1 /*- 2 * Copyright (c) 1997-2007 Kenneth D. Merry 3 * Copyright (c) 2013, 2014, 2015 Spectra Logic Corporation 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions, and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 13 * substantially similar to the "NO WARRANTY" disclaimer below 14 * ("Disclaimer") and any redistribution must be conditioned upon 15 * including a substantially similar Disclaimer requirement for further 16 * binary redistribution. 17 * 18 * NO WARRANTY 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 23 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 28 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGES. 30 * 31 * Authors: Ken Merry (Spectra Logic Corporation) 32 */ 33 34 /* 35 * This is eventually intended to be: 36 * - A basic data transfer/copy utility 37 * - A simple benchmark utility 38 * - An example of how to use the asynchronous pass(4) driver interface. 39 */ 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include <sys/ioctl.h> 44 #include <sys/stdint.h> 45 #include <sys/types.h> 46 #include <sys/endian.h> 47 #include <sys/param.h> 48 #include <sys/sbuf.h> 49 #include <sys/stat.h> 50 #include <sys/event.h> 51 #include <sys/time.h> 52 #include <sys/uio.h> 53 #include <vm/vm.h> 54 #include <machine/bus.h> 55 #include <sys/bus.h> 56 #include <sys/bus_dma.h> 57 #include <sys/mtio.h> 58 #include <sys/conf.h> 59 #include <sys/disk.h> 60 61 #include <stdio.h> 62 #include <stdlib.h> 63 #include <semaphore.h> 64 #include <string.h> 65 #include <unistd.h> 66 #include <inttypes.h> 67 #include <limits.h> 68 #include <fcntl.h> 69 #include <ctype.h> 70 #include <err.h> 71 #include <libutil.h> 72 #include <pthread.h> 73 #include <assert.h> 74 #include <bsdxml.h> 75 76 #include <cam/cam.h> 77 #include <cam/cam_debug.h> 78 #include <cam/cam_ccb.h> 79 #include <cam/scsi/scsi_all.h> 80 #include <cam/scsi/scsi_da.h> 81 #include <cam/scsi/scsi_pass.h> 82 #include <cam/scsi/scsi_message.h> 83 #include <cam/scsi/smp_all.h> 84 #include <camlib.h> 85 #include <mtlib.h> 86 #include <zlib.h> 87 88 typedef enum { 89 CAMDD_CMD_NONE = 0x00000000, 90 CAMDD_CMD_HELP = 0x00000001, 91 CAMDD_CMD_WRITE = 0x00000002, 92 CAMDD_CMD_READ = 0x00000003 93 } camdd_cmdmask; 94 95 typedef enum { 96 CAMDD_ARG_NONE = 0x00000000, 97 CAMDD_ARG_VERBOSE = 0x00000001, 98 CAMDD_ARG_DEVICE = 0x00000002, 99 CAMDD_ARG_BUS = 0x00000004, 100 CAMDD_ARG_TARGET = 0x00000008, 101 CAMDD_ARG_LUN = 0x00000010, 102 CAMDD_ARG_UNIT = 0x00000020, 103 CAMDD_ARG_TIMEOUT = 0x00000040, 104 CAMDD_ARG_ERR_RECOVER = 0x00000080, 105 CAMDD_ARG_RETRIES = 0x00000100 106 } camdd_argmask; 107 108 typedef enum { 109 CAMDD_DEV_NONE = 0x00, 110 CAMDD_DEV_PASS = 0x01, 111 CAMDD_DEV_FILE = 0x02 112 } camdd_dev_type; 113 114 struct camdd_io_opts { 115 camdd_dev_type dev_type; 116 char *dev_name; 117 uint64_t blocksize; 118 uint64_t queue_depth; 119 uint64_t offset; 120 int min_cmd_size; 121 int write_dev; 122 uint64_t debug; 123 }; 124 125 typedef enum { 126 CAMDD_BUF_NONE, 127 CAMDD_BUF_DATA, 128 CAMDD_BUF_INDIRECT 129 } camdd_buf_type; 130 131 struct camdd_buf_indirect { 132 /* 133 * Pointer to the source buffer. 134 */ 135 struct camdd_buf *src_buf; 136 137 /* 138 * Offset into the source buffer, in bytes. 139 */ 140 uint64_t offset; 141 /* 142 * Pointer to the starting point in the source buffer. 143 */ 144 uint8_t *start_ptr; 145 146 /* 147 * Length of this chunk in bytes. 148 */ 149 size_t len; 150 }; 151 152 struct camdd_buf_data { 153 /* 154 * Buffer allocated when we allocate this camdd_buf. This should 155 * be the size of the blocksize for this device. 156 */ 157 uint8_t *buf; 158 159 /* 160 * The amount of backing store allocated in buf. Generally this 161 * will be the blocksize of the device. 162 */ 163 uint32_t alloc_len; 164 165 /* 166 * The amount of data that was put into the buffer (on reads) or 167 * the amount of data we have put onto the src_list so far (on 168 * writes). 169 */ 170 uint32_t fill_len; 171 172 /* 173 * The amount of data that was not transferred. 174 */ 175 uint32_t resid; 176 177 /* 178 * Starting byte offset on the reader. 179 */ 180 uint64_t src_start_offset; 181 182 /* 183 * CCB used for pass(4) device targets. 184 */ 185 union ccb ccb; 186 187 /* 188 * Number of scatter/gather segments. 189 */ 190 int sg_count; 191 192 /* 193 * Set if we had to tack on an extra buffer to round the transfer 194 * up to a sector size. 195 */ 196 int extra_buf; 197 198 /* 199 * Scatter/gather list used generally when we're the writer for a 200 * pass(4) device. 201 */ 202 bus_dma_segment_t *segs; 203 204 /* 205 * Scatter/gather list used generally when we're the writer for a 206 * file or block device; 207 */ 208 struct iovec *iovec; 209 }; 210 211 union camdd_buf_types { 212 struct camdd_buf_indirect indirect; 213 struct camdd_buf_data data; 214 }; 215 216 typedef enum { 217 CAMDD_STATUS_NONE, 218 CAMDD_STATUS_OK, 219 CAMDD_STATUS_SHORT_IO, 220 CAMDD_STATUS_EOF, 221 CAMDD_STATUS_ERROR 222 } camdd_buf_status; 223 224 struct camdd_buf { 225 camdd_buf_type buf_type; 226 union camdd_buf_types buf_type_spec; 227 228 camdd_buf_status status; 229 230 uint64_t lba; 231 size_t len; 232 233 /* 234 * A reference count of how many indirect buffers point to this 235 * buffer. 236 */ 237 int refcount; 238 239 /* 240 * A link back to our parent device. 241 */ 242 struct camdd_dev *dev; 243 STAILQ_ENTRY(camdd_buf) links; 244 STAILQ_ENTRY(camdd_buf) work_links; 245 246 /* 247 * A count of the buffers on the src_list. 248 */ 249 int src_count; 250 251 /* 252 * List of buffers from our partner thread that are the components 253 * of this buffer for the I/O. Uses src_links. 254 */ 255 STAILQ_HEAD(,camdd_buf) src_list; 256 STAILQ_ENTRY(camdd_buf) src_links; 257 }; 258 259 #define NUM_DEV_TYPES 2 260 261 struct camdd_dev_pass { 262 int scsi_dev_type; 263 struct cam_device *dev; 264 uint64_t max_sector; 265 uint32_t block_len; 266 uint32_t cpi_maxio; 267 }; 268 269 typedef enum { 270 CAMDD_FILE_NONE, 271 CAMDD_FILE_REG, 272 CAMDD_FILE_STD, 273 CAMDD_FILE_PIPE, 274 CAMDD_FILE_DISK, 275 CAMDD_FILE_TAPE, 276 CAMDD_FILE_TTY, 277 CAMDD_FILE_MEM 278 } camdd_file_type; 279 280 typedef enum { 281 CAMDD_FF_NONE = 0x00, 282 CAMDD_FF_CAN_SEEK = 0x01 283 } camdd_file_flags; 284 285 struct camdd_dev_file { 286 int fd; 287 struct stat sb; 288 char filename[MAXPATHLEN + 1]; 289 camdd_file_type file_type; 290 camdd_file_flags file_flags; 291 uint8_t *tmp_buf; 292 }; 293 294 struct camdd_dev_block { 295 int fd; 296 uint64_t size_bytes; 297 uint32_t block_len; 298 }; 299 300 union camdd_dev_spec { 301 struct camdd_dev_pass pass; 302 struct camdd_dev_file file; 303 struct camdd_dev_block block; 304 }; 305 306 typedef enum { 307 CAMDD_DEV_FLAG_NONE = 0x00, 308 CAMDD_DEV_FLAG_EOF = 0x01, 309 CAMDD_DEV_FLAG_PEER_EOF = 0x02, 310 CAMDD_DEV_FLAG_ACTIVE = 0x04, 311 CAMDD_DEV_FLAG_EOF_SENT = 0x08, 312 CAMDD_DEV_FLAG_EOF_QUEUED = 0x10 313 } camdd_dev_flags; 314 315 struct camdd_dev { 316 camdd_dev_type dev_type; 317 union camdd_dev_spec dev_spec; 318 camdd_dev_flags flags; 319 char device_name[MAXPATHLEN+1]; 320 uint32_t blocksize; 321 uint32_t sector_size; 322 uint64_t max_sector; 323 uint64_t sector_io_limit; 324 int min_cmd_size; 325 int write_dev; 326 int retry_count; 327 int io_timeout; 328 int debug; 329 uint64_t start_offset_bytes; 330 uint64_t next_io_pos_bytes; 331 uint64_t next_peer_pos_bytes; 332 uint64_t next_completion_pos_bytes; 333 uint64_t peer_bytes_queued; 334 uint64_t bytes_transferred; 335 uint32_t target_queue_depth; 336 uint32_t cur_active_io; 337 uint8_t *extra_buf; 338 uint32_t extra_buf_len; 339 struct camdd_dev *peer_dev; 340 pthread_mutex_t mutex; 341 pthread_cond_t cond; 342 int kq; 343 344 int (*run)(struct camdd_dev *dev); 345 int (*fetch)(struct camdd_dev *dev); 346 347 /* 348 * Buffers that are available for I/O. Uses links. 349 */ 350 STAILQ_HEAD(,camdd_buf) free_queue; 351 352 /* 353 * Free indirect buffers. These are used for breaking a large 354 * buffer into multiple pieces. 355 */ 356 STAILQ_HEAD(,camdd_buf) free_indirect_queue; 357 358 /* 359 * Buffers that have been queued to the kernel. Uses links. 360 */ 361 STAILQ_HEAD(,camdd_buf) active_queue; 362 363 /* 364 * Will generally contain one of our buffers that is waiting for enough 365 * I/O from our partner thread to be able to execute. This will 366 * generally happen when our per-I/O-size is larger than the 367 * partner thread's per-I/O-size. Uses links. 368 */ 369 STAILQ_HEAD(,camdd_buf) pending_queue; 370 371 /* 372 * Number of buffers on the pending queue 373 */ 374 int num_pending_queue; 375 376 /* 377 * Buffers that are filled and ready to execute. This is used when 378 * our partner (reader) thread sends us blocks that are larger than 379 * our blocksize, and so we have to split them into multiple pieces. 380 */ 381 STAILQ_HEAD(,camdd_buf) run_queue; 382 383 /* 384 * Number of buffers on the run queue. 385 */ 386 int num_run_queue; 387 388 STAILQ_HEAD(,camdd_buf) reorder_queue; 389 390 int num_reorder_queue; 391 392 /* 393 * Buffers that have been queued to us by our partner thread 394 * (generally the reader thread) to be written out. Uses 395 * work_links. 396 */ 397 STAILQ_HEAD(,camdd_buf) work_queue; 398 399 /* 400 * Buffers that have been completed by our partner thread. Uses 401 * work_links. 402 */ 403 STAILQ_HEAD(,camdd_buf) peer_done_queue; 404 405 /* 406 * Number of buffers on the peer done queue. 407 */ 408 uint32_t num_peer_done_queue; 409 410 /* 411 * A list of buffers that we have queued to our peer thread. Uses 412 * links. 413 */ 414 STAILQ_HEAD(,camdd_buf) peer_work_queue; 415 416 /* 417 * Number of buffers on the peer work queue. 418 */ 419 uint32_t num_peer_work_queue; 420 }; 421 422 static sem_t camdd_sem; 423 static int need_exit = 0; 424 static int error_exit = 0; 425 static int need_status = 0; 426 427 #ifndef min 428 #define min(a, b) (a < b) ? a : b 429 #endif 430 431 /* 432 * XXX KDM private copy of timespecsub(). This is normally defined in 433 * sys/time.h, but is only enabled in the kernel. If that definition is 434 * enabled in userland, it breaks the build of libnetbsd. 435 */ 436 #ifndef timespecsub 437 #define timespecsub(vvp, uvp) \ 438 do { \ 439 (vvp)->tv_sec -= (uvp)->tv_sec; \ 440 (vvp)->tv_nsec -= (uvp)->tv_nsec; \ 441 if ((vvp)->tv_nsec < 0) { \ 442 (vvp)->tv_sec--; \ 443 (vvp)->tv_nsec += 1000000000; \ 444 } \ 445 } while (0) 446 #endif 447 448 449 /* Generically useful offsets into the peripheral private area */ 450 #define ppriv_ptr0 periph_priv.entries[0].ptr 451 #define ppriv_ptr1 periph_priv.entries[1].ptr 452 #define ppriv_field0 periph_priv.entries[0].field 453 #define ppriv_field1 periph_priv.entries[1].field 454 455 #define ccb_buf ppriv_ptr0 456 457 #define CAMDD_FILE_DEFAULT_BLOCK 524288 458 #define CAMDD_FILE_DEFAULT_DEPTH 1 459 #define CAMDD_PASS_MAX_BLOCK 1048576 460 #define CAMDD_PASS_DEFAULT_DEPTH 6 461 #define CAMDD_PASS_RW_TIMEOUT 60 * 1000 462 463 static int parse_btl(char *tstr, int *bus, int *target, int *lun, 464 camdd_argmask *arglst); 465 void camdd_free_dev(struct camdd_dev *dev); 466 struct camdd_dev *camdd_alloc_dev(camdd_dev_type dev_type, 467 struct kevent *new_ke, int num_ke, 468 int retry_count, int timeout); 469 static struct camdd_buf *camdd_alloc_buf(struct camdd_dev *dev, 470 camdd_buf_type buf_type); 471 void camdd_release_buf(struct camdd_buf *buf); 472 struct camdd_buf *camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type); 473 int camdd_buf_sg_create(struct camdd_buf *buf, int iovec, 474 uint32_t sector_size, uint32_t *num_sectors_used, 475 int *double_buf_needed); 476 uint32_t camdd_buf_get_len(struct camdd_buf *buf); 477 void camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf); 478 int camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize, 479 uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran); 480 struct camdd_dev *camdd_probe_file(int fd, struct camdd_io_opts *io_opts, 481 int retry_count, int timeout); 482 struct camdd_dev *camdd_probe_pass(struct cam_device *cam_dev, 483 struct camdd_io_opts *io_opts, 484 camdd_argmask arglist, int probe_retry_count, 485 int probe_timeout, int io_retry_count, 486 int io_timeout); 487 void *camdd_file_worker(void *arg); 488 camdd_buf_status camdd_ccb_status(union ccb *ccb); 489 int camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf); 490 int camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf); 491 void camdd_peer_done(struct camdd_buf *buf); 492 void camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf, 493 int *error_count); 494 int camdd_pass_fetch(struct camdd_dev *dev); 495 int camdd_file_run(struct camdd_dev *dev); 496 int camdd_pass_run(struct camdd_dev *dev); 497 int camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len); 498 int camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf); 499 void camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth, 500 uint32_t *peer_depth, uint32_t *our_bytes, 501 uint32_t *peer_bytes); 502 void *camdd_worker(void *arg); 503 void camdd_sig_handler(int sig); 504 void camdd_print_status(struct camdd_dev *camdd_dev, 505 struct camdd_dev *other_dev, 506 struct timespec *start_time); 507 int camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts, 508 uint64_t max_io, int retry_count, int timeout); 509 int camdd_parse_io_opts(char *args, int is_write, 510 struct camdd_io_opts *io_opts); 511 void usage(void); 512 513 /* 514 * Parse out a bus, or a bus, target and lun in the following 515 * format: 516 * bus 517 * bus:target 518 * bus:target:lun 519 * 520 * Returns the number of parsed components, or 0. 521 */ 522 static int 523 parse_btl(char *tstr, int *bus, int *target, int *lun, camdd_argmask *arglst) 524 { 525 char *tmpstr; 526 int convs = 0; 527 528 while (isspace(*tstr) && (*tstr != '\0')) 529 tstr++; 530 531 tmpstr = (char *)strtok(tstr, ":"); 532 if ((tmpstr != NULL) && (*tmpstr != '\0')) { 533 *bus = strtol(tmpstr, NULL, 0); 534 *arglst |= CAMDD_ARG_BUS; 535 convs++; 536 tmpstr = (char *)strtok(NULL, ":"); 537 if ((tmpstr != NULL) && (*tmpstr != '\0')) { 538 *target = strtol(tmpstr, NULL, 0); 539 *arglst |= CAMDD_ARG_TARGET; 540 convs++; 541 tmpstr = (char *)strtok(NULL, ":"); 542 if ((tmpstr != NULL) && (*tmpstr != '\0')) { 543 *lun = strtol(tmpstr, NULL, 0); 544 *arglst |= CAMDD_ARG_LUN; 545 convs++; 546 } 547 } 548 } 549 550 return convs; 551 } 552 553 /* 554 * XXX KDM clean up and free all of the buffers on the queue! 555 */ 556 void 557 camdd_free_dev(struct camdd_dev *dev) 558 { 559 if (dev == NULL) 560 return; 561 562 switch (dev->dev_type) { 563 case CAMDD_DEV_FILE: { 564 struct camdd_dev_file *file_dev = &dev->dev_spec.file; 565 566 if (file_dev->fd != -1) 567 close(file_dev->fd); 568 free(file_dev->tmp_buf); 569 break; 570 } 571 case CAMDD_DEV_PASS: { 572 struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass; 573 574 if (pass_dev->dev != NULL) 575 cam_close_device(pass_dev->dev); 576 break; 577 } 578 default: 579 break; 580 } 581 582 free(dev); 583 } 584 585 struct camdd_dev * 586 camdd_alloc_dev(camdd_dev_type dev_type, struct kevent *new_ke, int num_ke, 587 int retry_count, int timeout) 588 { 589 struct camdd_dev *dev = NULL; 590 struct kevent *ke; 591 size_t ke_size; 592 int retval = 0; 593 594 dev = malloc(sizeof(*dev)); 595 if (dev == NULL) { 596 warn("%s: unable to malloc %zu bytes", __func__, sizeof(*dev)); 597 goto bailout; 598 } 599 600 bzero(dev, sizeof(*dev)); 601 602 dev->dev_type = dev_type; 603 dev->io_timeout = timeout; 604 dev->retry_count = retry_count; 605 STAILQ_INIT(&dev->free_queue); 606 STAILQ_INIT(&dev->free_indirect_queue); 607 STAILQ_INIT(&dev->active_queue); 608 STAILQ_INIT(&dev->pending_queue); 609 STAILQ_INIT(&dev->run_queue); 610 STAILQ_INIT(&dev->reorder_queue); 611 STAILQ_INIT(&dev->work_queue); 612 STAILQ_INIT(&dev->peer_done_queue); 613 STAILQ_INIT(&dev->peer_work_queue); 614 retval = pthread_mutex_init(&dev->mutex, NULL); 615 if (retval != 0) { 616 warnc(retval, "%s: failed to initialize mutex", __func__); 617 goto bailout; 618 } 619 620 retval = pthread_cond_init(&dev->cond, NULL); 621 if (retval != 0) { 622 warnc(retval, "%s: failed to initialize condition variable", 623 __func__); 624 goto bailout; 625 } 626 627 dev->kq = kqueue(); 628 if (dev->kq == -1) { 629 warn("%s: Unable to create kqueue", __func__); 630 goto bailout; 631 } 632 633 ke_size = sizeof(struct kevent) * (num_ke + 4); 634 ke = malloc(ke_size); 635 if (ke == NULL) { 636 warn("%s: unable to malloc %zu bytes", __func__, ke_size); 637 goto bailout; 638 } 639 bzero(ke, ke_size); 640 if (num_ke > 0) 641 bcopy(new_ke, ke, num_ke * sizeof(struct kevent)); 642 643 EV_SET(&ke[num_ke++], (uintptr_t)&dev->work_queue, EVFILT_USER, 644 EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0); 645 EV_SET(&ke[num_ke++], (uintptr_t)&dev->peer_done_queue, EVFILT_USER, 646 EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0); 647 EV_SET(&ke[num_ke++], SIGINFO, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0); 648 EV_SET(&ke[num_ke++], SIGINT, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0); 649 650 retval = kevent(dev->kq, ke, num_ke, NULL, 0, NULL); 651 if (retval == -1) { 652 warn("%s: Unable to register kevents", __func__); 653 goto bailout; 654 } 655 656 657 return (dev); 658 659 bailout: 660 free(dev); 661 662 return (NULL); 663 } 664 665 static struct camdd_buf * 666 camdd_alloc_buf(struct camdd_dev *dev, camdd_buf_type buf_type) 667 { 668 struct camdd_buf *buf = NULL; 669 uint8_t *data_ptr = NULL; 670 671 /* 672 * We only need to allocate data space for data buffers. 673 */ 674 switch (buf_type) { 675 case CAMDD_BUF_DATA: 676 data_ptr = malloc(dev->blocksize); 677 if (data_ptr == NULL) { 678 warn("unable to allocate %u bytes", dev->blocksize); 679 goto bailout_error; 680 } 681 break; 682 default: 683 break; 684 } 685 686 buf = malloc(sizeof(*buf)); 687 if (buf == NULL) { 688 warn("unable to allocate %zu bytes", sizeof(*buf)); 689 goto bailout_error; 690 } 691 692 bzero(buf, sizeof(*buf)); 693 buf->buf_type = buf_type; 694 buf->dev = dev; 695 switch (buf_type) { 696 case CAMDD_BUF_DATA: { 697 struct camdd_buf_data *data; 698 699 data = &buf->buf_type_spec.data; 700 701 data->alloc_len = dev->blocksize; 702 data->buf = data_ptr; 703 break; 704 } 705 case CAMDD_BUF_INDIRECT: 706 break; 707 default: 708 break; 709 } 710 STAILQ_INIT(&buf->src_list); 711 712 return (buf); 713 714 bailout_error: 715 if (data_ptr != NULL) 716 free(data_ptr); 717 718 if (buf != NULL) 719 free(buf); 720 721 return (NULL); 722 } 723 724 void 725 camdd_release_buf(struct camdd_buf *buf) 726 { 727 struct camdd_dev *dev; 728 729 dev = buf->dev; 730 731 switch (buf->buf_type) { 732 case CAMDD_BUF_DATA: { 733 struct camdd_buf_data *data; 734 735 data = &buf->buf_type_spec.data; 736 737 if (data->segs != NULL) { 738 if (data->extra_buf != 0) { 739 void *extra_buf; 740 741 extra_buf = (void *) 742 data->segs[data->sg_count - 1].ds_addr; 743 free(extra_buf); 744 data->extra_buf = 0; 745 } 746 free(data->segs); 747 data->segs = NULL; 748 data->sg_count = 0; 749 } else if (data->iovec != NULL) { 750 if (data->extra_buf != 0) { 751 free(data->iovec[data->sg_count - 1].iov_base); 752 data->extra_buf = 0; 753 } 754 free(data->iovec); 755 data->iovec = NULL; 756 data->sg_count = 0; 757 } 758 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links); 759 break; 760 } 761 case CAMDD_BUF_INDIRECT: 762 STAILQ_INSERT_TAIL(&dev->free_indirect_queue, buf, links); 763 break; 764 default: 765 err(1, "%s: Invalid buffer type %d for released buffer", 766 __func__, buf->buf_type); 767 break; 768 } 769 } 770 771 struct camdd_buf * 772 camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type) 773 { 774 struct camdd_buf *buf = NULL; 775 776 switch (buf_type) { 777 case CAMDD_BUF_DATA: 778 buf = STAILQ_FIRST(&dev->free_queue); 779 if (buf != NULL) { 780 struct camdd_buf_data *data; 781 uint8_t *data_ptr; 782 uint32_t alloc_len; 783 784 STAILQ_REMOVE_HEAD(&dev->free_queue, links); 785 data = &buf->buf_type_spec.data; 786 data_ptr = data->buf; 787 alloc_len = data->alloc_len; 788 bzero(buf, sizeof(*buf)); 789 data->buf = data_ptr; 790 data->alloc_len = alloc_len; 791 } 792 break; 793 case CAMDD_BUF_INDIRECT: 794 buf = STAILQ_FIRST(&dev->free_indirect_queue); 795 if (buf != NULL) { 796 STAILQ_REMOVE_HEAD(&dev->free_indirect_queue, links); 797 798 bzero(buf, sizeof(*buf)); 799 } 800 break; 801 default: 802 warnx("Unknown buffer type %d requested", buf_type); 803 break; 804 } 805 806 807 if (buf == NULL) 808 return (camdd_alloc_buf(dev, buf_type)); 809 else { 810 STAILQ_INIT(&buf->src_list); 811 buf->dev = dev; 812 buf->buf_type = buf_type; 813 814 return (buf); 815 } 816 } 817 818 int 819 camdd_buf_sg_create(struct camdd_buf *buf, int iovec, uint32_t sector_size, 820 uint32_t *num_sectors_used, int *double_buf_needed) 821 { 822 struct camdd_buf *tmp_buf; 823 struct camdd_buf_data *data; 824 uint8_t *extra_buf = NULL; 825 size_t extra_buf_len = 0; 826 int i, retval = 0; 827 828 data = &buf->buf_type_spec.data; 829 830 data->sg_count = buf->src_count; 831 /* 832 * Compose a scatter/gather list from all of the buffers in the list. 833 * If the length of the buffer isn't a multiple of the sector size, 834 * we'll have to add an extra buffer. This should only happen 835 * at the end of a transfer. 836 */ 837 if ((data->fill_len % sector_size) != 0) { 838 extra_buf_len = sector_size - (data->fill_len % sector_size); 839 extra_buf = calloc(extra_buf_len, 1); 840 if (extra_buf == NULL) { 841 warn("%s: unable to allocate %zu bytes for extra " 842 "buffer space", __func__, extra_buf_len); 843 retval = 1; 844 goto bailout; 845 } 846 data->extra_buf = 1; 847 data->sg_count++; 848 } 849 if (iovec == 0) { 850 data->segs = calloc(data->sg_count, sizeof(bus_dma_segment_t)); 851 if (data->segs == NULL) { 852 warn("%s: unable to allocate %zu bytes for S/G list", 853 __func__, sizeof(bus_dma_segment_t) * 854 data->sg_count); 855 retval = 1; 856 goto bailout; 857 } 858 859 } else { 860 data->iovec = calloc(data->sg_count, sizeof(struct iovec)); 861 if (data->iovec == NULL) { 862 warn("%s: unable to allocate %zu bytes for S/G list", 863 __func__, sizeof(struct iovec) * data->sg_count); 864 retval = 1; 865 goto bailout; 866 } 867 } 868 869 for (i = 0, tmp_buf = STAILQ_FIRST(&buf->src_list); 870 i < buf->src_count && tmp_buf != NULL; i++, 871 tmp_buf = STAILQ_NEXT(tmp_buf, src_links)) { 872 873 if (tmp_buf->buf_type == CAMDD_BUF_DATA) { 874 struct camdd_buf_data *tmp_data; 875 876 tmp_data = &tmp_buf->buf_type_spec.data; 877 if (iovec == 0) { 878 data->segs[i].ds_addr = 879 (bus_addr_t) tmp_data->buf; 880 data->segs[i].ds_len = tmp_data->fill_len - 881 tmp_data->resid; 882 } else { 883 data->iovec[i].iov_base = tmp_data->buf; 884 data->iovec[i].iov_len = tmp_data->fill_len - 885 tmp_data->resid; 886 } 887 if (((tmp_data->fill_len - tmp_data->resid) % 888 sector_size) != 0) 889 *double_buf_needed = 1; 890 } else { 891 struct camdd_buf_indirect *tmp_ind; 892 893 tmp_ind = &tmp_buf->buf_type_spec.indirect; 894 if (iovec == 0) { 895 data->segs[i].ds_addr = 896 (bus_addr_t)tmp_ind->start_ptr; 897 data->segs[i].ds_len = tmp_ind->len; 898 } else { 899 data->iovec[i].iov_base = tmp_ind->start_ptr; 900 data->iovec[i].iov_len = tmp_ind->len; 901 } 902 if ((tmp_ind->len % sector_size) != 0) 903 *double_buf_needed = 1; 904 } 905 } 906 907 if (extra_buf != NULL) { 908 if (iovec == 0) { 909 data->segs[i].ds_addr = (bus_addr_t)extra_buf; 910 data->segs[i].ds_len = extra_buf_len; 911 } else { 912 data->iovec[i].iov_base = extra_buf; 913 data->iovec[i].iov_len = extra_buf_len; 914 } 915 i++; 916 } 917 if ((tmp_buf != NULL) || (i != data->sg_count)) { 918 warnx("buffer source count does not match " 919 "number of buffers in list!"); 920 retval = 1; 921 goto bailout; 922 } 923 924 bailout: 925 if (retval == 0) { 926 *num_sectors_used = (data->fill_len + extra_buf_len) / 927 sector_size; 928 } 929 return (retval); 930 } 931 932 uint32_t 933 camdd_buf_get_len(struct camdd_buf *buf) 934 { 935 uint32_t len = 0; 936 937 if (buf->buf_type != CAMDD_BUF_DATA) { 938 struct camdd_buf_indirect *indirect; 939 940 indirect = &buf->buf_type_spec.indirect; 941 len = indirect->len; 942 } else { 943 struct camdd_buf_data *data; 944 945 data = &buf->buf_type_spec.data; 946 len = data->fill_len; 947 } 948 949 return (len); 950 } 951 952 void 953 camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf) 954 { 955 struct camdd_buf_data *data; 956 957 assert(buf->buf_type == CAMDD_BUF_DATA); 958 959 data = &buf->buf_type_spec.data; 960 961 STAILQ_INSERT_TAIL(&buf->src_list, child_buf, src_links); 962 buf->src_count++; 963 964 data->fill_len += camdd_buf_get_len(child_buf); 965 } 966 967 typedef enum { 968 CAMDD_TS_MAX_BLK, 969 CAMDD_TS_MIN_BLK, 970 CAMDD_TS_BLK_GRAN, 971 CAMDD_TS_EFF_IOSIZE 972 } camdd_status_item_index; 973 974 static struct camdd_status_items { 975 const char *name; 976 struct mt_status_entry *entry; 977 } req_status_items[] = { 978 { "max_blk", NULL }, 979 { "min_blk", NULL }, 980 { "blk_gran", NULL }, 981 { "max_effective_iosize", NULL } 982 }; 983 984 int 985 camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize, 986 uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran) 987 { 988 struct mt_status_data status_data; 989 char *xml_str = NULL; 990 unsigned int i; 991 int retval = 0; 992 993 retval = mt_get_xml_str(fd, MTIOCEXTGET, &xml_str); 994 if (retval != 0) 995 err(1, "Couldn't get XML string from %s", filename); 996 997 retval = mt_get_status(xml_str, &status_data); 998 if (retval != XML_STATUS_OK) { 999 warn("couldn't get status for %s", filename); 1000 retval = 1; 1001 goto bailout; 1002 } else 1003 retval = 0; 1004 1005 if (status_data.error != 0) { 1006 warnx("%s", status_data.error_str); 1007 retval = 1; 1008 goto bailout; 1009 } 1010 1011 for (i = 0; i < sizeof(req_status_items) / 1012 sizeof(req_status_items[0]); i++) { 1013 char *name; 1014 1015 name = __DECONST(char *, req_status_items[i].name); 1016 req_status_items[i].entry = mt_status_entry_find(&status_data, 1017 name); 1018 if (req_status_items[i].entry == NULL) { 1019 errx(1, "Cannot find status entry %s", 1020 req_status_items[i].name); 1021 } 1022 } 1023 1024 *max_iosize = req_status_items[CAMDD_TS_EFF_IOSIZE].entry->value_unsigned; 1025 *max_blk= req_status_items[CAMDD_TS_MAX_BLK].entry->value_unsigned; 1026 *min_blk= req_status_items[CAMDD_TS_MIN_BLK].entry->value_unsigned; 1027 *blk_gran = req_status_items[CAMDD_TS_BLK_GRAN].entry->value_unsigned; 1028 bailout: 1029 1030 free(xml_str); 1031 mt_status_free(&status_data); 1032 1033 return (retval); 1034 } 1035 1036 struct camdd_dev * 1037 camdd_probe_file(int fd, struct camdd_io_opts *io_opts, int retry_count, 1038 int timeout) 1039 { 1040 struct camdd_dev *dev = NULL; 1041 struct camdd_dev_file *file_dev; 1042 uint64_t blocksize = io_opts->blocksize; 1043 1044 dev = camdd_alloc_dev(CAMDD_DEV_FILE, NULL, 0, retry_count, timeout); 1045 if (dev == NULL) 1046 goto bailout; 1047 1048 file_dev = &dev->dev_spec.file; 1049 file_dev->fd = fd; 1050 strlcpy(file_dev->filename, io_opts->dev_name, 1051 sizeof(file_dev->filename)); 1052 strlcpy(dev->device_name, io_opts->dev_name, sizeof(dev->device_name)); 1053 if (blocksize == 0) 1054 dev->blocksize = CAMDD_FILE_DEFAULT_BLOCK; 1055 else 1056 dev->blocksize = blocksize; 1057 1058 if ((io_opts->queue_depth != 0) 1059 && (io_opts->queue_depth != 1)) { 1060 warnx("Queue depth %ju for %s ignored, only 1 outstanding " 1061 "command supported", (uintmax_t)io_opts->queue_depth, 1062 io_opts->dev_name); 1063 } 1064 dev->target_queue_depth = CAMDD_FILE_DEFAULT_DEPTH; 1065 dev->run = camdd_file_run; 1066 dev->fetch = NULL; 1067 1068 /* 1069 * We can effectively access files on byte boundaries. We'll reset 1070 * this for devices like disks that can be accessed on sector 1071 * boundaries. 1072 */ 1073 dev->sector_size = 1; 1074 1075 if ((fd != STDIN_FILENO) 1076 && (fd != STDOUT_FILENO)) { 1077 int retval; 1078 1079 retval = fstat(fd, &file_dev->sb); 1080 if (retval != 0) { 1081 warn("Cannot stat %s", dev->device_name); 1082 goto bailout_error; 1083 } 1084 if (S_ISREG(file_dev->sb.st_mode)) { 1085 file_dev->file_type = CAMDD_FILE_REG; 1086 } else if (S_ISCHR(file_dev->sb.st_mode)) { 1087 int type; 1088 1089 if (ioctl(fd, FIODTYPE, &type) == -1) 1090 err(1, "FIODTYPE ioctl failed on %s", 1091 dev->device_name); 1092 else { 1093 if (type & D_TAPE) 1094 file_dev->file_type = CAMDD_FILE_TAPE; 1095 else if (type & D_DISK) 1096 file_dev->file_type = CAMDD_FILE_DISK; 1097 else if (type & D_MEM) 1098 file_dev->file_type = CAMDD_FILE_MEM; 1099 else if (type & D_TTY) 1100 file_dev->file_type = CAMDD_FILE_TTY; 1101 } 1102 } else if (S_ISDIR(file_dev->sb.st_mode)) { 1103 errx(1, "cannot operate on directory %s", 1104 dev->device_name); 1105 } else if (S_ISFIFO(file_dev->sb.st_mode)) { 1106 file_dev->file_type = CAMDD_FILE_PIPE; 1107 } else 1108 errx(1, "Cannot determine file type for %s", 1109 dev->device_name); 1110 1111 switch (file_dev->file_type) { 1112 case CAMDD_FILE_REG: 1113 if (file_dev->sb.st_size != 0) 1114 dev->max_sector = file_dev->sb.st_size - 1; 1115 else 1116 dev->max_sector = 0; 1117 file_dev->file_flags |= CAMDD_FF_CAN_SEEK; 1118 break; 1119 case CAMDD_FILE_TAPE: { 1120 uint64_t max_iosize, max_blk, min_blk, blk_gran; 1121 /* 1122 * Check block limits and maximum effective iosize. 1123 * Make sure the blocksize is within the block 1124 * limits (and a multiple of the minimum blocksize) 1125 * and that the blocksize is <= maximum effective 1126 * iosize. 1127 */ 1128 retval = camdd_probe_tape(fd, dev->device_name, 1129 &max_iosize, &max_blk, &min_blk, &blk_gran); 1130 if (retval != 0) 1131 errx(1, "Unable to probe tape %s", 1132 dev->device_name); 1133 1134 /* 1135 * The blocksize needs to be <= the maximum 1136 * effective I/O size of the tape device. Note 1137 * that this also takes into account the maximum 1138 * blocksize reported by READ BLOCK LIMITS. 1139 */ 1140 if (dev->blocksize > max_iosize) { 1141 warnx("Blocksize %u too big for %s, limiting " 1142 "to %ju", dev->blocksize, dev->device_name, 1143 max_iosize); 1144 dev->blocksize = max_iosize; 1145 } 1146 1147 /* 1148 * The blocksize needs to be at least min_blk; 1149 */ 1150 if (dev->blocksize < min_blk) { 1151 warnx("Blocksize %u too small for %s, " 1152 "increasing to %ju", dev->blocksize, 1153 dev->device_name, min_blk); 1154 dev->blocksize = min_blk; 1155 } 1156 1157 /* 1158 * And the blocksize needs to be a multiple of 1159 * the block granularity. 1160 */ 1161 if ((blk_gran != 0) 1162 && (dev->blocksize % (1 << blk_gran))) { 1163 warnx("Blocksize %u for %s not a multiple of " 1164 "%d, adjusting to %d", dev->blocksize, 1165 dev->device_name, (1 << blk_gran), 1166 dev->blocksize & ~((1 << blk_gran) - 1)); 1167 dev->blocksize &= ~((1 << blk_gran) - 1); 1168 } 1169 1170 if (dev->blocksize == 0) { 1171 errx(1, "Unable to derive valid blocksize for " 1172 "%s", dev->device_name); 1173 } 1174 1175 /* 1176 * For tape drives, set the sector size to the 1177 * blocksize so that we make sure not to write 1178 * less than the blocksize out to the drive. 1179 */ 1180 dev->sector_size = dev->blocksize; 1181 break; 1182 } 1183 case CAMDD_FILE_DISK: { 1184 off_t media_size; 1185 unsigned int sector_size; 1186 1187 file_dev->file_flags |= CAMDD_FF_CAN_SEEK; 1188 1189 if (ioctl(fd, DIOCGSECTORSIZE, §or_size) == -1) { 1190 err(1, "DIOCGSECTORSIZE ioctl failed on %s", 1191 dev->device_name); 1192 } 1193 1194 if (sector_size == 0) { 1195 errx(1, "DIOCGSECTORSIZE ioctl returned " 1196 "invalid sector size %u for %s", 1197 sector_size, dev->device_name); 1198 } 1199 1200 if (ioctl(fd, DIOCGMEDIASIZE, &media_size) == -1) { 1201 err(1, "DIOCGMEDIASIZE ioctl failed on %s", 1202 dev->device_name); 1203 } 1204 1205 if (media_size == 0) { 1206 errx(1, "DIOCGMEDIASIZE ioctl returned " 1207 "invalid media size %ju for %s", 1208 (uintmax_t)media_size, dev->device_name); 1209 } 1210 1211 if (dev->blocksize % sector_size) { 1212 errx(1, "%s blocksize %u not a multiple of " 1213 "sector size %u", dev->device_name, 1214 dev->blocksize, sector_size); 1215 } 1216 1217 dev->sector_size = sector_size; 1218 dev->max_sector = (media_size / sector_size) - 1; 1219 break; 1220 } 1221 case CAMDD_FILE_MEM: 1222 file_dev->file_flags |= CAMDD_FF_CAN_SEEK; 1223 break; 1224 default: 1225 break; 1226 } 1227 } 1228 1229 if ((io_opts->offset != 0) 1230 && ((file_dev->file_flags & CAMDD_FF_CAN_SEEK) == 0)) { 1231 warnx("Offset %ju specified for %s, but we cannot seek on %s", 1232 io_opts->offset, io_opts->dev_name, io_opts->dev_name); 1233 goto bailout_error; 1234 } 1235 #if 0 1236 else if ((io_opts->offset != 0) 1237 && ((io_opts->offset % dev->sector_size) != 0)) { 1238 warnx("Offset %ju for %s is not a multiple of the " 1239 "sector size %u", io_opts->offset, 1240 io_opts->dev_name, dev->sector_size); 1241 goto bailout_error; 1242 } else { 1243 dev->start_offset_bytes = io_opts->offset; 1244 } 1245 #endif 1246 1247 bailout: 1248 return (dev); 1249 1250 bailout_error: 1251 camdd_free_dev(dev); 1252 return (NULL); 1253 } 1254 1255 /* 1256 * Need to implement this. Do a basic probe: 1257 * - Check the inquiry data, make sure we're talking to a device that we 1258 * can reasonably expect to talk to -- direct, RBC, CD, WORM. 1259 * - Send a test unit ready, make sure the device is available. 1260 * - Get the capacity and block size. 1261 */ 1262 struct camdd_dev * 1263 camdd_probe_pass(struct cam_device *cam_dev, struct camdd_io_opts *io_opts, 1264 camdd_argmask arglist, int probe_retry_count, 1265 int probe_timeout, int io_retry_count, int io_timeout) 1266 { 1267 union ccb *ccb; 1268 uint64_t maxsector; 1269 uint32_t cpi_maxio, max_iosize, pass_numblocks; 1270 uint32_t block_len; 1271 struct scsi_read_capacity_data rcap; 1272 struct scsi_read_capacity_data_long rcaplong; 1273 struct camdd_dev *dev; 1274 struct camdd_dev_pass *pass_dev; 1275 struct kevent ke; 1276 int scsi_dev_type; 1277 1278 dev = NULL; 1279 1280 scsi_dev_type = SID_TYPE(&cam_dev->inq_data); 1281 maxsector = 0; 1282 block_len = 0; 1283 1284 /* 1285 * For devices that support READ CAPACITY, we'll attempt to get the 1286 * capacity. Otherwise, we really don't support tape or other 1287 * devices via SCSI passthrough, so just return an error in that case. 1288 */ 1289 switch (scsi_dev_type) { 1290 case T_DIRECT: 1291 case T_WORM: 1292 case T_CDROM: 1293 case T_OPTICAL: 1294 case T_RBC: 1295 break; 1296 default: 1297 errx(1, "Unsupported SCSI device type %d", scsi_dev_type); 1298 break; /*NOTREACHED*/ 1299 } 1300 1301 ccb = cam_getccb(cam_dev); 1302 1303 if (ccb == NULL) { 1304 warnx("%s: error allocating ccb", __func__); 1305 goto bailout; 1306 } 1307 1308 CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); 1309 1310 scsi_read_capacity(&ccb->csio, 1311 /*retries*/ probe_retry_count, 1312 /*cbfcnp*/ NULL, 1313 /*tag_action*/ MSG_SIMPLE_Q_TAG, 1314 &rcap, 1315 SSD_FULL_SIZE, 1316 /*timeout*/ probe_timeout ? probe_timeout : 5000); 1317 1318 /* Disable freezing the device queue */ 1319 ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; 1320 1321 if (arglist & CAMDD_ARG_ERR_RECOVER) 1322 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; 1323 1324 if (cam_send_ccb(cam_dev, ccb) < 0) { 1325 warn("error sending READ CAPACITY command"); 1326 1327 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, 1328 CAM_EPF_ALL, stderr); 1329 1330 goto bailout; 1331 } 1332 1333 if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1334 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); 1335 goto bailout; 1336 } 1337 1338 maxsector = scsi_4btoul(rcap.addr); 1339 block_len = scsi_4btoul(rcap.length); 1340 1341 /* 1342 * A last block of 2^32-1 means that the true capacity is over 2TB, 1343 * and we need to issue the long READ CAPACITY to get the real 1344 * capacity. Otherwise, we're all set. 1345 */ 1346 if (maxsector != 0xffffffff) 1347 goto rcap_done; 1348 1349 scsi_read_capacity_16(&ccb->csio, 1350 /*retries*/ probe_retry_count, 1351 /*cbfcnp*/ NULL, 1352 /*tag_action*/ MSG_SIMPLE_Q_TAG, 1353 /*lba*/ 0, 1354 /*reladdr*/ 0, 1355 /*pmi*/ 0, 1356 (uint8_t *)&rcaplong, 1357 sizeof(rcaplong), 1358 /*sense_len*/ SSD_FULL_SIZE, 1359 /*timeout*/ probe_timeout ? probe_timeout : 5000); 1360 1361 /* Disable freezing the device queue */ 1362 ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; 1363 1364 if (arglist & CAMDD_ARG_ERR_RECOVER) 1365 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; 1366 1367 if (cam_send_ccb(cam_dev, ccb) < 0) { 1368 warn("error sending READ CAPACITY (16) command"); 1369 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, 1370 CAM_EPF_ALL, stderr); 1371 goto bailout; 1372 } 1373 1374 if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1375 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); 1376 goto bailout; 1377 } 1378 1379 maxsector = scsi_8btou64(rcaplong.addr); 1380 block_len = scsi_4btoul(rcaplong.length); 1381 1382 rcap_done: 1383 if (block_len == 0) { 1384 warnx("Sector size for %s%u is 0, cannot continue", 1385 cam_dev->device_name, cam_dev->dev_unit_num); 1386 goto bailout_error; 1387 } 1388 1389 CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cpi); 1390 1391 ccb->ccb_h.func_code = XPT_PATH_INQ; 1392 ccb->ccb_h.flags = CAM_DIR_NONE; 1393 ccb->ccb_h.retry_count = 1; 1394 1395 if (cam_send_ccb(cam_dev, ccb) < 0) { 1396 warn("error sending XPT_PATH_INQ CCB"); 1397 1398 cam_error_print(cam_dev, ccb, CAM_ESF_ALL, 1399 CAM_EPF_ALL, stderr); 1400 goto bailout; 1401 } 1402 1403 EV_SET(&ke, cam_dev->fd, EVFILT_READ, EV_ADD|EV_ENABLE, 0, 0, 0); 1404 1405 dev = camdd_alloc_dev(CAMDD_DEV_PASS, &ke, 1, io_retry_count, 1406 io_timeout); 1407 if (dev == NULL) 1408 goto bailout; 1409 1410 pass_dev = &dev->dev_spec.pass; 1411 pass_dev->scsi_dev_type = scsi_dev_type; 1412 pass_dev->dev = cam_dev; 1413 pass_dev->max_sector = maxsector; 1414 pass_dev->block_len = block_len; 1415 pass_dev->cpi_maxio = ccb->cpi.maxio; 1416 snprintf(dev->device_name, sizeof(dev->device_name), "%s%u", 1417 pass_dev->dev->device_name, pass_dev->dev->dev_unit_num); 1418 dev->sector_size = block_len; 1419 dev->max_sector = maxsector; 1420 1421 1422 /* 1423 * Determine the optimal blocksize to use for this device. 1424 */ 1425 1426 /* 1427 * If the controller has not specified a maximum I/O size, 1428 * just go with 128K as a somewhat conservative value. 1429 */ 1430 if (pass_dev->cpi_maxio == 0) 1431 cpi_maxio = 131072; 1432 else 1433 cpi_maxio = pass_dev->cpi_maxio; 1434 1435 /* 1436 * If the controller has a large maximum I/O size, limit it 1437 * to something smaller so that the kernel doesn't have trouble 1438 * allocating buffers to copy data in and out for us. 1439 * XXX KDM this is until we have unmapped I/O support in the kernel. 1440 */ 1441 max_iosize = min(cpi_maxio, CAMDD_PASS_MAX_BLOCK); 1442 1443 /* 1444 * If we weren't able to get a block size for some reason, 1445 * default to 512 bytes. 1446 */ 1447 block_len = pass_dev->block_len; 1448 if (block_len == 0) 1449 block_len = 512; 1450 1451 /* 1452 * Figure out how many blocksize chunks will fit in the 1453 * maximum I/O size. 1454 */ 1455 pass_numblocks = max_iosize / block_len; 1456 1457 /* 1458 * And finally, multiple the number of blocks by the LBA 1459 * length to get our maximum block size; 1460 */ 1461 dev->blocksize = pass_numblocks * block_len; 1462 1463 if (io_opts->blocksize != 0) { 1464 if ((io_opts->blocksize % dev->sector_size) != 0) { 1465 warnx("Blocksize %ju for %s is not a multiple of " 1466 "sector size %u", (uintmax_t)io_opts->blocksize, 1467 dev->device_name, dev->sector_size); 1468 goto bailout_error; 1469 } 1470 dev->blocksize = io_opts->blocksize; 1471 } 1472 dev->target_queue_depth = CAMDD_PASS_DEFAULT_DEPTH; 1473 if (io_opts->queue_depth != 0) 1474 dev->target_queue_depth = io_opts->queue_depth; 1475 1476 if (io_opts->offset != 0) { 1477 if (io_opts->offset > (dev->max_sector * dev->sector_size)) { 1478 warnx("Offset %ju is past the end of device %s", 1479 io_opts->offset, dev->device_name); 1480 goto bailout_error; 1481 } 1482 #if 0 1483 else if ((io_opts->offset % dev->sector_size) != 0) { 1484 warnx("Offset %ju for %s is not a multiple of the " 1485 "sector size %u", io_opts->offset, 1486 dev->device_name, dev->sector_size); 1487 goto bailout_error; 1488 } 1489 dev->start_offset_bytes = io_opts->offset; 1490 #endif 1491 } 1492 1493 dev->min_cmd_size = io_opts->min_cmd_size; 1494 1495 dev->run = camdd_pass_run; 1496 dev->fetch = camdd_pass_fetch; 1497 1498 bailout: 1499 cam_freeccb(ccb); 1500 1501 return (dev); 1502 1503 bailout_error: 1504 cam_freeccb(ccb); 1505 1506 camdd_free_dev(dev); 1507 1508 return (NULL); 1509 } 1510 1511 void * 1512 camdd_worker(void *arg) 1513 { 1514 struct camdd_dev *dev = arg; 1515 struct camdd_buf *buf; 1516 struct timespec ts, *kq_ts; 1517 1518 ts.tv_sec = 0; 1519 ts.tv_nsec = 0; 1520 1521 pthread_mutex_lock(&dev->mutex); 1522 1523 dev->flags |= CAMDD_DEV_FLAG_ACTIVE; 1524 1525 for (;;) { 1526 struct kevent ke; 1527 int retval = 0; 1528 1529 /* 1530 * XXX KDM check the reorder queue depth? 1531 */ 1532 if (dev->write_dev == 0) { 1533 uint32_t our_depth, peer_depth, peer_bytes, our_bytes; 1534 uint32_t target_depth = dev->target_queue_depth; 1535 uint32_t peer_target_depth = 1536 dev->peer_dev->target_queue_depth; 1537 uint32_t peer_blocksize = dev->peer_dev->blocksize; 1538 1539 camdd_get_depth(dev, &our_depth, &peer_depth, 1540 &our_bytes, &peer_bytes); 1541 1542 #if 0 1543 while (((our_depth < target_depth) 1544 && (peer_depth < peer_target_depth)) 1545 || ((peer_bytes + our_bytes) < 1546 (peer_blocksize * 2))) { 1547 #endif 1548 while (((our_depth + peer_depth) < 1549 (target_depth + peer_target_depth)) 1550 || ((peer_bytes + our_bytes) < 1551 (peer_blocksize * 3))) { 1552 1553 retval = camdd_queue(dev, NULL); 1554 if (retval == 1) 1555 break; 1556 else if (retval != 0) { 1557 error_exit = 1; 1558 goto bailout; 1559 } 1560 1561 camdd_get_depth(dev, &our_depth, &peer_depth, 1562 &our_bytes, &peer_bytes); 1563 } 1564 } 1565 /* 1566 * See if we have any I/O that is ready to execute. 1567 */ 1568 buf = STAILQ_FIRST(&dev->run_queue); 1569 if (buf != NULL) { 1570 while (dev->target_queue_depth > dev->cur_active_io) { 1571 retval = dev->run(dev); 1572 if (retval == -1) { 1573 dev->flags |= CAMDD_DEV_FLAG_EOF; 1574 error_exit = 1; 1575 break; 1576 } else if (retval != 0) { 1577 break; 1578 } 1579 } 1580 } 1581 1582 /* 1583 * We've reached EOF, or our partner has reached EOF. 1584 */ 1585 if ((dev->flags & CAMDD_DEV_FLAG_EOF) 1586 || (dev->flags & CAMDD_DEV_FLAG_PEER_EOF)) { 1587 if (dev->write_dev != 0) { 1588 if ((STAILQ_EMPTY(&dev->work_queue)) 1589 && (dev->num_run_queue == 0) 1590 && (dev->cur_active_io == 0)) { 1591 goto bailout; 1592 } 1593 } else { 1594 /* 1595 * If we're the reader, and the writer 1596 * got EOF, he is already done. If we got 1597 * the EOF, then we need to wait until 1598 * everything is flushed out for the writer. 1599 */ 1600 if (dev->flags & CAMDD_DEV_FLAG_PEER_EOF) { 1601 goto bailout; 1602 } else if ((dev->num_peer_work_queue == 0) 1603 && (dev->num_peer_done_queue == 0) 1604 && (dev->cur_active_io == 0) 1605 && (dev->num_run_queue == 0)) { 1606 goto bailout; 1607 } 1608 } 1609 /* 1610 * XXX KDM need to do something about the pending 1611 * queue and cleanup resources. 1612 */ 1613 } 1614 1615 if ((dev->write_dev == 0) 1616 && (dev->cur_active_io == 0) 1617 && (dev->peer_bytes_queued < dev->peer_dev->blocksize)) 1618 kq_ts = &ts; 1619 else 1620 kq_ts = NULL; 1621 1622 /* 1623 * Run kevent to see if there are events to process. 1624 */ 1625 pthread_mutex_unlock(&dev->mutex); 1626 retval = kevent(dev->kq, NULL, 0, &ke, 1, kq_ts); 1627 pthread_mutex_lock(&dev->mutex); 1628 if (retval == -1) { 1629 warn("%s: error returned from kevent",__func__); 1630 goto bailout; 1631 } else if (retval != 0) { 1632 switch (ke.filter) { 1633 case EVFILT_READ: 1634 if (dev->fetch != NULL) { 1635 retval = dev->fetch(dev); 1636 if (retval == -1) { 1637 error_exit = 1; 1638 goto bailout; 1639 } 1640 } 1641 break; 1642 case EVFILT_SIGNAL: 1643 /* 1644 * We register for this so we don't get 1645 * an error as a result of a SIGINFO or a 1646 * SIGINT. It will actually get handled 1647 * by the signal handler. If we get a 1648 * SIGINT, bail out without printing an 1649 * error message. Any other signals 1650 * will result in the error message above. 1651 */ 1652 if (ke.ident == SIGINT) 1653 goto bailout; 1654 break; 1655 case EVFILT_USER: 1656 retval = 0; 1657 /* 1658 * Check to see if the other thread has 1659 * queued any I/O for us to do. (In this 1660 * case we're the writer.) 1661 */ 1662 for (buf = STAILQ_FIRST(&dev->work_queue); 1663 buf != NULL; 1664 buf = STAILQ_FIRST(&dev->work_queue)) { 1665 STAILQ_REMOVE_HEAD(&dev->work_queue, 1666 work_links); 1667 retval = camdd_queue(dev, buf); 1668 /* 1669 * We keep going unless we get an 1670 * actual error. If we get EOF, we 1671 * still want to remove the buffers 1672 * from the queue and send the back 1673 * to the reader thread. 1674 */ 1675 if (retval == -1) { 1676 error_exit = 1; 1677 goto bailout; 1678 } else 1679 retval = 0; 1680 } 1681 1682 /* 1683 * Next check to see if the other thread has 1684 * queued any completed buffers back to us. 1685 * (In this case we're the reader.) 1686 */ 1687 for (buf = STAILQ_FIRST(&dev->peer_done_queue); 1688 buf != NULL; 1689 buf = STAILQ_FIRST(&dev->peer_done_queue)){ 1690 STAILQ_REMOVE_HEAD( 1691 &dev->peer_done_queue, work_links); 1692 dev->num_peer_done_queue--; 1693 camdd_peer_done(buf); 1694 } 1695 break; 1696 default: 1697 warnx("%s: unknown kevent filter %d", 1698 __func__, ke.filter); 1699 break; 1700 } 1701 } 1702 } 1703 1704 bailout: 1705 1706 dev->flags &= ~CAMDD_DEV_FLAG_ACTIVE; 1707 1708 /* XXX KDM cleanup resources here? */ 1709 1710 pthread_mutex_unlock(&dev->mutex); 1711 1712 need_exit = 1; 1713 sem_post(&camdd_sem); 1714 1715 return (NULL); 1716 } 1717 1718 /* 1719 * Simplistic translation of CCB status to our local status. 1720 */ 1721 camdd_buf_status 1722 camdd_ccb_status(union ccb *ccb) 1723 { 1724 camdd_buf_status status = CAMDD_STATUS_NONE; 1725 cam_status ccb_status; 1726 1727 ccb_status = ccb->ccb_h.status & CAM_STATUS_MASK; 1728 1729 switch (ccb_status) { 1730 case CAM_REQ_CMP: { 1731 if (ccb->csio.resid == 0) { 1732 status = CAMDD_STATUS_OK; 1733 } else if (ccb->csio.dxfer_len > ccb->csio.resid) { 1734 status = CAMDD_STATUS_SHORT_IO; 1735 } else { 1736 status = CAMDD_STATUS_EOF; 1737 } 1738 break; 1739 } 1740 case CAM_SCSI_STATUS_ERROR: { 1741 switch (ccb->csio.scsi_status) { 1742 case SCSI_STATUS_OK: 1743 case SCSI_STATUS_COND_MET: 1744 case SCSI_STATUS_INTERMED: 1745 case SCSI_STATUS_INTERMED_COND_MET: 1746 status = CAMDD_STATUS_OK; 1747 break; 1748 case SCSI_STATUS_CMD_TERMINATED: 1749 case SCSI_STATUS_CHECK_COND: 1750 case SCSI_STATUS_QUEUE_FULL: 1751 case SCSI_STATUS_BUSY: 1752 case SCSI_STATUS_RESERV_CONFLICT: 1753 default: 1754 status = CAMDD_STATUS_ERROR; 1755 break; 1756 } 1757 break; 1758 } 1759 default: 1760 status = CAMDD_STATUS_ERROR; 1761 break; 1762 } 1763 1764 return (status); 1765 } 1766 1767 /* 1768 * Queue a buffer to our peer's work thread for writing. 1769 * 1770 * Returns 0 for success, -1 for failure, 1 if the other thread exited. 1771 */ 1772 int 1773 camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf) 1774 { 1775 struct kevent ke; 1776 STAILQ_HEAD(, camdd_buf) local_queue; 1777 struct camdd_buf *buf1, *buf2; 1778 struct camdd_buf_data *data = NULL; 1779 uint64_t peer_bytes_queued = 0; 1780 int active = 1; 1781 int retval = 0; 1782 1783 STAILQ_INIT(&local_queue); 1784 1785 /* 1786 * Since we're the reader, we need to queue our I/O to the writer 1787 * in sequential order in order to make sure it gets written out 1788 * in sequential order. 1789 * 1790 * Check the next expected I/O starting offset. If this doesn't 1791 * match, put it on the reorder queue. 1792 */ 1793 if ((buf->lba * dev->sector_size) != dev->next_completion_pos_bytes) { 1794 1795 /* 1796 * If there is nothing on the queue, there is no sorting 1797 * needed. 1798 */ 1799 if (STAILQ_EMPTY(&dev->reorder_queue)) { 1800 STAILQ_INSERT_TAIL(&dev->reorder_queue, buf, links); 1801 dev->num_reorder_queue++; 1802 goto bailout; 1803 } 1804 1805 /* 1806 * Sort in ascending order by starting LBA. There should 1807 * be no identical LBAs. 1808 */ 1809 for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL; 1810 buf1 = buf2) { 1811 buf2 = STAILQ_NEXT(buf1, links); 1812 if (buf->lba < buf1->lba) { 1813 /* 1814 * If we're less than the first one, then 1815 * we insert at the head of the list 1816 * because this has to be the first element 1817 * on the list. 1818 */ 1819 STAILQ_INSERT_HEAD(&dev->reorder_queue, 1820 buf, links); 1821 dev->num_reorder_queue++; 1822 break; 1823 } else if (buf->lba > buf1->lba) { 1824 if (buf2 == NULL) { 1825 STAILQ_INSERT_TAIL(&dev->reorder_queue, 1826 buf, links); 1827 dev->num_reorder_queue++; 1828 break; 1829 } else if (buf->lba < buf2->lba) { 1830 STAILQ_INSERT_AFTER(&dev->reorder_queue, 1831 buf1, buf, links); 1832 dev->num_reorder_queue++; 1833 break; 1834 } 1835 } else { 1836 errx(1, "Found buffers with duplicate LBA %ju!", 1837 buf->lba); 1838 } 1839 } 1840 goto bailout; 1841 } else { 1842 1843 /* 1844 * We're the next expected I/O completion, so put ourselves 1845 * on the local queue to be sent to the writer. We use 1846 * work_links here so that we can queue this to the 1847 * peer_work_queue before taking the buffer off of the 1848 * local_queue. 1849 */ 1850 dev->next_completion_pos_bytes += buf->len; 1851 STAILQ_INSERT_TAIL(&local_queue, buf, work_links); 1852 1853 /* 1854 * Go through the reorder queue looking for more sequential 1855 * I/O and add it to the local queue. 1856 */ 1857 for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL; 1858 buf1 = STAILQ_FIRST(&dev->reorder_queue)) { 1859 /* 1860 * As soon as we see an I/O that is out of sequence, 1861 * we're done. 1862 */ 1863 if ((buf1->lba * dev->sector_size) != 1864 dev->next_completion_pos_bytes) 1865 break; 1866 1867 STAILQ_REMOVE_HEAD(&dev->reorder_queue, links); 1868 dev->num_reorder_queue--; 1869 STAILQ_INSERT_TAIL(&local_queue, buf1, work_links); 1870 dev->next_completion_pos_bytes += buf1->len; 1871 } 1872 } 1873 1874 /* 1875 * Setup the event to let the other thread know that it has work 1876 * pending. 1877 */ 1878 EV_SET(&ke, (uintptr_t)&dev->peer_dev->work_queue, EVFILT_USER, 0, 1879 NOTE_TRIGGER, 0, NULL); 1880 1881 /* 1882 * Put this on our shadow queue so that we know what we've queued 1883 * to the other thread. 1884 */ 1885 STAILQ_FOREACH_SAFE(buf1, &local_queue, work_links, buf2) { 1886 if (buf1->buf_type != CAMDD_BUF_DATA) { 1887 errx(1, "%s: should have a data buffer, not an " 1888 "indirect buffer", __func__); 1889 } 1890 data = &buf1->buf_type_spec.data; 1891 1892 /* 1893 * We only need to send one EOF to the writer, and don't 1894 * need to continue sending EOFs after that. 1895 */ 1896 if (buf1->status == CAMDD_STATUS_EOF) { 1897 if (dev->flags & CAMDD_DEV_FLAG_EOF_SENT) { 1898 STAILQ_REMOVE(&local_queue, buf1, camdd_buf, 1899 work_links); 1900 camdd_release_buf(buf1); 1901 retval = 1; 1902 continue; 1903 } 1904 dev->flags |= CAMDD_DEV_FLAG_EOF_SENT; 1905 } 1906 1907 1908 STAILQ_INSERT_TAIL(&dev->peer_work_queue, buf1, links); 1909 peer_bytes_queued += (data->fill_len - data->resid); 1910 dev->peer_bytes_queued += (data->fill_len - data->resid); 1911 dev->num_peer_work_queue++; 1912 } 1913 1914 if (STAILQ_FIRST(&local_queue) == NULL) 1915 goto bailout; 1916 1917 /* 1918 * Drop our mutex and pick up the other thread's mutex. We need to 1919 * do this to avoid deadlocks. 1920 */ 1921 pthread_mutex_unlock(&dev->mutex); 1922 pthread_mutex_lock(&dev->peer_dev->mutex); 1923 1924 if (dev->peer_dev->flags & CAMDD_DEV_FLAG_ACTIVE) { 1925 /* 1926 * Put the buffers on the other thread's incoming work queue. 1927 */ 1928 for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL; 1929 buf1 = STAILQ_FIRST(&local_queue)) { 1930 STAILQ_REMOVE_HEAD(&local_queue, work_links); 1931 STAILQ_INSERT_TAIL(&dev->peer_dev->work_queue, buf1, 1932 work_links); 1933 } 1934 /* 1935 * Send an event to the other thread's kqueue to let it know 1936 * that there is something on the work queue. 1937 */ 1938 retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL); 1939 if (retval == -1) 1940 warn("%s: unable to add peer work_queue kevent", 1941 __func__); 1942 else 1943 retval = 0; 1944 } else 1945 active = 0; 1946 1947 pthread_mutex_unlock(&dev->peer_dev->mutex); 1948 pthread_mutex_lock(&dev->mutex); 1949 1950 /* 1951 * If the other side isn't active, run through the queue and 1952 * release all of the buffers. 1953 */ 1954 if (active == 0) { 1955 for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL; 1956 buf1 = STAILQ_FIRST(&local_queue)) { 1957 STAILQ_REMOVE_HEAD(&local_queue, work_links); 1958 STAILQ_REMOVE(&dev->peer_work_queue, buf1, camdd_buf, 1959 links); 1960 dev->num_peer_work_queue--; 1961 camdd_release_buf(buf1); 1962 } 1963 dev->peer_bytes_queued -= peer_bytes_queued; 1964 retval = 1; 1965 } 1966 1967 bailout: 1968 return (retval); 1969 } 1970 1971 /* 1972 * Return a buffer to the reader thread when we have completed writing it. 1973 */ 1974 int 1975 camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf) 1976 { 1977 struct kevent ke; 1978 int retval = 0; 1979 1980 /* 1981 * Setup the event to let the other thread know that we have 1982 * completed a buffer. 1983 */ 1984 EV_SET(&ke, (uintptr_t)&dev->peer_dev->peer_done_queue, EVFILT_USER, 0, 1985 NOTE_TRIGGER, 0, NULL); 1986 1987 /* 1988 * Drop our lock and acquire the other thread's lock before 1989 * manipulating 1990 */ 1991 pthread_mutex_unlock(&dev->mutex); 1992 pthread_mutex_lock(&dev->peer_dev->mutex); 1993 1994 /* 1995 * Put the buffer on the reader thread's peer done queue now that 1996 * we have completed it. 1997 */ 1998 STAILQ_INSERT_TAIL(&dev->peer_dev->peer_done_queue, peer_buf, 1999 work_links); 2000 dev->peer_dev->num_peer_done_queue++; 2001 2002 /* 2003 * Send an event to the peer thread to let it know that we've added 2004 * something to its peer done queue. 2005 */ 2006 retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL); 2007 if (retval == -1) 2008 warn("%s: unable to add peer_done_queue kevent", __func__); 2009 else 2010 retval = 0; 2011 2012 /* 2013 * Drop the other thread's lock and reacquire ours. 2014 */ 2015 pthread_mutex_unlock(&dev->peer_dev->mutex); 2016 pthread_mutex_lock(&dev->mutex); 2017 2018 return (retval); 2019 } 2020 2021 /* 2022 * Free a buffer that was written out by the writer thread and returned to 2023 * the reader thread. 2024 */ 2025 void 2026 camdd_peer_done(struct camdd_buf *buf) 2027 { 2028 struct camdd_dev *dev; 2029 struct camdd_buf_data *data; 2030 2031 dev = buf->dev; 2032 if (buf->buf_type != CAMDD_BUF_DATA) { 2033 errx(1, "%s: should have a data buffer, not an " 2034 "indirect buffer", __func__); 2035 } 2036 2037 data = &buf->buf_type_spec.data; 2038 2039 STAILQ_REMOVE(&dev->peer_work_queue, buf, camdd_buf, links); 2040 dev->num_peer_work_queue--; 2041 dev->peer_bytes_queued -= (data->fill_len - data->resid); 2042 2043 if (buf->status == CAMDD_STATUS_EOF) 2044 dev->flags |= CAMDD_DEV_FLAG_PEER_EOF; 2045 2046 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links); 2047 } 2048 2049 /* 2050 * Assumes caller holds the lock for this device. 2051 */ 2052 void 2053 camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf, 2054 int *error_count) 2055 { 2056 int retval = 0; 2057 2058 /* 2059 * If we're the reader, we need to send the completed I/O 2060 * to the writer. If we're the writer, we need to just 2061 * free up resources, or let the reader know if we've 2062 * encountered an error. 2063 */ 2064 if (dev->write_dev == 0) { 2065 retval = camdd_queue_peer_buf(dev, buf); 2066 if (retval != 0) 2067 (*error_count)++; 2068 } else { 2069 struct camdd_buf *tmp_buf, *next_buf; 2070 2071 STAILQ_FOREACH_SAFE(tmp_buf, &buf->src_list, src_links, 2072 next_buf) { 2073 struct camdd_buf *src_buf; 2074 struct camdd_buf_indirect *indirect; 2075 2076 STAILQ_REMOVE(&buf->src_list, tmp_buf, 2077 camdd_buf, src_links); 2078 2079 tmp_buf->status = buf->status; 2080 2081 if (tmp_buf->buf_type == CAMDD_BUF_DATA) { 2082 camdd_complete_peer_buf(dev, tmp_buf); 2083 continue; 2084 } 2085 2086 indirect = &tmp_buf->buf_type_spec.indirect; 2087 src_buf = indirect->src_buf; 2088 src_buf->refcount--; 2089 /* 2090 * XXX KDM we probably need to account for 2091 * exactly how many bytes we were able to 2092 * write. Allocate the residual to the 2093 * first N buffers? Or just track the 2094 * number of bytes written? Right now the reader 2095 * doesn't do anything with a residual. 2096 */ 2097 src_buf->status = buf->status; 2098 if (src_buf->refcount <= 0) 2099 camdd_complete_peer_buf(dev, src_buf); 2100 STAILQ_INSERT_TAIL(&dev->free_indirect_queue, 2101 tmp_buf, links); 2102 } 2103 2104 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links); 2105 } 2106 } 2107 2108 /* 2109 * Fetch all completed commands from the pass(4) device. 2110 * 2111 * Returns the number of commands received, or -1 if any of the commands 2112 * completed with an error. Returns 0 if no commands are available. 2113 */ 2114 int 2115 camdd_pass_fetch(struct camdd_dev *dev) 2116 { 2117 struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass; 2118 union ccb ccb; 2119 int retval = 0, num_fetched = 0, error_count = 0; 2120 2121 pthread_mutex_unlock(&dev->mutex); 2122 /* 2123 * XXX KDM we don't distinguish between EFAULT and ENOENT. 2124 */ 2125 while ((retval = ioctl(pass_dev->dev->fd, CAMIOGET, &ccb)) != -1) { 2126 struct camdd_buf *buf; 2127 struct camdd_buf_data *data; 2128 cam_status ccb_status; 2129 union ccb *buf_ccb; 2130 2131 buf = ccb.ccb_h.ccb_buf; 2132 data = &buf->buf_type_spec.data; 2133 buf_ccb = &data->ccb; 2134 2135 num_fetched++; 2136 2137 /* 2138 * Copy the CCB back out so we get status, sense data, etc. 2139 */ 2140 bcopy(&ccb, buf_ccb, sizeof(ccb)); 2141 2142 pthread_mutex_lock(&dev->mutex); 2143 2144 /* 2145 * We're now done, so take this off the active queue. 2146 */ 2147 STAILQ_REMOVE(&dev->active_queue, buf, camdd_buf, links); 2148 dev->cur_active_io--; 2149 2150 ccb_status = ccb.ccb_h.status & CAM_STATUS_MASK; 2151 if (ccb_status != CAM_REQ_CMP) { 2152 cam_error_print(pass_dev->dev, &ccb, CAM_ESF_ALL, 2153 CAM_EPF_ALL, stderr); 2154 } 2155 2156 data->resid = ccb.csio.resid; 2157 dev->bytes_transferred += (ccb.csio.dxfer_len - ccb.csio.resid); 2158 2159 if (buf->status == CAMDD_STATUS_NONE) 2160 buf->status = camdd_ccb_status(&ccb); 2161 if (buf->status == CAMDD_STATUS_ERROR) 2162 error_count++; 2163 else if (buf->status == CAMDD_STATUS_EOF) { 2164 /* 2165 * Once we queue this buffer to our partner thread, 2166 * he will know that we've hit EOF. 2167 */ 2168 dev->flags |= CAMDD_DEV_FLAG_EOF; 2169 } 2170 2171 camdd_complete_buf(dev, buf, &error_count); 2172 2173 /* 2174 * Unlock in preparation for the ioctl call. 2175 */ 2176 pthread_mutex_unlock(&dev->mutex); 2177 } 2178 2179 pthread_mutex_lock(&dev->mutex); 2180 2181 if (error_count > 0) 2182 return (-1); 2183 else 2184 return (num_fetched); 2185 } 2186 2187 /* 2188 * Returns -1 for error, 0 for success/continue, and 1 for resource 2189 * shortage/stop processing. 2190 */ 2191 int 2192 camdd_file_run(struct camdd_dev *dev) 2193 { 2194 struct camdd_dev_file *file_dev = &dev->dev_spec.file; 2195 struct camdd_buf_data *data; 2196 struct camdd_buf *buf; 2197 off_t io_offset; 2198 int retval = 0, write_dev = dev->write_dev; 2199 int error_count = 0, no_resources = 0, double_buf_needed = 0; 2200 uint32_t num_sectors = 0, db_len = 0; 2201 2202 buf = STAILQ_FIRST(&dev->run_queue); 2203 if (buf == NULL) { 2204 no_resources = 1; 2205 goto bailout; 2206 } else if ((dev->write_dev == 0) 2207 && (dev->flags & (CAMDD_DEV_FLAG_EOF | 2208 CAMDD_DEV_FLAG_EOF_SENT))) { 2209 STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links); 2210 dev->num_run_queue--; 2211 buf->status = CAMDD_STATUS_EOF; 2212 error_count++; 2213 goto bailout; 2214 } 2215 2216 /* 2217 * If we're writing, we need to go through the source buffer list 2218 * and create an S/G list. 2219 */ 2220 if (write_dev != 0) { 2221 retval = camdd_buf_sg_create(buf, /*iovec*/ 1, 2222 dev->sector_size, &num_sectors, &double_buf_needed); 2223 if (retval != 0) { 2224 no_resources = 1; 2225 goto bailout; 2226 } 2227 } 2228 2229 STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links); 2230 dev->num_run_queue--; 2231 2232 data = &buf->buf_type_spec.data; 2233 2234 /* 2235 * pread(2) and pwrite(2) offsets are byte offsets. 2236 */ 2237 io_offset = buf->lba * dev->sector_size; 2238 2239 /* 2240 * Unlock the mutex while we read or write. 2241 */ 2242 pthread_mutex_unlock(&dev->mutex); 2243 2244 /* 2245 * Note that we don't need to double buffer if we're the reader 2246 * because in that case, we have allocated a single buffer of 2247 * sufficient size to do the read. This copy is necessary on 2248 * writes because if one of the components of the S/G list is not 2249 * a sector size multiple, the kernel will reject the write. This 2250 * is unfortunate but not surprising. So this will make sure that 2251 * we're using a single buffer that is a multiple of the sector size. 2252 */ 2253 if ((double_buf_needed != 0) 2254 && (data->sg_count > 1) 2255 && (write_dev != 0)) { 2256 uint32_t cur_offset; 2257 int i; 2258 2259 if (file_dev->tmp_buf == NULL) 2260 file_dev->tmp_buf = calloc(dev->blocksize, 1); 2261 if (file_dev->tmp_buf == NULL) { 2262 buf->status = CAMDD_STATUS_ERROR; 2263 error_count++; 2264 goto bailout; 2265 } 2266 for (i = 0, cur_offset = 0; i < data->sg_count; i++) { 2267 bcopy(data->iovec[i].iov_base, 2268 &file_dev->tmp_buf[cur_offset], 2269 data->iovec[i].iov_len); 2270 cur_offset += data->iovec[i].iov_len; 2271 } 2272 db_len = cur_offset; 2273 } 2274 2275 if (file_dev->file_flags & CAMDD_FF_CAN_SEEK) { 2276 if (write_dev == 0) { 2277 /* 2278 * XXX KDM is there any way we would need a S/G 2279 * list here? 2280 */ 2281 retval = pread(file_dev->fd, data->buf, 2282 buf->len, io_offset); 2283 } else { 2284 if (double_buf_needed != 0) { 2285 retval = pwrite(file_dev->fd, file_dev->tmp_buf, 2286 db_len, io_offset); 2287 } else if (data->sg_count == 0) { 2288 retval = pwrite(file_dev->fd, data->buf, 2289 data->fill_len, io_offset); 2290 } else { 2291 retval = pwritev(file_dev->fd, data->iovec, 2292 data->sg_count, io_offset); 2293 } 2294 } 2295 } else { 2296 if (write_dev == 0) { 2297 /* 2298 * XXX KDM is there any way we would need a S/G 2299 * list here? 2300 */ 2301 retval = read(file_dev->fd, data->buf, buf->len); 2302 } else { 2303 if (double_buf_needed != 0) { 2304 retval = write(file_dev->fd, file_dev->tmp_buf, 2305 db_len); 2306 } else if (data->sg_count == 0) { 2307 retval = write(file_dev->fd, data->buf, 2308 data->fill_len); 2309 } else { 2310 retval = writev(file_dev->fd, data->iovec, 2311 data->sg_count); 2312 } 2313 } 2314 } 2315 2316 /* We're done, re-acquire the lock */ 2317 pthread_mutex_lock(&dev->mutex); 2318 2319 if (retval >= (ssize_t)data->fill_len) { 2320 /* 2321 * If the bytes transferred is more than the request size, 2322 * that indicates an overrun, which should only happen at 2323 * the end of a transfer if we have to round up to a sector 2324 * boundary. 2325 */ 2326 if (buf->status == CAMDD_STATUS_NONE) 2327 buf->status = CAMDD_STATUS_OK; 2328 data->resid = 0; 2329 dev->bytes_transferred += retval; 2330 } else if (retval == -1) { 2331 warn("Error %s %s", (write_dev) ? "writing to" : 2332 "reading from", file_dev->filename); 2333 2334 buf->status = CAMDD_STATUS_ERROR; 2335 data->resid = data->fill_len; 2336 error_count++; 2337 2338 if (dev->debug == 0) 2339 goto bailout; 2340 2341 if ((double_buf_needed != 0) 2342 && (write_dev != 0)) { 2343 fprintf(stderr, "%s: fd %d, DB buf %p, len %u lba %ju " 2344 "offset %ju\n", __func__, file_dev->fd, 2345 file_dev->tmp_buf, db_len, (uintmax_t)buf->lba, 2346 (uintmax_t)io_offset); 2347 } else if (data->sg_count == 0) { 2348 fprintf(stderr, "%s: fd %d, buf %p, len %u, lba %ju " 2349 "offset %ju\n", __func__, file_dev->fd, data->buf, 2350 data->fill_len, (uintmax_t)buf->lba, 2351 (uintmax_t)io_offset); 2352 } else { 2353 int i; 2354 2355 fprintf(stderr, "%s: fd %d, len %u, lba %ju " 2356 "offset %ju\n", __func__, file_dev->fd, 2357 data->fill_len, (uintmax_t)buf->lba, 2358 (uintmax_t)io_offset); 2359 2360 for (i = 0; i < data->sg_count; i++) { 2361 fprintf(stderr, "index %d ptr %p len %zu\n", 2362 i, data->iovec[i].iov_base, 2363 data->iovec[i].iov_len); 2364 } 2365 } 2366 } else if (retval == 0) { 2367 buf->status = CAMDD_STATUS_EOF; 2368 if (dev->debug != 0) 2369 printf("%s: got EOF from %s!\n", __func__, 2370 file_dev->filename); 2371 data->resid = data->fill_len; 2372 error_count++; 2373 } else if (retval < (ssize_t)data->fill_len) { 2374 if (buf->status == CAMDD_STATUS_NONE) 2375 buf->status = CAMDD_STATUS_SHORT_IO; 2376 data->resid = data->fill_len - retval; 2377 dev->bytes_transferred += retval; 2378 } 2379 2380 bailout: 2381 if (buf != NULL) { 2382 if (buf->status == CAMDD_STATUS_EOF) { 2383 struct camdd_buf *buf2; 2384 dev->flags |= CAMDD_DEV_FLAG_EOF; 2385 STAILQ_FOREACH(buf2, &dev->run_queue, links) 2386 buf2->status = CAMDD_STATUS_EOF; 2387 } 2388 2389 camdd_complete_buf(dev, buf, &error_count); 2390 } 2391 2392 if (error_count != 0) 2393 return (-1); 2394 else if (no_resources != 0) 2395 return (1); 2396 else 2397 return (0); 2398 } 2399 2400 /* 2401 * Execute one command from the run queue. Returns 0 for success, 1 for 2402 * stop processing, and -1 for error. 2403 */ 2404 int 2405 camdd_pass_run(struct camdd_dev *dev) 2406 { 2407 struct camdd_buf *buf = NULL; 2408 struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass; 2409 struct camdd_buf_data *data; 2410 uint32_t num_blocks, sectors_used = 0; 2411 union ccb *ccb; 2412 int retval = 0, is_write = dev->write_dev; 2413 int double_buf_needed = 0; 2414 2415 buf = STAILQ_FIRST(&dev->run_queue); 2416 if (buf == NULL) { 2417 retval = 1; 2418 goto bailout; 2419 } 2420 2421 /* 2422 * If we're writing, we need to go through the source buffer list 2423 * and create an S/G list. 2424 */ 2425 if (is_write != 0) { 2426 retval = camdd_buf_sg_create(buf, /*iovec*/ 0,dev->sector_size, 2427 §ors_used, &double_buf_needed); 2428 if (retval != 0) { 2429 retval = -1; 2430 goto bailout; 2431 } 2432 } 2433 2434 STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links); 2435 dev->num_run_queue--; 2436 2437 data = &buf->buf_type_spec.data; 2438 2439 ccb = &data->ccb; 2440 CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); 2441 2442 /* 2443 * In almost every case the number of blocks should be the device 2444 * block size. The exception may be at the end of an I/O stream 2445 * for a partial block or at the end of a device. 2446 */ 2447 if (is_write != 0) 2448 num_blocks = sectors_used; 2449 else 2450 num_blocks = data->fill_len / pass_dev->block_len; 2451 2452 scsi_read_write(&ccb->csio, 2453 /*retries*/ dev->retry_count, 2454 /*cbfcnp*/ NULL, 2455 /*tag_action*/ MSG_SIMPLE_Q_TAG, 2456 /*readop*/ (dev->write_dev == 0) ? SCSI_RW_READ : 2457 SCSI_RW_WRITE, 2458 /*byte2*/ 0, 2459 /*minimum_cmd_size*/ dev->min_cmd_size, 2460 /*lba*/ buf->lba, 2461 /*block_count*/ num_blocks, 2462 /*data_ptr*/ (data->sg_count != 0) ? 2463 (uint8_t *)data->segs : data->buf, 2464 /*dxfer_len*/ (num_blocks * pass_dev->block_len), 2465 /*sense_len*/ SSD_FULL_SIZE, 2466 /*timeout*/ dev->io_timeout); 2467 2468 /* Disable freezing the device queue */ 2469 ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; 2470 2471 if (dev->retry_count != 0) 2472 ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; 2473 2474 if (data->sg_count != 0) { 2475 ccb->csio.sglist_cnt = data->sg_count; 2476 ccb->ccb_h.flags |= CAM_DATA_SG; 2477 } 2478 2479 /* 2480 * Store a pointer to the buffer in the CCB. The kernel will 2481 * restore this when we get it back, and we'll use it to identify 2482 * the buffer this CCB came from. 2483 */ 2484 ccb->ccb_h.ccb_buf = buf; 2485 2486 /* 2487 * Unlock our mutex in preparation for issuing the ioctl. 2488 */ 2489 pthread_mutex_unlock(&dev->mutex); 2490 /* 2491 * Queue the CCB to the pass(4) driver. 2492 */ 2493 if (ioctl(pass_dev->dev->fd, CAMIOQUEUE, ccb) == -1) { 2494 pthread_mutex_lock(&dev->mutex); 2495 2496 warn("%s: error sending CAMIOQUEUE ioctl to %s%u", __func__, 2497 pass_dev->dev->device_name, pass_dev->dev->dev_unit_num); 2498 warn("%s: CCB address is %p", __func__, ccb); 2499 retval = -1; 2500 2501 STAILQ_INSERT_TAIL(&dev->free_queue, buf, links); 2502 } else { 2503 pthread_mutex_lock(&dev->mutex); 2504 2505 dev->cur_active_io++; 2506 STAILQ_INSERT_TAIL(&dev->active_queue, buf, links); 2507 } 2508 2509 bailout: 2510 return (retval); 2511 } 2512 2513 int 2514 camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len) 2515 { 2516 struct camdd_dev_pass *pass_dev; 2517 uint32_t num_blocks; 2518 int retval = 0; 2519 2520 pass_dev = &dev->dev_spec.pass; 2521 2522 *lba = dev->next_io_pos_bytes / dev->sector_size; 2523 *len = dev->blocksize; 2524 num_blocks = *len / dev->sector_size; 2525 2526 /* 2527 * If max_sector is 0, then we have no set limit. This can happen 2528 * if we're writing to a file in a filesystem, or reading from 2529 * something like /dev/zero. 2530 */ 2531 if ((dev->max_sector != 0) 2532 || (dev->sector_io_limit != 0)) { 2533 uint64_t max_sector; 2534 2535 if ((dev->max_sector != 0) 2536 && (dev->sector_io_limit != 0)) 2537 max_sector = min(dev->sector_io_limit, dev->max_sector); 2538 else if (dev->max_sector != 0) 2539 max_sector = dev->max_sector; 2540 else 2541 max_sector = dev->sector_io_limit; 2542 2543 2544 /* 2545 * Check to see whether we're starting off past the end of 2546 * the device. If so, we need to just send an EOF 2547 * notification to the writer. 2548 */ 2549 if (*lba > max_sector) { 2550 *len = 0; 2551 retval = 1; 2552 } else if (((*lba + num_blocks) > max_sector + 1) 2553 || ((*lba + num_blocks) < *lba)) { 2554 /* 2555 * If we get here (but pass the first check), we 2556 * can trim the request length down to go to the 2557 * end of the device. 2558 */ 2559 num_blocks = (max_sector + 1) - *lba; 2560 *len = num_blocks * dev->sector_size; 2561 retval = 1; 2562 } 2563 } 2564 2565 dev->next_io_pos_bytes += *len; 2566 2567 return (retval); 2568 } 2569 2570 /* 2571 * Returns 0 for success, 1 for EOF detected, and -1 for failure. 2572 */ 2573 int 2574 camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf) 2575 { 2576 struct camdd_buf *buf = NULL; 2577 struct camdd_buf_data *data; 2578 struct camdd_dev_pass *pass_dev; 2579 size_t new_len; 2580 struct camdd_buf_data *rb_data; 2581 int is_write = dev->write_dev; 2582 int eof_flush_needed = 0; 2583 int retval = 0; 2584 int error; 2585 2586 pass_dev = &dev->dev_spec.pass; 2587 2588 /* 2589 * If we've gotten EOF or our partner has, we should not continue 2590 * queueing I/O. If we're a writer, though, we should continue 2591 * to write any buffers that don't have EOF status. 2592 */ 2593 if ((dev->flags & CAMDD_DEV_FLAG_EOF) 2594 || ((dev->flags & CAMDD_DEV_FLAG_PEER_EOF) 2595 && (is_write == 0))) { 2596 /* 2597 * Tell the worker thread that we have seen EOF. 2598 */ 2599 retval = 1; 2600 2601 /* 2602 * If we're the writer, send the buffer back with EOF status. 2603 */ 2604 if (is_write) { 2605 read_buf->status = CAMDD_STATUS_EOF; 2606 2607 error = camdd_complete_peer_buf(dev, read_buf); 2608 } 2609 goto bailout; 2610 } 2611 2612 if (is_write == 0) { 2613 buf = camdd_get_buf(dev, CAMDD_BUF_DATA); 2614 if (buf == NULL) { 2615 retval = -1; 2616 goto bailout; 2617 } 2618 data = &buf->buf_type_spec.data; 2619 2620 retval = camdd_get_next_lba_len(dev, &buf->lba, &buf->len); 2621 if (retval != 0) { 2622 buf->status = CAMDD_STATUS_EOF; 2623 2624 if ((buf->len == 0) 2625 && ((dev->flags & (CAMDD_DEV_FLAG_EOF_SENT | 2626 CAMDD_DEV_FLAG_EOF_QUEUED)) != 0)) { 2627 camdd_release_buf(buf); 2628 goto bailout; 2629 } 2630 dev->flags |= CAMDD_DEV_FLAG_EOF_QUEUED; 2631 } 2632 2633 data->fill_len = buf->len; 2634 data->src_start_offset = buf->lba * dev->sector_size; 2635 2636 /* 2637 * Put this on the run queue. 2638 */ 2639 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links); 2640 dev->num_run_queue++; 2641 2642 /* We're done. */ 2643 goto bailout; 2644 } 2645 2646 /* 2647 * Check for new EOF status from the reader. 2648 */ 2649 if ((read_buf->status == CAMDD_STATUS_EOF) 2650 || (read_buf->status == CAMDD_STATUS_ERROR)) { 2651 dev->flags |= CAMDD_DEV_FLAG_PEER_EOF; 2652 if ((STAILQ_FIRST(&dev->pending_queue) == NULL) 2653 && (read_buf->len == 0)) { 2654 camdd_complete_peer_buf(dev, read_buf); 2655 retval = 1; 2656 goto bailout; 2657 } else 2658 eof_flush_needed = 1; 2659 } 2660 2661 /* 2662 * See if we have a buffer we're composing with pieces from our 2663 * partner thread. 2664 */ 2665 buf = STAILQ_FIRST(&dev->pending_queue); 2666 if (buf == NULL) { 2667 uint64_t lba; 2668 ssize_t len; 2669 2670 retval = camdd_get_next_lba_len(dev, &lba, &len); 2671 if (retval != 0) { 2672 read_buf->status = CAMDD_STATUS_EOF; 2673 2674 if (len == 0) { 2675 dev->flags |= CAMDD_DEV_FLAG_EOF; 2676 error = camdd_complete_peer_buf(dev, read_buf); 2677 goto bailout; 2678 } 2679 } 2680 2681 /* 2682 * If we don't have a pending buffer, we need to grab a new 2683 * one from the free list or allocate another one. 2684 */ 2685 buf = camdd_get_buf(dev, CAMDD_BUF_DATA); 2686 if (buf == NULL) { 2687 retval = 1; 2688 goto bailout; 2689 } 2690 2691 buf->lba = lba; 2692 buf->len = len; 2693 2694 STAILQ_INSERT_TAIL(&dev->pending_queue, buf, links); 2695 dev->num_pending_queue++; 2696 } 2697 2698 data = &buf->buf_type_spec.data; 2699 2700 rb_data = &read_buf->buf_type_spec.data; 2701 2702 if ((rb_data->src_start_offset != dev->next_peer_pos_bytes) 2703 && (dev->debug != 0)) { 2704 printf("%s: WARNING: reader offset %#jx != expected offset " 2705 "%#jx\n", __func__, (uintmax_t)rb_data->src_start_offset, 2706 (uintmax_t)dev->next_peer_pos_bytes); 2707 } 2708 dev->next_peer_pos_bytes = rb_data->src_start_offset + 2709 (rb_data->fill_len - rb_data->resid); 2710 2711 new_len = (rb_data->fill_len - rb_data->resid) + data->fill_len; 2712 if (new_len < buf->len) { 2713 /* 2714 * There are three cases here: 2715 * 1. We need more data to fill up a block, so we put 2716 * this I/O on the queue and wait for more I/O. 2717 * 2. We have a pending buffer in the queue that is 2718 * smaller than our blocksize, but we got an EOF. So we 2719 * need to go ahead and flush the write out. 2720 * 3. We got an error. 2721 */ 2722 2723 /* 2724 * Increment our fill length. 2725 */ 2726 data->fill_len += (rb_data->fill_len - rb_data->resid); 2727 2728 /* 2729 * Add the new read buffer to the list for writing. 2730 */ 2731 STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links); 2732 2733 /* Increment the count */ 2734 buf->src_count++; 2735 2736 if (eof_flush_needed == 0) { 2737 /* 2738 * We need to exit, because we don't have enough 2739 * data yet. 2740 */ 2741 goto bailout; 2742 } else { 2743 /* 2744 * Take the buffer off of the pending queue. 2745 */ 2746 STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, 2747 links); 2748 dev->num_pending_queue--; 2749 2750 /* 2751 * If we need an EOF flush, but there is no data 2752 * to flush, go ahead and return this buffer. 2753 */ 2754 if (data->fill_len == 0) { 2755 camdd_complete_buf(dev, buf, /*error_count*/0); 2756 retval = 1; 2757 goto bailout; 2758 } 2759 2760 /* 2761 * Put this on the next queue for execution. 2762 */ 2763 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links); 2764 dev->num_run_queue++; 2765 } 2766 } else if (new_len == buf->len) { 2767 /* 2768 * We have enough data to completey fill one block, 2769 * so we're ready to issue the I/O. 2770 */ 2771 2772 /* 2773 * Take the buffer off of the pending queue. 2774 */ 2775 STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, links); 2776 dev->num_pending_queue--; 2777 2778 /* 2779 * Add the new read buffer to the list for writing. 2780 */ 2781 STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links); 2782 2783 /* Increment the count */ 2784 buf->src_count++; 2785 2786 /* 2787 * Increment our fill length. 2788 */ 2789 data->fill_len += (rb_data->fill_len - rb_data->resid); 2790 2791 /* 2792 * Put this on the next queue for execution. 2793 */ 2794 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links); 2795 dev->num_run_queue++; 2796 } else { 2797 struct camdd_buf *idb; 2798 struct camdd_buf_indirect *indirect; 2799 uint32_t len_to_go, cur_offset; 2800 2801 2802 idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT); 2803 if (idb == NULL) { 2804 retval = 1; 2805 goto bailout; 2806 } 2807 indirect = &idb->buf_type_spec.indirect; 2808 indirect->src_buf = read_buf; 2809 read_buf->refcount++; 2810 indirect->offset = 0; 2811 indirect->start_ptr = rb_data->buf; 2812 /* 2813 * We've already established that there is more 2814 * data in read_buf than we have room for in our 2815 * current write request. So this particular chunk 2816 * of the request should just be the remainder 2817 * needed to fill up a block. 2818 */ 2819 indirect->len = buf->len - (data->fill_len - data->resid); 2820 2821 camdd_buf_add_child(buf, idb); 2822 2823 /* 2824 * This buffer is ready to execute, so we can take 2825 * it off the pending queue and put it on the run 2826 * queue. 2827 */ 2828 STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, 2829 links); 2830 dev->num_pending_queue--; 2831 STAILQ_INSERT_TAIL(&dev->run_queue, buf, links); 2832 dev->num_run_queue++; 2833 2834 cur_offset = indirect->offset + indirect->len; 2835 2836 /* 2837 * The resulting I/O would be too large to fit in 2838 * one block. We need to split this I/O into 2839 * multiple pieces. Allocate as many buffers as needed. 2840 */ 2841 for (len_to_go = rb_data->fill_len - rb_data->resid - 2842 indirect->len; len_to_go > 0;) { 2843 struct camdd_buf *new_buf; 2844 struct camdd_buf_data *new_data; 2845 uint64_t lba; 2846 ssize_t len; 2847 2848 retval = camdd_get_next_lba_len(dev, &lba, &len); 2849 if ((retval != 0) 2850 && (len == 0)) { 2851 /* 2852 * The device has already been marked 2853 * as EOF, and there is no space left. 2854 */ 2855 goto bailout; 2856 } 2857 2858 new_buf = camdd_get_buf(dev, CAMDD_BUF_DATA); 2859 if (new_buf == NULL) { 2860 retval = 1; 2861 goto bailout; 2862 } 2863 2864 new_buf->lba = lba; 2865 new_buf->len = len; 2866 2867 idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT); 2868 if (idb == NULL) { 2869 retval = 1; 2870 goto bailout; 2871 } 2872 2873 indirect = &idb->buf_type_spec.indirect; 2874 2875 indirect->src_buf = read_buf; 2876 read_buf->refcount++; 2877 indirect->offset = cur_offset; 2878 indirect->start_ptr = rb_data->buf + cur_offset; 2879 indirect->len = min(len_to_go, new_buf->len); 2880 #if 0 2881 if (((indirect->len % dev->sector_size) != 0) 2882 || ((indirect->offset % dev->sector_size) != 0)) { 2883 warnx("offset %ju len %ju not aligned with " 2884 "sector size %u", indirect->offset, 2885 (uintmax_t)indirect->len, dev->sector_size); 2886 } 2887 #endif 2888 cur_offset += indirect->len; 2889 len_to_go -= indirect->len; 2890 2891 camdd_buf_add_child(new_buf, idb); 2892 2893 new_data = &new_buf->buf_type_spec.data; 2894 2895 if ((new_data->fill_len == new_buf->len) 2896 || (eof_flush_needed != 0)) { 2897 STAILQ_INSERT_TAIL(&dev->run_queue, 2898 new_buf, links); 2899 dev->num_run_queue++; 2900 } else if (new_data->fill_len < buf->len) { 2901 STAILQ_INSERT_TAIL(&dev->pending_queue, 2902 new_buf, links); 2903 dev->num_pending_queue++; 2904 } else { 2905 warnx("%s: too much data in new " 2906 "buffer!", __func__); 2907 retval = 1; 2908 goto bailout; 2909 } 2910 } 2911 } 2912 2913 bailout: 2914 return (retval); 2915 } 2916 2917 void 2918 camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth, 2919 uint32_t *peer_depth, uint32_t *our_bytes, uint32_t *peer_bytes) 2920 { 2921 *our_depth = dev->cur_active_io + dev->num_run_queue; 2922 if (dev->num_peer_work_queue > 2923 dev->num_peer_done_queue) 2924 *peer_depth = dev->num_peer_work_queue - 2925 dev->num_peer_done_queue; 2926 else 2927 *peer_depth = 0; 2928 *our_bytes = *our_depth * dev->blocksize; 2929 *peer_bytes = dev->peer_bytes_queued; 2930 } 2931 2932 void 2933 camdd_sig_handler(int sig) 2934 { 2935 if (sig == SIGINFO) 2936 need_status = 1; 2937 else { 2938 need_exit = 1; 2939 error_exit = 1; 2940 } 2941 2942 sem_post(&camdd_sem); 2943 } 2944 2945 void 2946 camdd_print_status(struct camdd_dev *camdd_dev, struct camdd_dev *other_dev, 2947 struct timespec *start_time) 2948 { 2949 struct timespec done_time; 2950 uint64_t total_ns; 2951 long double mb_sec, total_sec; 2952 int error = 0; 2953 2954 error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &done_time); 2955 if (error != 0) { 2956 warn("Unable to get done time"); 2957 return; 2958 } 2959 2960 timespecsub(&done_time, start_time); 2961 2962 total_ns = done_time.tv_nsec + (done_time.tv_sec * 1000000000); 2963 total_sec = total_ns; 2964 total_sec /= 1000000000; 2965 2966 fprintf(stderr, "%ju bytes %s %s\n%ju bytes %s %s\n" 2967 "%.4Lf seconds elapsed\n", 2968 (uintmax_t)camdd_dev->bytes_transferred, 2969 (camdd_dev->write_dev == 0) ? "read from" : "written to", 2970 camdd_dev->device_name, 2971 (uintmax_t)other_dev->bytes_transferred, 2972 (other_dev->write_dev == 0) ? "read from" : "written to", 2973 other_dev->device_name, total_sec); 2974 2975 mb_sec = min(other_dev->bytes_transferred,camdd_dev->bytes_transferred); 2976 mb_sec /= 1024 * 1024; 2977 mb_sec *= 1000000000; 2978 mb_sec /= total_ns; 2979 fprintf(stderr, "%.2Lf MB/sec\n", mb_sec); 2980 } 2981 2982 int 2983 camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts, uint64_t max_io, 2984 int retry_count, int timeout) 2985 { 2986 char *device = NULL; 2987 struct cam_device *new_cam_dev = NULL; 2988 struct camdd_dev *devs[2]; 2989 struct timespec start_time; 2990 pthread_t threads[2]; 2991 int unit = 0; 2992 int error = 0; 2993 int i; 2994 2995 if (num_io_opts != 2) { 2996 warnx("Must have one input and one output path"); 2997 error = 1; 2998 goto bailout; 2999 } 3000 3001 bzero(devs, sizeof(devs)); 3002 3003 for (i = 0; i < num_io_opts; i++) { 3004 switch (io_opts[i].dev_type) { 3005 case CAMDD_DEV_PASS: { 3006 camdd_argmask new_arglist = CAMDD_ARG_NONE; 3007 int bus = 0, target = 0, lun = 0; 3008 char name[30]; 3009 int rv; 3010 3011 if (isdigit(io_opts[i].dev_name[0])) { 3012 /* device specified as bus:target[:lun] */ 3013 rv = parse_btl(io_opts[i].dev_name, &bus, 3014 &target, &lun, &new_arglist); 3015 if (rv < 2) { 3016 warnx("numeric device specification " 3017 "must be either bus:target, or " 3018 "bus:target:lun"); 3019 error = 1; 3020 goto bailout; 3021 } 3022 /* default to 0 if lun was not specified */ 3023 if ((new_arglist & CAMDD_ARG_LUN) == 0) { 3024 lun = 0; 3025 new_arglist |= CAMDD_ARG_LUN; 3026 } 3027 } else { 3028 if (cam_get_device(io_opts[i].dev_name, name, 3029 sizeof name, &unit) == -1) { 3030 warnx("%s", cam_errbuf); 3031 error = 1; 3032 goto bailout; 3033 } 3034 device = strdup(name); 3035 new_arglist |= CAMDD_ARG_DEVICE |CAMDD_ARG_UNIT; 3036 } 3037 3038 if (new_arglist & (CAMDD_ARG_BUS | CAMDD_ARG_TARGET)) 3039 new_cam_dev = cam_open_btl(bus, target, lun, 3040 O_RDWR, NULL); 3041 else 3042 new_cam_dev = cam_open_spec_device(device, unit, 3043 O_RDWR, NULL); 3044 if (new_cam_dev == NULL) { 3045 warnx("%s", cam_errbuf); 3046 error = 1; 3047 goto bailout; 3048 } 3049 3050 devs[i] = camdd_probe_pass(new_cam_dev, 3051 /*io_opts*/ &io_opts[i], 3052 CAMDD_ARG_ERR_RECOVER, 3053 /*probe_retry_count*/ 3, 3054 /*probe_timeout*/ 5000, 3055 /*io_retry_count*/ retry_count, 3056 /*io_timeout*/ timeout); 3057 if (devs[i] == NULL) { 3058 warn("Unable to probe device %s%u", 3059 new_cam_dev->device_name, 3060 new_cam_dev->dev_unit_num); 3061 error = 1; 3062 goto bailout; 3063 } 3064 break; 3065 } 3066 case CAMDD_DEV_FILE: { 3067 int fd = -1; 3068 3069 if (io_opts[i].dev_name[0] == '-') { 3070 if (io_opts[i].write_dev != 0) 3071 fd = STDOUT_FILENO; 3072 else 3073 fd = STDIN_FILENO; 3074 } else { 3075 if (io_opts[i].write_dev != 0) { 3076 fd = open(io_opts[i].dev_name, 3077 O_RDWR | O_CREAT, S_IWUSR |S_IRUSR); 3078 } else { 3079 fd = open(io_opts[i].dev_name, 3080 O_RDONLY); 3081 } 3082 } 3083 if (fd == -1) { 3084 warn("error opening file %s", 3085 io_opts[i].dev_name); 3086 error = 1; 3087 goto bailout; 3088 } 3089 3090 devs[i] = camdd_probe_file(fd, &io_opts[i], 3091 retry_count, timeout); 3092 if (devs[i] == NULL) { 3093 error = 1; 3094 goto bailout; 3095 } 3096 3097 break; 3098 } 3099 default: 3100 warnx("Unknown device type %d (%s)", 3101 io_opts[i].dev_type, io_opts[i].dev_name); 3102 error = 1; 3103 goto bailout; 3104 break; /*NOTREACHED */ 3105 } 3106 3107 devs[i]->write_dev = io_opts[i].write_dev; 3108 3109 devs[i]->start_offset_bytes = io_opts[i].offset; 3110 3111 if (max_io != 0) { 3112 devs[i]->sector_io_limit = 3113 (devs[i]->start_offset_bytes / 3114 devs[i]->sector_size) + 3115 (max_io / devs[i]->sector_size) - 1; 3116 devs[i]->sector_io_limit = 3117 (devs[i]->start_offset_bytes / 3118 devs[i]->sector_size) + 3119 (max_io / devs[i]->sector_size) - 1; 3120 } 3121 3122 devs[i]->next_io_pos_bytes = devs[i]->start_offset_bytes; 3123 devs[i]->next_completion_pos_bytes =devs[i]->start_offset_bytes; 3124 } 3125 3126 devs[0]->peer_dev = devs[1]; 3127 devs[1]->peer_dev = devs[0]; 3128 devs[0]->next_peer_pos_bytes = devs[0]->peer_dev->next_io_pos_bytes; 3129 devs[1]->next_peer_pos_bytes = devs[1]->peer_dev->next_io_pos_bytes; 3130 3131 sem_init(&camdd_sem, /*pshared*/ 0, 0); 3132 3133 signal(SIGINFO, camdd_sig_handler); 3134 signal(SIGINT, camdd_sig_handler); 3135 3136 error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &start_time); 3137 if (error != 0) { 3138 warn("Unable to get start time"); 3139 goto bailout; 3140 } 3141 3142 for (i = 0; i < num_io_opts; i++) { 3143 error = pthread_create(&threads[i], NULL, camdd_worker, 3144 (void *)devs[i]); 3145 if (error != 0) { 3146 warnc(error, "pthread_create() failed"); 3147 goto bailout; 3148 } 3149 } 3150 3151 for (;;) { 3152 if ((sem_wait(&camdd_sem) == -1) 3153 || (need_exit != 0)) { 3154 struct kevent ke; 3155 3156 for (i = 0; i < num_io_opts; i++) { 3157 EV_SET(&ke, (uintptr_t)&devs[i]->work_queue, 3158 EVFILT_USER, 0, NOTE_TRIGGER, 0, NULL); 3159 3160 devs[i]->flags |= CAMDD_DEV_FLAG_EOF; 3161 3162 error = kevent(devs[i]->kq, &ke, 1, NULL, 0, 3163 NULL); 3164 if (error == -1) 3165 warn("%s: unable to wake up thread", 3166 __func__); 3167 error = 0; 3168 } 3169 break; 3170 } else if (need_status != 0) { 3171 camdd_print_status(devs[0], devs[1], &start_time); 3172 need_status = 0; 3173 } 3174 } 3175 for (i = 0; i < num_io_opts; i++) { 3176 pthread_join(threads[i], NULL); 3177 } 3178 3179 camdd_print_status(devs[0], devs[1], &start_time); 3180 3181 bailout: 3182 3183 for (i = 0; i < num_io_opts; i++) 3184 camdd_free_dev(devs[i]); 3185 3186 return (error + error_exit); 3187 } 3188 3189 void 3190 usage(void) 3191 { 3192 fprintf(stderr, 3193 "usage: camdd <-i|-o pass=pass0,bs=1M,offset=1M,depth=4>\n" 3194 " <-i|-o file=/tmp/file,bs=512K,offset=1M>\n" 3195 " <-i|-o file=/dev/da0,bs=512K,offset=1M>\n" 3196 " <-i|-o file=/dev/nsa0,bs=512K>\n" 3197 " [-C retry_count][-E][-m max_io_amt][-t timeout_secs][-v][-h]\n" 3198 "Option description\n" 3199 "-i <arg=val> Specify input device/file and parameters\n" 3200 "-o <arg=val> Specify output device/file and parameters\n" 3201 "Input and Output parameters\n" 3202 "pass=name Specify a pass(4) device like pass0 or /dev/pass0\n" 3203 "file=name Specify a file or device, /tmp/foo, /dev/da0, /dev/null\n" 3204 " or - for stdin/stdout\n" 3205 "bs=blocksize Specify blocksize in bytes, or using K, M, G, etc. suffix\n" 3206 "offset=len Specify starting offset in bytes or using K, M, G suffix\n" 3207 " NOTE: offset cannot be specified on tapes, pipes, stdin/out\n" 3208 "depth=N Specify a numeric queue depth. This only applies to pass(4)\n" 3209 "mcs=N Specify a minimum cmd size for pass(4) read/write commands\n" 3210 "Optional arguments\n" 3211 "-C retry_cnt Specify a retry count for pass(4) devices\n" 3212 "-E Enable CAM error recovery for pass(4) devices\n" 3213 "-m max_io Specify the maximum amount to be transferred in bytes or\n" 3214 " using K, G, M, etc. suffixes\n" 3215 "-t timeout Specify the I/O timeout to use with pass(4) devices\n" 3216 "-v Enable verbose error recovery\n" 3217 "-h Print this message\n"); 3218 } 3219 3220 3221 int 3222 camdd_parse_io_opts(char *args, int is_write, struct camdd_io_opts *io_opts) 3223 { 3224 char *tmpstr, *tmpstr2; 3225 char *orig_tmpstr = NULL; 3226 int retval = 0; 3227 3228 io_opts->write_dev = is_write; 3229 3230 tmpstr = strdup(args); 3231 if (tmpstr == NULL) { 3232 warn("strdup failed"); 3233 retval = 1; 3234 goto bailout; 3235 } 3236 orig_tmpstr = tmpstr; 3237 while ((tmpstr2 = strsep(&tmpstr, ",")) != NULL) { 3238 char *name, *value; 3239 3240 /* 3241 * If the user creates an empty parameter by putting in two 3242 * commas, skip over it and look for the next field. 3243 */ 3244 if (*tmpstr2 == '\0') 3245 continue; 3246 3247 name = strsep(&tmpstr2, "="); 3248 if (*name == '\0') { 3249 warnx("Got empty I/O parameter name"); 3250 retval = 1; 3251 goto bailout; 3252 } 3253 value = strsep(&tmpstr2, "="); 3254 if ((value == NULL) 3255 || (*value == '\0')) { 3256 warnx("Empty I/O parameter value for %s", name); 3257 retval = 1; 3258 goto bailout; 3259 } 3260 if (strncasecmp(name, "file", 4) == 0) { 3261 io_opts->dev_type = CAMDD_DEV_FILE; 3262 io_opts->dev_name = strdup(value); 3263 if (io_opts->dev_name == NULL) { 3264 warn("Error allocating memory"); 3265 retval = 1; 3266 goto bailout; 3267 } 3268 } else if (strncasecmp(name, "pass", 4) == 0) { 3269 io_opts->dev_type = CAMDD_DEV_PASS; 3270 io_opts->dev_name = strdup(value); 3271 if (io_opts->dev_name == NULL) { 3272 warn("Error allocating memory"); 3273 retval = 1; 3274 goto bailout; 3275 } 3276 } else if ((strncasecmp(name, "bs", 2) == 0) 3277 || (strncasecmp(name, "blocksize", 9) == 0)) { 3278 retval = expand_number(value, &io_opts->blocksize); 3279 if (retval == -1) { 3280 warn("expand_number(3) failed on %s=%s", name, 3281 value); 3282 retval = 1; 3283 goto bailout; 3284 } 3285 } else if (strncasecmp(name, "depth", 5) == 0) { 3286 char *endptr; 3287 3288 io_opts->queue_depth = strtoull(value, &endptr, 0); 3289 if (*endptr != '\0') { 3290 warnx("invalid queue depth %s", value); 3291 retval = 1; 3292 goto bailout; 3293 } 3294 } else if (strncasecmp(name, "mcs", 3) == 0) { 3295 char *endptr; 3296 3297 io_opts->min_cmd_size = strtol(value, &endptr, 0); 3298 if ((*endptr != '\0') 3299 || ((io_opts->min_cmd_size > 16) 3300 || (io_opts->min_cmd_size < 0))) { 3301 warnx("invalid minimum cmd size %s", value); 3302 retval = 1; 3303 goto bailout; 3304 } 3305 } else if (strncasecmp(name, "offset", 6) == 0) { 3306 retval = expand_number(value, &io_opts->offset); 3307 if (retval == -1) { 3308 warn("expand_number(3) failed on %s=%s", name, 3309 value); 3310 retval = 1; 3311 goto bailout; 3312 } 3313 } else if (strncasecmp(name, "debug", 5) == 0) { 3314 char *endptr; 3315 3316 io_opts->debug = strtoull(value, &endptr, 0); 3317 if (*endptr != '\0') { 3318 warnx("invalid debug level %s", value); 3319 retval = 1; 3320 goto bailout; 3321 } 3322 } else { 3323 warnx("Unrecognized parameter %s=%s", name, value); 3324 } 3325 } 3326 bailout: 3327 free(orig_tmpstr); 3328 3329 return (retval); 3330 } 3331 3332 int 3333 main(int argc, char **argv) 3334 { 3335 int c; 3336 camdd_argmask arglist = CAMDD_ARG_NONE; 3337 int timeout = 0, retry_count = 1; 3338 int error = 0; 3339 uint64_t max_io = 0; 3340 struct camdd_io_opts *opt_list = NULL; 3341 3342 if (argc == 1) { 3343 usage(); 3344 exit(1); 3345 } 3346 3347 opt_list = calloc(2, sizeof(struct camdd_io_opts)); 3348 if (opt_list == NULL) { 3349 warn("Unable to allocate option list"); 3350 error = 1; 3351 goto bailout; 3352 } 3353 3354 while ((c = getopt(argc, argv, "C:Ehi:m:o:t:v")) != -1){ 3355 switch (c) { 3356 case 'C': 3357 retry_count = strtol(optarg, NULL, 0); 3358 if (retry_count < 0) 3359 errx(1, "retry count %d is < 0", 3360 retry_count); 3361 arglist |= CAMDD_ARG_RETRIES; 3362 break; 3363 case 'E': 3364 arglist |= CAMDD_ARG_ERR_RECOVER; 3365 break; 3366 case 'i': 3367 case 'o': 3368 if (((c == 'i') 3369 && (opt_list[0].dev_type != CAMDD_DEV_NONE)) 3370 || ((c == 'o') 3371 && (opt_list[1].dev_type != CAMDD_DEV_NONE))) { 3372 errx(1, "Only one input and output path " 3373 "allowed"); 3374 } 3375 error = camdd_parse_io_opts(optarg, (c == 'o') ? 1 : 0, 3376 (c == 'o') ? &opt_list[1] : &opt_list[0]); 3377 if (error != 0) 3378 goto bailout; 3379 break; 3380 case 'm': 3381 error = expand_number(optarg, &max_io); 3382 if (error == -1) { 3383 warn("invalid maximum I/O amount %s", optarg); 3384 error = 1; 3385 goto bailout; 3386 } 3387 break; 3388 case 't': 3389 timeout = strtol(optarg, NULL, 0); 3390 if (timeout < 0) 3391 errx(1, "invalid timeout %d", timeout); 3392 /* Convert the timeout from seconds to ms */ 3393 timeout *= 1000; 3394 arglist |= CAMDD_ARG_TIMEOUT; 3395 break; 3396 case 'v': 3397 arglist |= CAMDD_ARG_VERBOSE; 3398 break; 3399 case 'h': 3400 default: 3401 usage(); 3402 exit(1); 3403 break; /*NOTREACHED*/ 3404 } 3405 } 3406 3407 if ((opt_list[0].dev_type == CAMDD_DEV_NONE) 3408 || (opt_list[1].dev_type == CAMDD_DEV_NONE)) 3409 errx(1, "Must specify both -i and -o"); 3410 3411 /* 3412 * Set the timeout if the user hasn't specified one. 3413 */ 3414 if (timeout == 0) 3415 timeout = CAMDD_PASS_RW_TIMEOUT; 3416 3417 error = camdd_rw(opt_list, 2, max_io, retry_count, timeout); 3418 3419 bailout: 3420 free(opt_list); 3421 3422 exit(error); 3423 } 3424