1 /* $NetBSD: ffs_bswap.c,v 1.28 2004/05/25 14:54:59 hannken Exp $ */ 2 3 /*- 4 * SPDX-License-Identifier: BSD-2-Clause 5 * 6 * Copyright (c) 1998 Manuel Bouyer. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 */ 29 30 #include <sys/param.h> 31 #if defined(_KERNEL) 32 #include <sys/systm.h> 33 #endif 34 35 #if !defined(_KERNEL) 36 #include <stddef.h> 37 #include <stdint.h> 38 #include <stdio.h> 39 #include <stdlib.h> 40 #include <string.h> 41 #endif 42 43 #include <ufs/ufs/dinode.h> 44 #include "ffs/ufs_bswap.h" 45 #include <ufs/ffs/fs.h> 46 #include "ffs/ffs_extern.h" 47 48 #define fs_old_postbloff fs_spare5[0] 49 #define fs_old_rotbloff fs_spare5[1] 50 #define fs_old_postbl_start fs_maxbsize 51 #define fs_old_headswitch fs_id[0] 52 #define fs_old_trkseek fs_id[1] 53 #define fs_old_csmask fs_spare1[0] 54 #define fs_old_csshift fs_spare1[1] 55 56 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */ 57 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */ 58 59 void ffs_csum_swap(struct csum *o, struct csum *n, int size); 60 void ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n); 61 62 void 63 ffs_sb_swap(struct fs *o, struct fs *n) 64 { 65 size_t i; 66 u_int32_t *o32, *n32; 67 68 /* 69 * In order to avoid a lot of lines, as the first N fields (52) 70 * of the superblock up to fs_fmod are u_int32_t, we just loop 71 * here to convert them. 72 */ 73 o32 = (u_int32_t *)o; 74 n32 = (u_int32_t *)n; 75 for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++) 76 n32[i] = bswap32(o32[i]); 77 78 n->fs_swuid = bswap64(o->fs_swuid); 79 n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */ 80 n->fs_old_cpc = bswap32(o->fs_old_cpc); 81 82 /* These fields overlap with a possible location for the 83 * historic FS_DYNAMICPOSTBLFMT postbl table, and with the 84 * first half of the historic FS_42POSTBLFMT postbl table. 85 */ 86 n->fs_maxbsize = bswap32(o->fs_maxbsize); 87 n->fs_sblockloc = bswap64(o->fs_sblockloc); 88 ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal); 89 n->fs_time = bswap64(o->fs_time); 90 n->fs_size = bswap64(o->fs_size); 91 n->fs_dsize = bswap64(o->fs_dsize); 92 n->fs_csaddr = bswap64(o->fs_csaddr); 93 n->fs_pendingblocks = bswap64(o->fs_pendingblocks); 94 n->fs_pendinginodes = bswap32(o->fs_pendinginodes); 95 96 /* These fields overlap with the second half of the 97 * historic FS_42POSTBLFMT postbl table 98 */ 99 for (i = 0; i < FSMAXSNAP; i++) 100 n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]); 101 n->fs_avgfilesize = bswap32(o->fs_avgfilesize); 102 n->fs_avgfpdir = bswap32(o->fs_avgfpdir); 103 /* fs_sparecon[28] - ignore for now */ 104 n->fs_flags = bswap32(o->fs_flags); 105 n->fs_contigsumsize = bswap32(o->fs_contigsumsize); 106 n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen); 107 n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt); 108 n->fs_maxfilesize = bswap64(o->fs_maxfilesize); 109 n->fs_qbmask = bswap64(o->fs_qbmask); 110 n->fs_qfmask = bswap64(o->fs_qfmask); 111 n->fs_state = bswap32(o->fs_state); 112 n->fs_old_postblformat = bswap32(o->fs_old_postblformat); 113 n->fs_old_nrpos = bswap32(o->fs_old_nrpos); 114 n->fs_old_postbloff = bswap32(o->fs_old_postbloff); 115 n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff); 116 117 n->fs_magic = bswap32(o->fs_magic); 118 } 119 120 void 121 ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n) 122 { 123 124 n->di_mode = bswap16(o->di_mode); 125 n->di_nlink = bswap16(o->di_nlink); 126 n->di_size = bswap64(o->di_size); 127 n->di_atime = bswap32(o->di_atime); 128 n->di_atimensec = bswap32(o->di_atimensec); 129 n->di_mtime = bswap32(o->di_mtime); 130 n->di_mtimensec = bswap32(o->di_mtimensec); 131 n->di_ctime = bswap32(o->di_ctime); 132 n->di_ctimensec = bswap32(o->di_ctimensec); 133 memcpy(n->di_db, o->di_db, sizeof(n->di_db)); 134 memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib)); 135 n->di_flags = bswap32(o->di_flags); 136 n->di_blocks = bswap32(o->di_blocks); 137 n->di_gen = bswap32(o->di_gen); 138 n->di_uid = bswap32(o->di_uid); 139 n->di_gid = bswap32(o->di_gid); 140 } 141 142 void 143 ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n) 144 { 145 n->di_mode = bswap16(o->di_mode); 146 n->di_nlink = bswap16(o->di_nlink); 147 n->di_uid = bswap32(o->di_uid); 148 n->di_gid = bswap32(o->di_gid); 149 n->di_blksize = bswap32(o->di_blksize); 150 n->di_size = bswap64(o->di_size); 151 n->di_blocks = bswap64(o->di_blocks); 152 n->di_atime = bswap64(o->di_atime); 153 n->di_atimensec = bswap32(o->di_atimensec); 154 n->di_mtime = bswap64(o->di_mtime); 155 n->di_mtimensec = bswap32(o->di_mtimensec); 156 n->di_ctime = bswap64(o->di_ctime); 157 n->di_ctimensec = bswap32(o->di_ctimensec); 158 n->di_birthtime = bswap64(o->di_ctime); 159 n->di_birthnsec = bswap32(o->di_ctimensec); 160 n->di_gen = bswap32(o->di_gen); 161 n->di_kernflags = bswap32(o->di_kernflags); 162 n->di_flags = bswap32(o->di_flags); 163 n->di_extsize = bswap32(o->di_extsize); 164 memcpy(n->di_extb, o->di_extb, sizeof(n->di_extb)); 165 memcpy(n->di_db, o->di_db, sizeof(n->di_db)); 166 memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib)); 167 } 168 169 void 170 ffs_csum_swap(struct csum *o, struct csum *n, int size) 171 { 172 size_t i; 173 u_int32_t *oint, *nint; 174 175 oint = (u_int32_t*)o; 176 nint = (u_int32_t*)n; 177 178 for (i = 0; i < size / sizeof(u_int32_t); i++) 179 nint[i] = bswap32(oint[i]); 180 } 181 182 void 183 ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n) 184 { 185 n->cs_ndir = bswap64(o->cs_ndir); 186 n->cs_nbfree = bswap64(o->cs_nbfree); 187 n->cs_nifree = bswap64(o->cs_nifree); 188 n->cs_nffree = bswap64(o->cs_nffree); 189 } 190 191 /* 192 * Note that ffs_cg_swap may be called with o == n. 193 */ 194 void 195 ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs) 196 { 197 int i; 198 u_int32_t *n32, *o32; 199 u_int16_t *n16, *o16; 200 int32_t btotoff, boff, clustersumoff; 201 202 n->cg_firstfield = bswap32(o->cg_firstfield); 203 n->cg_magic = bswap32(o->cg_magic); 204 n->cg_old_time = bswap32(o->cg_old_time); 205 n->cg_cgx = bswap32(o->cg_cgx); 206 n->cg_old_ncyl = bswap16(o->cg_old_ncyl); 207 n->cg_old_niblk = bswap16(o->cg_old_niblk); 208 n->cg_ndblk = bswap32(o->cg_ndblk); 209 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir); 210 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree); 211 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree); 212 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree); 213 n->cg_rotor = bswap32(o->cg_rotor); 214 n->cg_frotor = bswap32(o->cg_frotor); 215 n->cg_irotor = bswap32(o->cg_irotor); 216 for (i = 0; i < MAXFRAG; i++) 217 n->cg_frsum[i] = bswap32(o->cg_frsum[i]); 218 219 n->cg_old_btotoff = bswap32(o->cg_old_btotoff); 220 n->cg_old_boff = bswap32(o->cg_old_boff); 221 n->cg_iusedoff = bswap32(o->cg_iusedoff); 222 n->cg_freeoff = bswap32(o->cg_freeoff); 223 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff); 224 n->cg_clustersumoff = bswap32(o->cg_clustersumoff); 225 n->cg_clusteroff = bswap32(o->cg_clusteroff); 226 n->cg_nclusterblks = bswap32(o->cg_nclusterblks); 227 n->cg_niblk = bswap32(o->cg_niblk); 228 n->cg_initediblk = bswap32(o->cg_initediblk); 229 n->cg_time = bswap64(o->cg_time); 230 231 if (fs->fs_magic == FS_UFS2_MAGIC) 232 return; 233 234 if (n->cg_magic == CG_MAGIC) { 235 btotoff = n->cg_old_btotoff; 236 boff = n->cg_old_boff; 237 clustersumoff = n->cg_clustersumoff; 238 } else { 239 btotoff = bswap32(n->cg_old_btotoff); 240 boff = bswap32(n->cg_old_boff); 241 clustersumoff = bswap32(n->cg_clustersumoff); 242 } 243 n32 = (u_int32_t *)((u_int8_t *)n + btotoff); 244 o32 = (u_int32_t *)((u_int8_t *)o + btotoff); 245 n16 = (u_int16_t *)((u_int8_t *)n + boff); 246 o16 = (u_int16_t *)((u_int8_t *)o + boff); 247 248 for (i = 0; i < fs->fs_old_cpg; i++) 249 n32[i] = bswap32(o32[i]); 250 251 for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++) 252 n16[i] = bswap16(o16[i]); 253 254 n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff); 255 o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff); 256 for (i = 1; i < fs->fs_contigsumsize + 1; i++) 257 n32[i] = bswap32(o32[i]); 258 } 259