xref: /freebsd/usr.sbin/fstyp/hammer2_disk.h (revision c9ccf3a32da427475985b85d7df023ccfb138c27)
1 /*-
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * $FreeBSD$
36  */
37 
38 #ifndef _HAMMER2_DISK_H_
39 #define _HAMMER2_DISK_H_
40 
41 #ifndef _SYS_UUID_H_
42 #include <sys/uuid.h>
43 #endif
44 #ifndef _SYS_DMSG_H_
45 /*
46  * dmsg_hdr must be 64 bytes
47  */
48 struct dmsg_hdr {
49 	uint16_t	magic;		/* 00 sanity, synchro, endian */
50 	uint16_t	reserved02;	/* 02 */
51 	uint32_t	salt;		/* 04 random salt helps w/crypto */
52 
53 	uint64_t	msgid;		/* 08 message transaction id */
54 	uint64_t	circuit;	/* 10 circuit id or 0	*/
55 	uint64_t	reserved18;	/* 18 */
56 
57 	uint32_t	cmd;		/* 20 flags | cmd | hdr_size / ALIGN */
58 	uint32_t	aux_crc;	/* 24 auxiliary data crc */
59 	uint32_t	aux_bytes;	/* 28 auxiliary data length (bytes) */
60 	uint32_t	error;		/* 2C error code or 0 */
61 	uint64_t	aux_descr;	/* 30 negotiated OOB data descr */
62 	uint32_t	reserved38;	/* 38 */
63 	uint32_t	hdr_crc;	/* 3C (aligned) extended header crc */
64 };
65 
66 typedef struct dmsg_hdr dmsg_hdr_t;
67 #endif
68 
69 /*
70  * The structures below represent the on-disk media structures for the HAMMER2
71  * filesystem.  Note that all fields for on-disk structures are naturally
72  * aligned.  The host endian format is typically used - compatibility is
73  * possible if the implementation detects reversed endian and adjusts accesses
74  * accordingly.
75  *
76  * HAMMER2 primarily revolves around the directory topology:  inodes,
77  * directory entries, and block tables.  Block device buffer cache buffers
78  * are always 64KB.  Logical file buffers are typically 16KB.  All data
79  * references utilize 64-bit byte offsets.
80  *
81  * Free block management is handled independently using blocks reserved by
82  * the media topology.
83  */
84 
85 /*
86  * The data at the end of a file or directory may be a fragment in order
87  * to optimize storage efficiency.  The minimum fragment size is 1KB.
88  * Since allocations are in powers of 2 fragments must also be sized in
89  * powers of 2 (1024, 2048, ... 65536).
90  *
91  * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K),
92  * which is 2^16.  Larger extents may be supported in the future.  Smaller
93  * fragments might be supported in the future (down to 64 bytes is possible),
94  * but probably will not be.
95  *
96  * A full indirect block use supports 512 x 128-byte blockrefs in a 64KB
97  * buffer.  Indirect blocks down to 1KB are supported to keep small
98  * directories small.
99  *
100  * A maximally sized file (2^64-1 bytes) requires ~6 indirect block levels
101  * using 64KB indirect blocks (128 byte refs, 512 or radix 9 per indblk).
102  *
103  *	16(datablk) + 9 + 9 + 9 + 9 + 9 + 9 = ~70.
104  *	16(datablk) + 7 + 9 + 9 + 9 + 9 + 9 = ~68.  (smaller top level indblk)
105  *
106  * The actual depth depends on copies redundancy and whether the filesystem
107  * has chosen to use a smaller indirect block size at the top level or not.
108  */
109 #define HAMMER2_ALLOC_MIN	1024	/* minimum allocation size */
110 #define HAMMER2_RADIX_MIN	10	/* minimum allocation size 2^N */
111 #define HAMMER2_ALLOC_MAX	65536	/* maximum allocation size */
112 #define HAMMER2_RADIX_MAX	16	/* maximum allocation size 2^N */
113 #define HAMMER2_RADIX_KEY	64	/* number of bits in key */
114 
115 /*
116  * MINALLOCSIZE		- The minimum allocation size.  This can be smaller
117  *		  	  or larger than the minimum physical IO size.
118  *
119  *			  NOTE: Should not be larger than 1K since inodes
120  *				are 1K.
121  *
122  * MINIOSIZE		- The minimum IO size.  This must be less than
123  *			  or equal to HAMMER2_LBUFSIZE.
124  *
125  * HAMMER2_LBUFSIZE	- Nominal buffer size for I/O rollups.
126  *
127  * HAMMER2_PBUFSIZE	- Topological block size used by files for all
128  *			  blocks except the block straddling EOF.
129  *
130  * HAMMER2_SEGSIZE	- Allocation map segment size, typically 4MB
131  *			  (space represented by a level0 bitmap).
132  */
133 
134 #define HAMMER2_SEGSIZE		(1 << HAMMER2_FREEMAP_LEVEL0_RADIX)
135 #define HAMMER2_SEGRADIX	HAMMER2_FREEMAP_LEVEL0_RADIX
136 
137 #define HAMMER2_PBUFRADIX	16	/* physical buf (1<<16) bytes */
138 #define HAMMER2_PBUFSIZE	65536
139 #define HAMMER2_LBUFRADIX	14	/* logical buf (1<<14) bytes */
140 #define HAMMER2_LBUFSIZE	16384
141 
142 /*
143  * Generally speaking we want to use 16K and 64K I/Os
144  */
145 #define HAMMER2_MINIORADIX	HAMMER2_LBUFRADIX
146 #define HAMMER2_MINIOSIZE	HAMMER2_LBUFSIZE
147 
148 #define HAMMER2_IND_BYTES_MIN	4096
149 #define HAMMER2_IND_BYTES_NOM	HAMMER2_LBUFSIZE
150 #define HAMMER2_IND_BYTES_MAX	HAMMER2_PBUFSIZE
151 #define HAMMER2_IND_RADIX_MIN	12
152 #define HAMMER2_IND_RADIX_NOM	HAMMER2_LBUFRADIX
153 #define HAMMER2_IND_RADIX_MAX	HAMMER2_PBUFRADIX
154 #define HAMMER2_IND_COUNT_MIN	(HAMMER2_IND_BYTES_MIN / \
155 				 sizeof(hammer2_blockref_t))
156 #define HAMMER2_IND_COUNT_MAX	(HAMMER2_IND_BYTES_MAX / \
157 				 sizeof(hammer2_blockref_t))
158 
159 /*
160  * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that
161  * any element can occur at any index and holes can be anywhere.  As a
162  * future optimization we will be able to flag that such arrays are sorted
163  * and thus optimize lookups, but for now we don't.
164  *
165  * Inodes embed either 512 bytes of direct data or an array of 4 blockrefs,
166  * resulting in highly efficient storage for files <= 512 bytes and for files
167  * <= 512KB.  Up to 4 directory entries can be referenced from a directory
168  * without requiring an indirect block.
169  *
170  * Indirect blocks are typically either 4KB (64 blockrefs / ~4MB represented),
171  * or 64KB (1024 blockrefs / ~64MB represented).
172  */
173 #define HAMMER2_SET_RADIX		2	/* radix 2 = 4 entries */
174 #define HAMMER2_SET_COUNT		(1 << HAMMER2_SET_RADIX)
175 #define HAMMER2_EMBEDDED_BYTES		512	/* inode blockset/dd size */
176 #define HAMMER2_EMBEDDED_RADIX		9
177 
178 #define HAMMER2_PBUFMASK	(HAMMER2_PBUFSIZE - 1)
179 #define HAMMER2_LBUFMASK	(HAMMER2_LBUFSIZE - 1)
180 #define HAMMER2_SEGMASK		(HAMMER2_SEGSIZE - 1)
181 
182 #define HAMMER2_LBUFMASK64	((hammer2_off_t)HAMMER2_LBUFMASK)
183 #define HAMMER2_PBUFSIZE64	((hammer2_off_t)HAMMER2_PBUFSIZE)
184 #define HAMMER2_PBUFMASK64	((hammer2_off_t)HAMMER2_PBUFMASK)
185 #define HAMMER2_SEGSIZE64	((hammer2_off_t)HAMMER2_SEGSIZE)
186 #define HAMMER2_SEGMASK64	((hammer2_off_t)HAMMER2_SEGMASK)
187 
188 #define HAMMER2_UUID_STRING	"5cbb9ad1-862d-11dc-a94d-01301bb8a9f5"
189 
190 /*
191  * A 4MB segment is reserved at the beginning of each 2GB zone.  This segment
192  * contains the volume header (or backup volume header), the free block
193  * table, and possibly other information in the future.  A 4MB segment for
194  * freemap is reserved at the beginning of every 1GB.
195  *
196  * 4MB = 64 x 64K blocks.  Each 4MB segment is broken down as follows:
197  *
198  * ==========
199  *  0 volume header (for the first four 2GB zones)
200  *  1 freemap00 level1 FREEMAP_LEAF (256 x 128B bitmap data per 1GB)
201  *  2           level2 FREEMAP_NODE (256 x 128B indirect block per 256GB)
202  *  3           level3 FREEMAP_NODE (256 x 128B indirect block per 64TB)
203  *  4           level4 FREEMAP_NODE (256 x 128B indirect block per 16PB)
204  *  5           level5 FREEMAP_NODE (256 x 128B indirect block per 4EB)
205  *  6 freemap01 level1 (rotation)
206  *  7           level2
207  *  8           level3
208  *  9           level4
209  * 10           level5
210  * 11 freemap02 level1 (rotation)
211  * 12           level2
212  * 13           level3
213  * 14           level4
214  * 15           level5
215  * 16 freemap03 level1 (rotation)
216  * 17           level2
217  * 18           level3
218  * 19           level4
219  * 20           level5
220  * 21 freemap04 level1 (rotation)
221  * 22           level2
222  * 23           level3
223  * 24           level4
224  * 25           level5
225  * 26 freemap05 level1 (rotation)
226  * 27           level2
227  * 28           level3
228  * 29           level4
229  * 30           level5
230  * 31 freemap06 level1 (rotation)
231  * 32           level2
232  * 33           level3
233  * 34           level4
234  * 35           level5
235  * 36 freemap07 level1 (rotation)
236  * 37           level2
237  * 38           level3
238  * 39           level4
239  * 40           level5
240  * 41 unused
241  * .. unused
242  * 63 unused
243  * ==========
244  *
245  * The first four 2GB zones contain volume headers and volume header backups.
246  * After that the volume header block# is reserved for future use.  Similarly,
247  * there are many blocks related to various Freemap levels which are not
248  * used in every segment and those are also reserved for future use.
249  * Note that each FREEMAP_LEAF or FREEMAP_NODE uses 32KB out of 64KB slot.
250  *
251  *			Freemap (see the FREEMAP document)
252  *
253  * The freemap utilizes blocks #1-40 in 8 sets of 5 blocks.  Each block in
254  * a set represents a level of depth in the freemap topology.  Eight sets
255  * exist to prevent live updates from disturbing the state of the freemap
256  * were a crash/reboot to occur.  That is, a live update is not committed
257  * until the update's flush reaches the volume root.  There are FOUR volume
258  * roots representing the last four synchronization points, so the freemap
259  * must be consistent no matter which volume root is chosen by the mount
260  * code.
261  *
262  * Each freemap set is 5 x 64K blocks and represents the 1GB, 256GB, 64TB,
263  * 16PB and 4EB indirect map.  The volume header itself has a set of 4 freemap
264  * blockrefs representing another 2 bits, giving us a total 64 bits of
265  * representable address space.
266  *
267  * The Level 0 64KB block represents 1GB of storage represented by 32KB
268  * (256 x struct hammer2_bmap_data).  Each structure represents 4MB of storage
269  * and has a 512 bit bitmap, using 2 bits to represent a 16KB chunk of
270  * storage.  These 2 bits represent the following states:
271  *
272  *	00	Free
273  *	01	(reserved) (Possibly partially allocated)
274  *	10	Possibly free
275  *	11	Allocated
276  *
277  * One important thing to note here is that the freemap resolution is 16KB,
278  * but the minimum storage allocation size is 1KB.  The hammer2 vfs keeps
279  * track of sub-allocations in memory, which means that on a unmount or reboot
280  * the entire 16KB of a partially allocated block will be considered fully
281  * allocated.  It is possible for fragmentation to build up over time, but
282  * defragmentation is fairly easy to accomplish since all modifications
283  * allocate a new block.
284  *
285  * The Second thing to note is that due to the way snapshots and inode
286  * replication works, deleting a file cannot immediately free the related
287  * space.  Furthermore, deletions often do not bother to traverse the
288  * block subhierarchy being deleted.  And to go even further, whole
289  * sub-directory trees can be deleted simply by deleting the directory inode
290  * at the top.  So even though we have a symbol to represent a 'possibly free'
291  * block (binary 10), only the bulk free scanning code can actually use it.
292  * Normal 'rm's or other deletions do not.
293  *
294  * WARNING!  ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX
295  *	     (i.e. a multiple of 4MB).  VOLUME_ALIGN must be >= ZONE_SEG.
296  *
297  * In Summary:
298  *
299  * (1) Modifications to freemap blocks 'allocate' a new copy (aka use a block
300  *     from the next set).  The new copy is reused until a flush occurs at
301  *     which point the next modification will then rotate to the next set.
302  */
303 #define HAMMER2_VOLUME_ALIGN		(8 * 1024 * 1024)
304 #define HAMMER2_VOLUME_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
305 #define HAMMER2_VOLUME_ALIGNMASK	(HAMMER2_VOLUME_ALIGN - 1)
306 #define HAMMER2_VOLUME_ALIGNMASK64     ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK)
307 
308 #define HAMMER2_NEWFS_ALIGN		(HAMMER2_VOLUME_ALIGN)
309 #define HAMMER2_NEWFS_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
310 #define HAMMER2_NEWFS_ALIGNMASK		(HAMMER2_VOLUME_ALIGN - 1)
311 #define HAMMER2_NEWFS_ALIGNMASK64	((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK)
312 
313 #define HAMMER2_ZONE_BYTES64		(2LLU * 1024 * 1024 * 1024)
314 #define HAMMER2_ZONE_MASK64		(HAMMER2_ZONE_BYTES64 - 1)
315 #define HAMMER2_ZONE_SEG		(4 * 1024 * 1024)
316 #define HAMMER2_ZONE_SEG64		((hammer2_off_t)HAMMER2_ZONE_SEG)
317 #define HAMMER2_ZONE_BLOCKS_SEG		(HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE)
318 
319 #define HAMMER2_ZONE_FREEMAP_INC	5	/* 5 deep */
320 
321 #define HAMMER2_ZONE_VOLHDR		0	/* volume header or backup */
322 #define HAMMER2_ZONE_FREEMAP_00		1	/* normal freemap rotation */
323 #define HAMMER2_ZONE_FREEMAP_01		6	/* normal freemap rotation */
324 #define HAMMER2_ZONE_FREEMAP_02		11	/* normal freemap rotation */
325 #define HAMMER2_ZONE_FREEMAP_03		16	/* normal freemap rotation */
326 #define HAMMER2_ZONE_FREEMAP_04		21	/* normal freemap rotation */
327 #define HAMMER2_ZONE_FREEMAP_05		26	/* normal freemap rotation */
328 #define HAMMER2_ZONE_FREEMAP_06		31	/* normal freemap rotation */
329 #define HAMMER2_ZONE_FREEMAP_07		36	/* normal freemap rotation */
330 #define HAMMER2_ZONE_FREEMAP_END	41	/* (non-inclusive) */
331 
332 #define HAMMER2_ZONE_UNUSED41		41
333 #define HAMMER2_ZONE_UNUSED42		42
334 #define HAMMER2_ZONE_UNUSED43		43
335 #define HAMMER2_ZONE_UNUSED44		44
336 #define HAMMER2_ZONE_UNUSED45		45
337 #define HAMMER2_ZONE_UNUSED46		46
338 #define HAMMER2_ZONE_UNUSED47		47
339 #define HAMMER2_ZONE_UNUSED48		48
340 #define HAMMER2_ZONE_UNUSED49		49
341 #define HAMMER2_ZONE_UNUSED50		50
342 #define HAMMER2_ZONE_UNUSED51		51
343 #define HAMMER2_ZONE_UNUSED52		52
344 #define HAMMER2_ZONE_UNUSED53		53
345 #define HAMMER2_ZONE_UNUSED54		54
346 #define HAMMER2_ZONE_UNUSED55		55
347 #define HAMMER2_ZONE_UNUSED56		56
348 #define HAMMER2_ZONE_UNUSED57		57
349 #define HAMMER2_ZONE_UNUSED58		58
350 #define HAMMER2_ZONE_UNUSED59		59
351 #define HAMMER2_ZONE_UNUSED60		60
352 #define HAMMER2_ZONE_UNUSED61		61
353 #define HAMMER2_ZONE_UNUSED62		62
354 #define HAMMER2_ZONE_UNUSED63		63
355 #define HAMMER2_ZONE_END		64	/* non-inclusive */
356 
357 #define HAMMER2_NFREEMAPS		8	/* FREEMAP_00 - FREEMAP_07 */
358 
359 						/* relative to FREEMAP_x */
360 #define HAMMER2_ZONEFM_LEVEL1		0	/* 1GB leafmap */
361 #define HAMMER2_ZONEFM_LEVEL2		1	/* 256GB indmap */
362 #define HAMMER2_ZONEFM_LEVEL3		2	/* 64TB indmap */
363 #define HAMMER2_ZONEFM_LEVEL4		3	/* 16PB indmap */
364 #define HAMMER2_ZONEFM_LEVEL5		4	/* 4EB indmap */
365 /* LEVEL6 is a set of 4 blockrefs in the volume header 16EB */
366 
367 /*
368  * Freemap radix.  Assumes a set-count of 4, 128-byte blockrefs,
369  * 32KB indirect block for freemap (LEVELN_PSIZE below).
370  *
371  * Leaf entry represents 4MB of storage broken down into a 512-bit
372  * bitmap, 2-bits per entry.  So course bitmap item represents 16KB.
373  */
374 #if HAMMER2_SET_COUNT != 4
375 #error "hammer2_disk.h - freemap assumes SET_COUNT is 4"
376 #endif
377 #define HAMMER2_FREEMAP_LEVEL6_RADIX	64	/* 16EB (end) */
378 #define HAMMER2_FREEMAP_LEVEL5_RADIX	62	/* 4EB */
379 #define HAMMER2_FREEMAP_LEVEL4_RADIX	54	/* 16PB */
380 #define HAMMER2_FREEMAP_LEVEL3_RADIX	46	/* 64TB */
381 #define HAMMER2_FREEMAP_LEVEL2_RADIX	38	/* 256GB */
382 #define HAMMER2_FREEMAP_LEVEL1_RADIX	30	/* 1GB */
383 #define HAMMER2_FREEMAP_LEVEL0_RADIX	22	/* 4MB (128by in l-1 leaf) */
384 
385 #define HAMMER2_FREEMAP_LEVELN_PSIZE	32768	/* physical bytes */
386 
387 #define HAMMER2_FREEMAP_LEVEL5_SIZE	((hammer2_off_t)1 <<		\
388 					 HAMMER2_FREEMAP_LEVEL5_RADIX)
389 #define HAMMER2_FREEMAP_LEVEL4_SIZE	((hammer2_off_t)1 <<		\
390 					 HAMMER2_FREEMAP_LEVEL4_RADIX)
391 #define HAMMER2_FREEMAP_LEVEL3_SIZE	((hammer2_off_t)1 <<		\
392 					 HAMMER2_FREEMAP_LEVEL3_RADIX)
393 #define HAMMER2_FREEMAP_LEVEL2_SIZE	((hammer2_off_t)1 <<		\
394 					 HAMMER2_FREEMAP_LEVEL2_RADIX)
395 #define HAMMER2_FREEMAP_LEVEL1_SIZE	((hammer2_off_t)1 <<		\
396 					 HAMMER2_FREEMAP_LEVEL1_RADIX)
397 #define HAMMER2_FREEMAP_LEVEL0_SIZE	((hammer2_off_t)1 <<		\
398 					 HAMMER2_FREEMAP_LEVEL0_RADIX)
399 
400 #define HAMMER2_FREEMAP_LEVEL5_MASK	(HAMMER2_FREEMAP_LEVEL5_SIZE - 1)
401 #define HAMMER2_FREEMAP_LEVEL4_MASK	(HAMMER2_FREEMAP_LEVEL4_SIZE - 1)
402 #define HAMMER2_FREEMAP_LEVEL3_MASK	(HAMMER2_FREEMAP_LEVEL3_SIZE - 1)
403 #define HAMMER2_FREEMAP_LEVEL2_MASK	(HAMMER2_FREEMAP_LEVEL2_SIZE - 1)
404 #define HAMMER2_FREEMAP_LEVEL1_MASK	(HAMMER2_FREEMAP_LEVEL1_SIZE - 1)
405 #define HAMMER2_FREEMAP_LEVEL0_MASK	(HAMMER2_FREEMAP_LEVEL0_SIZE - 1)
406 
407 #define HAMMER2_FREEMAP_COUNT		(int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \
408 					 sizeof(hammer2_bmap_data_t))
409 
410 /*
411  * XXX I made a mistake and made the reserved area begin at each LEVEL1 zone,
412  *     which is on a 1GB demark.  This will eat a little more space but for
413  *     now we retain compatibility and make FMZONEBASE every 1GB
414  */
415 #define H2FMZONEBASE(key)	((key) & ~HAMMER2_FREEMAP_LEVEL1_MASK)
416 #define H2FMBASE(key, radix)	((key) & ~(((hammer2_off_t)1 << (radix)) - 1))
417 
418 /*
419  * 16KB bitmap granularity (x2 bits per entry).
420  */
421 #define HAMMER2_FREEMAP_BLOCK_RADIX	14
422 #define HAMMER2_FREEMAP_BLOCK_SIZE	(1 << HAMMER2_FREEMAP_BLOCK_RADIX)
423 #define HAMMER2_FREEMAP_BLOCK_MASK	(HAMMER2_FREEMAP_BLOCK_SIZE - 1)
424 
425 /*
426  * bitmap[] structure.  2 bits per HAMMER2_FREEMAP_BLOCK_SIZE.
427  *
428  * 8 x 64-bit elements, 2 bits per block.
429  * 32 blocks (radix 5) per element.
430  * representing INDEX_SIZE bytes worth of storage per element.
431  */
432 
433 typedef uint64_t			hammer2_bitmap_t;
434 
435 #define HAMMER2_BMAP_ALLONES		((hammer2_bitmap_t)-1)
436 #define HAMMER2_BMAP_ELEMENTS		8
437 #define HAMMER2_BMAP_BITS_PER_ELEMENT	64
438 #define HAMMER2_BMAP_INDEX_RADIX	5	/* 32 blocks per element */
439 #define HAMMER2_BMAP_BLOCKS_PER_ELEMENT	(1 << HAMMER2_BMAP_INDEX_RADIX)
440 
441 #define HAMMER2_BMAP_INDEX_SIZE		(HAMMER2_FREEMAP_BLOCK_SIZE * \
442 					 HAMMER2_BMAP_BLOCKS_PER_ELEMENT)
443 #define HAMMER2_BMAP_INDEX_MASK		(HAMMER2_BMAP_INDEX_SIZE - 1)
444 
445 #define HAMMER2_BMAP_SIZE		(HAMMER2_BMAP_INDEX_SIZE * \
446 					 HAMMER2_BMAP_ELEMENTS)
447 #define HAMMER2_BMAP_MASK		(HAMMER2_BMAP_SIZE - 1)
448 
449 /*
450  * Two linear areas can be reserved after the initial 4MB segment in the base
451  * zone (the one starting at offset 0).  These areas are NOT managed by the
452  * block allocator and do not fall under HAMMER2 crc checking rules based
453  * at the volume header (but can be self-CRCd internally, depending).
454  */
455 #define HAMMER2_BOOT_MIN_BYTES		HAMMER2_VOLUME_ALIGN
456 #define HAMMER2_BOOT_NOM_BYTES		(64*1024*1024)
457 #define HAMMER2_BOOT_MAX_BYTES		(256*1024*1024)
458 
459 #define HAMMER2_REDO_MIN_BYTES		HAMMER2_VOLUME_ALIGN
460 #define HAMMER2_REDO_NOM_BYTES		(256*1024*1024)
461 #define HAMMER2_REDO_MAX_BYTES		(1024*1024*1024)
462 
463 /*
464  * Most HAMMER2 types are implemented as unsigned 64-bit integers.
465  * Transaction ids are monotonic.
466  *
467  * We utilize 32-bit iSCSI CRCs.
468  */
469 typedef uint64_t hammer2_tid_t;
470 typedef uint64_t hammer2_off_t;
471 typedef uint64_t hammer2_key_t;
472 typedef uint32_t hammer2_crc32_t;
473 
474 /*
475  * Miscellaneous ranges (all are unsigned).
476  */
477 #define HAMMER2_TID_MIN		1ULL
478 #define HAMMER2_TID_MAX		0xFFFFFFFFFFFFFFFFULL
479 #define HAMMER2_KEY_MIN		0ULL
480 #define HAMMER2_KEY_MAX		0xFFFFFFFFFFFFFFFFULL
481 #define HAMMER2_OFFSET_MIN	0ULL
482 #define HAMMER2_OFFSET_MAX	0xFFFFFFFFFFFFFFFFULL
483 
484 /*
485  * HAMMER2 data offset special cases and masking.
486  *
487  * All HAMMER2 data offsets have to be broken down into a 64K buffer base
488  * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO).
489  *
490  * Indexes into physical buffers are always 64-byte aligned.  The low 6 bits
491  * of the data offset field specifies how large the data chunk being pointed
492  * to as a power of 2.  The theoretical minimum radix is thus 6 (The space
493  * needed in the low bits of the data offset field).  However, the practical
494  * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets
495  * HAMMER2_RADIX_MIN to 10.  The maximum radix is currently 16 (64KB), but
496  * we fully intend to support larger extents in the future.
497  *
498  * WARNING! A radix of 0 (such as when data_off is all 0's) is a special
499  *	    case which means no data associated with the blockref, and
500  *	    not the '1 byte' it would otherwise calculate to.
501  */
502 #define HAMMER2_OFF_BAD		((hammer2_off_t)-1)
503 #define HAMMER2_OFF_MASK	0xFFFFFFFFFFFFFFC0ULL
504 #define HAMMER2_OFF_MASK_LO	(HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64)
505 #define HAMMER2_OFF_MASK_HI	(~HAMMER2_PBUFMASK64)
506 #define HAMMER2_OFF_MASK_RADIX	0x000000000000003FULL
507 #define HAMMER2_MAX_COPIES	6
508 
509 /*
510  * HAMMER2 directory support and pre-defined keys
511  */
512 #define HAMMER2_DIRHASH_VISIBLE	0x8000000000000000ULL
513 #define HAMMER2_DIRHASH_USERMSK	0x7FFFFFFFFFFFFFFFULL
514 #define HAMMER2_DIRHASH_LOMASK	0x0000000000007FFFULL
515 #define HAMMER2_DIRHASH_HIMASK	0xFFFFFFFFFFFF0000ULL
516 #define HAMMER2_DIRHASH_FORCED	0x0000000000008000ULL	/* bit forced on */
517 
518 #define HAMMER2_SROOT_KEY	0x0000000000000000ULL	/* volume to sroot */
519 #define HAMMER2_BOOT_KEY	0xd9b36ce135528000ULL	/* sroot to BOOT PFS */
520 
521 /************************************************************************
522  *				DMSG SUPPORT				*
523  ************************************************************************
524  * LNK_VOLCONF
525  *
526  * All HAMMER2 directories directly under the super-root on your local
527  * media can be mounted separately, even if they share the same physical
528  * device.
529  *
530  * When you do a HAMMER2 mount you are effectively tying into a HAMMER2
531  * cluster via local media.  The local media does not have to participate
532  * in the cluster, other than to provide the hammer2_volconf[] array and
533  * root inode for the mount.
534  *
535  * This is important: The mount device path you specify serves to bootstrap
536  * your entry into the cluster, but your mount will make active connections
537  * to ALL copy elements in the hammer2_volconf[] array which match the
538  * PFSID of the directory in the super-root that you specified.  The local
539  * media path does not have to be mentioned in this array but becomes part
540  * of the cluster based on its type and access rights.  ALL ELEMENTS ARE
541  * TREATED ACCORDING TO TYPE NO MATTER WHICH ONE YOU MOUNT FROM.
542  *
543  * The actual cluster may be far larger than the elements you list in the
544  * hammer2_volconf[] array.  You list only the elements you wish to
545  * directly connect to and you are able to access the rest of the cluster
546  * indirectly through those connections.
547  *
548  * WARNING!  This structure must be exactly 128 bytes long for its config
549  *	     array to fit in the volume header.
550  */
551 struct hammer2_volconf {
552 	uint8_t	copyid;		/* 00	 copyid 0-255 (must match slot) */
553 	uint8_t inprog;		/* 01	 operation in progress, or 0 */
554 	uint8_t chain_to;	/* 02	 operation chaining to, or 0 */
555 	uint8_t chain_from;	/* 03	 operation chaining from, or 0 */
556 	uint16_t flags;		/* 04-05 flags field */
557 	uint8_t error;		/* 06	 last operational error */
558 	uint8_t priority;	/* 07	 priority and round-robin flag */
559 	uint8_t remote_pfs_type;/* 08	 probed direct remote PFS type */
560 	uint8_t reserved08[23];	/* 09-1F */
561 	uuid_t	pfs_clid;	/* 20-2F copy target must match this uuid */
562 	uint8_t label[16];	/* 30-3F import/export label */
563 	uint8_t path[64];	/* 40-7F target specification string or key */
564 } __packed;
565 
566 typedef struct hammer2_volconf hammer2_volconf_t;
567 
568 #define DMSG_VOLF_ENABLED	0x0001
569 #define DMSG_VOLF_INPROG	0x0002
570 #define DMSG_VOLF_CONN_RR	0x80	/* round-robin at same priority */
571 #define DMSG_VOLF_CONN_EF	0x40	/* media errors flagged */
572 #define DMSG_VOLF_CONN_PRI	0x0F	/* select priority 0-15 (15=best) */
573 
574 struct dmsg_lnk_hammer2_volconf {
575 	dmsg_hdr_t		head;
576 	hammer2_volconf_t	copy;	/* copy spec */
577 	int32_t			index;
578 	int32_t			unused01;
579 	uuid_t			mediaid;
580 	int64_t			reserved02[32];
581 } __packed;
582 
583 typedef struct dmsg_lnk_hammer2_volconf dmsg_lnk_hammer2_volconf_t;
584 
585 #define DMSG_LNK_HAMMER2_VOLCONF DMSG_LNK(DMSG_LNK_CMD_HAMMER2_VOLCONF, \
586 					  dmsg_lnk_hammer2_volconf)
587 
588 #define H2_LNK_VOLCONF(msg)	((dmsg_lnk_hammer2_volconf_t *)(msg)->any.buf)
589 
590 /*
591  * HAMMER2 directory entry header (embedded in blockref)  exactly 16 bytes
592  */
593 struct hammer2_dirent_head {
594 	hammer2_tid_t		inum;		/* inode number */
595 	uint16_t		namlen;		/* name length */
596 	uint8_t			type;		/* OBJTYPE_*	*/
597 	uint8_t			unused0B;
598 	uint8_t			unused0C[4];
599 } __packed;
600 
601 typedef struct hammer2_dirent_head hammer2_dirent_head_t;
602 
603 /*
604  * The media block reference structure.  This forms the core of the HAMMER2
605  * media topology recursion.  This 128-byte data structure is embedded in the
606  * volume header, in inodes (which are also directory entries), and in
607  * indirect blocks.
608  *
609  * A blockref references a single media item, which typically can be a
610  * directory entry (aka inode), indirect block, or data block.
611  *
612  * The primary feature a blockref represents is the ability to validate
613  * the entire tree underneath it via its check code.  Any modification to
614  * anything propagates up the blockref tree all the way to the root, replacing
615  * the related blocks and compounding the generated check code.
616  *
617  * The check code can be a simple 32-bit iscsi code, a 64-bit crc, or as
618  * complex as a 512 bit cryptographic hash.  I originally used a 64-byte
619  * blockref but later expanded it to 128 bytes to be able to support the
620  * larger check code as well as to embed statistics for quota operation.
621  *
622  * Simple check codes are not sufficient for unverified dedup.  Even with
623  * a maximally-sized check code unverified dedup should only be used in
624  * in subdirectory trees where you do not need 100% data integrity.
625  *
626  * Unverified dedup is deduping based on meta-data only without verifying
627  * that the data blocks are actually identical.  Verified dedup guarantees
628  * integrity but is a far more I/O-expensive operation.
629  *
630  * --
631  *
632  * mirror_tid - per cluster node modified (propagated upward by flush)
633  * modify_tid - clc record modified (not propagated).
634  * update_tid - clc record updated (propagated upward on verification)
635  *
636  * CLC - Stands for 'Cluster Level Change', identifiers which are identical
637  *	 within the topology across all cluster nodes (when fully
638  *	 synchronized).
639  *
640  * NOTE: The range of keys represented by the blockref is (key) to
641  *	 ((key) + (1LL << keybits) - 1).  HAMMER2 usually populates
642  *	 blocks bottom-up, inserting a new root when radix expansion
643  *	 is required.
644  *
645  * leaf_count  - Helps manage leaf collapse calculations when indirect
646  *		 blocks become mostly empty.  This value caps out at
647  *		 HAMMER2_BLOCKREF_LEAF_MAX (65535).
648  *
649  *		 Used by the chain code to determine when to pull leafs up
650  *		 from nearly empty indirect blocks.  For the purposes of this
651  *		 calculation, BREF_TYPE_INODE is considered a leaf, along
652  *		 with DIRENT and DATA.
653  *
654  *				    RESERVED FIELDS
655  *
656  * A number of blockref fields are reserved and should generally be set to
657  * 0 for future compatibility.
658  *
659  *				FUTURE BLOCKREF EXPANSION
660  *
661  * CONTENT ADDRESSABLE INDEXING (future) - Using a 256 or 512-bit check code.
662  */
663 struct hammer2_blockref {		/* MUST BE EXACTLY 64 BYTES */
664 	uint8_t		type;		/* type of underlying item */
665 	uint8_t		methods;	/* check method & compression method */
666 	uint8_t		copyid;		/* specify which copy this is */
667 	uint8_t		keybits;	/* #of keybits masked off 0=leaf */
668 	uint8_t		vradix;		/* virtual data/meta-data size */
669 	uint8_t		flags;		/* blockref flags */
670 	uint16_t	leaf_count;	/* leaf aggregation count */
671 	hammer2_key_t	key;		/* key specification */
672 	hammer2_tid_t	mirror_tid;	/* media flush topology & freemap */
673 	hammer2_tid_t	modify_tid;	/* clc modify (not propagated) */
674 	hammer2_off_t	data_off;	/* low 6 bits is phys size (radix)*/
675 	hammer2_tid_t	update_tid;	/* clc modify (propagated upward) */
676 	union {
677 		char	buf[16];
678 
679 		/*
680 		 * Directory entry header (BREF_TYPE_DIRENT)
681 		 *
682 		 * NOTE: check.buf contains filename if <= 64 bytes.  Longer
683 		 *	 filenames are stored in a data reference of size
684 		 *	 HAMMER2_ALLOC_MIN (at least 256, typically 1024).
685 		 *
686 		 * NOTE: inode structure may contain a copy of a recently
687 		 *	 associated filename, for recovery purposes.
688 		 *
689 		 * NOTE: Superroot entries are INODEs, not DIRENTs.  Code
690 		 *	 allows both cases.
691 		 */
692 		hammer2_dirent_head_t dirent;
693 
694 		/*
695 		 * Statistics aggregation (BREF_TYPE_INODE, BREF_TYPE_INDIRECT)
696 		 */
697 		struct {
698 			hammer2_key_t	data_count;
699 			hammer2_key_t	inode_count;
700 		} stats;
701 	} embed;
702 	union {				/* check info */
703 		char	buf[64];
704 		struct {
705 			uint32_t value;
706 			uint32_t reserved[15];
707 		} iscsi32;
708 		struct {
709 			uint64_t value;
710 			uint64_t reserved[7];
711 		} xxhash64;
712 		struct {
713 			char data[24];
714 			char reserved[40];
715 		} sha192;
716 		struct {
717 			char data[32];
718 			char reserved[32];
719 		} sha256;
720 		struct {
721 			char data[64];
722 		} sha512;
723 
724 		/*
725 		 * Freemap hints are embedded in addition to the icrc32.
726 		 *
727 		 * bigmask - Radixes available for allocation (0-31).
728 		 *	     Heuristical (may be permissive but not
729 		 *	     restrictive).  Typically only radix values
730 		 *	     10-16 are used (i.e. (1<<10) through (1<<16)).
731 		 *
732 		 * avail   - Total available space remaining, in bytes
733 		 */
734 		struct {
735 			uint32_t icrc32;
736 			uint32_t bigmask;	/* available radixes */
737 			uint64_t avail;		/* total available bytes */
738 			char reserved[48];
739 		} freemap;
740 	} check;
741 } __packed;
742 
743 typedef struct hammer2_blockref hammer2_blockref_t;
744 
745 #define HAMMER2_BLOCKREF_BYTES		128	/* blockref struct in bytes */
746 #define HAMMER2_BLOCKREF_RADIX		7
747 
748 #define HAMMER2_BLOCKREF_LEAF_MAX	65535
749 
750 /*
751  * On-media and off-media blockref types.
752  *
753  * types >= 128 are pseudo values that should never be present on-media.
754  */
755 #define HAMMER2_BREF_TYPE_EMPTY		0
756 #define HAMMER2_BREF_TYPE_INODE		1
757 #define HAMMER2_BREF_TYPE_INDIRECT	2
758 #define HAMMER2_BREF_TYPE_DATA		3
759 #define HAMMER2_BREF_TYPE_DIRENT	4
760 #define HAMMER2_BREF_TYPE_FREEMAP_NODE	5
761 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF	6
762 #define HAMMER2_BREF_TYPE_FREEMAP	254	/* pseudo-type */
763 #define HAMMER2_BREF_TYPE_VOLUME	255	/* pseudo-type */
764 
765 #define HAMMER2_BREF_FLAG_PFSROOT	0x01	/* see also related opflag */
766 #define HAMMER2_BREF_FLAG_ZERO		0x02
767 
768 /*
769  * Encode/decode check mode and compression mode for
770  * bref.methods.  The compression level is not encoded in
771  * bref.methods.
772  */
773 #define HAMMER2_ENC_CHECK(n)		(((n) & 15) << 4)
774 #define HAMMER2_DEC_CHECK(n)		(((n) >> 4) & 15)
775 #define HAMMER2_ENC_COMP(n)		((n) & 15)
776 #define HAMMER2_DEC_COMP(n)		((n) & 15)
777 
778 #define HAMMER2_CHECK_NONE		0
779 #define HAMMER2_CHECK_DISABLED		1
780 #define HAMMER2_CHECK_ISCSI32		2
781 #define HAMMER2_CHECK_XXHASH64		3
782 #define HAMMER2_CHECK_SHA192		4
783 #define HAMMER2_CHECK_FREEMAP		5
784 
785 #define HAMMER2_CHECK_DEFAULT		HAMMER2_CHECK_XXHASH64
786 
787 /* user-specifiable check modes only */
788 #define HAMMER2_CHECK_STRINGS		{ "none", "disabled", "crc32", \
789 					  "xxhash64", "sha192" }
790 #define HAMMER2_CHECK_STRINGS_COUNT	5
791 
792 /*
793  * Encode/decode check or compression algorithm request in
794  * ipdata->meta.check_algo and ipdata->meta.comp_algo.
795  */
796 #define HAMMER2_ENC_ALGO(n)		(n)
797 #define HAMMER2_DEC_ALGO(n)		((n) & 15)
798 #define HAMMER2_ENC_LEVEL(n)		((n) << 4)
799 #define HAMMER2_DEC_LEVEL(n)		(((n) >> 4) & 15)
800 
801 #define HAMMER2_COMP_NONE		0
802 #define HAMMER2_COMP_AUTOZERO		1
803 #define HAMMER2_COMP_LZ4		2
804 #define HAMMER2_COMP_ZLIB		3
805 
806 #define HAMMER2_COMP_NEWFS_DEFAULT	HAMMER2_COMP_LZ4
807 #define HAMMER2_COMP_STRINGS		{ "none", "autozero", "lz4", "zlib" }
808 #define HAMMER2_COMP_STRINGS_COUNT	4
809 
810 /*
811  * Passed to hammer2_chain_create(), causes methods to be inherited from
812  * parent.
813  */
814 #define HAMMER2_METH_DEFAULT		-1
815 
816 /*
817  * HAMMER2 block references are collected into sets of 4 blockrefs.  These
818  * sets are fully associative, meaning the elements making up a set are
819  * not sorted in any way and may contain duplicate entries, holes, or
820  * entries which shortcut multiple levels of indirection.  Sets are used
821  * in various ways:
822  *
823  * (1) When redundancy is desired a set may contain several duplicate
824  *     entries pointing to different copies of the same data.  Up to 4 copies
825  *     are supported.
826  *
827  * (2) The blockrefs in a set can shortcut multiple levels of indirections
828  *     within the bounds imposed by the parent of set.
829  *
830  * When a set fills up another level of indirection is inserted, moving
831  * some or all of the set's contents into indirect blocks placed under the
832  * set.  This is a top-down approach in that indirect blocks are not created
833  * until the set actually becomes full (that is, the entries in the set can
834  * shortcut the indirect blocks when the set is not full).  Depending on how
835  * things are filled multiple indirect blocks will eventually be created.
836  *
837  * Indirect blocks are typically 4KB (64 entres) or 64KB (1024 entries) and
838  * are also treated as fully set-associative.
839  */
840 struct hammer2_blockset {
841 	hammer2_blockref_t	blockref[HAMMER2_SET_COUNT];
842 };
843 
844 typedef struct hammer2_blockset hammer2_blockset_t;
845 
846 /*
847  * Catch programmer snafus
848  */
849 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT
850 #error "hammer2 direct radix is incorrect"
851 #endif
852 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE
853 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent"
854 #endif
855 #if (1 << HAMMER2_RADIX_MIN) != HAMMER2_ALLOC_MIN
856 #error "HAMMER2_RADIX_MIN and HAMMER2_ALLOC_MIN are inconsistent"
857 #endif
858 
859 /*
860  * hammer2_bmap_data - A freemap entry in the LEVEL1 block.
861  *
862  * Each 128-byte entry contains the bitmap and meta-data required to manage
863  * a LEVEL0 (4MB) block of storage.  The storage is managed in 256 x 16KB
864  * chunks.
865  *
866  * A smaller allocation granularity is supported via a linear iterator and/or
867  * must otherwise be tracked in ram.
868  *
869  * (data structure must be 128 bytes exactly)
870  *
871  * linear  - A BYTE linear allocation offset used for sub-16KB allocations
872  *	     only.  May contain values between 0 and 4MB.  Must be ignored
873  *	     if 16KB-aligned (i.e. force bitmap scan), otherwise may be
874  *	     used to sub-allocate within the 16KB block (which is already
875  *	     marked as allocated in the bitmap).
876  *
877  *	     Sub-allocations need only be 1KB-aligned and do not have to be
878  *	     size-aligned, and 16KB or larger allocations do not update this
879  *	     field, resulting in pretty good packing.
880  *
881  *	     Please note that file data granularity may be limited by
882  *	     other issues such as buffer cache direct-mapping and the
883  *	     desire to support sector sizes up to 16KB (so H2 only issues
884  *	     I/O's in multiples of 16KB anyway).
885  *
886  * class   - Clustering class.  Cleared to 0 only if the entire leaf becomes
887  *	     free.  Used to cluster device buffers so all elements must have
888  *	     the same device block size, but may mix logical sizes.
889  *
890  *	     Typically integrated with the blockref type in the upper 8 bits
891  *	     to localize inodes and indrect blocks, improving bulk free scans
892  *	     and directory scans.
893  *
894  * bitmap  - Two bits per 16KB allocation block arranged in arrays of
895  *	     64-bit elements, 256x2 bits representing ~4MB worth of media
896  *	     storage.  Bit patterns are as follows:
897  *
898  *	     00	Unallocated
899  *	     01 (reserved)
900  *	     10 Possibly free
901  *           11 Allocated
902  */
903 struct hammer2_bmap_data {
904 	int32_t linear;		/* 00 linear sub-granular allocation offset */
905 	uint16_t class;		/* 04-05 clustering class ((type<<8)|radix) */
906 	uint8_t reserved06;	/* 06 */
907 	uint8_t reserved07;	/* 07 */
908 	uint32_t reserved08;	/* 08 */
909 	uint32_t reserved0C;	/* 0C */
910 	uint32_t reserved10;	/* 10 */
911 	uint32_t reserved14;	/* 14 */
912 	uint32_t reserved18;	/* 18 */
913 	uint32_t avail;		/* 1C */
914 	uint32_t reserved20[8];	/* 20-3F 256 bits manages 128K/1KB/2-bits */
915 				/* 40-7F 512 bits manages 4MB of storage */
916 	hammer2_bitmap_t bitmapq[HAMMER2_BMAP_ELEMENTS];
917 } __packed;
918 
919 typedef struct hammer2_bmap_data hammer2_bmap_data_t;
920 
921 /*
922  * XXX "Inodes ARE directory entries" is no longer the case.  Hardlinks are
923  * dirents which refer to the same inode#, which is how filesystems usually
924  * implement hardlink.  The following comments need to be updated.
925  *
926  * In HAMMER2 inodes ARE directory entries, with a special exception for
927  * hardlinks.  The inode number is stored in the inode rather than being
928  * based on the location of the inode (since the location moves every time
929  * the inode or anything underneath the inode is modified).
930  *
931  * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes
932  * for the filename, and 512 bytes worth of direct file data OR an embedded
933  * blockset.  The in-memory hammer2_inode structure contains only the mostly-
934  * node-independent meta-data portion (some flags are node-specific and will
935  * not be synchronized).  The rest of the inode is node-specific and chain I/O
936  * is required to obtain it.
937  *
938  * Directories represent one inode per blockref.  Inodes are not laid out
939  * as a file but instead are represented by the related blockrefs.  The
940  * blockrefs, in turn, are indexed by the 64-bit directory hash key.  Remember
941  * that blocksets are fully associative, so a certain degree efficiency is
942  * achieved just from that.
943  *
944  * Up to 512 bytes of direct data can be embedded in an inode, and since
945  * inodes are essentially directory entries this also means that small data
946  * files end up simply being laid out linearly in the directory, resulting
947  * in fewer seeks and highly optimal access.
948  *
949  * The compression mode can be changed at any time in the inode and is
950  * recorded on a blockref-by-blockref basis.
951  *
952  * Hardlinks are supported via the inode map.  Essentially the way a hardlink
953  * works is that all individual directory entries representing the same file
954  * are special cased and specify the same inode number.  The actual file
955  * is placed in the nearest parent directory that is parent to all instances
956  * of the hardlink.  If all hardlinks to a file are in the same directory
957  * the actual file will also be placed in that directory.  This file uses
958  * the inode number as the directory entry key and is invisible to normal
959  * directory scans.  Real directory entry keys are differentiated from the
960  * inode number key via bit 63.  Access to the hardlink silently looks up
961  * the real file and forwards all operations to that file.  Removal of the
962  * last hardlink also removes the real file.
963  */
964 #define HAMMER2_INODE_BYTES		1024	/* (asserted by code) */
965 #define HAMMER2_INODE_MAXNAME		256	/* maximum name in bytes */
966 #define HAMMER2_INODE_VERSION_ONE	1
967 
968 #define HAMMER2_INODE_START		1024	/* dynamically allocated */
969 
970 struct hammer2_inode_meta {
971 	uint16_t	version;	/* 0000 inode data version */
972 	uint8_t		reserved02;	/* 0002 */
973 	uint8_t		pfs_subtype;	/* 0003 pfs sub-type */
974 
975 	/*
976 	 * core inode attributes, inode type, misc flags
977 	 */
978 	uint32_t	uflags;		/* 0004 chflags */
979 	uint32_t	rmajor;		/* 0008 available for device nodes */
980 	uint32_t	rminor;		/* 000C available for device nodes */
981 	uint64_t	ctime;		/* 0010 inode change time */
982 	uint64_t	mtime;		/* 0018 modified time */
983 	uint64_t	atime;		/* 0020 access time (unsupported) */
984 	uint64_t	btime;		/* 0028 birth time */
985 	uuid_t		uid;		/* 0030 uid / degenerate unix uid */
986 	uuid_t		gid;		/* 0040 gid / degenerate unix gid */
987 
988 	uint8_t		type;		/* 0050 object type */
989 	uint8_t		op_flags;	/* 0051 operational flags */
990 	uint16_t	cap_flags;	/* 0052 capability flags */
991 	uint32_t	mode;		/* 0054 unix modes (typ low 16 bits) */
992 
993 	/*
994 	 * inode size, identification, localized recursive configuration
995 	 * for compression and backup copies.
996 	 *
997 	 * NOTE: Nominal parent inode number (iparent) is only applicable
998 	 *	 for directories but can also help for files during
999 	 *	 catastrophic recovery.
1000 	 */
1001 	hammer2_tid_t	inum;		/* 0058 inode number */
1002 	hammer2_off_t	size;		/* 0060 size of file */
1003 	uint64_t	nlinks;		/* 0068 hard links (typ only dirs) */
1004 	hammer2_tid_t	iparent;	/* 0070 nominal parent inum */
1005 	hammer2_key_t	name_key;	/* 0078 full filename key */
1006 	uint16_t	name_len;	/* 0080 filename length */
1007 	uint8_t		ncopies;	/* 0082 ncopies to local media */
1008 	uint8_t		comp_algo;	/* 0083 compression request & algo */
1009 
1010 	/*
1011 	 * These fields are currently only applicable to PFSROOTs.
1012 	 *
1013 	 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely
1014 	 *	 identify an instance of a PFS in the cluster because
1015 	 *	 a mount may contain more than one copy of the PFS as
1016 	 *	 a separate node.  {pfs_clid, pfs_fsid} must be used for
1017 	 *	 registration in the cluster.
1018 	 */
1019 	uint8_t		target_type;	/* 0084 hardlink target type */
1020 	uint8_t		check_algo;	/* 0085 check code request & algo */
1021 	uint8_t		pfs_nmasters;	/* 0086 (if PFSROOT) if multi-master */
1022 	uint8_t		pfs_type;	/* 0087 (if PFSROOT) node type */
1023 	uint64_t	pfs_inum;	/* 0088 (if PFSROOT) inum allocator */
1024 	uuid_t		pfs_clid;	/* 0090 (if PFSROOT) cluster uuid */
1025 	uuid_t		pfs_fsid;	/* 00A0 (if PFSROOT) unique uuid */
1026 
1027 	/*
1028 	 * Quotas and aggregate sub-tree inode and data counters.  Note that
1029 	 * quotas are not replicated downward, they are explicitly set by
1030 	 * the sysop and in-memory structures keep track of inheritance.
1031 	 */
1032 	hammer2_key_t	data_quota;	/* 00B0 subtree quota in bytes */
1033 	hammer2_key_t	unusedB8;	/* 00B8 subtree byte count */
1034 	hammer2_key_t	inode_quota;	/* 00C0 subtree quota inode count */
1035 	hammer2_key_t	unusedC8;	/* 00C8 subtree inode count */
1036 
1037 	/*
1038 	 * The last snapshot tid is tested against modify_tid to determine
1039 	 * when a copy must be made of a data block whos check mode has been
1040 	 * disabled (a disabled check mode allows data blocks to be updated
1041 	 * in place instead of copy-on-write).
1042 	 */
1043 	hammer2_tid_t	pfs_lsnap_tid;	/* 00D0 last snapshot tid */
1044 	hammer2_tid_t	reservedD8;	/* 00D8 (avail) */
1045 
1046 	/*
1047 	 * Tracks (possibly degenerate) free areas covering all sub-tree
1048 	 * allocations under inode, not counting the inode itself.
1049 	 * 0/0 indicates empty entry.  fully set-associative.
1050 	 *
1051 	 * (not yet implemented)
1052 	 */
1053 	uint64_t	decrypt_check;	/* 00E0 decryption validator */
1054 	hammer2_off_t	reservedE0[3];	/* 00E8/F0/F8 */
1055 } __packed;
1056 
1057 typedef struct hammer2_inode_meta hammer2_inode_meta_t;
1058 
1059 struct hammer2_inode_data {
1060 	hammer2_inode_meta_t	meta;	/* 0000-00FF */
1061 	unsigned char	filename[HAMMER2_INODE_MAXNAME];
1062 					/* 0100-01FF (256 char, unterminated) */
1063 	union {				/* 0200-03FF (64x8 = 512 bytes) */
1064 		hammer2_blockset_t blockset;
1065 		char data[HAMMER2_EMBEDDED_BYTES];
1066 	} u;
1067 } __packed;
1068 
1069 typedef struct hammer2_inode_data hammer2_inode_data_t;
1070 
1071 #define HAMMER2_OPFLAG_DIRECTDATA	0x01
1072 #define HAMMER2_OPFLAG_PFSROOT		0x02	/* (see also bref flag) */
1073 #define HAMMER2_OPFLAG_COPYIDS		0x04	/* copyids override parent */
1074 
1075 #define HAMMER2_OBJTYPE_UNKNOWN		0
1076 #define HAMMER2_OBJTYPE_DIRECTORY	1
1077 #define HAMMER2_OBJTYPE_REGFILE		2
1078 #define HAMMER2_OBJTYPE_FIFO		4
1079 #define HAMMER2_OBJTYPE_CDEV		5
1080 #define HAMMER2_OBJTYPE_BDEV		6
1081 #define HAMMER2_OBJTYPE_SOFTLINK	7
1082 #define HAMMER2_OBJTYPE_UNUSED08	8
1083 #define HAMMER2_OBJTYPE_SOCKET		9
1084 #define HAMMER2_OBJTYPE_WHITEOUT	10
1085 
1086 #define HAMMER2_COPYID_NONE		0
1087 #define HAMMER2_COPYID_LOCAL		((uint8_t)-1)
1088 
1089 #define HAMMER2_COPYID_COUNT		256
1090 
1091 /*
1092  * PFS types identify the role of a PFS within a cluster.  The PFS types
1093  * is stored on media and in LNK_SPAN messages and used in other places.
1094  *
1095  * The low 4 bits specify the current active type while the high 4 bits
1096  * specify the transition target if the PFS is being upgraded or downgraded,
1097  * If the upper 4 bits are not zero it may effect how a PFS is used during
1098  * the transition.
1099  *
1100  * Generally speaking, downgrading a MASTER to a SLAVE cannot complete until
1101  * at least all MASTERs have updated their pfs_nmasters field.  And upgrading
1102  * a SLAVE to a MASTER cannot complete until the new prospective master has
1103  * been fully synchronized (though theoretically full synchronization is
1104  * not required if a (new) quorum of other masters are fully synchronized).
1105  *
1106  * It generally does not matter which PFS element you actually mount, you
1107  * are mounting 'the cluster'.  So, for example, a network mount will mount
1108  * a DUMMY PFS type on a memory filesystem.  However, there are two exceptions.
1109  * In order to gain the benefits of a SOFT_MASTER or SOFT_SLAVE, those PFSs
1110  * must be directly mounted.
1111  */
1112 #define HAMMER2_PFSTYPE_NONE		0x00
1113 #define HAMMER2_PFSTYPE_CACHE		0x01
1114 #define HAMMER2_PFSTYPE_UNUSED02	0x02
1115 #define HAMMER2_PFSTYPE_SLAVE		0x03
1116 #define HAMMER2_PFSTYPE_SOFT_SLAVE	0x04
1117 #define HAMMER2_PFSTYPE_SOFT_MASTER	0x05
1118 #define HAMMER2_PFSTYPE_MASTER		0x06
1119 #define HAMMER2_PFSTYPE_UNUSED07	0x07
1120 #define HAMMER2_PFSTYPE_SUPROOT		0x08
1121 #define HAMMER2_PFSTYPE_DUMMY		0x09
1122 #define HAMMER2_PFSTYPE_MAX		16
1123 
1124 #define HAMMER2_PFSTRAN_NONE		0x00	/* no transition in progress */
1125 #define HAMMER2_PFSTRAN_CACHE		0x10
1126 #define HAMMER2_PFSTRAN_UNMUSED20	0x20
1127 #define HAMMER2_PFSTRAN_SLAVE		0x30
1128 #define HAMMER2_PFSTRAN_SOFT_SLAVE	0x40
1129 #define HAMMER2_PFSTRAN_SOFT_MASTER	0x50
1130 #define HAMMER2_PFSTRAN_MASTER		0x60
1131 #define HAMMER2_PFSTRAN_UNUSED70	0x70
1132 #define HAMMER2_PFSTRAN_SUPROOT		0x80
1133 #define HAMMER2_PFSTRAN_DUMMY		0x90
1134 
1135 #define HAMMER2_PFS_DEC(n)		((n) & 0x0F)
1136 #define HAMMER2_PFS_DEC_TRANSITION(n)	(((n) >> 4) & 0x0F)
1137 #define HAMMER2_PFS_ENC_TRANSITION(n)	(((n) & 0x0F) << 4)
1138 
1139 #define HAMMER2_PFSSUBTYPE_NONE		0
1140 #define HAMMER2_PFSSUBTYPE_SNAPSHOT	1	/* manual/managed snapshot */
1141 #define HAMMER2_PFSSUBTYPE_AUTOSNAP	2	/* automatic snapshot */
1142 
1143 /*
1144  * PFS mode of operation is a bitmask.  This is typically not stored
1145  * on-media, but defined here because the field may be used in dmsgs.
1146  */
1147 #define HAMMER2_PFSMODE_QUORUM		0x01
1148 #define HAMMER2_PFSMODE_RW		0x02
1149 
1150 /*
1151  *				Allocation Table
1152  *
1153  */
1154 
1155 
1156 /*
1157  * Flags (8 bits) - blockref, for freemap only
1158  *
1159  * Note that the minimum chunk size is 1KB so we could theoretically have
1160  * 10 bits here, but we might have some future extension that allows a
1161  * chunk size down to 256 bytes and if so we will need bits 8 and 9.
1162  */
1163 #define HAMMER2_AVF_SELMASK		0x03	/* select group */
1164 #define HAMMER2_AVF_ALL_ALLOC		0x04	/* indicate all allocated */
1165 #define HAMMER2_AVF_ALL_FREE		0x08	/* indicate all free */
1166 #define HAMMER2_AVF_RESERVED10		0x10
1167 #define HAMMER2_AVF_RESERVED20		0x20
1168 #define HAMMER2_AVF_RESERVED40		0x40
1169 #define HAMMER2_AVF_RESERVED80		0x80
1170 #define HAMMER2_AVF_AVMASK32		((uint32_t)0xFFFFFF00LU)
1171 #define HAMMER2_AVF_AVMASK64		((uint64_t)0xFFFFFFFFFFFFFF00LLU)
1172 
1173 #define HAMMER2_AV_SELECT_A		0x00
1174 #define HAMMER2_AV_SELECT_B		0x01
1175 #define HAMMER2_AV_SELECT_C		0x02
1176 #define HAMMER2_AV_SELECT_D		0x03
1177 
1178 /*
1179  * The volume header eats a 64K block.  There is currently an issue where
1180  * we want to try to fit all nominal filesystem updates in a 512-byte section
1181  * but it may be a lost cause due to the need for a blockset.
1182  *
1183  * All information is stored in host byte order.  The volume header's magic
1184  * number may be checked to determine the byte order.  If you wish to mount
1185  * between machines w/ different endian modes you'll need filesystem code
1186  * which acts on the media data consistently (either all one way or all the
1187  * other).  Our code currently does not do that.
1188  *
1189  * A read-write mount may have to recover missing allocations by doing an
1190  * incremental mirror scan looking for modifications made after alloc_tid.
1191  * If alloc_tid == last_tid then no recovery operation is needed.  Recovery
1192  * operations are usually very, very fast.
1193  *
1194  * Read-only mounts do not need to do any recovery, access to the filesystem
1195  * topology is always consistent after a crash (is always consistent, period).
1196  * However, there may be shortcutted blockref updates present from deep in
1197  * the tree which are stored in the volumeh eader and must be tracked on
1198  * the fly.
1199  *
1200  * NOTE: The copyinfo[] array contains the configuration for both the
1201  *	 cluster connections and any local media copies.  The volume
1202  *	 header will be replicated for each local media copy.
1203  *
1204  *	 The mount command may specify multiple medias or just one and
1205  *	 allow HAMMER2 to pick up the others when it checks the copyinfo[]
1206  *	 array on mount.
1207  *
1208  * NOTE: root_blockref points to the super-root directory, not the root
1209  *	 directory.  The root directory will be a subdirectory under the
1210  *	 super-root.
1211  *
1212  *	 The super-root directory contains all root directories and all
1213  *	 snapshots (readonly or writable).  It is possible to do a
1214  *	 null-mount of the super-root using special path constructions
1215  *	 relative to your mounted root.
1216  *
1217  * NOTE: HAMMER2 allows any subdirectory tree to be managed as if it were
1218  *	 a PFS, including mirroring and storage quota operations, and this is
1219  *	 preferred over creating discrete PFSs in the super-root.  Instead
1220  *	 the super-root is most typically used to create writable snapshots,
1221  *	 alternative roots, and so forth.  The super-root is also used by
1222  *	 the automatic snapshotting mechanism.
1223  */
1224 #define HAMMER2_VOLUME_ID_HBO	0x48414d3205172011LLU
1225 #define HAMMER2_VOLUME_ID_ABO	0x11201705324d4148LLU
1226 
1227 struct hammer2_volume_data {
1228 	/*
1229 	 * sector #0 - 512 bytes
1230 	 */
1231 	uint64_t	magic;			/* 0000 Signature */
1232 	hammer2_off_t	boot_beg;		/* 0008 Boot area (future) */
1233 	hammer2_off_t	boot_end;		/* 0010 (size = end - beg) */
1234 	hammer2_off_t	aux_beg;		/* 0018 Aux area (future) */
1235 	hammer2_off_t	aux_end;		/* 0020 (size = end - beg) */
1236 	hammer2_off_t	volu_size;		/* 0028 Volume size, bytes */
1237 
1238 	uint32_t	version;		/* 0030 */
1239 	uint32_t	flags;			/* 0034 */
1240 	uint8_t		copyid;			/* 0038 copyid of phys vol */
1241 	uint8_t		freemap_version;	/* 0039 freemap algorithm */
1242 	uint8_t		peer_type;		/* 003A HAMMER2_PEER_xxx */
1243 	uint8_t		reserved003B;		/* 003B */
1244 	uint32_t	reserved003C;		/* 003C */
1245 
1246 	uuid_t		fsid;			/* 0040 */
1247 	uuid_t		fstype;			/* 0050 */
1248 
1249 	/*
1250 	 * allocator_size is precalculated at newfs time and does not include
1251 	 * reserved blocks, boot, or redo areas.
1252 	 *
1253 	 * Initial non-reserved-area allocations do not use the freemap
1254 	 * but instead adjust alloc_iterator.  Dynamic allocations take
1255 	 * over starting at (allocator_beg).  This makes newfs_hammer2's
1256 	 * job a lot easier and can also serve as a testing jig.
1257 	 */
1258 	hammer2_off_t	allocator_size;		/* 0060 Total data space */
1259 	hammer2_off_t   allocator_free;		/* 0068	Free space */
1260 	hammer2_off_t	allocator_beg;		/* 0070 Initial allocations */
1261 
1262 	/*
1263 	 * mirror_tid reflects the highest committed change for this
1264 	 * block device regardless of whether it is to the super-root
1265 	 * or to a PFS or whatever.
1266 	 *
1267 	 * freemap_tid reflects the highest committed freemap change for
1268 	 * this block device.
1269 	 */
1270 	hammer2_tid_t	mirror_tid;		/* 0078 committed tid (vol) */
1271 	hammer2_tid_t	reserved0080;		/* 0080 */
1272 	hammer2_tid_t	reserved0088;		/* 0088 */
1273 	hammer2_tid_t	freemap_tid;		/* 0090 committed tid (fmap) */
1274 	hammer2_tid_t	bulkfree_tid;		/* 0098 bulkfree incremental */
1275 	hammer2_tid_t	reserved00A0[5];	/* 00A0-00C7 */
1276 
1277 	/*
1278 	 * Copyids are allocated dynamically from the copyexists bitmap.
1279 	 * An id from the active copies set (up to 8, see copyinfo later on)
1280 	 * may still exist after the copy set has been removed from the
1281 	 * volume header and its bit will remain active in the bitmap and
1282 	 * cannot be reused until it is 100% removed from the hierarchy.
1283 	 */
1284 	uint32_t	copyexists[8];		/* 00C8-00E7 copy exists bmap */
1285 	char		reserved0140[248];	/* 00E8-01DF */
1286 
1287 	/*
1288 	 * 32 bit CRC array at the end of the first 512 byte sector.
1289 	 *
1290 	 * icrc_sects[7] - First 512-4 bytes of volume header (including all
1291 	 *		   the other icrc's except this one).
1292 	 *
1293 	 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is
1294 	 *		   the blockset for the root.
1295 	 *
1296 	 * icrc_sects[5] - Sector 2
1297 	 * icrc_sects[4] - Sector 3
1298 	 * icrc_sects[3] - Sector 4 (the freemap blockset)
1299 	 */
1300 	hammer2_crc32_t	icrc_sects[8];		/* 01E0-01FF */
1301 
1302 	/*
1303 	 * sector #1 - 512 bytes
1304 	 *
1305 	 * The entire sector is used by a blockset.
1306 	 */
1307 	hammer2_blockset_t sroot_blockset;	/* 0200-03FF Superroot dir */
1308 
1309 	/*
1310 	 * sector #2-7
1311 	 */
1312 	char	sector2[512];			/* 0400-05FF reserved */
1313 	char	sector3[512];			/* 0600-07FF reserved */
1314 	hammer2_blockset_t freemap_blockset;	/* 0800-09FF freemap  */
1315 	char	sector5[512];			/* 0A00-0BFF reserved */
1316 	char	sector6[512];			/* 0C00-0DFF reserved */
1317 	char	sector7[512];			/* 0E00-0FFF reserved */
1318 
1319 	/*
1320 	 * sector #8-71	- 32768 bytes
1321 	 *
1322 	 * Contains the configuration for up to 256 copyinfo targets.  These
1323 	 * specify local and remote copies operating as masters or slaves.
1324 	 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255
1325 	 * indicates the local media).
1326 	 *
1327 	 * Each inode contains a set of up to 8 copyids, either inherited
1328 	 * from its parent or explicitly specified in the inode, which
1329 	 * indexes into this array.
1330 	 */
1331 						/* 1000-8FFF copyinfo config */
1332 	hammer2_volconf_t copyinfo[HAMMER2_COPYID_COUNT];
1333 
1334 	/*
1335 	 * Remaining sections are reserved for future use.
1336 	 */
1337 	char		reserved0400[0x6FFC];	/* 9000-FFFB reserved */
1338 
1339 	/*
1340 	 * icrc on entire volume header
1341 	 */
1342 	hammer2_crc32_t	icrc_volheader;		/* FFFC-FFFF full volume icrc*/
1343 } __packed;
1344 
1345 typedef struct hammer2_volume_data hammer2_volume_data_t;
1346 
1347 /*
1348  * Various parts of the volume header have their own iCRCs.
1349  *
1350  * The first 512 bytes has its own iCRC stored at the end of the 512 bytes
1351  * and not included the icrc calculation.
1352  *
1353  * The second 512 bytes also has its own iCRC but it is stored in the first
1354  * 512 bytes so it covers the entire second 512 bytes.
1355  *
1356  * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes,
1357  * which is where the iCRC for the whole volume is stored.  This is currently
1358  * a catch-all for anything not individually iCRCd.
1359  */
1360 #define HAMMER2_VOL_ICRC_SECT0		7
1361 #define HAMMER2_VOL_ICRC_SECT1		6
1362 
1363 #define HAMMER2_VOLUME_BYTES		65536
1364 
1365 #define HAMMER2_VOLUME_ICRC0_OFF	0
1366 #define HAMMER2_VOLUME_ICRC1_OFF	512
1367 #define HAMMER2_VOLUME_ICRCVH_OFF	0
1368 
1369 #define HAMMER2_VOLUME_ICRC0_SIZE	(512 - 4)
1370 #define HAMMER2_VOLUME_ICRC1_SIZE	(512)
1371 #define HAMMER2_VOLUME_ICRCVH_SIZE	(65536 - 4)
1372 
1373 #define HAMMER2_VOL_VERSION_MIN		1
1374 #define HAMMER2_VOL_VERSION_DEFAULT	1
1375 #define HAMMER2_VOL_VERSION_WIP 	2
1376 
1377 #define HAMMER2_NUM_VOLHDRS		4
1378 
1379 union hammer2_media_data {
1380 	hammer2_volume_data_t	voldata;
1381         hammer2_inode_data_t    ipdata;
1382 	hammer2_blockset_t	blkset;
1383 	hammer2_blockref_t	npdata[HAMMER2_IND_COUNT_MAX];
1384 	hammer2_bmap_data_t	bmdata[HAMMER2_FREEMAP_COUNT];
1385 	char			buf[HAMMER2_PBUFSIZE];
1386 } __packed;
1387 
1388 typedef union hammer2_media_data hammer2_media_data_t;
1389 
1390 #endif /* !_HAMMER2_DISK_H_ */
1391