1 /*- 2 * Copyright (c) 1997-2007 Kenneth D. Merry 3 * Copyright (c) 2013, 2014, 2015 Spectra Logic Corporation 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions, and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 13 * substantially similar to the "NO WARRANTY" disclaimer below 14 * ("Disclaimer") and any redistribution must be conditioned upon 15 * including a substantially similar Disclaimer requirement for further 16 * binary redistribution. 17 * 18 * NO WARRANTY 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 23 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 28 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGES. 30 * 31 * Authors: Ken Merry (Spectra Logic Corporation) 32 */ 33 34 /* 35 * This is eventually intended to be: 36 * - A basic data transfer/copy utility 37 * - A simple benchmark utility 38 * - An example of how to use the asynchronous pass(4) driver interface. 39 */ 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include <sys/ioctl.h> 44 #include <sys/stdint.h> 45 #include <sys/types.h> 46 #include <sys/endian.h> 47 #include <sys/param.h> 48 #include <sys/sbuf.h> 49 #include <sys/stat.h> 50 #include <sys/event.h> 51 #include <sys/time.h> 52 #include <sys/uio.h> 53 #include <vm/vm.h> 54 #include <machine/bus.h> 55 #include <sys/bus.h> 56 #include <sys/bus_dma.h> 57 #include <sys/mtio.h> 58 #include <sys/conf.h> 59 #include <sys/disk.h> 60 61 #include <stdio.h> 62 #include <stdlib.h> 63 #include <semaphore.h> 64 #include <string.h> 65 #include <unistd.h> 66 #include <inttypes.h> 67 #include <limits.h> 68 #include <fcntl.h> 69 #include <ctype.h> 70 #include <err.h> 71 #include <libutil.h> 72 #include <pthread.h> 73 #include <assert.h> 74 #include <bsdxml.h> 75 76 #include <cam/cam.h> 77 #include <cam/cam_debug.h> 78 #include <cam/cam_ccb.h> 79 #include <cam/scsi/scsi_all.h> 80 #include <cam/scsi/scsi_da.h> 81 #include <cam/scsi/scsi_pass.h> 82 #include <cam/scsi/scsi_message.h> 83 #include <cam/scsi/smp_all.h> 84 #include <camlib.h> 85 #include <mtlib.h> 86 #include <zlib.h> 87 88 typedef enum { 89 CAMDD_CMD_NONE = 0x00000000, 90 CAMDD_CMD_HELP = 0x00000001, 91 CAMDD_CMD_WRITE = 0x00000002, 92 CAMDD_CMD_READ = 0x00000003 93 } camdd_cmdmask; 94 95 typedef enum { 96 CAMDD_ARG_NONE = 0x00000000, 97 CAMDD_ARG_VERBOSE = 0x00000001, 98 CAMDD_ARG_DEVICE = 0x00000002, 99 CAMDD_ARG_BUS = 0x00000004, 100 CAMDD_ARG_TARGET = 0x00000008, 101 CAMDD_ARG_LUN = 0x00000010, 102 CAMDD_ARG_UNIT = 0x00000020, 103 CAMDD_ARG_TIMEOUT = 0x00000040, 104 CAMDD_ARG_ERR_RECOVER = 0x00000080, 105 CAMDD_ARG_RETRIES = 0x00000100 106 } camdd_argmask; 107 108 typedef enum { 109 CAMDD_DEV_NONE = 0x00, 110 CAMDD_DEV_PASS = 0x01, 111 CAMDD_DEV_FILE = 0x02 112 } camdd_dev_type; 113 114 struct camdd_io_opts { 115 camdd_dev_type dev_type; 116 char *dev_name; 117 uint64_t blocksize; 118 uint64_t queue_depth; 119 uint64_t offset; 120 int min_cmd_size; 121 int write_dev; 122 uint64_t debug; 123 }; 124 125 typedef enum { 126 CAMDD_BUF_NONE, 127 CAMDD_BUF_DATA, 128 CAMDD_BUF_INDIRECT 129 } camdd_buf_type; 130 131 struct camdd_buf_indirect { 132 /* 133 * Pointer to the source buffer. 134 */ 135 struct camdd_buf *src_buf; 136 137 /* 138 * Offset into the source buffer, in bytes. 139 */ 140 uint64_t offset; 141 /* 142 * Pointer to the starting point in the source buffer. 143 */ 144 uint8_t *start_ptr; 145 146 /* 147 * Length of this chunk in bytes. 148 */ 149 size_t len; 150 }; 151 152 struct camdd_buf_data { 153 /* 154 * Buffer allocated when we allocate this camdd_buf. This should 155 * be the size of the blocksize for this device. 156 */ 157 uint8_t *buf; 158 159 /* 160 * The amount of backing store allocated in buf. Generally this 161 * will be the blocksize of the device. 162 */ 163 uint32_t alloc_len; 164 165 /* 166 * The amount of data that was put into the buffer (on reads) or 167 * the amount of data we have put onto the src_list so far (on 168 * writes). 169 */ 170 uint32_t fill_len; 171 172 /* 173 * The amount of data that was not transferred. 174 */ 175 uint32_t resid; 176 177 /* 178 * Starting byte offset on the reader. 179 */ 180 uint64_t src_start_offset; 181 182 /* 183 * CCB used for pass(4) device targets. 184 */ 185 union ccb ccb; 186 187 /* 188 * Number of scatter/gather segments. 189 */ 190 int sg_count; 191 192 /* 193 * Set if we had to tack on an extra buffer to round the transfer 194 * up to a sector size. 195 */ 196 int extra_buf; 197 198 /* 199 * Scatter/gather list used generally when we're the writer for a 200 * pass(4) device. 201 */ 202 bus_dma_segment_t *segs; 203 204 /* 205 * Scatter/gather list used generally when we're the writer for a 206 * file or block device; 207 */ 208 struct iovec *iovec; 209 }; 210 211 union camdd_buf_types { 212 struct camdd_buf_indirect indirect; 213 struct camdd_buf_data data; 214 }; 215 216 typedef enum { 217 CAMDD_STATUS_NONE, 218 CAMDD_STATUS_OK, 219 CAMDD_STATUS_SHORT_IO, 220 CAMDD_STATUS_EOF, 221 CAMDD_STATUS_ERROR 222 } camdd_buf_status; 223 224 struct camdd_buf { 225 camdd_buf_type buf_type; 226 union camdd_buf_types buf_type_spec; 227 228 camdd_buf_status status; 229 230 uint64_t lba; 231 size_t len; 232 233 /* 234 * A reference count of how many indirect buffers point to this 235 * buffer. 236 */ 237 int refcount; 238 239 /* 240 * A link back to our parent device. 241 */ 242 struct camdd_dev *dev; 243 STAILQ_ENTRY(camdd_buf) links; 244 STAILQ_ENTRY(camdd_buf) work_links; 245 246 /* 247 * A count of the buffers on the src_list. 248 */ 249 int src_count; 250 251 /* 252 * List of buffers from our partner thread that are the components 253 * of this buffer for the I/O. Uses src_links. 254 */ 255 STAILQ_HEAD(,camdd_buf) src_list; 256 STAILQ_ENTRY(camdd_buf) src_links; 257 }; 258 259 #define NUM_DEV_TYPES 2 260 261 struct camdd_dev_pass { 262 int scsi_dev_type; 263 struct cam_device *dev; 264 uint64_t max_sector; 265 uint32_t block_len; 266 uint32_t cpi_maxio; 267 }; 268 269 typedef enum { 270 CAMDD_FILE_NONE, 271 CAMDD_FILE_REG, 272 CAMDD_FILE_STD, 273 CAMDD_FILE_PIPE, 274 CAMDD_FILE_DISK, 275 CAMDD_FILE_TAPE, 276 CAMDD_FILE_TTY, 277 CAMDD_FILE_MEM 278 } camdd_file_type; 279 280 typedef enum { 281 CAMDD_FF_NONE = 0x00, 282 CAMDD_FF_CAN_SEEK = 0x01 283 } camdd_file_flags; 284 285 struct camdd_dev_file { 286 int fd; 287 struct stat sb; 288 char filename[MAXPATHLEN + 1]; 289 camdd_file_type file_type; 290 camdd_file_flags file_flags; 291 uint8_t *tmp_buf; 292 }; 293 294 struct camdd_dev_block { 295 int fd; 296 uint64_t size_bytes; 297 uint32_t block_len; 298 }; 299 300 union camdd_dev_spec { 301 struct camdd_dev_pass pass; 302 struct camdd_dev_file file; 303 struct camdd_dev_block block; 304 }; 305 306 typedef enum { 307 CAMDD_DEV_FLAG_NONE = 0x00, 308 CAMDD_DEV_FLAG_EOF = 0x01, 309 CAMDD_DEV_FLAG_PEER_EOF = 0x02, 310 CAMDD_DEV_FLAG_ACTIVE = 0x04, 311 CAMDD_DEV_FLAG_EOF_SENT = 0x08, 312 CAMDD_DEV_FLAG_EOF_QUEUED = 0x10 313 } camdd_dev_flags; 314 315 struct camdd_dev { 316 camdd_dev_type dev_type; 317 union camdd_dev_spec dev_spec; 318 camdd_dev_flags flags; 319 char device_name[MAXPATHLEN+1]; 320 uint32_t blocksize; 321 uint32_t sector_size; 322 uint64_t max_sector; 323 uint64_t sector_io_limit; 324 int min_cmd_size; 325 int write_dev; 326 int retry_count; 327 int io_timeout; 328 int debug; 329 uint64_t start_offset_bytes; 330 uint64_t next_io_pos_bytes; 331 uint64_t next_peer_pos_bytes; 332 uint64_t next_completion_pos_bytes; 333 uint64_t peer_bytes_queued; 334 uint64_t bytes_transferred; 335 uint32_t target_queue_depth; 336 uint32_t cur_active_io; 337 uint8_t *extra_buf; 338 uint32_t extra_buf_len; 339 struct camdd_dev *peer_dev; 340 pthread_mutex_t mutex; 341 pthread_cond_t cond; 342 int kq; 343 344 int (*run)(struct camdd_dev *dev); 345 int (*fetch)(struct camdd_dev *dev); 346 347 /* 348 * Buffers that are available for I/O. Uses links. 349 */ 350 STAILQ_HEAD(,camdd_buf) free_queue; 351 352 /* 353 * Free indirect buffers. These are used for breaking a large 354 * buffer into multiple pieces. 355 */ 356 STAILQ_HEAD(,camdd_buf) free_indirect_queue; 357 358 /* 359 * Buffers that have been queued to the kernel. Uses links. 360 */ 361 STAILQ_HEAD(,camdd_buf) active_queue; 362 363 /* 364 * Will generally contain one of our buffers that is waiting for enough 365 * I/O from our partner thread to be able to execute. This will 366 * generally happen when our per-I/O-size is larger than the 367 * partner thread's per-I/O-size. Uses links. 368 */ 369 STAILQ_HEAD(,camdd_buf) pending_queue; 370 371 /* 372 * Number of buffers on the pending queue 373 */ 374 int num_pending_queue; 375 376 /* 377 * Buffers that are filled and ready to execute. This is used when 378 * our partner (reader) thread sends us blocks that are larger than 379 * our blocksize, and so we have to split them into multiple pieces. 380 */ 381 STAILQ_HEAD(,camdd_buf) run_queue; 382 383 /* 384 * Number of buffers on the run queue. 385 */ 386 int num_run_queue; 387 388 STAILQ_HEAD(,camdd_buf) reorder_queue; 389 390 int num_reorder_queue; 391 392 /* 393 * Buffers that have been queued to us by our partner thread 394 * (generally the reader thread) to be written out. Uses 395 * work_links. 396 */ 397 STAILQ_HEAD(,camdd_buf) work_queue; 398 399 /* 400 * Buffers that have been completed by our partner thread. Uses 401 * work_links. 402 */ 403 STAILQ_HEAD(,camdd_buf) peer_done_queue; 404 405 /* 406 * Number of buffers on the peer done queue. 407 */ 408 uint32_t num_peer_done_queue; 409 410 /* 411 * A list of buffers that we have queued to our peer thread. Uses 412 * links. 413 */ 414 STAILQ_HEAD(,camdd_buf) peer_work_queue; 415 416 /* 417 * Number of buffers on the peer work queue. 418 */ 419 uint32_t num_peer_work_queue; 420 }; 421 422 static sem_t camdd_sem; 423 static int need_exit = 0; 424 static int error_exit = 0; 425 static int need_status = 0; 426 427 #ifndef min 428 #define min(a, b) (a < b) ? a : b 429 #endif 430 431 /* 432 * XXX KDM private copy of timespecsub(). This is normally defined in 433 * sys/time.h, but is only enabled in the kernel. If that definition is 434 * enabled in userland, it breaks the build of libnetbsd. 435 */ 436 #ifndef timespecsub 437 #define timespecsub(vvp, uvp) \ 438 do { \ 439 (vvp)->tv_sec -= (uvp)->tv_sec; \ 440 (vvp)->tv_nsec -= (uvp)->tv_nsec; \ 441 if ((vvp)->tv_nsec < 0) { \ 442 (vvp)->tv_sec--; \ 443 (vvp)->tv_nsec += 1000000000; \ 444 } \ 445 } while (0) 446 #endif 447 448 449 /* Generically useful offsets into the peripheral private area */ 450 #define ppriv_ptr0 periph_priv.entries[0].ptr 451 #define ppriv_ptr1 periph_priv.entries[1].ptr 452 #define ppriv_field0 periph_priv.entries[0].field 453 #define ppriv_field1 periph_priv.entries[1].field 454 455 #define ccb_buf ppriv_ptr0 456 457 #define CAMDD_FILE_DEFAULT_BLOCK 524288 458 #define CAMDD_FILE_DEFAULT_DEPTH 1 459 #define CAMDD_PASS_MAX_BLOCK 1048576 460 #define CAMDD_PASS_DEFAULT_DEPTH 6 461 #define CAMDD_PASS_RW_TIMEOUT 60 * 1000 462 463 static int parse_btl(char *tstr, int *bus, int *target, int *lun, 464 camdd_argmask *arglst); 465 void camdd_free_dev(struct camdd_dev *dev); 466 struct camdd_dev *camdd_alloc_dev(camdd_dev_type dev_type, 467 struct kevent *new_ke, int num_ke, 468 int retry_count, int timeout); 469 static struct camdd_buf *camdd_alloc_buf(struct camdd_dev *dev, 470 camdd_buf_type buf_type); 471 void camdd_release_buf(struct camdd_buf *buf); 472 struct camdd_buf *camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type); 473 int camdd_buf_sg_create(struct camdd_buf *buf, int iovec, 474 uint32_t sector_size, uint32_t *num_sectors_used, 475 int *double_buf_needed); 476 uint32_t camdd_buf_get_len(struct camdd_buf *buf); 477 void camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf); 478 int camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize, 479 uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran); 480 struct camdd_dev *camdd_probe_file(int fd, struct camdd_io_opts *io_opts, 481 int retry_count, int timeout); 482 struct camdd_dev *camdd_probe_pass(struct cam_device *cam_dev, 483 struct camdd_io_opts *io_opts, 484 camdd_argmask arglist, int probe_retry_count, 485 int probe_timeout, int io_retry_count, 486 int io_timeout); 487 void *camdd_file_worker(void *arg); 488 camdd_buf_status camdd_ccb_status(union ccb *ccb); 489 int camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf); 490 int camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf); 491 void camdd_peer_done(struct camdd_buf *buf); 492 void camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf, 493 int *error_count); 494 int camdd_pass_fetch(struct camdd_dev *dev); 495 int camdd_file_run(struct camdd_dev *dev); 496 int camdd_pass_run(struct camdd_dev *dev); 497 int camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len); 498 int camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf); 499 void camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth, 500 uint32_t *peer_depth, uint32_t *our_bytes, 501 uint32_t *peer_bytes); 502 void *camdd_worker(void *arg); 503 void camdd_sig_handler(int sig); 504 void camdd_print_status(struct camdd_dev *camdd_dev, 505 struct camdd_dev *other_dev, 506 struct timespec *start_time); 507 int camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts, 508 uint64_t max_io, int retry_count, int timeout); 509 int camdd_parse_io_opts(char *args, int is_write, 510 struct camdd_io_opts *io_opts); 511 void usage(void); 512 513 /* 514 * Parse out a bus, or a bus, target and lun in the following 515 * format: 516 * bus 517 * bus:target 518 * bus:target:lun 519 * 520 * Returns the number of parsed components, or 0. 521 */ 522 static int 523 parse_btl(char *tstr, int *bus, int *target, int *lun, camdd_argmask *arglst) 524 { 525 char *tmpstr; 526 int convs = 0; 527 528 while (isspace(*tstr) && (*tstr != '\0')) 529 tstr++; 530 531 tmpstr = (char *)strtok(tstr, ":"); 532 if ((tmpstr != NULL) && (*tmpstr != '\0')) { 533 *bus = strtol(tmpstr, NULL, 0); 534 *arglst |= CAMDD_ARG_BUS; 535 convs++; 536 tmpstr = (char *)strtok(NULL, ":"); 537 if ((tmpstr != NULL) && (*tmpstr != '\0')) { 538 *target = strtol(tmpstr, NULL, 0); 539 *arglst |= CAMDD_ARG_TARGET; 540 convs++; 541 tmpstr = (char *)strtok(NULL, ":"); 542 if ((tmpstr != NULL) && (*tmpstr != '\0')) { 543 *lun = strtol(tmpstr, NULL, 0); 544 *arglst |= CAMDD_ARG_LUN; 545 convs++; 546 } 547 } 548 } 549 550 return convs; 551 } 552 553 /* 554 * XXX KDM clean up and free all of the buffers on the queue! 555 */ 556 void 557 camdd_free_dev(struct camdd_dev *dev) 558 { 559 if (dev == NULL) 560 return; 561 562 switch (dev->dev_type) { 563 case CAMDD_DEV_FILE: { 564 struct camdd_dev_file *file_dev = &dev->dev_spec.file; 565 566 if (file_dev->fd != -1) 567 close(file_dev->fd); 568 free(file_dev->tmp_buf); 569 break; 570 } 571 case CAMDD_DEV_PASS: { 572 struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass; 573 574 if (pass_dev->dev != NULL) 575 cam_close_device(pass_dev->dev); 576 break; 577 } 578 default: 579 break; 580 } 581 582 free(dev); 583 } 584 585 struct camdd_dev * 586 camdd_alloc_dev(camdd_dev_type dev_type, struct kevent *new_ke, int num_ke, 587 int retry_count, int timeout) 588 { 589 struct camdd_dev *dev = NULL; 590 struct kevent *ke; 591 size_t ke_size; 592 int retval = 0; 593 594 dev = malloc(sizeof(*dev)); 595 if (dev == NULL) { 596 warn("%s: unable to malloc %zu bytes", __func__, sizeof(*dev)); 597 goto bailout; 598 } 599 600 bzero(dev, sizeof(*dev)); 601 602 dev->dev_type = dev_type; 603 dev->io_timeout = timeout; 604 dev->retry_count = retry_count; 605 STAILQ_INIT(&dev->free_queue); 606 STAILQ_INIT(&dev->free_indirect_queue); 607 STAILQ_INIT(&dev->active_queue); 608 STAILQ_INIT(&dev->pending_queue); 609 STAILQ_INIT(&dev->run_queue); 610 STAILQ_INIT(&dev->reorder_queue); 611 STAILQ_INIT(&dev->work_queue); 612 STAILQ_INIT(&dev->peer_done_queue); 613 STAILQ_INIT(&dev->peer_work_queue); 614 retval = pthread_mutex_init(&dev->mutex, NULL); 615 if (retval != 0) { 616 warnc(retval, "%s: failed to initialize mutex", __func__); 617 goto bailout; 618 } 619 620 retval = pthread_cond_init(&dev->cond, NULL); 621 if (retval != 0) { 622 warnc(retval, "%s: failed to initialize condition variable", 623 __func__); 624 goto bailout; 625 } 626 627 dev->kq = kqueue(); 628 if (dev->kq == -1) { 629 warn("%s: Unable to create kqueue", __func__); 630 goto bailout; 631 } 632 633 ke_size = sizeof(struct kevent) * (num_ke + 4); 634 ke = malloc(ke_size); 635 if (ke == NULL) { 636 warn("%s: unable to malloc %zu bytes", __func__, ke_size); 637 goto bailout; 638 } 639 bzero(ke, ke_size); 640 if (num_ke > 0) 641 bcopy(new_ke, ke, num_ke * sizeof(struct kevent)); 642 643 EV_SET(&ke[num_ke++], (uintptr_t)&dev->work_queue, EVFILT_USER, 644 EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0); 645 EV_SET(&ke[num_ke++], (uintptr_t)&dev->peer_done_queue, EVFILT_USER, 646 EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0); 647 EV_SET(&ke[num_ke++], SIGINFO, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0); 648 EV_SET(&ke[num_ke++], SIGINT, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0); 649 650 retval = kevent(dev->kq, ke, num_ke, NULL, 0, NULL); 651 if (retval == -1) { 652 warn("%s: Unable to register kevents", __func__); 653 goto bailout; 654 } 655 656 657 return (dev); 658 659 bailout: 660 free(dev); 661 662 return (NULL); 663 } 664 665 static struct camdd_buf * 666 camdd_alloc_buf(struct camdd_dev *dev, camdd_buf_type buf_type) 667 { 668 struct camdd_buf *buf = NULL; 669 uint8_t *data_ptr = NULL; 670 671 /* 672 * We only need to allocate data space for data buffers. 673 */ 674 switch (buf_type) { 675 case CAMDD_BUF_DATA: 676 data_ptr = malloc(dev->blocksize); 677 if (data_ptr == NULL) { 678 warn("unable to allocate %u bytes", dev->blocksize); 679 goto bailout_error; 680 } 681 break; 682 default: 683 break; 684 } 685 686 buf = malloc(sizeof(*buf)); 687 if (buf == NULL) { 688 warn("unable to allocate %zu bytes", sizeof(*buf)); 689 goto bailout_error; 690 } 691 692 bzero(buf, sizeof(*buf)); 693 buf->buf_type = buf_type; 694 buf->dev = dev; 695 switch (buf_type) { 696 case CAMDD_BUF_DATA: { 697 struct camdd_buf_data *data; 698 699 data = &buf->buf_type_spec.data; 700 701 data->alloc_len = dev->blocksize; 702 data->buf = data_ptr; 703 break; 704 } 705 case CAMDD_BUF_INDIRECT: 706 break; 707 default: 708 break; 709 } 710 STAILQ_INIT(&buf->src_list); 711 712 return (buf); 713 714 bailout_error: 715 if (data_ptr != NULL) 716 free(data_ptr); 717 718 if (buf != NULL) 719 free(buf); 720 721 return (NULL); 722 } 723 724 void 725 camdd_release_buf(struct camdd_buf *buf) 726 { 727 struct camdd_dev *dev; 728 729 dev = buf->dev; 730 731 switch (buf->buf_type) { 732 case CAMDD_BUF_DATA: { 733 struct camdd_buf_data *data; 734 735 data = &buf->buf_type_spec.data; 736 737 if (data->segs != NULL) { 738 if (data->extra_buf != 0) { 739 void *extra_buf; 740 741 extra_buf = (void *) 742 data->segs[data->sg_count - 1].ds_addr; 743 free(extra_buf); 744 data->extra_buf = 0; 745 } 746 free(data->segs); 747 data->segs = NULL; 748 data->sg_count = 0; 749 } else if (data->iovec != NULL) { 750 if (data->extra_buf != 0) { 751 free(data->iovec[data->sg_count - 1].iov_base); 752 data->extra_buf = 0; 753 } 754 free(data->iovec); 755 data->iovec = NULL; 756 data->sg_count = 0; 757 } 758 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links); 759 break; 760 } 761 case CAMDD_BUF_INDIRECT: 762 STAILQ_INSERT_TAIL(&dev->free_indirect_queue, buf, links); 763 break; 764 default: 765 err(1, "%s: Invalid buffer type %d for released buffer", 766 __func__, buf->buf_type); 767 break; 768 } 769 } 770 771 struct camdd_buf * 772 camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type) 773 { 774 struct camdd_buf *buf = NULL; 775 776 switch (buf_type) { 777 case CAMDD_BUF_DATA: 778 buf = STAILQ_FIRST(&dev->free_queue); 779 if (buf != NULL) { 780 struct camdd_buf_data *data; 781 uint8_t *data_ptr; 782 uint32_t alloc_len; 783 784 STAILQ_REMOVE_HEAD(&dev->free_queue, links); 785 data = &buf->buf_type_spec.data; 786 data_ptr = data->buf; 787 alloc_len = data->alloc_len; 788 bzero(buf, sizeof(*buf)); 789 data->buf = data_ptr; 790 data->alloc_len = alloc_len; 791 } 792 break; 793 case CAMDD_BUF_INDIRECT: 794 buf = STAILQ_FIRST(&dev->free_indirect_queue); 795 if (buf != NULL) { 796 STAILQ_REMOVE_HEAD(&dev->free_indirect_queue, links); 797 798 bzero(buf, sizeof(*buf)); 799 } 800 break; 801 default: 802 warnx("Unknown buffer type %d requested", buf_type); 803 break; 804 } 805 806 807 if (buf == NULL) 808 return (camdd_alloc_buf(dev, buf_type)); 809 else { 810 STAILQ_INIT(&buf->src_list); 811 buf->dev = dev; 812 buf->buf_type = buf_type; 813 814 return (buf); 815 } 816 } 817 818 int 819 camdd_buf_sg_create(struct camdd_buf *buf, int iovec, uint32_t sector_size, 820 uint32_t *num_sectors_used, int *double_buf_needed) 821 { 822 struct camdd_buf *tmp_buf; 823 struct camdd_buf_data *data; 824 uint8_t *extra_buf = NULL; 825 size_t extra_buf_len = 0; 826 int i, retval = 0; 827 828 data = &buf->buf_type_spec.data; 829 830 data->sg_count = buf->src_count; 831 /* 832 * Compose a scatter/gather list from all of the buffers in the list. 833 * If the length of the buffer isn't a multiple of the sector size, 834 * we'll have to add an extra buffer. This should only happen 835 * at the end of a transfer. 836 */ 837 if ((data->fill_len % sector_size) != 0) { 838 extra_buf_len = sector_size - (data->fill_len % sector_size); 839 extra_buf = calloc(extra_buf_len, 1); 840 if (extra_buf == NULL) { 841 warn("%s: unable to allocate %zu bytes for extra " 842 "buffer space", __func__, extra_buf_len); 843 retval = 1; 844 goto bailout; 845 } 846 data->extra_buf = 1; 847 data->sg_count++; 848 } 849 if (iovec == 0) { 850 data->segs = calloc(data->sg_count, sizeof(bus_dma_segment_t)); 851 if (data->segs == NULL) { 852 warn("%s: unable to allocate %zu bytes for S/G list", 853 __func__, sizeof(bus_dma_segment_t) * 854 data->sg_count); 855 retval = 1; 856 goto bailout; 857 } 858 859 } else { 860 data->iovec = calloc(data->sg_count, sizeof(struct iovec)); 861 if (data->iovec == NULL) { 862 warn("%s: unable to allocate %zu bytes for S/G list", 863 __func__, sizeof(struct iovec) * data->sg_count); 864 retval = 1; 865 goto bailout; 866 } 867 } 868 869 for (i = 0, tmp_buf = STAILQ_FIRST(&buf->src_list); 870 i < buf->src_count && tmp_buf != NULL; i++, 871 tmp_buf = STAILQ_NEXT(tmp_buf, src_links)) { 872 873 if (tmp_buf->buf_type == CAMDD_BUF_DATA) { 874 struct camdd_buf_data *tmp_data; 875 876 tmp_data = &tmp_buf->buf_type_spec.data; 877 if (iovec == 0) { 878 data->segs[i].ds_addr = 879 (bus_addr_t) tmp_data->buf; 880 data->segs[i].ds_len = tmp_data->fill_len - 881 tmp_data->resid; 882 } else { 883 data->iovec[i].iov_base = tmp_data->buf; 884 data->iovec[i].iov_len = tmp_data->fill_len - 885 tmp_data->resid; 886 } 887 if (((tmp_data->fill_len - tmp_data->resid) % 888 sector_size) != 0) 889 *double_buf_needed = 1; 890 } else { 891 struct camdd_buf_indirect *tmp_ind; 892 893 tmp_ind = &tmp_buf->buf_type_spec.indirect; 894 if (iovec == 0) { 895 data->segs[i].ds_addr = 896 (bus_addr_t)tmp_ind->start_ptr; 897 data->segs[i].ds_len = tmp_ind->len; 898 } else { 899 data->iovec[i].iov_base = tmp_ind->start_ptr; 900 data->iovec[i].iov_len = tmp_ind->len; 901 } 902 if ((tmp_ind->len % sector_size) != 0) 903 *double_buf_needed = 1; 904 } 905 } 906 907 if (extra_buf != NULL) { 908 if (iovec == 0) { 909 data->segs[i].ds_addr = (bus_addr_t)extra_buf; 910 data->segs[i].ds_len = extra_buf_len; 911 } else { 912 data->iovec[i].iov_base = extra_buf; 913 data->iovec[i].iov_len = extra_buf_len; 914 } 915 i++; 916 } 917 if ((tmp_buf != NULL) || (i != data->sg_count)) { 918 warnx("buffer source count does not match " 919 "number of buffers in list!"); 920 retval = 1; 921 goto bailout; 922 } 923 924 bailout: 925 if (retval == 0) { 926 *num_sectors_used = (data->fill_len + extra_buf_len) / 927 sector_size; 928 } 929 return (retval); 930 } 931 932 uint32_t 933 camdd_buf_get_len(struct camdd_buf *buf) 934 { 935 uint32_t len = 0; 936 937 if (buf->buf_type != CAMDD_BUF_DATA) { 938 struct camdd_buf_indirect *indirect; 939 940 indirect = &buf->buf_type_spec.indirect; 941 len = indirect->len; 942 } else { 943 struct camdd_buf_data *data; 944 945 data = &buf->buf_type_spec.data; 946 len = data->fill_len; 947 } 948 949 return (len); 950 } 951 952 void 953 camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf) 954 { 955 struct camdd_buf_data *data; 956 957 assert(buf->buf_type == CAMDD_BUF_DATA); 958 959 data = &buf->buf_type_spec.data; 960 961 STAILQ_INSERT_TAIL(&buf->src_list, child_buf, src_links); 962 buf->src_count++; 963 964 data->fill_len += camdd_buf_get_len(child_buf); 965 } 966 967 typedef enum { 968 CAMDD_TS_MAX_BLK, 969 CAMDD_TS_MIN_BLK, 970 CAMDD_TS_BLK_GRAN, 971 CAMDD_TS_EFF_IOSIZE 972 } camdd_status_item_index; 973 974 static struct camdd_status_items { 975 const char *name; 976 struct mt_status_entry *entry; 977 } req_status_items[] = { 978 { "max_blk", NULL }, 979 { "min_blk", NULL }, 980 { "blk_gran", NULL }, 981 { "max_effective_iosize", NULL } 982 }; 983 984 int 985 camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize, 986 uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran) 987 { 988 struct mt_status_data status_data; 989 char *xml_str = NULL; 990 unsigned int i; 991 int retval = 0; 992 993 retval = mt_get_xml_str(fd, MTIOCEXTGET, &xml_str); 994 if (retval != 0) 995 err(1, "Couldn't get XML string from %s", filename); 996 997 retval = mt_get_status(xml_str, &status_data); 998 if (retval != XML_STATUS_OK) { 999 warn("couldn't get status for %s", filename); 1000 retval = 1; 1001 goto bailout; 1002 } else 1003 retval = 0; 1004 1005 if (status_data.error != 0) { 1006 warnx("%s", status_data.error_str); 1007 retval = 1; 1008 goto bailout; 1009 } 1010 1011 for (i = 0; i < sizeof(req_status_items) / 1012 sizeof(req_status_items[0]); i++) { 1013 char *name; 1014 1015 name = __DECONST(char *, req_status_items[i].name); 1016 req_status_items[i].entry = mt_status_entry_find(&status_data, 1017 name); 1018 if (req_status_items[i].entry == NULL) { 1019 errx(1, "Cannot find status entry %s", 1020 req_status_items[i].name); 1021 } 1022 } 1023 1024 *max_iosize = req_status_items[CAMDD_TS_EFF_IOSIZE].entry->value_unsigned; 1025 *max_blk= req_status_items[CAMDD_TS_MAX_BLK].entry->value_unsigned; 1026 *min_blk= req_status_items[CAMDD_TS_MIN_BLK].entry->value_unsigned; 1027 *blk_gran = req_status_items[CAMDD_TS_BLK_GRAN].entry->value_unsigned; 1028 bailout: 1029 1030 free(xml_str); 1031 mt_status_free(&status_data); 1032 1033 return (retval); 1034 } 1035 1036 struct camdd_dev * 1037 camdd_probe_file(int fd, struct camdd_io_opts *io_opts, int retry_count, 1038 int timeout) 1039 { 1040 struct camdd_dev *dev = NULL; 1041 struct camdd_dev_file *file_dev; 1042 uint64_t blocksize = io_opts->blocksize; 1043 1044 dev = camdd_alloc_dev(CAMDD_DEV_FILE, NULL, 0, retry_count, timeout); 1045 if (dev == NULL) 1046 goto bailout; 1047 1048 file_dev = &dev->dev_spec.file; 1049 file_dev->fd = fd; 1050 strlcpy(file_dev->filename, io_opts->dev_name, 1051 sizeof(file_dev->filename)); 1052 strlcpy(dev->device_name, io_opts->dev_name, sizeof(dev->device_name)); 1053 if (blocksize == 0) 1054 dev->blocksize = CAMDD_FILE_DEFAULT_BLOCK; 1055 else 1056 dev->blocksize = blocksize; 1057 1058 if ((io_opts->queue_depth != 0) 1059 && (io_opts->queue_depth != 1)) { 1060 warnx("Queue depth %ju for %s ignored, only 1 outstanding " 1061 "command supported", (uintmax_t)io_opts->queue_depth, 1062 io_opts->dev_name); 1063 } 1064 dev->target_queue_depth = CAMDD_FILE_DEFAULT_DEPTH; 1065 dev->run = camdd_file_run; 1066 dev->fetch = NULL; 1067 1068 /* 1069 * We can effectively access files on byte boundaries. We'll reset 1070 * this for devices like disks that can be accessed on sector 1071 * boundaries. 1072 */ 1073 dev->sector_size = 1; 1074 1075 if ((fd != STDIN_FILENO) 1076 && (fd != STDOUT_FILENO)) { 1077 int retval; 1078 1079 retval = fstat(fd, &file_dev->sb); 1080 if (retval != 0) { 1081 warn("Cannot stat %s", dev->device_name); 1082 goto bailout_error; 1083 } 1084 if (S_ISREG(file_dev->sb.st_mode)) { 1085 file_dev->file_type = CAMDD_FILE_REG; 1086 } else if (S_ISCHR(file_dev->sb.st_mode)) { 1087 int type; 1088 1089 if (ioctl(fd, FIODTYPE, &type) == -1) 1090 err(1, "FIODTYPE ioctl failed on %s", 1091 dev->device_name); 1092 else { 1093 if (type & D_TAPE) 1094 file_dev->file_type = CAMDD_FILE_TAPE; 1095 else if (type & D_DISK) 1096 file_dev->file_type = CAMDD_FILE_DISK; 1097 else if (type & D_MEM) 1098 file_dev->file_type = CAMDD_FILE_MEM; 1099 else if (type & D_TTY) 1100 file_dev->file_type = CAMDD_FILE_TTY; 1101 } 1102 } else if (S_ISDIR(file_dev->sb.st_mode)) { 1103 errx(1, "cannot operate on directory %s", 1104 dev->device_name); 1105 } else if (S_ISFIFO(file_dev->sb.st_mode)) { 1106 file_dev->file_type = CAMDD_FILE_PIPE; 1107 } else 1108 errx(1, "Cannot determine file type for %s", 1109 dev->device_name); 1110 1111 switch (file_dev->file_type) { 1112 case CAMDD_FILE_REG: 1113 if (file_dev->sb.st_size != 0) 1114 dev->max_sector = file_dev->sb.st_size - 1; 1115 else 1116 dev->max_sector = 0; 1117 file_dev->file_flags |= CAMDD_FF_CAN_SEEK; 1118 break; 1119 case CAMDD_FILE_TAPE: { 1120 uint64_t max_iosize, max_blk, min_blk, blk_gran; 1121 /* 1122 * Check block limits and maximum effective iosize. 1123 * Make sure the blocksize is within the block 1124 * limits (and a multiple of the minimum blocksize) 1125 * and that the blocksize is <= maximum effective 1126 * iosize. 1127 */ 1128 retval = camdd_probe_tape(fd, dev->device_name, 1129 &max_iosize, &max_blk, &min_blk, &blk_gran); 1130 if (retval != 0) 1131 errx(1, "Unable to probe tape %s", 1132 dev->device_name); 1133 1134 /* 1135 * The blocksize needs to be <= the maximum 1136 * effective I/O size of the tape device. Note 1137 * that this also takes into account the maximum 1138 * blocksize reported by READ BLOCK LIMITS. 1139 */ 1140 if (dev->blocksize > max_iosize) { 1141 warnx("Blocksize %u too big for %s, limiting " 1142 "to %ju", dev->blocksize, dev->device_name, 1143 max_iosize); 1144 dev->blocksize = max_iosize; 1145 } 1146 1147 /* 1148 * The blocksize needs to be at least min_blk; 1149 */ 1150 if (dev->blocksize < min_blk) { 1151 warnx("Blocksize %u too small for %s, " 1152 "increasing to %ju", dev->blocksize, 1153 dev->device_name, min_blk); 1154 dev->blocksize = min_blk; 1155 } 1156 1157 /* 1158 * And the blocksize needs to be a multiple of 1159 * the block granularity. 1160 */ 1161 if ((blk_gran != 0) 1162 && (dev->blocksize % (1 << blk_gran))) { 1163 warnx("Blocksize %u for %s not a multiple of " 1164 "%d, adjusting to %d", dev->blocksize, 1165 dev->device_name, (1 << blk_gran), 1166 dev->blocksize & ~((1 << blk_gran) - 1)); 1167 dev->blocksize &= ~((1 << blk_gran) - 1); 1168 } 1169 1170 if (dev->blocksize == 0) { 1171 errx(1, "Unable to derive valid blocksize for " 1172 "%s", dev->device_name); 1173 } 1174 1175 /* 1176 * For tape drives, set the sector size to the 1177 * blocksize so that we make sure not to write 1178 * less than the blocksize out to the drive. 1179 */ 1180 dev->sector_size = dev->blocksize; 1181 break; 1182 } 1183 case CAMDD_FILE_DISK: { 1184 off_t media_size; 1185 unsigned int sector_size; 1186 1187 file_dev->file_flags |= CAMDD_FF_CAN_SEEK; 1188 1189 if (ioctl(fd, DIOCGSECTORSIZE, §or_size) == -1) { 1190 err(1, "DIOCGSECTORSIZE ioctl failed on %s", 1191 dev->device_name); 1192 } 1193 1194 if (sector_size == 0) { 1195 errx(1, "DIOCGSECTORSIZE ioctl returned " 1196 "invalid sector size %u for %s", 1197 sector_size, dev->device_name); 1198 } 1199 1200 if (ioctl(fd, DIOCGMEDIASIZE, &media_size) == -1) { 1201 err(1, "DIOCGMEDIASIZE ioctl failed on %s", 1202 dev->device_name); 1203 } 1204 1205 if (media_size == 0) { 1206 errx(1, "DIOCGMEDIASIZE ioctl returned " 1207 "invalid media size %ju for %s", 1208 (uintmax_t)media_size, dev->device_name); 1209 } 1210 1211 if (dev->blocksize % sector_size) { 1212 errx(1, "%s blocksize %u not a multiple of " 1213 "sector size %u", dev->device_name, 1214 dev->blocksize, sector_size); 1215 } 1216 1217 dev->sector_size = sector_size; 1218 dev->max_sector = (media_size / sector_size) - 1; 1219 break; 1220 } 1221 case CAMDD_FILE_MEM: 1222 file_dev->file_flags |= CAMDD_FF_CAN_SEEK; 1223 break; 1224 default: 1225 break; 1226 } 1227 } 1228 1229 if ((io_opts->offset != 0) 1230 && ((file_dev->file_flags & CAMDD_FF_CAN_SEEK) == 0)) { 1231 warnx("Offset %ju specified for %s, but we cannot seek on %s", 1232 io_opts->offset, io_opts->dev_name, io_opts->dev_name); 1233 goto bailout_error; 1234 } 1235 #if 0 1236 else if ((io_opts->offset != 0) 1237 && ((io_opts->offset % dev->sector_size) != 0)) { 1238 warnx("Offset %ju for %s is not a multiple of the " 1239 "sector size %u", io_opts->offset, 1240 io_opts->dev_name, dev->sector_size); 1241 goto bailout_error; 1242 } else { 1243 dev->start_offset_bytes = io_opts->offset; 1244 } 1245 #endif 1246 1247 bailout: 1248 return (dev); 1249 1250 bailout_error: 1251 camdd_free_dev(dev); 1252 return (NULL); 1253 } 1254 1255 /* 1256 * Need to implement this. Do a basic probe: 1257 * - Check the inquiry data, make sure we're talking to a device that we 1258 * can reasonably expect to talk to -- direct, RBC, CD, WORM. 1259 * - Send a test unit ready, make sure the device is available. 1260 * - Get the capacity and block size. 1261 */ 1262 struct camdd_dev * 1263 camdd_probe_pass(struct cam_device *cam_dev, struct camdd_io_opts *io_opts, 1264 camdd_argmask arglist, int probe_retry_count, 1265 int probe_timeout, int io_retry_count, int io_timeout) 1266 { 1267 union ccb *ccb; 1268 uint64_t maxsector; 1269 uint32_t cpi_maxio, max_iosize, pass_numblocks; 1270 uint32_t block_len; 1271 struct scsi_read_capacity_data rcap; 1272 struct scsi_read_capacity_data_long rcaplong; 1273 struct camdd_dev *dev; 1274 struct camdd_dev_pass *pass_dev; 1275 struct kevent ke; 1276 int scsi_dev_type; 1277 1278 dev = NULL; 1279 1280 scsi_dev_type = SID_TYPE(&cam_dev->inq_data); 1281 maxsector = 0; 1282 block_len = 0; 1283 1284 /* 1285 * For devices that support READ CAPACITY, we'll attempt to get the 1286 * capacity. Otherwise, we really don't support tape or other 1287 * devices via SCSI passthrough, so just return an error in that case. 1288 */ 1289 switch (scsi_dev_type) { 1290 case T_DIRECT: 1291 case T_WORM: 1292 case T_CDROM: 1293 case T_OPTICAL: 1294 case T_RBC: 1295 break; 1296 default: 1297 errx(1, "Unsupported SCSI device type %d", scsi_dev_type); 1298 break; /*NOTREACHED*/ 1299 } 1300 1301 ccb = cam_getccb(cam_dev); 1302 1303 if (ccb == NULL) { 1304 warnx("%s: error allocating ccb", __func__); 1305 goto bailout; 1306 } 1307 1308 bzero(&(&ccb->ccb_h)[1], 1309 sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr)); 1310 1311 scsi_read_capacity(&ccb->csio, 1312 /*retries*/ probe_retry_count, 1313 /*cbfcnp*/ NULL, 1314 /*tag_action*/ MSG_SIMPLE_Q_TAG, 1315 &rcap, 1316 SSD_FULL_SIZE, 1317 /*timeout*/ probe_timeout ? probe_timeout : 5000); 1318 1319 /* Disable freezing the device queue */ 1320 ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; 1321 1322 if (arglist & CAMDD_ARG_ERR_RECOVER) 1323 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; 1324 1325 if (cam_send_ccb(cam_dev, ccb) < 0) { 1326 warn("error sending READ CAPACITY command"); 1327 1328 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, 1329 CAM_EPF_ALL, stderr); 1330 1331 goto bailout; 1332 } 1333 1334 if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1335 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); 1336 goto bailout; 1337 } 1338 1339 maxsector = scsi_4btoul(rcap.addr); 1340 block_len = scsi_4btoul(rcap.length); 1341 1342 /* 1343 * A last block of 2^32-1 means that the true capacity is over 2TB, 1344 * and we need to issue the long READ CAPACITY to get the real 1345 * capacity. Otherwise, we're all set. 1346 */ 1347 if (maxsector != 0xffffffff) 1348 goto rcap_done; 1349 1350 scsi_read_capacity_16(&ccb->csio, 1351 /*retries*/ probe_retry_count, 1352 /*cbfcnp*/ NULL, 1353 /*tag_action*/ MSG_SIMPLE_Q_TAG, 1354 /*lba*/ 0, 1355 /*reladdr*/ 0, 1356 /*pmi*/ 0, 1357 (uint8_t *)&rcaplong, 1358 sizeof(rcaplong), 1359 /*sense_len*/ SSD_FULL_SIZE, 1360 /*timeout*/ probe_timeout ? probe_timeout : 5000); 1361 1362 /* Disable freezing the device queue */ 1363 ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; 1364 1365 if (arglist & CAMDD_ARG_ERR_RECOVER) 1366 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; 1367 1368 if (cam_send_ccb(cam_dev, ccb) < 0) { 1369 warn("error sending READ CAPACITY (16) command"); 1370 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, 1371 CAM_EPF_ALL, stderr); 1372 goto bailout; 1373 } 1374 1375 if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1376 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); 1377 goto bailout; 1378 } 1379 1380 maxsector = scsi_8btou64(rcaplong.addr); 1381 block_len = scsi_4btoul(rcaplong.length); 1382 1383 rcap_done: 1384 if (block_len == 0) { 1385 warnx("Sector size for %s%u is 0, cannot continue", 1386 cam_dev->device_name, cam_dev->dev_unit_num); 1387 goto bailout_error; 1388 } 1389 1390 bzero(&(&ccb->ccb_h)[1], 1391 sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr)); 1392 1393 ccb->ccb_h.func_code = XPT_PATH_INQ; 1394 ccb->ccb_h.flags = CAM_DIR_NONE; 1395 ccb->ccb_h.retry_count = 1; 1396 1397 if (cam_send_ccb(cam_dev, ccb) < 0) { 1398 warn("error sending XPT_PATH_INQ CCB"); 1399 1400 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, 1401 CAM_EPF_ALL, stderr); 1402 goto bailout; 1403 } 1404 1405 EV_SET(&ke, cam_dev->fd, EVFILT_READ, EV_ADD|EV_ENABLE, 0, 0, 0); 1406 1407 dev = camdd_alloc_dev(CAMDD_DEV_PASS, &ke, 1, io_retry_count, 1408 io_timeout); 1409 if (dev == NULL) 1410 goto bailout; 1411 1412 pass_dev = &dev->dev_spec.pass; 1413 pass_dev->scsi_dev_type = scsi_dev_type; 1414 pass_dev->dev = cam_dev; 1415 pass_dev->max_sector = maxsector; 1416 pass_dev->block_len = block_len; 1417 pass_dev->cpi_maxio = ccb->cpi.maxio; 1418 snprintf(dev->device_name, sizeof(dev->device_name), "%s%u", 1419 pass_dev->dev->device_name, pass_dev->dev->dev_unit_num); 1420 dev->sector_size = block_len; 1421 dev->max_sector = maxsector; 1422 1423 1424 /* 1425 * Determine the optimal blocksize to use for this device. 1426 */ 1427 1428 /* 1429 * If the controller has not specified a maximum I/O size, 1430 * just go with 128K as a somewhat conservative value. 1431 */ 1432 if (pass_dev->cpi_maxio == 0) 1433 cpi_maxio = 131072; 1434 else 1435 cpi_maxio = pass_dev->cpi_maxio; 1436 1437 /* 1438 * If the controller has a large maximum I/O size, limit it 1439 * to something smaller so that the kernel doesn't have trouble 1440 * allocating buffers to copy data in and out for us. 1441 * XXX KDM this is until we have unmapped I/O support in the kernel. 1442 */ 1443 max_iosize = min(cpi_maxio, CAMDD_PASS_MAX_BLOCK); 1444 1445 /* 1446 * If we weren't able to get a block size for some reason, 1447 * default to 512 bytes. 1448 */ 1449 block_len = pass_dev->block_len; 1450 if (block_len == 0) 1451 block_len = 512; 1452 1453 /* 1454 * Figure out how many blocksize chunks will fit in the 1455 * maximum I/O size. 1456 */ 1457 pass_numblocks = max_iosize / block_len; 1458 1459 /* 1460 * And finally, multiple the number of blocks by the LBA 1461 * length to get our maximum block size; 1462 */ 1463 dev->blocksize = pass_numblocks * block_len; 1464 1465 if (io_opts->blocksize != 0) { 1466 if ((io_opts->blocksize % dev->sector_size) != 0) { 1467 warnx("Blocksize %ju for %s is not a multiple of " 1468 "sector size %u", (uintmax_t)io_opts->blocksize, 1469 dev->device_name, dev->sector_size); 1470 goto bailout_error; 1471 } 1472 dev->blocksize = io_opts->blocksize; 1473 } 1474 dev->target_queue_depth = CAMDD_PASS_DEFAULT_DEPTH; 1475 if (io_opts->queue_depth != 0) 1476 dev->target_queue_depth = io_opts->queue_depth; 1477 1478 if (io_opts->offset != 0) { 1479 if (io_opts->offset > (dev->max_sector * dev->sector_size)) { 1480 warnx("Offset %ju is past the end of device %s", 1481 io_opts->offset, dev->device_name); 1482 goto bailout_error; 1483 } 1484 #if 0 1485 else if ((io_opts->offset % dev->sector_size) != 0) { 1486 warnx("Offset %ju for %s is not a multiple of the " 1487 "sector size %u", io_opts->offset, 1488 dev->device_name, dev->sector_size); 1489 goto bailout_error; 1490 } 1491 dev->start_offset_bytes = io_opts->offset; 1492 #endif 1493 } 1494 1495 dev->min_cmd_size = io_opts->min_cmd_size; 1496 1497 dev->run = camdd_pass_run; 1498 dev->fetch = camdd_pass_fetch; 1499 1500 bailout: 1501 cam_freeccb(ccb); 1502 1503 return (dev); 1504 1505 bailout_error: 1506 cam_freeccb(ccb); 1507 1508 camdd_free_dev(dev); 1509 1510 return (NULL); 1511 } 1512 1513 void * 1514 camdd_worker(void *arg) 1515 { 1516 struct camdd_dev *dev = arg; 1517 struct camdd_buf *buf; 1518 struct timespec ts, *kq_ts; 1519 1520 ts.tv_sec = 0; 1521 ts.tv_nsec = 0; 1522 1523 pthread_mutex_lock(&dev->mutex); 1524 1525 dev->flags |= CAMDD_DEV_FLAG_ACTIVE; 1526 1527 for (;;) { 1528 struct kevent ke; 1529 int retval = 0; 1530 1531 /* 1532 * XXX KDM check the reorder queue depth? 1533 */ 1534 if (dev->write_dev == 0) { 1535 uint32_t our_depth, peer_depth, peer_bytes, our_bytes; 1536 uint32_t target_depth = dev->target_queue_depth; 1537 uint32_t peer_target_depth = 1538 dev->peer_dev->target_queue_depth; 1539 uint32_t peer_blocksize = dev->peer_dev->blocksize; 1540 1541 camdd_get_depth(dev, &our_depth, &peer_depth, 1542 &our_bytes, &peer_bytes); 1543 1544 #if 0 1545 while (((our_depth < target_depth) 1546 && (peer_depth < peer_target_depth)) 1547 || ((peer_bytes + our_bytes) < 1548 (peer_blocksize * 2))) { 1549 #endif 1550 while (((our_depth + peer_depth) < 1551 (target_depth + peer_target_depth)) 1552 || ((peer_bytes + our_bytes) < 1553 (peer_blocksize * 3))) { 1554 1555 retval = camdd_queue(dev, NULL); 1556 if (retval == 1) 1557 break; 1558 else if (retval != 0) { 1559 error_exit = 1; 1560 goto bailout; 1561 } 1562 1563 camdd_get_depth(dev, &our_depth, &peer_depth, 1564 &our_bytes, &peer_bytes); 1565 } 1566 } 1567 /* 1568 * See if we have any I/O that is ready to execute. 1569 */ 1570 buf = STAILQ_FIRST(&dev->run_queue); 1571 if (buf != NULL) { 1572 while (dev->target_queue_depth > dev->cur_active_io) { 1573 retval = dev->run(dev); 1574 if (retval == -1) { 1575 dev->flags |= CAMDD_DEV_FLAG_EOF; 1576 error_exit = 1; 1577 break; 1578 } else if (retval != 0) { 1579 break; 1580 } 1581 } 1582 } 1583 1584 /* 1585 * We've reached EOF, or our partner has reached EOF. 1586 */ 1587 if ((dev->flags & CAMDD_DEV_FLAG_EOF) 1588 || (dev->flags & CAMDD_DEV_FLAG_PEER_EOF)) { 1589 if (dev->write_dev != 0) { 1590 if ((STAILQ_EMPTY(&dev->work_queue)) 1591 && (dev->num_run_queue == 0) 1592 && (dev->cur_active_io == 0)) { 1593 goto bailout; 1594 } 1595 } else { 1596 /* 1597 * If we're the reader, and the writer 1598 * got EOF, he is already done. If we got 1599 * the EOF, then we need to wait until 1600 * everything is flushed out for the writer. 1601 */ 1602 if (dev->flags & CAMDD_DEV_FLAG_PEER_EOF) { 1603 goto bailout; 1604 } else if ((dev->num_peer_work_queue == 0) 1605 && (dev->num_peer_done_queue == 0) 1606 && (dev->cur_active_io == 0) 1607 && (dev->num_run_queue == 0)) { 1608 goto bailout; 1609 } 1610 } 1611 /* 1612 * XXX KDM need to do something about the pending 1613 * queue and cleanup resources. 1614 */ 1615 } 1616 1617 if ((dev->write_dev == 0) 1618 && (dev->cur_active_io == 0) 1619 && (dev->peer_bytes_queued < dev->peer_dev->blocksize)) 1620 kq_ts = &ts; 1621 else 1622 kq_ts = NULL; 1623 1624 /* 1625 * Run kevent to see if there are events to process. 1626 */ 1627 pthread_mutex_unlock(&dev->mutex); 1628 retval = kevent(dev->kq, NULL, 0, &ke, 1, kq_ts); 1629 pthread_mutex_lock(&dev->mutex); 1630 if (retval == -1) { 1631 warn("%s: error returned from kevent",__func__); 1632 goto bailout; 1633 } else if (retval != 0) { 1634 switch (ke.filter) { 1635 case EVFILT_READ: 1636 if (dev->fetch != NULL) { 1637 retval = dev->fetch(dev); 1638 if (retval == -1) { 1639 error_exit = 1; 1640 goto bailout; 1641 } 1642 } 1643 break; 1644 case EVFILT_SIGNAL: 1645 /* 1646 * We register for this so we don't get 1647 * an error as a result of a SIGINFO or a 1648 * SIGINT. It will actually get handled 1649 * by the signal handler. If we get a 1650 * SIGINT, bail out without printing an 1651 * error message. Any other signals 1652 * will result in the error message above. 1653 */ 1654 if (ke.ident == SIGINT) 1655 goto bailout; 1656 break; 1657 case EVFILT_USER: 1658 retval = 0; 1659 /* 1660 * Check to see if the other thread has 1661 * queued any I/O for us to do. (In this 1662 * case we're the writer.) 1663 */ 1664 for (buf = STAILQ_FIRST(&dev->work_queue); 1665 buf != NULL; 1666 buf = STAILQ_FIRST(&dev->work_queue)) { 1667 STAILQ_REMOVE_HEAD(&dev->work_queue, 1668 work_links); 1669 retval = camdd_queue(dev, buf); 1670 /* 1671 * We keep going unless we get an 1672 * actual error. If we get EOF, we 1673 * still want to remove the buffers 1674 * from the queue and send the back 1675 * to the reader thread. 1676 */ 1677 if (retval == -1) { 1678 error_exit = 1; 1679 goto bailout; 1680 } else 1681 retval = 0; 1682 } 1683 1684 /* 1685 * Next check to see if the other thread has 1686 * queued any completed buffers back to us. 1687 * (In this case we're the reader.) 1688 */ 1689 for (buf = STAILQ_FIRST(&dev->peer_done_queue); 1690 buf != NULL; 1691 buf = STAILQ_FIRST(&dev->peer_done_queue)){ 1692 STAILQ_REMOVE_HEAD( 1693 &dev->peer_done_queue, work_links); 1694 dev->num_peer_done_queue--; 1695 camdd_peer_done(buf); 1696 } 1697 break; 1698 default: 1699 warnx("%s: unknown kevent filter %d", 1700 __func__, ke.filter); 1701 break; 1702 } 1703 } 1704 } 1705 1706 bailout: 1707 1708 dev->flags &= ~CAMDD_DEV_FLAG_ACTIVE; 1709 1710 /* XXX KDM cleanup resources here? */ 1711 1712 pthread_mutex_unlock(&dev->mutex); 1713 1714 need_exit = 1; 1715 sem_post(&camdd_sem); 1716 1717 return (NULL); 1718 } 1719 1720 /* 1721 * Simplistic translation of CCB status to our local status. 1722 */ 1723 camdd_buf_status 1724 camdd_ccb_status(union ccb *ccb) 1725 { 1726 camdd_buf_status status = CAMDD_STATUS_NONE; 1727 cam_status ccb_status; 1728 1729 ccb_status = ccb->ccb_h.status & CAM_STATUS_MASK; 1730 1731 switch (ccb_status) { 1732 case CAM_REQ_CMP: { 1733 if (ccb->csio.resid == 0) { 1734 status = CAMDD_STATUS_OK; 1735 } else if (ccb->csio.dxfer_len > ccb->csio.resid) { 1736 status = CAMDD_STATUS_SHORT_IO; 1737 } else { 1738 status = CAMDD_STATUS_EOF; 1739 } 1740 break; 1741 } 1742 case CAM_SCSI_STATUS_ERROR: { 1743 switch (ccb->csio.scsi_status) { 1744 case SCSI_STATUS_OK: 1745 case SCSI_STATUS_COND_MET: 1746 case SCSI_STATUS_INTERMED: 1747 case SCSI_STATUS_INTERMED_COND_MET: 1748 status = CAMDD_STATUS_OK; 1749 break; 1750 case SCSI_STATUS_CMD_TERMINATED: 1751 case SCSI_STATUS_CHECK_COND: 1752 case SCSI_STATUS_QUEUE_FULL: 1753 case SCSI_STATUS_BUSY: 1754 case SCSI_STATUS_RESERV_CONFLICT: 1755 default: 1756 status = CAMDD_STATUS_ERROR; 1757 break; 1758 } 1759 break; 1760 } 1761 default: 1762 status = CAMDD_STATUS_ERROR; 1763 break; 1764 } 1765 1766 return (status); 1767 } 1768 1769 /* 1770 * Queue a buffer to our peer's work thread for writing. 1771 * 1772 * Returns 0 for success, -1 for failure, 1 if the other thread exited. 1773 */ 1774 int 1775 camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf) 1776 { 1777 struct kevent ke; 1778 STAILQ_HEAD(, camdd_buf) local_queue; 1779 struct camdd_buf *buf1, *buf2; 1780 struct camdd_buf_data *data = NULL; 1781 uint64_t peer_bytes_queued = 0; 1782 int active = 1; 1783 int retval = 0; 1784 1785 STAILQ_INIT(&local_queue); 1786 1787 /* 1788 * Since we're the reader, we need to queue our I/O to the writer 1789 * in sequential order in order to make sure it gets written out 1790 * in sequential order. 1791 * 1792 * Check the next expected I/O starting offset. If this doesn't 1793 * match, put it on the reorder queue. 1794 */ 1795 if ((buf->lba * dev->sector_size) != dev->next_completion_pos_bytes) { 1796 1797 /* 1798 * If there is nothing on the queue, there is no sorting 1799 * needed. 1800 */ 1801 if (STAILQ_EMPTY(&dev->reorder_queue)) { 1802 STAILQ_INSERT_TAIL(&dev->reorder_queue, buf, links); 1803 dev->num_reorder_queue++; 1804 goto bailout; 1805 } 1806 1807 /* 1808 * Sort in ascending order by starting LBA. There should 1809 * be no identical LBAs. 1810 */ 1811 for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL; 1812 buf1 = buf2) { 1813 buf2 = STAILQ_NEXT(buf1, links); 1814 if (buf->lba < buf1->lba) { 1815 /* 1816 * If we're less than the first one, then 1817 * we insert at the head of the list 1818 * because this has to be the first element 1819 * on the list. 1820 */ 1821 STAILQ_INSERT_HEAD(&dev->reorder_queue, 1822 buf, links); 1823 dev->num_reorder_queue++; 1824 break; 1825 } else if (buf->lba > buf1->lba) { 1826 if (buf2 == NULL) { 1827 STAILQ_INSERT_TAIL(&dev->reorder_queue, 1828 buf, links); 1829 dev->num_reorder_queue++; 1830 break; 1831 } else if (buf->lba < buf2->lba) { 1832 STAILQ_INSERT_AFTER(&dev->reorder_queue, 1833 buf1, buf, links); 1834 dev->num_reorder_queue++; 1835 break; 1836 } 1837 } else { 1838 errx(1, "Found buffers with duplicate LBA %ju!", 1839 buf->lba); 1840 } 1841 } 1842 goto bailout; 1843 } else { 1844 1845 /* 1846 * We're the next expected I/O completion, so put ourselves 1847 * on the local queue to be sent to the writer. We use 1848 * work_links here so that we can queue this to the 1849 * peer_work_queue before taking the buffer off of the 1850 * local_queue. 1851 */ 1852 dev->next_completion_pos_bytes += buf->len; 1853 STAILQ_INSERT_TAIL(&local_queue, buf, work_links); 1854 1855 /* 1856 * Go through the reorder queue looking for more sequential 1857 * I/O and add it to the local queue. 1858 */ 1859 for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL; 1860 buf1 = STAILQ_FIRST(&dev->reorder_queue)) { 1861 /* 1862 * As soon as we see an I/O that is out of sequence, 1863 * we're done. 1864 */ 1865 if ((buf1->lba * dev->sector_size) != 1866 dev->next_completion_pos_bytes) 1867 break; 1868 1869 STAILQ_REMOVE_HEAD(&dev->reorder_queue, links); 1870 dev->num_reorder_queue--; 1871 STAILQ_INSERT_TAIL(&local_queue, buf1, work_links); 1872 dev->next_completion_pos_bytes += buf1->len; 1873 } 1874 } 1875 1876 /* 1877 * Setup the event to let the other thread know that it has work 1878 * pending. 1879 */ 1880 EV_SET(&ke, (uintptr_t)&dev->peer_dev->work_queue, EVFILT_USER, 0, 1881 NOTE_TRIGGER, 0, NULL); 1882 1883 /* 1884 * Put this on our shadow queue so that we know what we've queued 1885 * to the other thread. 1886 */ 1887 STAILQ_FOREACH_SAFE(buf1, &local_queue, work_links, buf2) { 1888 if (buf1->buf_type != CAMDD_BUF_DATA) { 1889 errx(1, "%s: should have a data buffer, not an " 1890 "indirect buffer", __func__); 1891 } 1892 data = &buf1->buf_type_spec.data; 1893 1894 /* 1895 * We only need to send one EOF to the writer, and don't 1896 * need to continue sending EOFs after that. 1897 */ 1898 if (buf1->status == CAMDD_STATUS_EOF) { 1899 if (dev->flags & CAMDD_DEV_FLAG_EOF_SENT) { 1900 STAILQ_REMOVE(&local_queue, buf1, camdd_buf, 1901 work_links); 1902 camdd_release_buf(buf1); 1903 retval = 1; 1904 continue; 1905 } 1906 dev->flags |= CAMDD_DEV_FLAG_EOF_SENT; 1907 } 1908 1909 1910 STAILQ_INSERT_TAIL(&dev->peer_work_queue, buf1, links); 1911 peer_bytes_queued += (data->fill_len - data->resid); 1912 dev->peer_bytes_queued += (data->fill_len - data->resid); 1913 dev->num_peer_work_queue++; 1914 } 1915 1916 if (STAILQ_FIRST(&local_queue) == NULL) 1917 goto bailout; 1918 1919 /* 1920 * Drop our mutex and pick up the other thread's mutex. We need to 1921 * do this to avoid deadlocks. 1922 */ 1923 pthread_mutex_unlock(&dev->mutex); 1924 pthread_mutex_lock(&dev->peer_dev->mutex); 1925 1926 if (dev->peer_dev->flags & CAMDD_DEV_FLAG_ACTIVE) { 1927 /* 1928 * Put the buffers on the other thread's incoming work queue. 1929 */ 1930 for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL; 1931 buf1 = STAILQ_FIRST(&local_queue)) { 1932 STAILQ_REMOVE_HEAD(&local_queue, work_links); 1933 STAILQ_INSERT_TAIL(&dev->peer_dev->work_queue, buf1, 1934 work_links); 1935 } 1936 /* 1937 * Send an event to the other thread's kqueue to let it know 1938 * that there is something on the work queue. 1939 */ 1940 retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL); 1941 if (retval == -1) 1942 warn("%s: unable to add peer work_queue kevent", 1943 __func__); 1944 else 1945 retval = 0; 1946 } else 1947 active = 0; 1948 1949 pthread_mutex_unlock(&dev->peer_dev->mutex); 1950 pthread_mutex_lock(&dev->mutex); 1951 1952 /* 1953 * If the other side isn't active, run through the queue and 1954 * release all of the buffers. 1955 */ 1956 if (active == 0) { 1957 for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL; 1958 buf1 = STAILQ_FIRST(&local_queue)) { 1959 STAILQ_REMOVE_HEAD(&local_queue, work_links); 1960 STAILQ_REMOVE(&dev->peer_work_queue, buf1, camdd_buf, 1961 links); 1962 dev->num_peer_work_queue--; 1963 camdd_release_buf(buf1); 1964 } 1965 dev->peer_bytes_queued -= peer_bytes_queued; 1966 retval = 1; 1967 } 1968 1969 bailout: 1970 return (retval); 1971 } 1972 1973 /* 1974 * Return a buffer to the reader thread when we have completed writing it. 1975 */ 1976 int 1977 camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf) 1978 { 1979 struct kevent ke; 1980 int retval = 0; 1981 1982 /* 1983 * Setup the event to let the other thread know that we have 1984 * completed a buffer. 1985 */ 1986 EV_SET(&ke, (uintptr_t)&dev->peer_dev->peer_done_queue, EVFILT_USER, 0, 1987 NOTE_TRIGGER, 0, NULL); 1988 1989 /* 1990 * Drop our lock and acquire the other thread's lock before 1991 * manipulating 1992 */ 1993 pthread_mutex_unlock(&dev->mutex); 1994 pthread_mutex_lock(&dev->peer_dev->mutex); 1995 1996 /* 1997 * Put the buffer on the reader thread's peer done queue now that 1998 * we have completed it. 1999 */ 2000 STAILQ_INSERT_TAIL(&dev->peer_dev->peer_done_queue, peer_buf, 2001 work_links); 2002 dev->peer_dev->num_peer_done_queue++; 2003 2004 /* 2005 * Send an event to the peer thread to let it know that we've added 2006 * something to its peer done queue. 2007 */ 2008 retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL); 2009 if (retval == -1) 2010 warn("%s: unable to add peer_done_queue kevent", __func__); 2011 else 2012 retval = 0; 2013 2014 /* 2015 * Drop the other thread's lock and reacquire ours. 2016 */ 2017 pthread_mutex_unlock(&dev->peer_dev->mutex); 2018 pthread_mutex_lock(&dev->mutex); 2019 2020 return (retval); 2021 } 2022 2023 /* 2024 * Free a buffer that was written out by the writer thread and returned to 2025 * the reader thread. 2026 */ 2027 void 2028 camdd_peer_done(struct camdd_buf *buf) 2029 { 2030 struct camdd_dev *dev; 2031 struct camdd_buf_data *data; 2032 2033 dev = buf->dev; 2034 if (buf->buf_type != CAMDD_BUF_DATA) { 2035 errx(1, "%s: should have a data buffer, not an " 2036 "indirect buffer", __func__); 2037 } 2038 2039 data = &buf->buf_type_spec.data; 2040 2041 STAILQ_REMOVE(&dev->peer_work_queue, buf, camdd_buf, links); 2042 dev->num_peer_work_queue--; 2043 dev->peer_bytes_queued -= (data->fill_len - data->resid); 2044 2045 if (buf->status == CAMDD_STATUS_EOF) 2046 dev->flags |= CAMDD_DEV_FLAG_PEER_EOF; 2047 2048 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links); 2049 } 2050 2051 /* 2052 * Assumes caller holds the lock for this device. 2053 */ 2054 void 2055 camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf, 2056 int *error_count) 2057 { 2058 int retval = 0; 2059 2060 /* 2061 * If we're the reader, we need to send the completed I/O 2062 * to the writer. If we're the writer, we need to just 2063 * free up resources, or let the reader know if we've 2064 * encountered an error. 2065 */ 2066 if (dev->write_dev == 0) { 2067 retval = camdd_queue_peer_buf(dev, buf); 2068 if (retval != 0) 2069 (*error_count)++; 2070 } else { 2071 struct camdd_buf *tmp_buf, *next_buf; 2072 2073 STAILQ_FOREACH_SAFE(tmp_buf, &buf->src_list, src_links, 2074 next_buf) { 2075 struct camdd_buf *src_buf; 2076 struct camdd_buf_indirect *indirect; 2077 2078 STAILQ_REMOVE(&buf->src_list, tmp_buf, 2079 camdd_buf, src_links); 2080 2081 tmp_buf->status = buf->status; 2082 2083 if (tmp_buf->buf_type == CAMDD_BUF_DATA) { 2084 camdd_complete_peer_buf(dev, tmp_buf); 2085 continue; 2086 } 2087 2088 indirect = &tmp_buf->buf_type_spec.indirect; 2089 src_buf = indirect->src_buf; 2090 src_buf->refcount--; 2091 /* 2092 * XXX KDM we probably need to account for 2093 * exactly how many bytes we were able to 2094 * write. Allocate the residual to the 2095 * first N buffers? Or just track the 2096 * number of bytes written? Right now the reader 2097 * doesn't do anything with a residual. 2098 */ 2099 src_buf->status = buf->status; 2100 if (src_buf->refcount <= 0) 2101 camdd_complete_peer_buf(dev, src_buf); 2102 STAILQ_INSERT_TAIL(&dev->free_indirect_queue, 2103 tmp_buf, links); 2104 } 2105 2106 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links); 2107 } 2108 } 2109 2110 /* 2111 * Fetch all completed commands from the pass(4) device. 2112 * 2113 * Returns the number of commands received, or -1 if any of the commands 2114 * completed with an error. Returns 0 if no commands are available. 2115 */ 2116 int 2117 camdd_pass_fetch(struct camdd_dev *dev) 2118 { 2119 struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass; 2120 union ccb ccb; 2121 int retval = 0, num_fetched = 0, error_count = 0; 2122 2123 pthread_mutex_unlock(&dev->mutex); 2124 /* 2125 * XXX KDM we don't distinguish between EFAULT and ENOENT. 2126 */ 2127 while ((retval = ioctl(pass_dev->dev->fd, CAMIOGET, &ccb)) != -1) { 2128 struct camdd_buf *buf; 2129 struct camdd_buf_data *data; 2130 cam_status ccb_status; 2131 union ccb *buf_ccb; 2132 2133 buf = ccb.ccb_h.ccb_buf; 2134 data = &buf->buf_type_spec.data; 2135 buf_ccb = &data->ccb; 2136 2137 num_fetched++; 2138 2139 /* 2140 * Copy the CCB back out so we get status, sense data, etc. 2141 */ 2142 bcopy(&ccb, buf_ccb, sizeof(ccb)); 2143 2144 pthread_mutex_lock(&dev->mutex); 2145 2146 /* 2147 * We're now done, so take this off the active queue. 2148 */ 2149 STAILQ_REMOVE(&dev->active_queue, buf, camdd_buf, links); 2150 dev->cur_active_io--; 2151 2152 ccb_status = ccb.ccb_h.status & CAM_STATUS_MASK; 2153 if (ccb_status != CAM_REQ_CMP) { 2154 cam_error_print(pass_dev->dev, &ccb, CAM_ESF_ALL, 2155 CAM_EPF_ALL, stderr); 2156 } 2157 2158 data->resid = ccb.csio.resid; 2159 dev->bytes_transferred += (ccb.csio.dxfer_len - ccb.csio.resid); 2160 2161 if (buf->status == CAMDD_STATUS_NONE) 2162 buf->status = camdd_ccb_status(&ccb); 2163 if (buf->status == CAMDD_STATUS_ERROR) 2164 error_count++; 2165 else if (buf->status == CAMDD_STATUS_EOF) { 2166 /* 2167 * Once we queue this buffer to our partner thread, 2168 * he will know that we've hit EOF. 2169 */ 2170 dev->flags |= CAMDD_DEV_FLAG_EOF; 2171 } 2172 2173 camdd_complete_buf(dev, buf, &error_count); 2174 2175 /* 2176 * Unlock in preparation for the ioctl call. 2177 */ 2178 pthread_mutex_unlock(&dev->mutex); 2179 } 2180 2181 pthread_mutex_lock(&dev->mutex); 2182 2183 if (error_count > 0) 2184 return (-1); 2185 else 2186 return (num_fetched); 2187 } 2188 2189 /* 2190 * Returns -1 for error, 0 for success/continue, and 1 for resource 2191 * shortage/stop processing. 2192 */ 2193 int 2194 camdd_file_run(struct camdd_dev *dev) 2195 { 2196 struct camdd_dev_file *file_dev = &dev->dev_spec.file; 2197 struct camdd_buf_data *data; 2198 struct camdd_buf *buf; 2199 off_t io_offset; 2200 int retval = 0, write_dev = dev->write_dev; 2201 int error_count = 0, no_resources = 0, double_buf_needed = 0; 2202 uint32_t num_sectors = 0, db_len = 0; 2203 2204 buf = STAILQ_FIRST(&dev->run_queue); 2205 if (buf == NULL) { 2206 no_resources = 1; 2207 goto bailout; 2208 } else if ((dev->write_dev == 0) 2209 && (dev->flags & (CAMDD_DEV_FLAG_EOF | 2210 CAMDD_DEV_FLAG_EOF_SENT))) { 2211 STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links); 2212 dev->num_run_queue--; 2213 buf->status = CAMDD_STATUS_EOF; 2214 error_count++; 2215 goto bailout; 2216 } 2217 2218 /* 2219 * If we're writing, we need to go through the source buffer list 2220 * and create an S/G list. 2221 */ 2222 if (write_dev != 0) { 2223 retval = camdd_buf_sg_create(buf, /*iovec*/ 1, 2224 dev->sector_size, &num_sectors, &double_buf_needed); 2225 if (retval != 0) { 2226 no_resources = 1; 2227 goto bailout; 2228 } 2229 } 2230 2231 STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links); 2232 dev->num_run_queue--; 2233 2234 data = &buf->buf_type_spec.data; 2235 2236 /* 2237 * pread(2) and pwrite(2) offsets are byte offsets. 2238 */ 2239 io_offset = buf->lba * dev->sector_size; 2240 2241 /* 2242 * Unlock the mutex while we read or write. 2243 */ 2244 pthread_mutex_unlock(&dev->mutex); 2245 2246 /* 2247 * Note that we don't need to double buffer if we're the reader 2248 * because in that case, we have allocated a single buffer of 2249 * sufficient size to do the read. This copy is necessary on 2250 * writes because if one of the components of the S/G list is not 2251 * a sector size multiple, the kernel will reject the write. This 2252 * is unfortunate but not surprising. So this will make sure that 2253 * we're using a single buffer that is a multiple of the sector size. 2254 */ 2255 if ((double_buf_needed != 0) 2256 && (data->sg_count > 1) 2257 && (write_dev != 0)) { 2258 uint32_t cur_offset; 2259 int i; 2260 2261 if (file_dev->tmp_buf == NULL) 2262 file_dev->tmp_buf = calloc(dev->blocksize, 1); 2263 if (file_dev->tmp_buf == NULL) { 2264 buf->status = CAMDD_STATUS_ERROR; 2265 error_count++; 2266 goto bailout; 2267 } 2268 for (i = 0, cur_offset = 0; i < data->sg_count; i++) { 2269 bcopy(data->iovec[i].iov_base, 2270 &file_dev->tmp_buf[cur_offset], 2271 data->iovec[i].iov_len); 2272 cur_offset += data->iovec[i].iov_len; 2273 } 2274 db_len = cur_offset; 2275 } 2276 2277 if (file_dev->file_flags & CAMDD_FF_CAN_SEEK) { 2278 if (write_dev == 0) { 2279 /* 2280 * XXX KDM is there any way we would need a S/G 2281 * list here? 2282 */ 2283 retval = pread(file_dev->fd, data->buf, 2284 buf->len, io_offset); 2285 } else { 2286 if (double_buf_needed != 0) { 2287 retval = pwrite(file_dev->fd, file_dev->tmp_buf, 2288 db_len, io_offset); 2289 } else if (data->sg_count == 0) { 2290 retval = pwrite(file_dev->fd, data->buf, 2291 data->fill_len, io_offset); 2292 } else { 2293 retval = pwritev(file_dev->fd, data->iovec, 2294 data->sg_count, io_offset); 2295 } 2296 } 2297 } else { 2298 if (write_dev == 0) { 2299 /* 2300 * XXX KDM is there any way we would need a S/G 2301 * list here? 2302 */ 2303 retval = read(file_dev->fd, data->buf, buf->len); 2304 } else { 2305 if (double_buf_needed != 0) { 2306 retval = write(file_dev->fd, file_dev->tmp_buf, 2307 db_len); 2308 } else if (data->sg_count == 0) { 2309 retval = write(file_dev->fd, data->buf, 2310 data->fill_len); 2311 } else { 2312 retval = writev(file_dev->fd, data->iovec, 2313 data->sg_count); 2314 } 2315 } 2316 } 2317 2318 /* We're done, re-acquire the lock */ 2319 pthread_mutex_lock(&dev->mutex); 2320 2321 if (retval >= (ssize_t)data->fill_len) { 2322 /* 2323 * If the bytes transferred is more than the request size, 2324 * that indicates an overrun, which should only happen at 2325 * the end of a transfer if we have to round up to a sector 2326 * boundary. 2327 */ 2328 if (buf->status == CAMDD_STATUS_NONE) 2329 buf->status = CAMDD_STATUS_OK; 2330 data->resid = 0; 2331 dev->bytes_transferred += retval; 2332 } else if (retval == -1) { 2333 warn("Error %s %s", (write_dev) ? "writing to" : 2334 "reading from", file_dev->filename); 2335 2336 buf->status = CAMDD_STATUS_ERROR; 2337 data->resid = data->fill_len; 2338 error_count++; 2339 2340 if (dev->debug == 0) 2341 goto bailout; 2342 2343 if ((double_buf_needed != 0) 2344 && (write_dev != 0)) { 2345 fprintf(stderr, "%s: fd %d, DB buf %p, len %u lba %ju " 2346 "offset %ju\n", __func__, file_dev->fd, 2347 file_dev->tmp_buf, db_len, (uintmax_t)buf->lba, 2348 (uintmax_t)io_offset); 2349 } else if (data->sg_count == 0) { 2350 fprintf(stderr, "%s: fd %d, buf %p, len %u, lba %ju " 2351 "offset %ju\n", __func__, file_dev->fd, data->buf, 2352 data->fill_len, (uintmax_t)buf->lba, 2353 (uintmax_t)io_offset); 2354 } else { 2355 int i; 2356 2357 fprintf(stderr, "%s: fd %d, len %u, lba %ju " 2358 "offset %ju\n", __func__, file_dev->fd, 2359 data->fill_len, (uintmax_t)buf->lba, 2360 (uintmax_t)io_offset); 2361 2362 for (i = 0; i < data->sg_count; i++) { 2363 fprintf(stderr, "index %d ptr %p len %zu\n", 2364 i, data->iovec[i].iov_base, 2365 data->iovec[i].iov_len); 2366 } 2367 } 2368 } else if (retval == 0) { 2369 buf->status = CAMDD_STATUS_EOF; 2370 if (dev->debug != 0) 2371 printf("%s: got EOF from %s!\n", __func__, 2372 file_dev->filename); 2373 data->resid = data->fill_len; 2374 error_count++; 2375 } else if (retval < (ssize_t)data->fill_len) { 2376 if (buf->status == CAMDD_STATUS_NONE) 2377 buf->status = CAMDD_STATUS_SHORT_IO; 2378 data->resid = data->fill_len - retval; 2379 dev->bytes_transferred += retval; 2380 } 2381 2382 bailout: 2383 if (buf != NULL) { 2384 if (buf->status == CAMDD_STATUS_EOF) { 2385 struct camdd_buf *buf2; 2386 dev->flags |= CAMDD_DEV_FLAG_EOF; 2387 STAILQ_FOREACH(buf2, &dev->run_queue, links) 2388 buf2->status = CAMDD_STATUS_EOF; 2389 } 2390 2391 camdd_complete_buf(dev, buf, &error_count); 2392 } 2393 2394 if (error_count != 0) 2395 return (-1); 2396 else if (no_resources != 0) 2397 return (1); 2398 else 2399 return (0); 2400 } 2401 2402 /* 2403 * Execute one command from the run queue. Returns 0 for success, 1 for 2404 * stop processing, and -1 for error. 2405 */ 2406 int 2407 camdd_pass_run(struct camdd_dev *dev) 2408 { 2409 struct camdd_buf *buf = NULL; 2410 struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass; 2411 struct camdd_buf_data *data; 2412 uint32_t num_blocks, sectors_used = 0; 2413 union ccb *ccb; 2414 int retval = 0, is_write = dev->write_dev; 2415 int double_buf_needed = 0; 2416 2417 buf = STAILQ_FIRST(&dev->run_queue); 2418 if (buf == NULL) { 2419 retval = 1; 2420 goto bailout; 2421 } 2422 2423 /* 2424 * If we're writing, we need to go through the source buffer list 2425 * and create an S/G list. 2426 */ 2427 if (is_write != 0) { 2428 retval = camdd_buf_sg_create(buf, /*iovec*/ 0,dev->sector_size, 2429 §ors_used, &double_buf_needed); 2430 if (retval != 0) { 2431 retval = -1; 2432 goto bailout; 2433 } 2434 } 2435 2436 STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links); 2437 dev->num_run_queue--; 2438 2439 data = &buf->buf_type_spec.data; 2440 2441 ccb = &data->ccb; 2442 bzero(&(&ccb->ccb_h)[1], 2443 sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr)); 2444 2445 /* 2446 * In almost every case the number of blocks should be the device 2447 * block size. The exception may be at the end of an I/O stream 2448 * for a partial block or at the end of a device. 2449 */ 2450 if (is_write != 0) 2451 num_blocks = sectors_used; 2452 else 2453 num_blocks = data->fill_len / pass_dev->block_len; 2454 2455 scsi_read_write(&ccb->csio, 2456 /*retries*/ dev->retry_count, 2457 /*cbfcnp*/ NULL, 2458 /*tag_action*/ MSG_SIMPLE_Q_TAG, 2459 /*readop*/ (dev->write_dev == 0) ? SCSI_RW_READ : 2460 SCSI_RW_WRITE, 2461 /*byte2*/ 0, 2462 /*minimum_cmd_size*/ dev->min_cmd_size, 2463 /*lba*/ buf->lba, 2464 /*block_count*/ num_blocks, 2465 /*data_ptr*/ (data->sg_count != 0) ? 2466 (uint8_t *)data->segs : data->buf, 2467 /*dxfer_len*/ (num_blocks * pass_dev->block_len), 2468 /*sense_len*/ SSD_FULL_SIZE, 2469 /*timeout*/ dev->io_timeout); 2470 2471 /* Disable freezing the device queue */ 2472 ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; 2473 2474 if (dev->retry_count != 0) 2475 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; 2476 2477 if (data->sg_count != 0) { 2478 ccb->csio.sglist_cnt = data->sg_count; 2479 ccb->ccb_h.flags |= CAM_DATA_SG; 2480 } 2481 2482 /* 2483 * Store a pointer to the buffer in the CCB. The kernel will 2484 * restore this when we get it back, and we'll use it to identify 2485 * the buffer this CCB came from. 2486 */ 2487 ccb->ccb_h.ccb_buf = buf; 2488 2489 /* 2490 * Unlock our mutex in preparation for issuing the ioctl. 2491 */ 2492 pthread_mutex_unlock(&dev->mutex); 2493 /* 2494 * Queue the CCB to the pass(4) driver. 2495 */ 2496 if (ioctl(pass_dev->dev->fd, CAMIOQUEUE, ccb) == -1) { 2497 pthread_mutex_lock(&dev->mutex); 2498 2499 warn("%s: error sending CAMIOQUEUE ioctl to %s%u", __func__, 2500 pass_dev->dev->device_name, pass_dev->dev->dev_unit_num); 2501 warn("%s: CCB address is %p", __func__, ccb); 2502 retval = -1; 2503 2504 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links); 2505 } else { 2506 pthread_mutex_lock(&dev->mutex); 2507 2508 dev->cur_active_io++; 2509 STAILQ_INSERT_TAIL(&dev->active_queue, buf, links); 2510 } 2511 2512 bailout: 2513 return (retval); 2514 } 2515 2516 int 2517 camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len) 2518 { 2519 struct camdd_dev_pass *pass_dev; 2520 uint32_t num_blocks; 2521 int retval = 0; 2522 2523 pass_dev = &dev->dev_spec.pass; 2524 2525 *lba = dev->next_io_pos_bytes / dev->sector_size; 2526 *len = dev->blocksize; 2527 num_blocks = *len / dev->sector_size; 2528 2529 /* 2530 * If max_sector is 0, then we have no set limit. This can happen 2531 * if we're writing to a file in a filesystem, or reading from 2532 * something like /dev/zero. 2533 */ 2534 if ((dev->max_sector != 0) 2535 || (dev->sector_io_limit != 0)) { 2536 uint64_t max_sector; 2537 2538 if ((dev->max_sector != 0) 2539 && (dev->sector_io_limit != 0)) 2540 max_sector = min(dev->sector_io_limit, dev->max_sector); 2541 else if (dev->max_sector != 0) 2542 max_sector = dev->max_sector; 2543 else 2544 max_sector = dev->sector_io_limit; 2545 2546 2547 /* 2548 * Check to see whether we're starting off past the end of 2549 * the device. If so, we need to just send an EOF 2550 * notification to the writer. 2551 */ 2552 if (*lba > max_sector) { 2553 *len = 0; 2554 retval = 1; 2555 } else if (((*lba + num_blocks) > max_sector + 1) 2556 || ((*lba + num_blocks) < *lba)) { 2557 /* 2558 * If we get here (but pass the first check), we 2559 * can trim the request length down to go to the 2560 * end of the device. 2561 */ 2562 num_blocks = (max_sector + 1) - *lba; 2563 *len = num_blocks * dev->sector_size; 2564 retval = 1; 2565 } 2566 } 2567 2568 dev->next_io_pos_bytes += *len; 2569 2570 return (retval); 2571 } 2572 2573 /* 2574 * Returns 0 for success, 1 for EOF detected, and -1 for failure. 2575 */ 2576 int 2577 camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf) 2578 { 2579 struct camdd_buf *buf = NULL; 2580 struct camdd_buf_data *data; 2581 struct camdd_dev_pass *pass_dev; 2582 size_t new_len; 2583 struct camdd_buf_data *rb_data; 2584 int is_write = dev->write_dev; 2585 int eof_flush_needed = 0; 2586 int retval = 0; 2587 int error; 2588 2589 pass_dev = &dev->dev_spec.pass; 2590 2591 /* 2592 * If we've gotten EOF or our partner has, we should not continue 2593 * queueing I/O. If we're a writer, though, we should continue 2594 * to write any buffers that don't have EOF status. 2595 */ 2596 if ((dev->flags & CAMDD_DEV_FLAG_EOF) 2597 || ((dev->flags & CAMDD_DEV_FLAG_PEER_EOF) 2598 && (is_write == 0))) { 2599 /* 2600 * Tell the worker thread that we have seen EOF. 2601 */ 2602 retval = 1; 2603 2604 /* 2605 * If we're the writer, send the buffer back with EOF status. 2606 */ 2607 if (is_write) { 2608 read_buf->status = CAMDD_STATUS_EOF; 2609 2610 error = camdd_complete_peer_buf(dev, read_buf); 2611 } 2612 goto bailout; 2613 } 2614 2615 if (is_write == 0) { 2616 buf = camdd_get_buf(dev, CAMDD_BUF_DATA); 2617 if (buf == NULL) { 2618 retval = -1; 2619 goto bailout; 2620 } 2621 data = &buf->buf_type_spec.data; 2622 2623 retval = camdd_get_next_lba_len(dev, &buf->lba, &buf->len); 2624 if (retval != 0) { 2625 buf->status = CAMDD_STATUS_EOF; 2626 2627 if ((buf->len == 0) 2628 && ((dev->flags & (CAMDD_DEV_FLAG_EOF_SENT | 2629 CAMDD_DEV_FLAG_EOF_QUEUED)) != 0)) { 2630 camdd_release_buf(buf); 2631 goto bailout; 2632 } 2633 dev->flags |= CAMDD_DEV_FLAG_EOF_QUEUED; 2634 } 2635 2636 data->fill_len = buf->len; 2637 data->src_start_offset = buf->lba * dev->sector_size; 2638 2639 /* 2640 * Put this on the run queue. 2641 */ 2642 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links); 2643 dev->num_run_queue++; 2644 2645 /* We're done. */ 2646 goto bailout; 2647 } 2648 2649 /* 2650 * Check for new EOF status from the reader. 2651 */ 2652 if ((read_buf->status == CAMDD_STATUS_EOF) 2653 || (read_buf->status == CAMDD_STATUS_ERROR)) { 2654 dev->flags |= CAMDD_DEV_FLAG_PEER_EOF; 2655 if ((STAILQ_FIRST(&dev->pending_queue) == NULL) 2656 && (read_buf->len == 0)) { 2657 camdd_complete_peer_buf(dev, read_buf); 2658 retval = 1; 2659 goto bailout; 2660 } else 2661 eof_flush_needed = 1; 2662 } 2663 2664 /* 2665 * See if we have a buffer we're composing with pieces from our 2666 * partner thread. 2667 */ 2668 buf = STAILQ_FIRST(&dev->pending_queue); 2669 if (buf == NULL) { 2670 uint64_t lba; 2671 ssize_t len; 2672 2673 retval = camdd_get_next_lba_len(dev, &lba, &len); 2674 if (retval != 0) { 2675 read_buf->status = CAMDD_STATUS_EOF; 2676 2677 if (len == 0) { 2678 dev->flags |= CAMDD_DEV_FLAG_EOF; 2679 error = camdd_complete_peer_buf(dev, read_buf); 2680 goto bailout; 2681 } 2682 } 2683 2684 /* 2685 * If we don't have a pending buffer, we need to grab a new 2686 * one from the free list or allocate another one. 2687 */ 2688 buf = camdd_get_buf(dev, CAMDD_BUF_DATA); 2689 if (buf == NULL) { 2690 retval = 1; 2691 goto bailout; 2692 } 2693 2694 buf->lba = lba; 2695 buf->len = len; 2696 2697 STAILQ_INSERT_TAIL(&dev->pending_queue, buf, links); 2698 dev->num_pending_queue++; 2699 } 2700 2701 data = &buf->buf_type_spec.data; 2702 2703 rb_data = &read_buf->buf_type_spec.data; 2704 2705 if ((rb_data->src_start_offset != dev->next_peer_pos_bytes) 2706 && (dev->debug != 0)) { 2707 printf("%s: WARNING: reader offset %#jx != expected offset " 2708 "%#jx\n", __func__, (uintmax_t)rb_data->src_start_offset, 2709 (uintmax_t)dev->next_peer_pos_bytes); 2710 } 2711 dev->next_peer_pos_bytes = rb_data->src_start_offset + 2712 (rb_data->fill_len - rb_data->resid); 2713 2714 new_len = (rb_data->fill_len - rb_data->resid) + data->fill_len; 2715 if (new_len < buf->len) { 2716 /* 2717 * There are three cases here: 2718 * 1. We need more data to fill up a block, so we put 2719 * this I/O on the queue and wait for more I/O. 2720 * 2. We have a pending buffer in the queue that is 2721 * smaller than our blocksize, but we got an EOF. So we 2722 * need to go ahead and flush the write out. 2723 * 3. We got an error. 2724 */ 2725 2726 /* 2727 * Increment our fill length. 2728 */ 2729 data->fill_len += (rb_data->fill_len - rb_data->resid); 2730 2731 /* 2732 * Add the new read buffer to the list for writing. 2733 */ 2734 STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links); 2735 2736 /* Increment the count */ 2737 buf->src_count++; 2738 2739 if (eof_flush_needed == 0) { 2740 /* 2741 * We need to exit, because we don't have enough 2742 * data yet. 2743 */ 2744 goto bailout; 2745 } else { 2746 /* 2747 * Take the buffer off of the pending queue. 2748 */ 2749 STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, 2750 links); 2751 dev->num_pending_queue--; 2752 2753 /* 2754 * If we need an EOF flush, but there is no data 2755 * to flush, go ahead and return this buffer. 2756 */ 2757 if (data->fill_len == 0) { 2758 camdd_complete_buf(dev, buf, /*error_count*/0); 2759 retval = 1; 2760 goto bailout; 2761 } 2762 2763 /* 2764 * Put this on the next queue for execution. 2765 */ 2766 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links); 2767 dev->num_run_queue++; 2768 } 2769 } else if (new_len == buf->len) { 2770 /* 2771 * We have enough data to completey fill one block, 2772 * so we're ready to issue the I/O. 2773 */ 2774 2775 /* 2776 * Take the buffer off of the pending queue. 2777 */ 2778 STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, links); 2779 dev->num_pending_queue--; 2780 2781 /* 2782 * Add the new read buffer to the list for writing. 2783 */ 2784 STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links); 2785 2786 /* Increment the count */ 2787 buf->src_count++; 2788 2789 /* 2790 * Increment our fill length. 2791 */ 2792 data->fill_len += (rb_data->fill_len - rb_data->resid); 2793 2794 /* 2795 * Put this on the next queue for execution. 2796 */ 2797 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links); 2798 dev->num_run_queue++; 2799 } else { 2800 struct camdd_buf *idb; 2801 struct camdd_buf_indirect *indirect; 2802 uint32_t len_to_go, cur_offset; 2803 2804 2805 idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT); 2806 if (idb == NULL) { 2807 retval = 1; 2808 goto bailout; 2809 } 2810 indirect = &idb->buf_type_spec.indirect; 2811 indirect->src_buf = read_buf; 2812 read_buf->refcount++; 2813 indirect->offset = 0; 2814 indirect->start_ptr = rb_data->buf; 2815 /* 2816 * We've already established that there is more 2817 * data in read_buf than we have room for in our 2818 * current write request. So this particular chunk 2819 * of the request should just be the remainder 2820 * needed to fill up a block. 2821 */ 2822 indirect->len = buf->len - (data->fill_len - data->resid); 2823 2824 camdd_buf_add_child(buf, idb); 2825 2826 /* 2827 * This buffer is ready to execute, so we can take 2828 * it off the pending queue and put it on the run 2829 * queue. 2830 */ 2831 STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, 2832 links); 2833 dev->num_pending_queue--; 2834 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links); 2835 dev->num_run_queue++; 2836 2837 cur_offset = indirect->offset + indirect->len; 2838 2839 /* 2840 * The resulting I/O would be too large to fit in 2841 * one block. We need to split this I/O into 2842 * multiple pieces. Allocate as many buffers as needed. 2843 */ 2844 for (len_to_go = rb_data->fill_len - rb_data->resid - 2845 indirect->len; len_to_go > 0;) { 2846 struct camdd_buf *new_buf; 2847 struct camdd_buf_data *new_data; 2848 uint64_t lba; 2849 ssize_t len; 2850 2851 retval = camdd_get_next_lba_len(dev, &lba, &len); 2852 if ((retval != 0) 2853 && (len == 0)) { 2854 /* 2855 * The device has already been marked 2856 * as EOF, and there is no space left. 2857 */ 2858 goto bailout; 2859 } 2860 2861 new_buf = camdd_get_buf(dev, CAMDD_BUF_DATA); 2862 if (new_buf == NULL) { 2863 retval = 1; 2864 goto bailout; 2865 } 2866 2867 new_buf->lba = lba; 2868 new_buf->len = len; 2869 2870 idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT); 2871 if (idb == NULL) { 2872 retval = 1; 2873 goto bailout; 2874 } 2875 2876 indirect = &idb->buf_type_spec.indirect; 2877 2878 indirect->src_buf = read_buf; 2879 read_buf->refcount++; 2880 indirect->offset = cur_offset; 2881 indirect->start_ptr = rb_data->buf + cur_offset; 2882 indirect->len = min(len_to_go, new_buf->len); 2883 #if 0 2884 if (((indirect->len % dev->sector_size) != 0) 2885 || ((indirect->offset % dev->sector_size) != 0)) { 2886 warnx("offset %ju len %ju not aligned with " 2887 "sector size %u", indirect->offset, 2888 (uintmax_t)indirect->len, dev->sector_size); 2889 } 2890 #endif 2891 cur_offset += indirect->len; 2892 len_to_go -= indirect->len; 2893 2894 camdd_buf_add_child(new_buf, idb); 2895 2896 new_data = &new_buf->buf_type_spec.data; 2897 2898 if ((new_data->fill_len == new_buf->len) 2899 || (eof_flush_needed != 0)) { 2900 STAILQ_INSERT_TAIL(&dev->run_queue, 2901 new_buf, links); 2902 dev->num_run_queue++; 2903 } else if (new_data->fill_len < buf->len) { 2904 STAILQ_INSERT_TAIL(&dev->pending_queue, 2905 new_buf, links); 2906 dev->num_pending_queue++; 2907 } else { 2908 warnx("%s: too much data in new " 2909 "buffer!", __func__); 2910 retval = 1; 2911 goto bailout; 2912 } 2913 } 2914 } 2915 2916 bailout: 2917 return (retval); 2918 } 2919 2920 void 2921 camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth, 2922 uint32_t *peer_depth, uint32_t *our_bytes, uint32_t *peer_bytes) 2923 { 2924 *our_depth = dev->cur_active_io + dev->num_run_queue; 2925 if (dev->num_peer_work_queue > 2926 dev->num_peer_done_queue) 2927 *peer_depth = dev->num_peer_work_queue - 2928 dev->num_peer_done_queue; 2929 else 2930 *peer_depth = 0; 2931 *our_bytes = *our_depth * dev->blocksize; 2932 *peer_bytes = dev->peer_bytes_queued; 2933 } 2934 2935 void 2936 camdd_sig_handler(int sig) 2937 { 2938 if (sig == SIGINFO) 2939 need_status = 1; 2940 else { 2941 need_exit = 1; 2942 error_exit = 1; 2943 } 2944 2945 sem_post(&camdd_sem); 2946 } 2947 2948 void 2949 camdd_print_status(struct camdd_dev *camdd_dev, struct camdd_dev *other_dev, 2950 struct timespec *start_time) 2951 { 2952 struct timespec done_time; 2953 uint64_t total_ns; 2954 long double mb_sec, total_sec; 2955 int error = 0; 2956 2957 error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &done_time); 2958 if (error != 0) { 2959 warn("Unable to get done time"); 2960 return; 2961 } 2962 2963 timespecsub(&done_time, start_time); 2964 2965 total_ns = done_time.tv_nsec + (done_time.tv_sec * 1000000000); 2966 total_sec = total_ns; 2967 total_sec /= 1000000000; 2968 2969 fprintf(stderr, "%ju bytes %s %s\n%ju bytes %s %s\n" 2970 "%.4Lf seconds elapsed\n", 2971 (uintmax_t)camdd_dev->bytes_transferred, 2972 (camdd_dev->write_dev == 0) ? "read from" : "written to", 2973 camdd_dev->device_name, 2974 (uintmax_t)other_dev->bytes_transferred, 2975 (other_dev->write_dev == 0) ? "read from" : "written to", 2976 other_dev->device_name, total_sec); 2977 2978 mb_sec = min(other_dev->bytes_transferred,camdd_dev->bytes_transferred); 2979 mb_sec /= 1024 * 1024; 2980 mb_sec *= 1000000000; 2981 mb_sec /= total_ns; 2982 fprintf(stderr, "%.2Lf MB/sec\n", mb_sec); 2983 } 2984 2985 int 2986 camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts, uint64_t max_io, 2987 int retry_count, int timeout) 2988 { 2989 char *device = NULL; 2990 struct cam_device *new_cam_dev = NULL; 2991 struct camdd_dev *devs[2]; 2992 struct timespec start_time; 2993 pthread_t threads[2]; 2994 int unit = 0; 2995 int error = 0; 2996 int i; 2997 2998 if (num_io_opts != 2) { 2999 warnx("Must have one input and one output path"); 3000 error = 1; 3001 goto bailout; 3002 } 3003 3004 bzero(devs, sizeof(devs)); 3005 3006 for (i = 0; i < num_io_opts; i++) { 3007 switch (io_opts[i].dev_type) { 3008 case CAMDD_DEV_PASS: { 3009 camdd_argmask new_arglist = CAMDD_ARG_NONE; 3010 int bus = 0, target = 0, lun = 0; 3011 char name[30]; 3012 int rv; 3013 3014 if (isdigit(io_opts[i].dev_name[0])) { 3015 /* device specified as bus:target[:lun] */ 3016 rv = parse_btl(io_opts[i].dev_name, &bus, 3017 &target, &lun, &new_arglist); 3018 if (rv < 2) { 3019 warnx("numeric device specification " 3020 "must be either bus:target, or " 3021 "bus:target:lun"); 3022 error = 1; 3023 goto bailout; 3024 } 3025 /* default to 0 if lun was not specified */ 3026 if ((new_arglist & CAMDD_ARG_LUN) == 0) { 3027 lun = 0; 3028 new_arglist |= CAMDD_ARG_LUN; 3029 } 3030 } else { 3031 if (cam_get_device(io_opts[i].dev_name, name, 3032 sizeof name, &unit) == -1) { 3033 warnx("%s", cam_errbuf); 3034 error = 1; 3035 goto bailout; 3036 } 3037 device = strdup(name); 3038 new_arglist |= CAMDD_ARG_DEVICE |CAMDD_ARG_UNIT; 3039 } 3040 3041 if (new_arglist & (CAMDD_ARG_BUS | CAMDD_ARG_TARGET)) 3042 new_cam_dev = cam_open_btl(bus, target, lun, 3043 O_RDWR, NULL); 3044 else 3045 new_cam_dev = cam_open_spec_device(device, unit, 3046 O_RDWR, NULL); 3047 if (new_cam_dev == NULL) { 3048 warnx("%s", cam_errbuf); 3049 error = 1; 3050 goto bailout; 3051 } 3052 3053 devs[i] = camdd_probe_pass(new_cam_dev, 3054 /*io_opts*/ &io_opts[i], 3055 CAMDD_ARG_ERR_RECOVER, 3056 /*probe_retry_count*/ 3, 3057 /*probe_timeout*/ 5000, 3058 /*io_retry_count*/ retry_count, 3059 /*io_timeout*/ timeout); 3060 if (devs[i] == NULL) { 3061 warn("Unable to probe device %s%u", 3062 new_cam_dev->device_name, 3063 new_cam_dev->dev_unit_num); 3064 error = 1; 3065 goto bailout; 3066 } 3067 break; 3068 } 3069 case CAMDD_DEV_FILE: { 3070 int fd = -1; 3071 3072 if (io_opts[i].dev_name[0] == '-') { 3073 if (io_opts[i].write_dev != 0) 3074 fd = STDOUT_FILENO; 3075 else 3076 fd = STDIN_FILENO; 3077 } else { 3078 if (io_opts[i].write_dev != 0) { 3079 fd = open(io_opts[i].dev_name, 3080 O_RDWR | O_CREAT, S_IWUSR |S_IRUSR); 3081 } else { 3082 fd = open(io_opts[i].dev_name, 3083 O_RDONLY); 3084 } 3085 } 3086 if (fd == -1) { 3087 warn("error opening file %s", 3088 io_opts[i].dev_name); 3089 error = 1; 3090 goto bailout; 3091 } 3092 3093 devs[i] = camdd_probe_file(fd, &io_opts[i], 3094 retry_count, timeout); 3095 if (devs[i] == NULL) { 3096 error = 1; 3097 goto bailout; 3098 } 3099 3100 break; 3101 } 3102 default: 3103 warnx("Unknown device type %d (%s)", 3104 io_opts[i].dev_type, io_opts[i].dev_name); 3105 error = 1; 3106 goto bailout; 3107 break; /*NOTREACHED */ 3108 } 3109 3110 devs[i]->write_dev = io_opts[i].write_dev; 3111 3112 devs[i]->start_offset_bytes = io_opts[i].offset; 3113 3114 if (max_io != 0) { 3115 devs[i]->sector_io_limit = 3116 (devs[i]->start_offset_bytes / 3117 devs[i]->sector_size) + 3118 (max_io / devs[i]->sector_size) - 1; 3119 devs[i]->sector_io_limit = 3120 (devs[i]->start_offset_bytes / 3121 devs[i]->sector_size) + 3122 (max_io / devs[i]->sector_size) - 1; 3123 } 3124 3125 devs[i]->next_io_pos_bytes = devs[i]->start_offset_bytes; 3126 devs[i]->next_completion_pos_bytes =devs[i]->start_offset_bytes; 3127 } 3128 3129 devs[0]->peer_dev = devs[1]; 3130 devs[1]->peer_dev = devs[0]; 3131 devs[0]->next_peer_pos_bytes = devs[0]->peer_dev->next_io_pos_bytes; 3132 devs[1]->next_peer_pos_bytes = devs[1]->peer_dev->next_io_pos_bytes; 3133 3134 sem_init(&camdd_sem, /*pshared*/ 0, 0); 3135 3136 signal(SIGINFO, camdd_sig_handler); 3137 signal(SIGINT, camdd_sig_handler); 3138 3139 error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &start_time); 3140 if (error != 0) { 3141 warn("Unable to get start time"); 3142 goto bailout; 3143 } 3144 3145 for (i = 0; i < num_io_opts; i++) { 3146 error = pthread_create(&threads[i], NULL, camdd_worker, 3147 (void *)devs[i]); 3148 if (error != 0) { 3149 warnc(error, "pthread_create() failed"); 3150 goto bailout; 3151 } 3152 } 3153 3154 for (;;) { 3155 if ((sem_wait(&camdd_sem) == -1) 3156 || (need_exit != 0)) { 3157 struct kevent ke; 3158 3159 for (i = 0; i < num_io_opts; i++) { 3160 EV_SET(&ke, (uintptr_t)&devs[i]->work_queue, 3161 EVFILT_USER, 0, NOTE_TRIGGER, 0, NULL); 3162 3163 devs[i]->flags |= CAMDD_DEV_FLAG_EOF; 3164 3165 error = kevent(devs[i]->kq, &ke, 1, NULL, 0, 3166 NULL); 3167 if (error == -1) 3168 warn("%s: unable to wake up thread", 3169 __func__); 3170 error = 0; 3171 } 3172 break; 3173 } else if (need_status != 0) { 3174 camdd_print_status(devs[0], devs[1], &start_time); 3175 need_status = 0; 3176 } 3177 } 3178 for (i = 0; i < num_io_opts; i++) { 3179 pthread_join(threads[i], NULL); 3180 } 3181 3182 camdd_print_status(devs[0], devs[1], &start_time); 3183 3184 bailout: 3185 3186 for (i = 0; i < num_io_opts; i++) 3187 camdd_free_dev(devs[i]); 3188 3189 return (error + error_exit); 3190 } 3191 3192 void 3193 usage(void) 3194 { 3195 fprintf(stderr, 3196 "usage: camdd <-i|-o pass=pass0,bs=1M,offset=1M,depth=4>\n" 3197 " <-i|-o file=/tmp/file,bs=512K,offset=1M>\n" 3198 " <-i|-o file=/dev/da0,bs=512K,offset=1M>\n" 3199 " <-i|-o file=/dev/nsa0,bs=512K>\n" 3200 " [-C retry_count][-E][-m max_io_amt][-t timeout_secs][-v][-h]\n" 3201 "Option description\n" 3202 "-i <arg=val> Specify input device/file and parameters\n" 3203 "-o <arg=val> Specify output device/file and parameters\n" 3204 "Input and Output parameters\n" 3205 "pass=name Specify a pass(4) device like pass0 or /dev/pass0\n" 3206 "file=name Specify a file or device, /tmp/foo, /dev/da0, /dev/null\n" 3207 " or - for stdin/stdout\n" 3208 "bs=blocksize Specify blocksize in bytes, or using K, M, G, etc. suffix\n" 3209 "offset=len Specify starting offset in bytes or using K, M, G suffix\n" 3210 " NOTE: offset cannot be specified on tapes, pipes, stdin/out\n" 3211 "depth=N Specify a numeric queue depth. This only applies to pass(4)\n" 3212 "mcs=N Specify a minimum cmd size for pass(4) read/write commands\n" 3213 "Optional arguments\n" 3214 "-C retry_cnt Specify a retry count for pass(4) devices\n" 3215 "-E Enable CAM error recovery for pass(4) devices\n" 3216 "-m max_io Specify the maximum amount to be transferred in bytes or\n" 3217 " using K, G, M, etc. suffixes\n" 3218 "-t timeout Specify the I/O timeout to use with pass(4) devices\n" 3219 "-v Enable verbose error recovery\n" 3220 "-h Print this message\n"); 3221 } 3222 3223 3224 int 3225 camdd_parse_io_opts(char *args, int is_write, struct camdd_io_opts *io_opts) 3226 { 3227 char *tmpstr, *tmpstr2; 3228 char *orig_tmpstr = NULL; 3229 int retval = 0; 3230 3231 io_opts->write_dev = is_write; 3232 3233 tmpstr = strdup(args); 3234 if (tmpstr == NULL) { 3235 warn("strdup failed"); 3236 retval = 1; 3237 goto bailout; 3238 } 3239 orig_tmpstr = tmpstr; 3240 while ((tmpstr2 = strsep(&tmpstr, ",")) != NULL) { 3241 char *name, *value; 3242 3243 /* 3244 * If the user creates an empty parameter by putting in two 3245 * commas, skip over it and look for the next field. 3246 */ 3247 if (*tmpstr2 == '\0') 3248 continue; 3249 3250 name = strsep(&tmpstr2, "="); 3251 if (*name == '\0') { 3252 warnx("Got empty I/O parameter name"); 3253 retval = 1; 3254 goto bailout; 3255 } 3256 value = strsep(&tmpstr2, "="); 3257 if ((value == NULL) 3258 || (*value == '\0')) { 3259 warnx("Empty I/O parameter value for %s", name); 3260 retval = 1; 3261 goto bailout; 3262 } 3263 if (strncasecmp(name, "file", 4) == 0) { 3264 io_opts->dev_type = CAMDD_DEV_FILE; 3265 io_opts->dev_name = strdup(value); 3266 if (io_opts->dev_name == NULL) { 3267 warn("Error allocating memory"); 3268 retval = 1; 3269 goto bailout; 3270 } 3271 } else if (strncasecmp(name, "pass", 4) == 0) { 3272 io_opts->dev_type = CAMDD_DEV_PASS; 3273 io_opts->dev_name = strdup(value); 3274 if (io_opts->dev_name == NULL) { 3275 warn("Error allocating memory"); 3276 retval = 1; 3277 goto bailout; 3278 } 3279 } else if ((strncasecmp(name, "bs", 2) == 0) 3280 || (strncasecmp(name, "blocksize", 9) == 0)) { 3281 retval = expand_number(value, &io_opts->blocksize); 3282 if (retval == -1) { 3283 warn("expand_number(3) failed on %s=%s", name, 3284 value); 3285 retval = 1; 3286 goto bailout; 3287 } 3288 } else if (strncasecmp(name, "depth", 5) == 0) { 3289 char *endptr; 3290 3291 io_opts->queue_depth = strtoull(value, &endptr, 0); 3292 if (*endptr != '\0') { 3293 warnx("invalid queue depth %s", value); 3294 retval = 1; 3295 goto bailout; 3296 } 3297 } else if (strncasecmp(name, "mcs", 3) == 0) { 3298 char *endptr; 3299 3300 io_opts->min_cmd_size = strtol(value, &endptr, 0); 3301 if ((*endptr != '\0') 3302 || ((io_opts->min_cmd_size > 16) 3303 || (io_opts->min_cmd_size < 0))) { 3304 warnx("invalid minimum cmd size %s", value); 3305 retval = 1; 3306 goto bailout; 3307 } 3308 } else if (strncasecmp(name, "offset", 6) == 0) { 3309 retval = expand_number(value, &io_opts->offset); 3310 if (retval == -1) { 3311 warn("expand_number(3) failed on %s=%s", name, 3312 value); 3313 retval = 1; 3314 goto bailout; 3315 } 3316 } else if (strncasecmp(name, "debug", 5) == 0) { 3317 char *endptr; 3318 3319 io_opts->debug = strtoull(value, &endptr, 0); 3320 if (*endptr != '\0') { 3321 warnx("invalid debug level %s", value); 3322 retval = 1; 3323 goto bailout; 3324 } 3325 } else { 3326 warnx("Unrecognized parameter %s=%s", name, value); 3327 } 3328 } 3329 bailout: 3330 free(orig_tmpstr); 3331 3332 return (retval); 3333 } 3334 3335 int 3336 main(int argc, char **argv) 3337 { 3338 int c; 3339 camdd_argmask arglist = CAMDD_ARG_NONE; 3340 int timeout = 0, retry_count = 1; 3341 int error = 0; 3342 uint64_t max_io = 0; 3343 struct camdd_io_opts *opt_list = NULL; 3344 3345 if (argc == 1) { 3346 usage(); 3347 exit(1); 3348 } 3349 3350 opt_list = calloc(2, sizeof(struct camdd_io_opts)); 3351 if (opt_list == NULL) { 3352 warn("Unable to allocate option list"); 3353 error = 1; 3354 goto bailout; 3355 } 3356 3357 while ((c = getopt(argc, argv, "C:Ehi:m:o:t:v")) != -1){ 3358 switch (c) { 3359 case 'C': 3360 retry_count = strtol(optarg, NULL, 0); 3361 if (retry_count < 0) 3362 errx(1, "retry count %d is < 0", 3363 retry_count); 3364 arglist |= CAMDD_ARG_RETRIES; 3365 break; 3366 case 'E': 3367 arglist |= CAMDD_ARG_ERR_RECOVER; 3368 break; 3369 case 'i': 3370 case 'o': 3371 if (((c == 'i') 3372 && (opt_list[0].dev_type != CAMDD_DEV_NONE)) 3373 || ((c == 'o') 3374 && (opt_list[1].dev_type != CAMDD_DEV_NONE))) { 3375 errx(1, "Only one input and output path " 3376 "allowed"); 3377 } 3378 error = camdd_parse_io_opts(optarg, (c == 'o') ? 1 : 0, 3379 (c == 'o') ? &opt_list[1] : &opt_list[0]); 3380 if (error != 0) 3381 goto bailout; 3382 break; 3383 case 'm': 3384 error = expand_number(optarg, &max_io); 3385 if (error == -1) { 3386 warn("invalid maximum I/O amount %s", optarg); 3387 error = 1; 3388 goto bailout; 3389 } 3390 break; 3391 case 't': 3392 timeout = strtol(optarg, NULL, 0); 3393 if (timeout < 0) 3394 errx(1, "invalid timeout %d", timeout); 3395 /* Convert the timeout from seconds to ms */ 3396 timeout *= 1000; 3397 arglist |= CAMDD_ARG_TIMEOUT; 3398 break; 3399 case 'v': 3400 arglist |= CAMDD_ARG_VERBOSE; 3401 break; 3402 case 'h': 3403 default: 3404 usage(); 3405 exit(1); 3406 break; /*NOTREACHED*/ 3407 } 3408 } 3409 3410 if ((opt_list[0].dev_type == CAMDD_DEV_NONE) 3411 || (opt_list[1].dev_type == CAMDD_DEV_NONE)) 3412 errx(1, "Must specify both -i and -o"); 3413 3414 /* 3415 * Set the timeout if the user hasn't specified one. 3416 */ 3417 if (timeout == 0) 3418 timeout = CAMDD_PASS_RW_TIMEOUT; 3419 3420 error = camdd_rw(opt_list, 2, max_io, retry_count, timeout); 3421 3422 bailout: 3423 free(opt_list); 3424 3425 exit(error); 3426 } 3427