xref: /freebsd/usr.sbin/makefs/ffs/ffs_bswap.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*	$NetBSD: ffs_bswap.c,v 1.28 2004/05/25 14:54:59 hannken Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-2-Clause
5  *
6  * Copyright (c) 1998 Manuel Bouyer.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 #include <sys/param.h>
32 #if defined(_KERNEL)
33 #include <sys/systm.h>
34 #endif
35 
36 #if !defined(_KERNEL)
37 #include <stddef.h>
38 #include <stdint.h>
39 #include <stdio.h>
40 #include <stdlib.h>
41 #include <string.h>
42 #endif
43 
44 #include <ufs/ufs/dinode.h>
45 #include "ffs/ufs_bswap.h"
46 #include <ufs/ffs/fs.h>
47 #include "ffs/ffs_extern.h"
48 
49 #define	fs_old_postbloff	fs_spare5[0]
50 #define	fs_old_rotbloff		fs_spare5[1]
51 #define	fs_old_postbl_start	fs_maxbsize
52 #define	fs_old_headswitch	fs_id[0]
53 #define	fs_old_trkseek	fs_id[1]
54 #define	fs_old_csmask	fs_spare1[0]
55 #define	fs_old_csshift	fs_spare1[1]
56 
57 #define	FS_42POSTBLFMT		-1	/* 4.2BSD rotational table format */
58 #define	FS_DYNAMICPOSTBLFMT	1	/* dynamic rotational table format */
59 
60 void ffs_csum_swap(struct csum *o, struct csum *n, int size);
61 void ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n);
62 
63 void
64 ffs_sb_swap(struct fs *o, struct fs *n)
65 {
66 	size_t i;
67 	u_int32_t *o32, *n32;
68 
69 	/*
70 	 * In order to avoid a lot of lines, as the first N fields (52)
71 	 * of the superblock up to fs_fmod are u_int32_t, we just loop
72 	 * here to convert them.
73 	 */
74 	o32 = (u_int32_t *)o;
75 	n32 = (u_int32_t *)n;
76 	for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++)
77 		n32[i] = bswap32(o32[i]);
78 
79 	n->fs_swuid = bswap64(o->fs_swuid);
80 	n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */
81 	n->fs_old_cpc = bswap32(o->fs_old_cpc);
82 
83 	/* These fields overlap with a possible location for the
84 	 * historic FS_DYNAMICPOSTBLFMT postbl table, and with the
85 	 * first half of the historic FS_42POSTBLFMT postbl table.
86 	 */
87 	n->fs_maxbsize = bswap32(o->fs_maxbsize);
88 	n->fs_sblockloc = bswap64(o->fs_sblockloc);
89 	ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal);
90 	n->fs_time = bswap64(o->fs_time);
91 	n->fs_size = bswap64(o->fs_size);
92 	n->fs_dsize = bswap64(o->fs_dsize);
93 	n->fs_csaddr = bswap64(o->fs_csaddr);
94 	n->fs_pendingblocks = bswap64(o->fs_pendingblocks);
95 	n->fs_pendinginodes = bswap32(o->fs_pendinginodes);
96 
97 	/* These fields overlap with the second half of the
98 	 * historic FS_42POSTBLFMT postbl table
99 	 */
100 	for (i = 0; i < FSMAXSNAP; i++)
101 		n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]);
102 	n->fs_avgfilesize = bswap32(o->fs_avgfilesize);
103 	n->fs_avgfpdir = bswap32(o->fs_avgfpdir);
104 	/* fs_sparecon[28] - ignore for now */
105 	n->fs_flags = bswap32(o->fs_flags);
106 	n->fs_contigsumsize = bswap32(o->fs_contigsumsize);
107 	n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen);
108 	n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt);
109 	n->fs_maxfilesize = bswap64(o->fs_maxfilesize);
110 	n->fs_qbmask = bswap64(o->fs_qbmask);
111 	n->fs_qfmask = bswap64(o->fs_qfmask);
112 	n->fs_state = bswap32(o->fs_state);
113 	n->fs_old_postblformat = bswap32(o->fs_old_postblformat);
114 	n->fs_old_nrpos = bswap32(o->fs_old_nrpos);
115 	n->fs_old_postbloff = bswap32(o->fs_old_postbloff);
116 	n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff);
117 
118 	n->fs_magic = bswap32(o->fs_magic);
119 }
120 
121 void
122 ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n)
123 {
124 
125 	n->di_mode = bswap16(o->di_mode);
126 	n->di_nlink = bswap16(o->di_nlink);
127 	n->di_size = bswap64(o->di_size);
128 	n->di_atime = bswap32(o->di_atime);
129 	n->di_atimensec = bswap32(o->di_atimensec);
130 	n->di_mtime = bswap32(o->di_mtime);
131 	n->di_mtimensec = bswap32(o->di_mtimensec);
132 	n->di_ctime = bswap32(o->di_ctime);
133 	n->di_ctimensec = bswap32(o->di_ctimensec);
134 	memcpy(n->di_db, o->di_db, sizeof(n->di_db));
135 	memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib));
136 	n->di_flags = bswap32(o->di_flags);
137 	n->di_blocks = bswap32(o->di_blocks);
138 	n->di_gen = bswap32(o->di_gen);
139 	n->di_uid = bswap32(o->di_uid);
140 	n->di_gid = bswap32(o->di_gid);
141 }
142 
143 void
144 ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n)
145 {
146 	n->di_mode = bswap16(o->di_mode);
147 	n->di_nlink = bswap16(o->di_nlink);
148 	n->di_uid = bswap32(o->di_uid);
149 	n->di_gid = bswap32(o->di_gid);
150 	n->di_blksize = bswap32(o->di_blksize);
151 	n->di_size = bswap64(o->di_size);
152 	n->di_blocks = bswap64(o->di_blocks);
153 	n->di_atime = bswap64(o->di_atime);
154 	n->di_atimensec = bswap32(o->di_atimensec);
155 	n->di_mtime = bswap64(o->di_mtime);
156 	n->di_mtimensec = bswap32(o->di_mtimensec);
157 	n->di_ctime = bswap64(o->di_ctime);
158 	n->di_ctimensec = bswap32(o->di_ctimensec);
159 	n->di_birthtime = bswap64(o->di_ctime);
160 	n->di_birthnsec = bswap32(o->di_ctimensec);
161 	n->di_gen = bswap32(o->di_gen);
162 	n->di_kernflags = bswap32(o->di_kernflags);
163 	n->di_flags = bswap32(o->di_flags);
164 	n->di_extsize = bswap32(o->di_extsize);
165 	memcpy(n->di_extb, o->di_extb, sizeof(n->di_extb));
166 	memcpy(n->di_db, o->di_db, sizeof(n->di_db));
167 	memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib));
168 }
169 
170 void
171 ffs_csum_swap(struct csum *o, struct csum *n, int size)
172 {
173 	size_t i;
174 	u_int32_t *oint, *nint;
175 
176 	oint = (u_int32_t*)o;
177 	nint = (u_int32_t*)n;
178 
179 	for (i = 0; i < size / sizeof(u_int32_t); i++)
180 		nint[i] = bswap32(oint[i]);
181 }
182 
183 void
184 ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n)
185 {
186 	n->cs_ndir = bswap64(o->cs_ndir);
187 	n->cs_nbfree = bswap64(o->cs_nbfree);
188 	n->cs_nifree = bswap64(o->cs_nifree);
189 	n->cs_nffree = bswap64(o->cs_nffree);
190 }
191 
192 /*
193  * Note that ffs_cg_swap may be called with o == n.
194  */
195 void
196 ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs)
197 {
198 	int i;
199 	u_int32_t *n32, *o32;
200 	u_int16_t *n16, *o16;
201 	int32_t btotoff, boff, clustersumoff;
202 
203 	n->cg_firstfield = bswap32(o->cg_firstfield);
204 	n->cg_magic = bswap32(o->cg_magic);
205 	n->cg_old_time = bswap32(o->cg_old_time);
206 	n->cg_cgx = bswap32(o->cg_cgx);
207 	n->cg_old_ncyl = bswap16(o->cg_old_ncyl);
208 	n->cg_old_niblk = bswap16(o->cg_old_niblk);
209 	n->cg_ndblk = bswap32(o->cg_ndblk);
210 	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
211 	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
212 	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
213 	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
214 	n->cg_rotor = bswap32(o->cg_rotor);
215 	n->cg_frotor = bswap32(o->cg_frotor);
216 	n->cg_irotor = bswap32(o->cg_irotor);
217 	for (i = 0; i < MAXFRAG; i++)
218 		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
219 
220 	n->cg_old_btotoff = bswap32(o->cg_old_btotoff);
221 	n->cg_old_boff = bswap32(o->cg_old_boff);
222 	n->cg_iusedoff = bswap32(o->cg_iusedoff);
223 	n->cg_freeoff = bswap32(o->cg_freeoff);
224 	n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
225 	n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
226 	n->cg_clusteroff = bswap32(o->cg_clusteroff);
227 	n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
228 	n->cg_niblk = bswap32(o->cg_niblk);
229 	n->cg_initediblk = bswap32(o->cg_initediblk);
230 	n->cg_time = bswap64(o->cg_time);
231 
232 	if (fs->fs_magic == FS_UFS2_MAGIC)
233 		return;
234 
235 	if (n->cg_magic == CG_MAGIC) {
236 		btotoff = n->cg_old_btotoff;
237 		boff = n->cg_old_boff;
238 		clustersumoff = n->cg_clustersumoff;
239 	} else {
240 		btotoff = bswap32(n->cg_old_btotoff);
241 		boff = bswap32(n->cg_old_boff);
242 		clustersumoff = bswap32(n->cg_clustersumoff);
243 	}
244 	n32 = (u_int32_t *)((u_int8_t *)n + btotoff);
245 	o32 = (u_int32_t *)((u_int8_t *)o + btotoff);
246 	n16 = (u_int16_t *)((u_int8_t *)n + boff);
247 	o16 = (u_int16_t *)((u_int8_t *)o + boff);
248 
249 	for (i = 0; i < fs->fs_old_cpg; i++)
250 		n32[i] = bswap32(o32[i]);
251 
252 	for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++)
253 		n16[i] = bswap16(o16[i]);
254 
255 	n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff);
256 	o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff);
257 	for (i = 1; i < fs->fs_contigsumsize + 1; i++)
258 		n32[i] = bswap32(o32[i]);
259 }
260