1 /* $NetBSD: ffs_bswap.c,v 1.28 2004/05/25 14:54:59 hannken Exp $ */ 2 3 /* 4 * Copyright (c) 1998 Manuel Bouyer. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/param.h> 32 #if defined(_KERNEL) 33 #include <sys/systm.h> 34 #endif 35 36 #if !defined(_KERNEL) 37 #include <stddef.h> 38 #include <stdint.h> 39 #include <stdio.h> 40 #include <stdlib.h> 41 #include <string.h> 42 #define panic(x) printf("%s\n", (x)), abort() 43 #endif 44 45 #include <ufs/ufs/dinode.h> 46 #include "ffs/ufs_bswap.h" 47 #include <ufs/ffs/fs.h> 48 49 #define fs_old_postbloff fs_spare5[0] 50 #define fs_old_rotbloff fs_spare5[1] 51 #define fs_old_postbl_start fs_maxbsize 52 #define fs_old_headswitch fs_id[0] 53 #define fs_old_trkseek fs_id[1] 54 #define fs_old_csmask fs_spare1[0] 55 #define fs_old_csshift fs_spare1[1] 56 57 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */ 58 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */ 59 60 void ffs_csum_swap(struct csum *o, struct csum *n, int size); 61 void ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n); 62 63 void 64 ffs_sb_swap(struct fs *o, struct fs *n) 65 { 66 size_t i; 67 u_int32_t *o32, *n32; 68 69 /* 70 * In order to avoid a lot of lines, as the first N fields (52) 71 * of the superblock up to fs_fmod are u_int32_t, we just loop 72 * here to convert them. 73 */ 74 o32 = (u_int32_t *)o; 75 n32 = (u_int32_t *)n; 76 for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++) 77 n32[i] = bswap32(o32[i]); 78 79 n->fs_swuid = bswap64(o->fs_swuid); 80 n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */ 81 n->fs_old_cpc = bswap32(o->fs_old_cpc); 82 83 /* These fields overlap with a possible location for the 84 * historic FS_DYNAMICPOSTBLFMT postbl table, and with the 85 * first half of the historic FS_42POSTBLFMT postbl table. 86 */ 87 n->fs_maxbsize = bswap32(o->fs_maxbsize); 88 n->fs_sblockloc = bswap64(o->fs_sblockloc); 89 ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal); 90 n->fs_time = bswap64(o->fs_time); 91 n->fs_size = bswap64(o->fs_size); 92 n->fs_dsize = bswap64(o->fs_dsize); 93 n->fs_csaddr = bswap64(o->fs_csaddr); 94 n->fs_pendingblocks = bswap64(o->fs_pendingblocks); 95 n->fs_pendinginodes = bswap32(o->fs_pendinginodes); 96 97 /* These fields overlap with the second half of the 98 * historic FS_42POSTBLFMT postbl table 99 */ 100 for (i = 0; i < FSMAXSNAP; i++) 101 n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]); 102 n->fs_avgfilesize = bswap32(o->fs_avgfilesize); 103 n->fs_avgfpdir = bswap32(o->fs_avgfpdir); 104 /* fs_sparecon[28] - ignore for now */ 105 n->fs_flags = bswap32(o->fs_flags); 106 n->fs_contigsumsize = bswap32(o->fs_contigsumsize); 107 n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen); 108 n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt); 109 n->fs_maxfilesize = bswap64(o->fs_maxfilesize); 110 n->fs_qbmask = bswap64(o->fs_qbmask); 111 n->fs_qfmask = bswap64(o->fs_qfmask); 112 n->fs_state = bswap32(o->fs_state); 113 n->fs_old_postblformat = bswap32(o->fs_old_postblformat); 114 n->fs_old_nrpos = bswap32(o->fs_old_nrpos); 115 n->fs_old_postbloff = bswap32(o->fs_old_postbloff); 116 n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff); 117 118 n->fs_magic = bswap32(o->fs_magic); 119 } 120 121 void 122 ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n) 123 { 124 125 n->di_mode = bswap16(o->di_mode); 126 n->di_nlink = bswap16(o->di_nlink); 127 n->di_size = bswap64(o->di_size); 128 n->di_atime = bswap32(o->di_atime); 129 n->di_atimensec = bswap32(o->di_atimensec); 130 n->di_mtime = bswap32(o->di_mtime); 131 n->di_mtimensec = bswap32(o->di_mtimensec); 132 n->di_ctime = bswap32(o->di_ctime); 133 n->di_ctimensec = bswap32(o->di_ctimensec); 134 memcpy(n->di_db, o->di_db, sizeof(n->di_db)); 135 memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib)); 136 n->di_flags = bswap32(o->di_flags); 137 n->di_blocks = bswap32(o->di_blocks); 138 n->di_gen = bswap32(o->di_gen); 139 n->di_uid = bswap32(o->di_uid); 140 n->di_gid = bswap32(o->di_gid); 141 } 142 143 void 144 ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n) 145 { 146 n->di_mode = bswap16(o->di_mode); 147 n->di_nlink = bswap16(o->di_nlink); 148 n->di_uid = bswap32(o->di_uid); 149 n->di_gid = bswap32(o->di_gid); 150 n->di_blksize = bswap32(o->di_blksize); 151 n->di_size = bswap64(o->di_size); 152 n->di_blocks = bswap64(o->di_blocks); 153 n->di_atime = bswap64(o->di_atime); 154 n->di_atimensec = bswap32(o->di_atimensec); 155 n->di_mtime = bswap64(o->di_mtime); 156 n->di_mtimensec = bswap32(o->di_mtimensec); 157 n->di_ctime = bswap64(o->di_ctime); 158 n->di_ctimensec = bswap32(o->di_ctimensec); 159 n->di_birthtime = bswap64(o->di_ctime); 160 n->di_birthnsec = bswap32(o->di_ctimensec); 161 n->di_gen = bswap32(o->di_gen); 162 n->di_kernflags = bswap32(o->di_kernflags); 163 n->di_flags = bswap32(o->di_flags); 164 n->di_extsize = bswap32(o->di_extsize); 165 memcpy(n->di_extb, o->di_extb, sizeof(n->di_extb)); 166 memcpy(n->di_db, o->di_db, sizeof(n->di_db)); 167 memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib)); 168 } 169 170 void 171 ffs_csum_swap(struct csum *o, struct csum *n, int size) 172 { 173 size_t i; 174 u_int32_t *oint, *nint; 175 176 oint = (u_int32_t*)o; 177 nint = (u_int32_t*)n; 178 179 for (i = 0; i < size / sizeof(u_int32_t); i++) 180 nint[i] = bswap32(oint[i]); 181 } 182 183 void 184 ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n) 185 { 186 n->cs_ndir = bswap64(o->cs_ndir); 187 n->cs_nbfree = bswap64(o->cs_nbfree); 188 n->cs_nifree = bswap64(o->cs_nifree); 189 n->cs_nffree = bswap64(o->cs_nffree); 190 } 191 192 /* 193 * Note that ffs_cg_swap may be called with o == n. 194 */ 195 void 196 ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs) 197 { 198 int i; 199 u_int32_t *n32, *o32; 200 u_int16_t *n16, *o16; 201 int32_t btotoff, boff, clustersumoff; 202 203 n->cg_firstfield = bswap32(o->cg_firstfield); 204 n->cg_magic = bswap32(o->cg_magic); 205 n->cg_old_time = bswap32(o->cg_old_time); 206 n->cg_cgx = bswap32(o->cg_cgx); 207 n->cg_old_ncyl = bswap16(o->cg_old_ncyl); 208 n->cg_old_niblk = bswap16(o->cg_old_niblk); 209 n->cg_ndblk = bswap32(o->cg_ndblk); 210 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir); 211 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree); 212 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree); 213 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree); 214 n->cg_rotor = bswap32(o->cg_rotor); 215 n->cg_frotor = bswap32(o->cg_frotor); 216 n->cg_irotor = bswap32(o->cg_irotor); 217 for (i = 0; i < MAXFRAG; i++) 218 n->cg_frsum[i] = bswap32(o->cg_frsum[i]); 219 220 n->cg_old_btotoff = bswap32(o->cg_old_btotoff); 221 n->cg_old_boff = bswap32(o->cg_old_boff); 222 n->cg_iusedoff = bswap32(o->cg_iusedoff); 223 n->cg_freeoff = bswap32(o->cg_freeoff); 224 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff); 225 n->cg_clustersumoff = bswap32(o->cg_clustersumoff); 226 n->cg_clusteroff = bswap32(o->cg_clusteroff); 227 n->cg_nclusterblks = bswap32(o->cg_nclusterblks); 228 n->cg_niblk = bswap32(o->cg_niblk); 229 n->cg_initediblk = bswap32(o->cg_initediblk); 230 n->cg_time = bswap64(o->cg_time); 231 232 if (fs->fs_magic == FS_UFS2_MAGIC) 233 return; 234 235 if (n->cg_magic == CG_MAGIC) { 236 btotoff = n->cg_old_btotoff; 237 boff = n->cg_old_boff; 238 clustersumoff = n->cg_clustersumoff; 239 } else { 240 btotoff = bswap32(n->cg_old_btotoff); 241 boff = bswap32(n->cg_old_boff); 242 clustersumoff = bswap32(n->cg_clustersumoff); 243 } 244 n32 = (u_int32_t *)((u_int8_t *)n + btotoff); 245 o32 = (u_int32_t *)((u_int8_t *)o + btotoff); 246 n16 = (u_int16_t *)((u_int8_t *)n + boff); 247 o16 = (u_int16_t *)((u_int8_t *)o + boff); 248 249 for (i = 0; i < fs->fs_old_cpg; i++) 250 n32[i] = bswap32(o32[i]); 251 252 for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++) 253 n16[i] = bswap16(o16[i]); 254 255 n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff); 256 o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff); 257 for (i = 1; i < fs->fs_contigsumsize + 1; i++) 258 n32[i] = bswap32(o32[i]); 259 } 260