1 /* $NetBSD: ffs_bswap.c,v 1.28 2004/05/25 14:54:59 hannken Exp $ */ 2 3 /* 4 * Copyright (c) 1998 Manuel Bouyer. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Manuel Bouyer. 17 * 4. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <sys/param.h> 37 #if defined(_KERNEL) 38 #include <sys/systm.h> 39 #endif 40 41 #if !defined(_KERNEL) 42 #include <stddef.h> 43 #include <stdint.h> 44 #include <stdio.h> 45 #include <stdlib.h> 46 #include <string.h> 47 #define panic(x) printf("%s\n", (x)), abort() 48 #endif 49 50 #include <ufs/ufs/dinode.h> 51 #include "ffs/ufs_bswap.h" 52 #include <ufs/ffs/fs.h> 53 54 #define fs_old_postbloff fs_spare5[0] 55 #define fs_old_rotbloff fs_spare5[1] 56 #define fs_old_postbl_start fs_maxbsize 57 #define fs_old_headswitch fs_id[0] 58 #define fs_old_trkseek fs_id[1] 59 #define fs_old_csmask fs_spare1[0] 60 #define fs_old_csshift fs_spare1[1] 61 62 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */ 63 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */ 64 65 void ffs_csum_swap(struct csum *o, struct csum *n, int size); 66 void ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n); 67 68 void 69 ffs_sb_swap(struct fs *o, struct fs *n) 70 { 71 size_t i; 72 u_int32_t *o32, *n32; 73 74 /* 75 * In order to avoid a lot of lines, as the first N fields (52) 76 * of the superblock up to fs_fmod are u_int32_t, we just loop 77 * here to convert them. 78 */ 79 o32 = (u_int32_t *)o; 80 n32 = (u_int32_t *)n; 81 for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++) 82 n32[i] = bswap32(o32[i]); 83 84 n->fs_swuid = bswap64(o->fs_swuid); 85 n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */ 86 n->fs_old_cpc = bswap32(o->fs_old_cpc); 87 88 /* These fields overlap with a possible location for the 89 * historic FS_DYNAMICPOSTBLFMT postbl table, and with the 90 * first half of the historic FS_42POSTBLFMT postbl table. 91 */ 92 n->fs_maxbsize = bswap32(o->fs_maxbsize); 93 n->fs_sblockloc = bswap64(o->fs_sblockloc); 94 ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal); 95 n->fs_time = bswap64(o->fs_time); 96 n->fs_size = bswap64(o->fs_size); 97 n->fs_dsize = bswap64(o->fs_dsize); 98 n->fs_csaddr = bswap64(o->fs_csaddr); 99 n->fs_pendingblocks = bswap64(o->fs_pendingblocks); 100 n->fs_pendinginodes = bswap32(o->fs_pendinginodes); 101 102 /* These fields overlap with the second half of the 103 * historic FS_42POSTBLFMT postbl table 104 */ 105 for (i = 0; i < FSMAXSNAP; i++) 106 n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]); 107 n->fs_avgfilesize = bswap32(o->fs_avgfilesize); 108 n->fs_avgfpdir = bswap32(o->fs_avgfpdir); 109 /* fs_sparecon[28] - ignore for now */ 110 n->fs_flags = bswap32(o->fs_flags); 111 n->fs_contigsumsize = bswap32(o->fs_contigsumsize); 112 n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen); 113 n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt); 114 n->fs_maxfilesize = bswap64(o->fs_maxfilesize); 115 n->fs_qbmask = bswap64(o->fs_qbmask); 116 n->fs_qfmask = bswap64(o->fs_qfmask); 117 n->fs_state = bswap32(o->fs_state); 118 n->fs_old_postblformat = bswap32(o->fs_old_postblformat); 119 n->fs_old_nrpos = bswap32(o->fs_old_nrpos); 120 n->fs_old_postbloff = bswap32(o->fs_old_postbloff); 121 n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff); 122 123 n->fs_magic = bswap32(o->fs_magic); 124 } 125 126 void 127 ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n) 128 { 129 130 n->di_mode = bswap16(o->di_mode); 131 n->di_nlink = bswap16(o->di_nlink); 132 n->di_size = bswap64(o->di_size); 133 n->di_atime = bswap32(o->di_atime); 134 n->di_atimensec = bswap32(o->di_atimensec); 135 n->di_mtime = bswap32(o->di_mtime); 136 n->di_mtimensec = bswap32(o->di_mtimensec); 137 n->di_ctime = bswap32(o->di_ctime); 138 n->di_ctimensec = bswap32(o->di_ctimensec); 139 memcpy(n->di_db, o->di_db, sizeof(n->di_db)); 140 memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib)); 141 n->di_flags = bswap32(o->di_flags); 142 n->di_blocks = bswap32(o->di_blocks); 143 n->di_gen = bswap32(o->di_gen); 144 n->di_uid = bswap32(o->di_uid); 145 n->di_gid = bswap32(o->di_gid); 146 } 147 148 void 149 ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n) 150 { 151 n->di_mode = bswap16(o->di_mode); 152 n->di_nlink = bswap16(o->di_nlink); 153 n->di_uid = bswap32(o->di_uid); 154 n->di_gid = bswap32(o->di_gid); 155 n->di_blksize = bswap32(o->di_blksize); 156 n->di_size = bswap64(o->di_size); 157 n->di_blocks = bswap64(o->di_blocks); 158 n->di_atime = bswap64(o->di_atime); 159 n->di_atimensec = bswap32(o->di_atimensec); 160 n->di_mtime = bswap64(o->di_mtime); 161 n->di_mtimensec = bswap32(o->di_mtimensec); 162 n->di_ctime = bswap64(o->di_ctime); 163 n->di_ctimensec = bswap32(o->di_ctimensec); 164 n->di_birthtime = bswap64(o->di_ctime); 165 n->di_birthnsec = bswap32(o->di_ctimensec); 166 n->di_gen = bswap32(o->di_gen); 167 n->di_kernflags = bswap32(o->di_kernflags); 168 n->di_flags = bswap32(o->di_flags); 169 n->di_extsize = bswap32(o->di_extsize); 170 memcpy(n->di_extb, o->di_extb, sizeof(n->di_extb)); 171 memcpy(n->di_db, o->di_db, sizeof(n->di_db)); 172 memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib)); 173 } 174 175 void 176 ffs_csum_swap(struct csum *o, struct csum *n, int size) 177 { 178 size_t i; 179 u_int32_t *oint, *nint; 180 181 oint = (u_int32_t*)o; 182 nint = (u_int32_t*)n; 183 184 for (i = 0; i < size / sizeof(u_int32_t); i++) 185 nint[i] = bswap32(oint[i]); 186 } 187 188 void 189 ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n) 190 { 191 n->cs_ndir = bswap64(o->cs_ndir); 192 n->cs_nbfree = bswap64(o->cs_nbfree); 193 n->cs_nifree = bswap64(o->cs_nifree); 194 n->cs_nffree = bswap64(o->cs_nffree); 195 } 196 197 /* 198 * Note that ffs_cg_swap may be called with o == n. 199 */ 200 void 201 ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs) 202 { 203 int i; 204 u_int32_t *n32, *o32; 205 u_int16_t *n16, *o16; 206 int32_t btotoff, boff, clustersumoff; 207 208 n->cg_firstfield = bswap32(o->cg_firstfield); 209 n->cg_magic = bswap32(o->cg_magic); 210 n->cg_old_time = bswap32(o->cg_old_time); 211 n->cg_cgx = bswap32(o->cg_cgx); 212 n->cg_old_ncyl = bswap16(o->cg_old_ncyl); 213 n->cg_old_niblk = bswap16(o->cg_old_niblk); 214 n->cg_ndblk = bswap32(o->cg_ndblk); 215 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir); 216 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree); 217 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree); 218 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree); 219 n->cg_rotor = bswap32(o->cg_rotor); 220 n->cg_frotor = bswap32(o->cg_frotor); 221 n->cg_irotor = bswap32(o->cg_irotor); 222 for (i = 0; i < MAXFRAG; i++) 223 n->cg_frsum[i] = bswap32(o->cg_frsum[i]); 224 225 n->cg_old_btotoff = bswap32(o->cg_old_btotoff); 226 n->cg_old_boff = bswap32(o->cg_old_boff); 227 n->cg_iusedoff = bswap32(o->cg_iusedoff); 228 n->cg_freeoff = bswap32(o->cg_freeoff); 229 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff); 230 n->cg_clustersumoff = bswap32(o->cg_clustersumoff); 231 n->cg_clusteroff = bswap32(o->cg_clusteroff); 232 n->cg_nclusterblks = bswap32(o->cg_nclusterblks); 233 n->cg_niblk = bswap32(o->cg_niblk); 234 n->cg_initediblk = bswap32(o->cg_initediblk); 235 n->cg_time = bswap64(o->cg_time); 236 237 if (fs->fs_magic == FS_UFS2_MAGIC) 238 return; 239 240 if (n->cg_magic == CG_MAGIC) { 241 btotoff = n->cg_old_btotoff; 242 boff = n->cg_old_boff; 243 clustersumoff = n->cg_clustersumoff; 244 } else { 245 btotoff = bswap32(n->cg_old_btotoff); 246 boff = bswap32(n->cg_old_boff); 247 clustersumoff = bswap32(n->cg_clustersumoff); 248 } 249 n32 = (u_int32_t *)((u_int8_t *)n + btotoff); 250 o32 = (u_int32_t *)((u_int8_t *)o + btotoff); 251 n16 = (u_int16_t *)((u_int8_t *)n + boff); 252 o16 = (u_int16_t *)((u_int8_t *)o + boff); 253 254 for (i = 0; i < fs->fs_old_cpg; i++) 255 n32[i] = bswap32(o32[i]); 256 257 for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++) 258 n16[i] = bswap16(o16[i]); 259 260 n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff); 261 o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff); 262 for (i = 1; i < fs->fs_contigsumsize + 1; i++) 263 n32[i] = bswap32(o32[i]); 264 } 265