_sparecon[28] - ignore for now */ 107 n->fs_flags = bswap32(o->fs_flags); 108 n->fs_contigsumsize = bswap32(o->fs_contigsumsize); 109 n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen); 110 n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt); 111 n->fs_maxfilesize = bswap64(o->fs_maxfilesize); 112 n->fs_qbmask = bswap64(o->fs_qbmask); 113 n->fs_qfmask = bswap64(o->fs_qfmask); 114 n->fs_state = bswap32(o->fs_state); 115 n->fs_old_postblformat = bswap32(o->fs_old_postblformat); 116 n->fs_old_nrpos = bswap32(o->fs_old_nrpos); 117 n->fs_old_postbloff = bswap32(o->fs_old_postbloff); 118 n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff); 119 120 n->fs_magic = bswap32(o->fs_magic); 121 } 122 123 void 124 ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n) 125 { 126 127 n->di_mode = bswap16(o->di_mode); 128 n->di_nlink = bswap16(o->di_nlink); 129 n->di_size = bswap64(o->di_size); 130 n->di_atime = bswap32(o->di_atime); 131 n->di_atimensec = bswap32(o->di_atimensec); 132 n->di_mtime = bswap32(o->di_mtime); 133 n->di_mtimensec = bswap32(o->di_mtimensec); 134 n->di_ctime = bswap32(o->di_ctime); 135 n->di_ctimensec = bswap32(o->di_ctimensec); 136 memcpy(n->di_db, o->di_db, sizeof(n->di_db)); 137 memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib)); 138 n->di_flags = bswap32(o->di_flags); 139 n->di_blocks = bswap32(o->di_blocks); 140 n->di_gen = bswap32(o->di_gen); 141 n->di_uid = bswap32(o->di_uid); 142 n->di_gid = bswap32(o->di_gid); 143 } 144 145 void 146 ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n) 147 { 148 n->di_mode = bswap16(o->di_mode); 149 n->di_nlink = bswap16(o->di_nlink); 150 n->di_uid = bswap32(o->di_uid); 151 n->di_gid = bswap32(o->di_gid); 152 n->di_blksize = bswap32(o->di_blksize); 153 n->di_size = bswap64(o->di_size); 154 n->di_blocks = bswap64(o->di_blocks); 155 n->di_atime = bswap64(o->di_atime); 156 n->di_atimensec = bswap32(o->di_atimensec); 157 n->di_mtime = bswap64(o->di_mtime); 158 n->di_mtimensec = bswap32(o->di_mtimensec); 159 n->di_ctime = bswap64(o->di_ctime); 160 n->di_ctimensec = bswap32(o->di_ctimensec); 161 n->di_birthtime = bswap64(o->di_ctime); 162 n->di_birthnsec = bswap32(o->di_ctimensec); 163 n->di_gen = bswap32(o->di_gen); 164 n->di_kernflags = bswap32(o->di_kernflags); 165 n->di_flags = bswap32(o->di_flags); 166 n->di_extsize = bswap32(o->di_extsize); 167 memcpy(n->di_extb, o->di_extb, sizeof(n->di_extb)); 168 memcpy(n->di_db, o->di_db, sizeof(n->di_db)); 169 memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib)); 170 } 171 172 void 173 ffs_csum_swap(struct csum *o, struct csum *n, int size) 174 { 175 size_t i; 176 u_int32_t *oint, *nint; 177 178 oint = (u_int32_t*)o; 179 nint = (u_int32_t*)n; 180 181 for (i = 0; i < size / sizeof(u_int32_t); i++) 182 nint[i] = bswap32(oint[i]); 183 } 184 185 void 186 ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n) 187 { 188 n->cs_ndir = bswap64(o->cs_ndir); 189 n->cs_nbfree = bswap64(o->cs_nbfree); 190 n->cs_nifree = bswap64(o->cs_nifree); 191 n->cs_nffree = bswap64(o->cs_nffree); 192 } 193 194 /* 195 * Note that ffs_cg_swap may be called with o == n. 196 */ 197 void 198 ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs) 199 { 200 int i; 201 u_int32_t *n32, *o32; 202 u_int16_t *n16, *o16; 203 int32_t btotoff, boff, clustersumoff; 204 205 n->cg_firstfield = bswap32(o->cg_firstfield); 206 n->cg_magic = bswap32(o->cg_magic); 207 n->cg_old_time = bswap32(o->cg_old_time); 208 n->cg_cgx = bswap32(o->cg_cgx); 209 n->cg_old_ncyl = bswap16(o->cg_old_ncyl); 210 n->cg_old_niblk = bswap16(o->cg_old_niblk); 211 n->cg_ndblk = bswap32(o->cg_ndblk); 212 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir); 213 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree); 214 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree); 215 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree); 216 n->cg_rotor = bswap32(o->cg_rotor); 217 n->cg_frotor = bswap32(o->cg_frotor); 218 n->cg_irotor = bswap32(o->cg_irotor); 219 for (i = 0; i < MAXFRAG; i++) 220 n->cg_frsum[i] = bswap32(o->cg_frsum[i]); 221 222 n->cg_old_btotoff = bswap32(o->cg_old_btotoff); 223 n->cg_old_boff = bswap32(o->cg_old_boff); 224 n->cg_iusedoff = bswap32(o->cg_iusedoff); 225 n->cg_freeoff = bswap32(o->cg_freeoff); 226 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff); 227 n->cg_clustersumoff = bswap32(o->cg_clustersumoff); 228 n->cg_clusteroff = bswap32(o->cg_clusteroff); 229 n->cg_nclusterblks = bswap32(o->cg_nclusterblks); 230 n->cg_niblk = bswap32(o->cg_niblk); 231 n->cg_initediblk = bswap32(o->cg_initediblk); 232 n->cg_time = bswap64(o->cg_time); 233 234 if (fs->fs_magic == FS_UFS2_MAGIC) 235 return; 236 237 if (n->cg_magic == CG_MAGIC) { 238 btotoff = n->cg_old_btotoff; 239 boff = n->cg_old_boff; 240 clustersumoff = n->cg_clustersumoff; 241 } else { 242 btotoff = bswap32(n->cg_old_btotoff); 243 boff = bswap32(n->cg_old_boff); 244 clustersumoff = bswap32(n->cg_clustersumoff); 245 } 246 n32 = (u_int32_t *)((u_int8_t *)n + btotoff); 247 o32 = (u_int32_t *)((u_int8_t *)o + btotoff); 248 n16 = (u_int16_t *)((u_int8_t *)n + boff); 249 o16 = (u_int16_t *)((u_int8_t *)o + boff); 250 251 for (i = 0; i < fs->fs_old_cpg; i++) 252 n32[i] = bswap32(o32[i]); 253 254 for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++) 255 n16[i] = bswap16(o16[i]); 256 257 n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff); 258 o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff); 259 for (i = 1; i < fs->fs_contigsumsize + 1; i++) 260 n32[i] = bswap32(o32[i]); 261 } 262