xref: /freebsd/usr.sbin/camdd/camdd.c (revision 1f4bcc459a76b7aa664f3fd557684cd0ba6da352)
1 /*-
2  * Copyright (c) 1997-2007 Kenneth D. Merry
3  * Copyright (c) 2013, 2014, 2015 Spectra Logic Corporation
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13  *    substantially similar to the "NO WARRANTY" disclaimer below
14  *    ("Disclaimer") and any redistribution must be conditioned upon
15  *    including a substantially similar Disclaimer requirement for further
16  *    binary redistribution.
17  *
18  * NO WARRANTY
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
22  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
28  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGES.
30  *
31  * Authors: Ken Merry           (Spectra Logic Corporation)
32  */
33 
34 /*
35  * This is eventually intended to be:
36  * - A basic data transfer/copy utility
37  * - A simple benchmark utility
38  * - An example of how to use the asynchronous pass(4) driver interface.
39  */
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include <sys/ioctl.h>
44 #include <sys/stdint.h>
45 #include <sys/types.h>
46 #include <sys/endian.h>
47 #include <sys/param.h>
48 #include <sys/sbuf.h>
49 #include <sys/stat.h>
50 #include <sys/event.h>
51 #include <sys/time.h>
52 #include <sys/uio.h>
53 #include <vm/vm.h>
54 #include <machine/bus.h>
55 #include <sys/bus.h>
56 #include <sys/bus_dma.h>
57 #include <sys/mtio.h>
58 #include <sys/conf.h>
59 #include <sys/disk.h>
60 
61 #include <stdio.h>
62 #include <stdlib.h>
63 #include <semaphore.h>
64 #include <string.h>
65 #include <unistd.h>
66 #include <inttypes.h>
67 #include <limits.h>
68 #include <fcntl.h>
69 #include <ctype.h>
70 #include <err.h>
71 #include <libutil.h>
72 #include <pthread.h>
73 #include <assert.h>
74 #include <bsdxml.h>
75 
76 #include <cam/cam.h>
77 #include <cam/cam_debug.h>
78 #include <cam/cam_ccb.h>
79 #include <cam/scsi/scsi_all.h>
80 #include <cam/scsi/scsi_da.h>
81 #include <cam/scsi/scsi_pass.h>
82 #include <cam/scsi/scsi_message.h>
83 #include <cam/scsi/smp_all.h>
84 #include <camlib.h>
85 #include <mtlib.h>
86 #include <zlib.h>
87 
88 typedef enum {
89 	CAMDD_CMD_NONE		= 0x00000000,
90 	CAMDD_CMD_HELP		= 0x00000001,
91 	CAMDD_CMD_WRITE		= 0x00000002,
92 	CAMDD_CMD_READ		= 0x00000003
93 } camdd_cmdmask;
94 
95 typedef enum {
96 	CAMDD_ARG_NONE		= 0x00000000,
97 	CAMDD_ARG_VERBOSE	= 0x00000001,
98 	CAMDD_ARG_DEVICE	= 0x00000002,
99 	CAMDD_ARG_BUS		= 0x00000004,
100 	CAMDD_ARG_TARGET	= 0x00000008,
101 	CAMDD_ARG_LUN		= 0x00000010,
102 	CAMDD_ARG_UNIT		= 0x00000020,
103 	CAMDD_ARG_TIMEOUT	= 0x00000040,
104 	CAMDD_ARG_ERR_RECOVER	= 0x00000080,
105 	CAMDD_ARG_RETRIES	= 0x00000100
106 } camdd_argmask;
107 
108 typedef enum {
109 	CAMDD_DEV_NONE		= 0x00,
110 	CAMDD_DEV_PASS		= 0x01,
111 	CAMDD_DEV_FILE		= 0x02
112 } camdd_dev_type;
113 
114 struct camdd_io_opts {
115 	camdd_dev_type	dev_type;
116 	char		*dev_name;
117 	uint64_t	blocksize;
118 	uint64_t	queue_depth;
119 	uint64_t	offset;
120 	int		min_cmd_size;
121 	int		write_dev;
122 	uint64_t	debug;
123 };
124 
125 typedef enum {
126 	CAMDD_BUF_NONE,
127 	CAMDD_BUF_DATA,
128 	CAMDD_BUF_INDIRECT
129 } camdd_buf_type;
130 
131 struct camdd_buf_indirect {
132 	/*
133 	 * Pointer to the source buffer.
134 	 */
135 	struct camdd_buf *src_buf;
136 
137 	/*
138 	 * Offset into the source buffer, in bytes.
139 	 */
140 	uint64_t	  offset;
141 	/*
142 	 * Pointer to the starting point in the source buffer.
143 	 */
144 	uint8_t		 *start_ptr;
145 
146 	/*
147 	 * Length of this chunk in bytes.
148 	 */
149 	size_t		  len;
150 };
151 
152 struct camdd_buf_data {
153 	/*
154 	 * Buffer allocated when we allocate this camdd_buf.  This should
155 	 * be the size of the blocksize for this device.
156 	 */
157 	uint8_t			*buf;
158 
159 	/*
160 	 * The amount of backing store allocated in buf.  Generally this
161 	 * will be the blocksize of the device.
162 	 */
163 	uint32_t		 alloc_len;
164 
165 	/*
166 	 * The amount of data that was put into the buffer (on reads) or
167 	 * the amount of data we have put onto the src_list so far (on
168 	 * writes).
169 	 */
170 	uint32_t		 fill_len;
171 
172 	/*
173 	 * The amount of data that was not transferred.
174 	 */
175 	uint32_t		 resid;
176 
177 	/*
178 	 * Starting byte offset on the reader.
179 	 */
180 	uint64_t		 src_start_offset;
181 
182 	/*
183 	 * CCB used for pass(4) device targets.
184 	 */
185 	union ccb		 ccb;
186 
187 	/*
188 	 * Number of scatter/gather segments.
189 	 */
190 	int			 sg_count;
191 
192 	/*
193 	 * Set if we had to tack on an extra buffer to round the transfer
194 	 * up to a sector size.
195 	 */
196 	int			 extra_buf;
197 
198 	/*
199 	 * Scatter/gather list used generally when we're the writer for a
200 	 * pass(4) device.
201 	 */
202 	bus_dma_segment_t	*segs;
203 
204 	/*
205 	 * Scatter/gather list used generally when we're the writer for a
206 	 * file or block device;
207 	 */
208 	struct iovec		*iovec;
209 };
210 
211 union camdd_buf_types {
212 	struct camdd_buf_indirect	indirect;
213 	struct camdd_buf_data		data;
214 };
215 
216 typedef enum {
217 	CAMDD_STATUS_NONE,
218 	CAMDD_STATUS_OK,
219 	CAMDD_STATUS_SHORT_IO,
220 	CAMDD_STATUS_EOF,
221 	CAMDD_STATUS_ERROR
222 } camdd_buf_status;
223 
224 struct camdd_buf {
225 	camdd_buf_type		 buf_type;
226 	union camdd_buf_types	 buf_type_spec;
227 
228 	camdd_buf_status	 status;
229 
230 	uint64_t		 lba;
231 	size_t			 len;
232 
233 	/*
234 	 * A reference count of how many indirect buffers point to this
235 	 * buffer.
236 	 */
237 	int			 refcount;
238 
239 	/*
240 	 * A link back to our parent device.
241 	 */
242 	struct camdd_dev	*dev;
243 	STAILQ_ENTRY(camdd_buf)  links;
244 	STAILQ_ENTRY(camdd_buf)  work_links;
245 
246 	/*
247 	 * A count of the buffers on the src_list.
248 	 */
249 	int			 src_count;
250 
251 	/*
252 	 * List of buffers from our partner thread that are the components
253 	 * of this buffer for the I/O.  Uses src_links.
254 	 */
255 	STAILQ_HEAD(,camdd_buf)	 src_list;
256 	STAILQ_ENTRY(camdd_buf)  src_links;
257 };
258 
259 #define	NUM_DEV_TYPES	2
260 
261 struct camdd_dev_pass {
262 	int			 scsi_dev_type;
263 	struct cam_device	*dev;
264 	uint64_t		 max_sector;
265 	uint32_t		 block_len;
266 	uint32_t		 cpi_maxio;
267 };
268 
269 typedef enum {
270 	CAMDD_FILE_NONE,
271 	CAMDD_FILE_REG,
272 	CAMDD_FILE_STD,
273 	CAMDD_FILE_PIPE,
274 	CAMDD_FILE_DISK,
275 	CAMDD_FILE_TAPE,
276 	CAMDD_FILE_TTY,
277 	CAMDD_FILE_MEM
278 } camdd_file_type;
279 
280 typedef enum {
281 	CAMDD_FF_NONE 		= 0x00,
282 	CAMDD_FF_CAN_SEEK	= 0x01
283 } camdd_file_flags;
284 
285 struct camdd_dev_file {
286 	int			 fd;
287 	struct stat		 sb;
288 	char			 filename[MAXPATHLEN + 1];
289 	camdd_file_type		 file_type;
290 	camdd_file_flags	 file_flags;
291 	uint8_t			*tmp_buf;
292 };
293 
294 struct camdd_dev_block {
295 	int			 fd;
296 	uint64_t		 size_bytes;
297 	uint32_t		 block_len;
298 };
299 
300 union camdd_dev_spec {
301 	struct camdd_dev_pass	pass;
302 	struct camdd_dev_file	file;
303 	struct camdd_dev_block	block;
304 };
305 
306 typedef enum {
307 	CAMDD_DEV_FLAG_NONE		= 0x00,
308 	CAMDD_DEV_FLAG_EOF		= 0x01,
309 	CAMDD_DEV_FLAG_PEER_EOF		= 0x02,
310 	CAMDD_DEV_FLAG_ACTIVE		= 0x04,
311 	CAMDD_DEV_FLAG_EOF_SENT		= 0x08,
312 	CAMDD_DEV_FLAG_EOF_QUEUED	= 0x10
313 } camdd_dev_flags;
314 
315 struct camdd_dev {
316 	camdd_dev_type		 dev_type;
317 	union camdd_dev_spec	 dev_spec;
318 	camdd_dev_flags		 flags;
319 	char			 device_name[MAXPATHLEN+1];
320 	uint32_t		 blocksize;
321 	uint32_t		 sector_size;
322 	uint64_t		 max_sector;
323 	uint64_t		 sector_io_limit;
324 	int			 min_cmd_size;
325 	int			 write_dev;
326 	int			 retry_count;
327 	int			 io_timeout;
328 	int			 debug;
329 	uint64_t		 start_offset_bytes;
330 	uint64_t		 next_io_pos_bytes;
331 	uint64_t		 next_peer_pos_bytes;
332 	uint64_t		 next_completion_pos_bytes;
333 	uint64_t		 peer_bytes_queued;
334 	uint64_t		 bytes_transferred;
335 	uint32_t		 target_queue_depth;
336 	uint32_t		 cur_active_io;
337 	uint8_t			*extra_buf;
338 	uint32_t		 extra_buf_len;
339 	struct camdd_dev	*peer_dev;
340 	pthread_mutex_t		 mutex;
341 	pthread_cond_t		 cond;
342 	int			 kq;
343 
344 	int			 (*run)(struct camdd_dev *dev);
345 	int			 (*fetch)(struct camdd_dev *dev);
346 
347 	/*
348 	 * Buffers that are available for I/O.  Uses links.
349 	 */
350 	STAILQ_HEAD(,camdd_buf)	 free_queue;
351 
352 	/*
353 	 * Free indirect buffers.  These are used for breaking a large
354 	 * buffer into multiple pieces.
355 	 */
356 	STAILQ_HEAD(,camdd_buf)	 free_indirect_queue;
357 
358 	/*
359 	 * Buffers that have been queued to the kernel.  Uses links.
360 	 */
361 	STAILQ_HEAD(,camdd_buf)	 active_queue;
362 
363 	/*
364 	 * Will generally contain one of our buffers that is waiting for enough
365 	 * I/O from our partner thread to be able to execute.  This will
366 	 * generally happen when our per-I/O-size is larger than the
367 	 * partner thread's per-I/O-size.  Uses links.
368 	 */
369 	STAILQ_HEAD(,camdd_buf)	 pending_queue;
370 
371 	/*
372 	 * Number of buffers on the pending queue
373 	 */
374 	int			 num_pending_queue;
375 
376 	/*
377 	 * Buffers that are filled and ready to execute.  This is used when
378 	 * our partner (reader) thread sends us blocks that are larger than
379 	 * our blocksize, and so we have to split them into multiple pieces.
380 	 */
381 	STAILQ_HEAD(,camdd_buf)	 run_queue;
382 
383 	/*
384 	 * Number of buffers on the run queue.
385 	 */
386 	int			 num_run_queue;
387 
388 	STAILQ_HEAD(,camdd_buf)	 reorder_queue;
389 
390 	int			 num_reorder_queue;
391 
392 	/*
393 	 * Buffers that have been queued to us by our partner thread
394 	 * (generally the reader thread) to be written out.  Uses
395 	 * work_links.
396 	 */
397 	STAILQ_HEAD(,camdd_buf)	 work_queue;
398 
399 	/*
400 	 * Buffers that have been completed by our partner thread.  Uses
401 	 * work_links.
402 	 */
403 	STAILQ_HEAD(,camdd_buf)	 peer_done_queue;
404 
405 	/*
406 	 * Number of buffers on the peer done queue.
407 	 */
408 	uint32_t		 num_peer_done_queue;
409 
410 	/*
411 	 * A list of buffers that we have queued to our peer thread.  Uses
412 	 * links.
413 	 */
414 	STAILQ_HEAD(,camdd_buf)	 peer_work_queue;
415 
416 	/*
417 	 * Number of buffers on the peer work queue.
418 	 */
419 	uint32_t		 num_peer_work_queue;
420 };
421 
422 static sem_t camdd_sem;
423 static int need_exit = 0;
424 static int error_exit = 0;
425 static int need_status = 0;
426 
427 #ifndef min
428 #define	min(a, b) (a < b) ? a : b
429 #endif
430 
431 /*
432  * XXX KDM private copy of timespecsub().  This is normally defined in
433  * sys/time.h, but is only enabled in the kernel.  If that definition is
434  * enabled in userland, it breaks the build of libnetbsd.
435  */
436 #ifndef timespecsub
437 #define	timespecsub(vvp, uvp)						\
438 	do {								\
439 		(vvp)->tv_sec -= (uvp)->tv_sec;				\
440 		(vvp)->tv_nsec -= (uvp)->tv_nsec;			\
441 		if ((vvp)->tv_nsec < 0) {				\
442 			(vvp)->tv_sec--;				\
443 			(vvp)->tv_nsec += 1000000000;			\
444 		}							\
445 	} while (0)
446 #endif
447 
448 
449 /* Generically usefull offsets into the peripheral private area */
450 #define ppriv_ptr0 periph_priv.entries[0].ptr
451 #define ppriv_ptr1 periph_priv.entries[1].ptr
452 #define ppriv_field0 periph_priv.entries[0].field
453 #define ppriv_field1 periph_priv.entries[1].field
454 
455 #define	ccb_buf	ppriv_ptr0
456 
457 #define	CAMDD_FILE_DEFAULT_BLOCK	524288
458 #define	CAMDD_FILE_DEFAULT_DEPTH	1
459 #define	CAMDD_PASS_MAX_BLOCK		1048576
460 #define	CAMDD_PASS_DEFAULT_DEPTH	6
461 #define	CAMDD_PASS_RW_TIMEOUT		60 * 1000
462 
463 static int parse_btl(char *tstr, int *bus, int *target, int *lun,
464 		     camdd_argmask *arglst);
465 void camdd_free_dev(struct camdd_dev *dev);
466 struct camdd_dev *camdd_alloc_dev(camdd_dev_type dev_type,
467 				  struct kevent *new_ke, int num_ke,
468 				  int retry_count, int timeout);
469 static struct camdd_buf *camdd_alloc_buf(struct camdd_dev *dev,
470 					 camdd_buf_type buf_type);
471 void camdd_release_buf(struct camdd_buf *buf);
472 struct camdd_buf *camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type);
473 int camdd_buf_sg_create(struct camdd_buf *buf, int iovec,
474 			uint32_t sector_size, uint32_t *num_sectors_used,
475 			int *double_buf_needed);
476 uint32_t camdd_buf_get_len(struct camdd_buf *buf);
477 void camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf);
478 int camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
479 		     uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran);
480 struct camdd_dev *camdd_probe_file(int fd, struct camdd_io_opts *io_opts,
481 				   int retry_count, int timeout);
482 struct camdd_dev *camdd_probe_pass(struct cam_device *cam_dev,
483 				   struct camdd_io_opts *io_opts,
484 				   camdd_argmask arglist, int probe_retry_count,
485 				   int probe_timeout, int io_retry_count,
486 				   int io_timeout);
487 void *camdd_file_worker(void *arg);
488 camdd_buf_status camdd_ccb_status(union ccb *ccb);
489 int camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf);
490 int camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf);
491 void camdd_peer_done(struct camdd_buf *buf);
492 void camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
493 			int *error_count);
494 int camdd_pass_fetch(struct camdd_dev *dev);
495 int camdd_file_run(struct camdd_dev *dev);
496 int camdd_pass_run(struct camdd_dev *dev);
497 int camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len);
498 int camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf);
499 void camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
500 		     uint32_t *peer_depth, uint32_t *our_bytes,
501 		     uint32_t *peer_bytes);
502 void *camdd_worker(void *arg);
503 void camdd_sig_handler(int sig);
504 void camdd_print_status(struct camdd_dev *camdd_dev,
505 			struct camdd_dev *other_dev,
506 			struct timespec *start_time);
507 int camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts,
508 	     uint64_t max_io, int retry_count, int timeout);
509 int camdd_parse_io_opts(char *args, int is_write,
510 			struct camdd_io_opts *io_opts);
511 void usage(void);
512 
513 /*
514  * Parse out a bus, or a bus, target and lun in the following
515  * format:
516  * bus
517  * bus:target
518  * bus:target:lun
519  *
520  * Returns the number of parsed components, or 0.
521  */
522 static int
523 parse_btl(char *tstr, int *bus, int *target, int *lun, camdd_argmask *arglst)
524 {
525 	char *tmpstr;
526 	int convs = 0;
527 
528 	while (isspace(*tstr) && (*tstr != '\0'))
529 		tstr++;
530 
531 	tmpstr = (char *)strtok(tstr, ":");
532 	if ((tmpstr != NULL) && (*tmpstr != '\0')) {
533 		*bus = strtol(tmpstr, NULL, 0);
534 		*arglst |= CAMDD_ARG_BUS;
535 		convs++;
536 		tmpstr = (char *)strtok(NULL, ":");
537 		if ((tmpstr != NULL) && (*tmpstr != '\0')) {
538 			*target = strtol(tmpstr, NULL, 0);
539 			*arglst |= CAMDD_ARG_TARGET;
540 			convs++;
541 			tmpstr = (char *)strtok(NULL, ":");
542 			if ((tmpstr != NULL) && (*tmpstr != '\0')) {
543 				*lun = strtol(tmpstr, NULL, 0);
544 				*arglst |= CAMDD_ARG_LUN;
545 				convs++;
546 			}
547 		}
548 	}
549 
550 	return convs;
551 }
552 
553 /*
554  * XXX KDM clean up and free all of the buffers on the queue!
555  */
556 void
557 camdd_free_dev(struct camdd_dev *dev)
558 {
559 	if (dev == NULL)
560 		return;
561 
562 	switch (dev->dev_type) {
563 	case CAMDD_DEV_FILE: {
564 		struct camdd_dev_file *file_dev = &dev->dev_spec.file;
565 
566 		if (file_dev->fd != -1)
567 			close(file_dev->fd);
568 		free(file_dev->tmp_buf);
569 		break;
570 	}
571 	case CAMDD_DEV_PASS: {
572 		struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
573 
574 		if (pass_dev->dev != NULL)
575 			cam_close_device(pass_dev->dev);
576 		break;
577 	}
578 	default:
579 		break;
580 	}
581 
582 	free(dev);
583 }
584 
585 struct camdd_dev *
586 camdd_alloc_dev(camdd_dev_type dev_type, struct kevent *new_ke, int num_ke,
587 		int retry_count, int timeout)
588 {
589 	struct camdd_dev *dev = NULL;
590 	struct kevent *ke;
591 	size_t ke_size;
592 	int retval = 0;
593 
594 	dev = malloc(sizeof(*dev));
595 	if (dev == NULL) {
596 		warn("%s: unable to malloc %zu bytes", __func__, sizeof(*dev));
597 		goto bailout;
598 	}
599 
600 	bzero(dev, sizeof(*dev));
601 
602 	dev->dev_type = dev_type;
603 	dev->io_timeout = timeout;
604 	dev->retry_count = retry_count;
605 	STAILQ_INIT(&dev->free_queue);
606 	STAILQ_INIT(&dev->free_indirect_queue);
607 	STAILQ_INIT(&dev->active_queue);
608 	STAILQ_INIT(&dev->pending_queue);
609 	STAILQ_INIT(&dev->run_queue);
610 	STAILQ_INIT(&dev->reorder_queue);
611 	STAILQ_INIT(&dev->work_queue);
612 	STAILQ_INIT(&dev->peer_done_queue);
613 	STAILQ_INIT(&dev->peer_work_queue);
614 	retval = pthread_mutex_init(&dev->mutex, NULL);
615 	if (retval != 0) {
616 		warnc(retval, "%s: failed to initialize mutex", __func__);
617 		goto bailout;
618 	}
619 
620 	retval = pthread_cond_init(&dev->cond, NULL);
621 	if (retval != 0) {
622 		warnc(retval, "%s: failed to initialize condition variable",
623 		      __func__);
624 		goto bailout;
625 	}
626 
627 	dev->kq = kqueue();
628 	if (dev->kq == -1) {
629 		warn("%s: Unable to create kqueue", __func__);
630 		goto bailout;
631 	}
632 
633 	ke_size = sizeof(struct kevent) * (num_ke + 4);
634 	ke = malloc(ke_size);
635 	if (ke == NULL) {
636 		warn("%s: unable to malloc %zu bytes", __func__, ke_size);
637 		goto bailout;
638 	}
639 	bzero(ke, ke_size);
640 	if (num_ke > 0)
641 		bcopy(new_ke, ke, num_ke * sizeof(struct kevent));
642 
643 	EV_SET(&ke[num_ke++], (uintptr_t)&dev->work_queue, EVFILT_USER,
644 	       EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
645 	EV_SET(&ke[num_ke++], (uintptr_t)&dev->peer_done_queue, EVFILT_USER,
646 	       EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
647 	EV_SET(&ke[num_ke++], SIGINFO, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
648 	EV_SET(&ke[num_ke++], SIGINT, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
649 
650 	retval = kevent(dev->kq, ke, num_ke, NULL, 0, NULL);
651 	if (retval == -1) {
652 		warn("%s: Unable to register kevents", __func__);
653 		goto bailout;
654 	}
655 
656 
657 	return (dev);
658 
659 bailout:
660 	free(dev);
661 
662 	return (NULL);
663 }
664 
665 static struct camdd_buf *
666 camdd_alloc_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
667 {
668 	struct camdd_buf *buf = NULL;
669 	uint8_t *data_ptr = NULL;
670 
671 	/*
672 	 * We only need to allocate data space for data buffers.
673 	 */
674 	switch (buf_type) {
675 	case CAMDD_BUF_DATA:
676 		data_ptr = malloc(dev->blocksize);
677 		if (data_ptr == NULL) {
678 			warn("unable to allocate %u bytes", dev->blocksize);
679 			goto bailout_error;
680 		}
681 		break;
682 	default:
683 		break;
684 	}
685 
686 	buf = malloc(sizeof(*buf));
687 	if (buf == NULL) {
688 		warn("unable to allocate %zu bytes", sizeof(*buf));
689 		goto bailout_error;
690 	}
691 
692 	bzero(buf, sizeof(*buf));
693 	buf->buf_type = buf_type;
694 	buf->dev = dev;
695 	switch (buf_type) {
696 	case CAMDD_BUF_DATA: {
697 		struct camdd_buf_data *data;
698 
699 		data = &buf->buf_type_spec.data;
700 
701 		data->alloc_len = dev->blocksize;
702 		data->buf = data_ptr;
703 		break;
704 	}
705 	case CAMDD_BUF_INDIRECT:
706 		break;
707 	default:
708 		break;
709 	}
710 	STAILQ_INIT(&buf->src_list);
711 
712 	return (buf);
713 
714 bailout_error:
715 	if (data_ptr != NULL)
716 		free(data_ptr);
717 
718 	if (buf != NULL)
719 		free(buf);
720 
721 	return (NULL);
722 }
723 
724 void
725 camdd_release_buf(struct camdd_buf *buf)
726 {
727 	struct camdd_dev *dev;
728 
729 	dev = buf->dev;
730 
731 	switch (buf->buf_type) {
732 	case CAMDD_BUF_DATA: {
733 		struct camdd_buf_data *data;
734 
735 		data = &buf->buf_type_spec.data;
736 
737 		if (data->segs != NULL) {
738 			if (data->extra_buf != 0) {
739 				void *extra_buf;
740 
741 				extra_buf = (void *)
742 				    data->segs[data->sg_count - 1].ds_addr;
743 				free(extra_buf);
744 				data->extra_buf = 0;
745 			}
746 			free(data->segs);
747 			data->segs = NULL;
748 			data->sg_count = 0;
749 		} else if (data->iovec != NULL) {
750 			if (data->extra_buf != 0) {
751 				free(data->iovec[data->sg_count - 1].iov_base);
752 				data->extra_buf = 0;
753 			}
754 			free(data->iovec);
755 			data->iovec = NULL;
756 			data->sg_count = 0;
757 		}
758 		STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
759 		break;
760 	}
761 	case CAMDD_BUF_INDIRECT:
762 		STAILQ_INSERT_TAIL(&dev->free_indirect_queue, buf, links);
763 		break;
764 	default:
765 		err(1, "%s: Invalid buffer type %d for released buffer",
766 		    __func__, buf->buf_type);
767 		break;
768 	}
769 }
770 
771 struct camdd_buf *
772 camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
773 {
774 	struct camdd_buf *buf = NULL;
775 
776 	switch (buf_type) {
777 	case CAMDD_BUF_DATA:
778 		buf = STAILQ_FIRST(&dev->free_queue);
779 		if (buf != NULL) {
780 			struct camdd_buf_data *data;
781 			uint8_t *data_ptr;
782 			uint32_t alloc_len;
783 
784 			STAILQ_REMOVE_HEAD(&dev->free_queue, links);
785 			data = &buf->buf_type_spec.data;
786 			data_ptr = data->buf;
787 			alloc_len = data->alloc_len;
788 			bzero(buf, sizeof(*buf));
789 			data->buf = data_ptr;
790 			data->alloc_len = alloc_len;
791 		}
792 		break;
793 	case CAMDD_BUF_INDIRECT:
794 		buf = STAILQ_FIRST(&dev->free_indirect_queue);
795 		if (buf != NULL) {
796 			STAILQ_REMOVE_HEAD(&dev->free_indirect_queue, links);
797 
798 			bzero(buf, sizeof(*buf));
799 		}
800 		break;
801 	default:
802 		warnx("Unknown buffer type %d requested", buf_type);
803 		break;
804 	}
805 
806 
807 	if (buf == NULL)
808 		return (camdd_alloc_buf(dev, buf_type));
809 	else {
810 		STAILQ_INIT(&buf->src_list);
811 		buf->dev = dev;
812 		buf->buf_type = buf_type;
813 
814 		return (buf);
815 	}
816 }
817 
818 int
819 camdd_buf_sg_create(struct camdd_buf *buf, int iovec, uint32_t sector_size,
820 		    uint32_t *num_sectors_used, int *double_buf_needed)
821 {
822 	struct camdd_buf *tmp_buf;
823 	struct camdd_buf_data *data;
824 	uint8_t *extra_buf = NULL;
825 	size_t extra_buf_len = 0;
826 	int i, retval = 0;
827 
828 	data = &buf->buf_type_spec.data;
829 
830 	data->sg_count = buf->src_count;
831 	/*
832 	 * Compose a scatter/gather list from all of the buffers in the list.
833 	 * If the length of the buffer isn't a multiple of the sector size,
834 	 * we'll have to add an extra buffer.  This should only happen
835 	 * at the end of a transfer.
836 	 */
837 	if ((data->fill_len % sector_size) != 0) {
838 		extra_buf_len = sector_size - (data->fill_len % sector_size);
839 		extra_buf = calloc(extra_buf_len, 1);
840 		if (extra_buf == NULL) {
841 			warn("%s: unable to allocate %zu bytes for extra "
842 			    "buffer space", __func__, extra_buf_len);
843 			retval = 1;
844 			goto bailout;
845 		}
846 		data->extra_buf = 1;
847 		data->sg_count++;
848 	}
849 	if (iovec == 0) {
850 		data->segs = calloc(data->sg_count, sizeof(bus_dma_segment_t));
851 		if (data->segs == NULL) {
852 			warn("%s: unable to allocate %zu bytes for S/G list",
853 			    __func__, sizeof(bus_dma_segment_t) *
854 			    data->sg_count);
855 			retval = 1;
856 			goto bailout;
857 		}
858 
859 	} else {
860 		data->iovec = calloc(data->sg_count, sizeof(struct iovec));
861 		if (data->iovec == NULL) {
862 			warn("%s: unable to allocate %zu bytes for S/G list",
863 			    __func__, sizeof(struct iovec) * data->sg_count);
864 			retval = 1;
865 			goto bailout;
866 		}
867 	}
868 
869 	for (i = 0, tmp_buf = STAILQ_FIRST(&buf->src_list);
870 	     i < buf->src_count && tmp_buf != NULL; i++,
871 	     tmp_buf = STAILQ_NEXT(tmp_buf, src_links)) {
872 
873 		if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
874 			struct camdd_buf_data *tmp_data;
875 
876 			tmp_data = &tmp_buf->buf_type_spec.data;
877 			if (iovec == 0) {
878 				data->segs[i].ds_addr =
879 				    (bus_addr_t) tmp_data->buf;
880 				data->segs[i].ds_len = tmp_data->fill_len -
881 				    tmp_data->resid;
882 			} else {
883 				data->iovec[i].iov_base = tmp_data->buf;
884 				data->iovec[i].iov_len = tmp_data->fill_len -
885 				    tmp_data->resid;
886 			}
887 			if (((tmp_data->fill_len - tmp_data->resid) %
888 			     sector_size) != 0)
889 				*double_buf_needed = 1;
890 		} else {
891 			struct camdd_buf_indirect *tmp_ind;
892 
893 			tmp_ind = &tmp_buf->buf_type_spec.indirect;
894 			if (iovec == 0) {
895 				data->segs[i].ds_addr =
896 				    (bus_addr_t)tmp_ind->start_ptr;
897 				data->segs[i].ds_len = tmp_ind->len;
898 			} else {
899 				data->iovec[i].iov_base = tmp_ind->start_ptr;
900 				data->iovec[i].iov_len = tmp_ind->len;
901 			}
902 			if ((tmp_ind->len % sector_size) != 0)
903 				*double_buf_needed = 1;
904 		}
905 	}
906 
907 	if (extra_buf != NULL) {
908 		if (iovec == 0) {
909 			data->segs[i].ds_addr = (bus_addr_t)extra_buf;
910 			data->segs[i].ds_len = extra_buf_len;
911 		} else {
912 			data->iovec[i].iov_base = extra_buf;
913 			data->iovec[i].iov_len = extra_buf_len;
914 		}
915 		i++;
916 	}
917 	if ((tmp_buf != NULL) || (i != data->sg_count)) {
918 		warnx("buffer source count does not match "
919 		      "number of buffers in list!");
920 		retval = 1;
921 		goto bailout;
922 	}
923 
924 bailout:
925 	if (retval == 0) {
926 		*num_sectors_used = (data->fill_len + extra_buf_len) /
927 		    sector_size;
928 	}
929 	return (retval);
930 }
931 
932 uint32_t
933 camdd_buf_get_len(struct camdd_buf *buf)
934 {
935 	uint32_t len = 0;
936 
937 	if (buf->buf_type != CAMDD_BUF_DATA) {
938 		struct camdd_buf_indirect *indirect;
939 
940 		indirect = &buf->buf_type_spec.indirect;
941 		len = indirect->len;
942 	} else {
943 		struct camdd_buf_data *data;
944 
945 		data = &buf->buf_type_spec.data;
946 		len = data->fill_len;
947 	}
948 
949 	return (len);
950 }
951 
952 void
953 camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf)
954 {
955 	struct camdd_buf_data *data;
956 
957 	assert(buf->buf_type == CAMDD_BUF_DATA);
958 
959 	data = &buf->buf_type_spec.data;
960 
961 	STAILQ_INSERT_TAIL(&buf->src_list, child_buf, src_links);
962 	buf->src_count++;
963 
964 	data->fill_len += camdd_buf_get_len(child_buf);
965 }
966 
967 typedef enum {
968 	CAMDD_TS_MAX_BLK,
969 	CAMDD_TS_MIN_BLK,
970 	CAMDD_TS_BLK_GRAN,
971 	CAMDD_TS_EFF_IOSIZE
972 } camdd_status_item_index;
973 
974 static struct camdd_status_items {
975 	const char *name;
976 	struct mt_status_entry *entry;
977 } req_status_items[] = {
978 	{ "max_blk", NULL },
979 	{ "min_blk", NULL },
980 	{ "blk_gran", NULL },
981 	{ "max_effective_iosize", NULL }
982 };
983 
984 int
985 camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
986 		 uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran)
987 {
988 	struct mt_status_data status_data;
989 	char *xml_str = NULL;
990 	unsigned int i;
991 	int retval = 0;
992 
993 	retval = mt_get_xml_str(fd, MTIOCEXTGET, &xml_str);
994 	if (retval != 0)
995 		err(1, "Couldn't get XML string from %s", filename);
996 
997 	retval = mt_get_status(xml_str, &status_data);
998 	if (retval != XML_STATUS_OK) {
999 		warn("couldn't get status for %s", filename);
1000 		retval = 1;
1001 		goto bailout;
1002 	} else
1003 		retval = 0;
1004 
1005 	if (status_data.error != 0) {
1006 		warnx("%s", status_data.error_str);
1007 		retval = 1;
1008 		goto bailout;
1009 	}
1010 
1011 	for (i = 0; i < sizeof(req_status_items) /
1012 	     sizeof(req_status_items[0]); i++) {
1013                 char *name;
1014 
1015 		name = __DECONST(char *, req_status_items[i].name);
1016 		req_status_items[i].entry = mt_status_entry_find(&status_data,
1017 		    name);
1018 		if (req_status_items[i].entry == NULL) {
1019 			errx(1, "Cannot find status entry %s",
1020 			    req_status_items[i].name);
1021 		}
1022 	}
1023 
1024 	*max_iosize = req_status_items[CAMDD_TS_EFF_IOSIZE].entry->value_unsigned;
1025 	*max_blk= req_status_items[CAMDD_TS_MAX_BLK].entry->value_unsigned;
1026 	*min_blk= req_status_items[CAMDD_TS_MIN_BLK].entry->value_unsigned;
1027 	*blk_gran = req_status_items[CAMDD_TS_BLK_GRAN].entry->value_unsigned;
1028 bailout:
1029 
1030 	free(xml_str);
1031 	mt_status_free(&status_data);
1032 
1033 	return (retval);
1034 }
1035 
1036 struct camdd_dev *
1037 camdd_probe_file(int fd, struct camdd_io_opts *io_opts, int retry_count,
1038     int timeout)
1039 {
1040 	struct camdd_dev *dev = NULL;
1041 	struct camdd_dev_file *file_dev;
1042 	uint64_t blocksize = io_opts->blocksize;
1043 
1044 	dev = camdd_alloc_dev(CAMDD_DEV_FILE, NULL, 0, retry_count, timeout);
1045 	if (dev == NULL)
1046 		goto bailout;
1047 
1048 	file_dev = &dev->dev_spec.file;
1049 	file_dev->fd = fd;
1050 	strlcpy(file_dev->filename, io_opts->dev_name,
1051 	    sizeof(file_dev->filename));
1052 	strlcpy(dev->device_name, io_opts->dev_name, sizeof(dev->device_name));
1053 	if (blocksize == 0)
1054 		dev->blocksize = CAMDD_FILE_DEFAULT_BLOCK;
1055 	else
1056 		dev->blocksize = blocksize;
1057 
1058 	if ((io_opts->queue_depth != 0)
1059 	 && (io_opts->queue_depth != 1)) {
1060 		warnx("Queue depth %ju for %s ignored, only 1 outstanding "
1061 		    "command supported", (uintmax_t)io_opts->queue_depth,
1062 		    io_opts->dev_name);
1063 	}
1064 	dev->target_queue_depth = CAMDD_FILE_DEFAULT_DEPTH;
1065 	dev->run = camdd_file_run;
1066 	dev->fetch = NULL;
1067 
1068 	/*
1069 	 * We can effectively access files on byte boundaries.  We'll reset
1070 	 * this for devices like disks that can be accessed on sector
1071 	 * boundaries.
1072 	 */
1073 	dev->sector_size = 1;
1074 
1075 	if ((fd != STDIN_FILENO)
1076 	 && (fd != STDOUT_FILENO)) {
1077 		int retval;
1078 
1079 		retval = fstat(fd, &file_dev->sb);
1080 		if (retval != 0) {
1081 			warn("Cannot stat %s", dev->device_name);
1082 			goto bailout;
1083 			camdd_free_dev(dev);
1084 			dev = NULL;
1085 		}
1086 		if (S_ISREG(file_dev->sb.st_mode)) {
1087 			file_dev->file_type = CAMDD_FILE_REG;
1088 		} else if (S_ISCHR(file_dev->sb.st_mode)) {
1089 			int type;
1090 
1091 			if (ioctl(fd, FIODTYPE, &type) == -1)
1092 				err(1, "FIODTYPE ioctl failed on %s",
1093 				    dev->device_name);
1094 			else {
1095 				if (type & D_TAPE)
1096 					file_dev->file_type = CAMDD_FILE_TAPE;
1097 				else if (type & D_DISK)
1098 					file_dev->file_type = CAMDD_FILE_DISK;
1099 				else if (type & D_MEM)
1100 					file_dev->file_type = CAMDD_FILE_MEM;
1101 				else if (type & D_TTY)
1102 					file_dev->file_type = CAMDD_FILE_TTY;
1103 			}
1104 		} else if (S_ISDIR(file_dev->sb.st_mode)) {
1105 			errx(1, "cannot operate on directory %s",
1106 			    dev->device_name);
1107 		} else if (S_ISFIFO(file_dev->sb.st_mode)) {
1108 			file_dev->file_type = CAMDD_FILE_PIPE;
1109 		} else
1110 			errx(1, "Cannot determine file type for %s",
1111 			    dev->device_name);
1112 
1113 		switch (file_dev->file_type) {
1114 		case CAMDD_FILE_REG:
1115 			if (file_dev->sb.st_size != 0)
1116 				dev->max_sector = file_dev->sb.st_size - 1;
1117 			else
1118 				dev->max_sector = 0;
1119 			file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1120 			break;
1121 		case CAMDD_FILE_TAPE: {
1122 			uint64_t max_iosize, max_blk, min_blk, blk_gran;
1123 			/*
1124 			 * Check block limits and maximum effective iosize.
1125 			 * Make sure the blocksize is within the block
1126 			 * limits (and a multiple of the minimum blocksize)
1127 			 * and that the blocksize is <= maximum effective
1128 			 * iosize.
1129 			 */
1130 			retval = camdd_probe_tape(fd, dev->device_name,
1131 			    &max_iosize, &max_blk, &min_blk, &blk_gran);
1132 			if (retval != 0)
1133 				errx(1, "Unable to probe tape %s",
1134 				    dev->device_name);
1135 
1136 			/*
1137 			 * The blocksize needs to be <= the maximum
1138 			 * effective I/O size of the tape device.  Note
1139 			 * that this also takes into account the maximum
1140 			 * blocksize reported by READ BLOCK LIMITS.
1141 			 */
1142 			if (dev->blocksize > max_iosize) {
1143 				warnx("Blocksize %u too big for %s, limiting "
1144 				    "to %ju", dev->blocksize, dev->device_name,
1145 				    max_iosize);
1146 				dev->blocksize = max_iosize;
1147 			}
1148 
1149 			/*
1150 			 * The blocksize needs to be at least min_blk;
1151 			 */
1152 			if (dev->blocksize < min_blk) {
1153 				warnx("Blocksize %u too small for %s, "
1154 				    "increasing to %ju", dev->blocksize,
1155 				    dev->device_name, min_blk);
1156 				dev->blocksize = min_blk;
1157 			}
1158 
1159 			/*
1160 			 * And the blocksize needs to be a multiple of
1161 			 * the block granularity.
1162 			 */
1163 			if ((blk_gran != 0)
1164 			 && (dev->blocksize % (1 << blk_gran))) {
1165 				warnx("Blocksize %u for %s not a multiple of "
1166 				    "%d, adjusting to %d", dev->blocksize,
1167 				    dev->device_name, (1 << blk_gran),
1168 				    dev->blocksize & ~((1 << blk_gran) - 1));
1169 				dev->blocksize &= ~((1 << blk_gran) - 1);
1170 			}
1171 
1172 			if (dev->blocksize == 0) {
1173 				errx(1, "Unable to derive valid blocksize for "
1174 				    "%s", dev->device_name);
1175 			}
1176 
1177 			/*
1178 			 * For tape drives, set the sector size to the
1179 			 * blocksize so that we make sure not to write
1180 			 * less than the blocksize out to the drive.
1181 			 */
1182 			dev->sector_size = dev->blocksize;
1183 			break;
1184 		}
1185 		case CAMDD_FILE_DISK: {
1186 			off_t media_size;
1187 			unsigned int sector_size;
1188 
1189 			file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1190 
1191 			if (ioctl(fd, DIOCGSECTORSIZE, &sector_size) == -1) {
1192 				err(1, "DIOCGSECTORSIZE ioctl failed on %s",
1193 				    dev->device_name);
1194 			}
1195 
1196 			if (sector_size == 0) {
1197 				errx(1, "DIOCGSECTORSIZE ioctl returned "
1198 				    "invalid sector size %u for %s",
1199 				    sector_size, dev->device_name);
1200 			}
1201 
1202 			if (ioctl(fd, DIOCGMEDIASIZE, &media_size) == -1) {
1203 				err(1, "DIOCGMEDIASIZE ioctl failed on %s",
1204 				    dev->device_name);
1205 			}
1206 
1207 			if (media_size == 0) {
1208 				errx(1, "DIOCGMEDIASIZE ioctl returned "
1209 				    "invalid media size %ju for %s",
1210 				    (uintmax_t)media_size, dev->device_name);
1211 			}
1212 
1213 			if (dev->blocksize % sector_size) {
1214 				errx(1, "%s blocksize %u not a multiple of "
1215 				    "sector size %u", dev->device_name,
1216 				    dev->blocksize, sector_size);
1217 			}
1218 
1219 			dev->sector_size = sector_size;
1220 			dev->max_sector = (media_size / sector_size) - 1;
1221 			break;
1222 		}
1223 		case CAMDD_FILE_MEM:
1224 			file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
1225 			break;
1226 		default:
1227 			break;
1228 		}
1229 	}
1230 
1231 	if ((io_opts->offset != 0)
1232 	 && ((file_dev->file_flags & CAMDD_FF_CAN_SEEK) == 0)) {
1233 		warnx("Offset %ju specified for %s, but we cannot seek on %s",
1234 		    io_opts->offset, io_opts->dev_name, io_opts->dev_name);
1235 		goto bailout_error;
1236 	}
1237 #if 0
1238 	else if ((io_opts->offset != 0)
1239 		&& ((io_opts->offset % dev->sector_size) != 0)) {
1240 		warnx("Offset %ju for %s is not a multiple of the "
1241 		      "sector size %u", io_opts->offset,
1242 		      io_opts->dev_name, dev->sector_size);
1243 		goto bailout_error;
1244 	} else {
1245 		dev->start_offset_bytes = io_opts->offset;
1246 	}
1247 #endif
1248 
1249 bailout:
1250 	return (dev);
1251 
1252 bailout_error:
1253 	camdd_free_dev(dev);
1254 	return (NULL);
1255 }
1256 
1257 /*
1258  * Need to implement this.  Do a basic probe:
1259  * - Check the inquiry data, make sure we're talking to a device that we
1260  *   can reasonably expect to talk to -- direct, RBC, CD, WORM.
1261  * - Send a test unit ready, make sure the device is available.
1262  * - Get the capacity and block size.
1263  */
1264 struct camdd_dev *
1265 camdd_probe_pass(struct cam_device *cam_dev, struct camdd_io_opts *io_opts,
1266 		 camdd_argmask arglist, int probe_retry_count,
1267 		 int probe_timeout, int io_retry_count, int io_timeout)
1268 {
1269 	union ccb *ccb;
1270 	uint64_t maxsector;
1271 	uint32_t cpi_maxio, max_iosize, pass_numblocks;
1272 	uint32_t block_len;
1273 	struct scsi_read_capacity_data rcap;
1274 	struct scsi_read_capacity_data_long rcaplong;
1275 	struct camdd_dev *dev;
1276 	struct camdd_dev_pass *pass_dev;
1277 	struct kevent ke;
1278 	int scsi_dev_type;
1279 
1280 	dev = NULL;
1281 
1282 	scsi_dev_type = SID_TYPE(&cam_dev->inq_data);
1283 	maxsector = 0;
1284 	block_len = 0;
1285 
1286 	/*
1287 	 * For devices that support READ CAPACITY, we'll attempt to get the
1288 	 * capacity.  Otherwise, we really don't support tape or other
1289 	 * devices via SCSI passthrough, so just return an error in that case.
1290 	 */
1291 	switch (scsi_dev_type) {
1292 	case T_DIRECT:
1293 	case T_WORM:
1294 	case T_CDROM:
1295 	case T_OPTICAL:
1296 	case T_RBC:
1297 		break;
1298 	default:
1299 		errx(1, "Unsupported SCSI device type %d", scsi_dev_type);
1300 		break; /*NOTREACHED*/
1301 	}
1302 
1303 	ccb = cam_getccb(cam_dev);
1304 
1305 	if (ccb == NULL) {
1306 		warnx("%s: error allocating ccb", __func__);
1307 		goto bailout;
1308 	}
1309 
1310 	bzero(&(&ccb->ccb_h)[1],
1311 	      sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
1312 
1313 	scsi_read_capacity(&ccb->csio,
1314 			   /*retries*/ probe_retry_count,
1315 			   /*cbfcnp*/ NULL,
1316 			   /*tag_action*/ MSG_SIMPLE_Q_TAG,
1317 			   &rcap,
1318 			   SSD_FULL_SIZE,
1319 			   /*timeout*/ probe_timeout ? probe_timeout : 5000);
1320 
1321 	/* Disable freezing the device queue */
1322 	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1323 
1324 	if (arglist & CAMDD_ARG_ERR_RECOVER)
1325 		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1326 
1327 	if (cam_send_ccb(cam_dev, ccb) < 0) {
1328 		warn("error sending READ CAPACITY command");
1329 
1330 		cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1331 				CAM_EPF_ALL, stderr);
1332 
1333 		goto bailout;
1334 	}
1335 
1336 	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1337 		cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1338 		goto bailout;
1339 	}
1340 
1341 	maxsector = scsi_4btoul(rcap.addr);
1342 	block_len = scsi_4btoul(rcap.length);
1343 
1344 	/*
1345 	 * A last block of 2^32-1 means that the true capacity is over 2TB,
1346 	 * and we need to issue the long READ CAPACITY to get the real
1347 	 * capacity.  Otherwise, we're all set.
1348 	 */
1349 	if (maxsector != 0xffffffff)
1350 		goto rcap_done;
1351 
1352 	scsi_read_capacity_16(&ccb->csio,
1353 			      /*retries*/ probe_retry_count,
1354 			      /*cbfcnp*/ NULL,
1355 			      /*tag_action*/ MSG_SIMPLE_Q_TAG,
1356 			      /*lba*/ 0,
1357 			      /*reladdr*/ 0,
1358 			      /*pmi*/ 0,
1359 			      (uint8_t *)&rcaplong,
1360 			      sizeof(rcaplong),
1361 			      /*sense_len*/ SSD_FULL_SIZE,
1362 			      /*timeout*/ probe_timeout ? probe_timeout : 5000);
1363 
1364 	/* Disable freezing the device queue */
1365 	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
1366 
1367 	if (arglist & CAMDD_ARG_ERR_RECOVER)
1368 		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
1369 
1370 	if (cam_send_ccb(cam_dev, ccb) < 0) {
1371 		warn("error sending READ CAPACITY (16) command");
1372 		cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1373 				CAM_EPF_ALL, stderr);
1374 		goto bailout;
1375 	}
1376 
1377 	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1378 		cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
1379 		goto bailout;
1380 	}
1381 
1382 	maxsector = scsi_8btou64(rcaplong.addr);
1383 	block_len = scsi_4btoul(rcaplong.length);
1384 
1385 rcap_done:
1386 
1387 	bzero(&(&ccb->ccb_h)[1],
1388 	      sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
1389 
1390 	ccb->ccb_h.func_code = XPT_PATH_INQ;
1391 	ccb->ccb_h.flags = CAM_DIR_NONE;
1392 	ccb->ccb_h.retry_count = 1;
1393 
1394 	if (cam_send_ccb(cam_dev, ccb) < 0) {
1395 		warn("error sending XPT_PATH_INQ CCB");
1396 
1397 		cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
1398 				CAM_EPF_ALL, stderr);
1399 		goto bailout;
1400 	}
1401 
1402 	EV_SET(&ke, cam_dev->fd, EVFILT_READ, EV_ADD|EV_ENABLE, 0, 0, 0);
1403 
1404 	dev = camdd_alloc_dev(CAMDD_DEV_PASS, &ke, 1, io_retry_count,
1405 			      io_timeout);
1406 	if (dev == NULL)
1407 		goto bailout;
1408 
1409 	pass_dev = &dev->dev_spec.pass;
1410 	pass_dev->scsi_dev_type = scsi_dev_type;
1411 	pass_dev->dev = cam_dev;
1412 	pass_dev->max_sector = maxsector;
1413 	pass_dev->block_len = block_len;
1414 	pass_dev->cpi_maxio = ccb->cpi.maxio;
1415 	snprintf(dev->device_name, sizeof(dev->device_name), "%s%u",
1416 		 pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
1417 	dev->sector_size = block_len;
1418 	dev->max_sector = maxsector;
1419 
1420 
1421 	/*
1422 	 * Determine the optimal blocksize to use for this device.
1423 	 */
1424 
1425 	/*
1426 	 * If the controller has not specified a maximum I/O size,
1427 	 * just go with 128K as a somewhat conservative value.
1428 	 */
1429 	if (pass_dev->cpi_maxio == 0)
1430 		cpi_maxio = 131072;
1431 	else
1432 		cpi_maxio = pass_dev->cpi_maxio;
1433 
1434 	/*
1435 	 * If the controller has a large maximum I/O size, limit it
1436 	 * to something smaller so that the kernel doesn't have trouble
1437 	 * allocating buffers to copy data in and out for us.
1438 	 * XXX KDM this is until we have unmapped I/O support in the kernel.
1439 	 */
1440 	max_iosize = min(cpi_maxio, CAMDD_PASS_MAX_BLOCK);
1441 
1442 	/*
1443 	 * If we weren't able to get a block size for some reason,
1444 	 * default to 512 bytes.
1445 	 */
1446 	block_len = pass_dev->block_len;
1447 	if (block_len == 0)
1448 		block_len = 512;
1449 
1450 	/*
1451 	 * Figure out how many blocksize chunks will fit in the
1452 	 * maximum I/O size.
1453 	 */
1454 	pass_numblocks = max_iosize / block_len;
1455 
1456 	/*
1457 	 * And finally, multiple the number of blocks by the LBA
1458 	 * length to get our maximum block size;
1459 	 */
1460 	dev->blocksize = pass_numblocks * block_len;
1461 
1462 	if (io_opts->blocksize != 0) {
1463 		if ((io_opts->blocksize % dev->sector_size) != 0) {
1464 			warnx("Blocksize %ju for %s is not a multiple of "
1465 			      "sector size %u", (uintmax_t)io_opts->blocksize,
1466 			      dev->device_name, dev->sector_size);
1467 			goto bailout_error;
1468 		}
1469 		dev->blocksize = io_opts->blocksize;
1470 	}
1471 	dev->target_queue_depth = CAMDD_PASS_DEFAULT_DEPTH;
1472 	if (io_opts->queue_depth != 0)
1473 		dev->target_queue_depth = io_opts->queue_depth;
1474 
1475 	if (io_opts->offset != 0) {
1476 		if (io_opts->offset > (dev->max_sector * dev->sector_size)) {
1477 			warnx("Offset %ju is past the end of device %s",
1478 			    io_opts->offset, dev->device_name);
1479 			goto bailout_error;
1480 		}
1481 #if 0
1482 		else if ((io_opts->offset % dev->sector_size) != 0) {
1483 			warnx("Offset %ju for %s is not a multiple of the "
1484 			      "sector size %u", io_opts->offset,
1485 			      dev->device_name, dev->sector_size);
1486 			goto bailout_error;
1487 		}
1488 		dev->start_offset_bytes = io_opts->offset;
1489 #endif
1490 	}
1491 
1492 	dev->min_cmd_size = io_opts->min_cmd_size;
1493 
1494 	dev->run = camdd_pass_run;
1495 	dev->fetch = camdd_pass_fetch;
1496 
1497 bailout:
1498 	cam_freeccb(ccb);
1499 
1500 	return (dev);
1501 
1502 bailout_error:
1503 	cam_freeccb(ccb);
1504 
1505 	camdd_free_dev(dev);
1506 
1507 	return (NULL);
1508 }
1509 
1510 void *
1511 camdd_worker(void *arg)
1512 {
1513 	struct camdd_dev *dev = arg;
1514 	struct camdd_buf *buf;
1515 	struct timespec ts, *kq_ts;
1516 
1517 	ts.tv_sec = 0;
1518 	ts.tv_nsec = 0;
1519 
1520 	pthread_mutex_lock(&dev->mutex);
1521 
1522 	dev->flags |= CAMDD_DEV_FLAG_ACTIVE;
1523 
1524 	for (;;) {
1525 		struct kevent ke;
1526 		int retval = 0;
1527 
1528 		/*
1529 		 * XXX KDM check the reorder queue depth?
1530 		 */
1531 		if (dev->write_dev == 0) {
1532 			uint32_t our_depth, peer_depth, peer_bytes, our_bytes;
1533 			uint32_t target_depth = dev->target_queue_depth;
1534 			uint32_t peer_target_depth =
1535 			    dev->peer_dev->target_queue_depth;
1536 			uint32_t peer_blocksize = dev->peer_dev->blocksize;
1537 
1538 			camdd_get_depth(dev, &our_depth, &peer_depth,
1539 					&our_bytes, &peer_bytes);
1540 
1541 #if 0
1542 			while (((our_depth < target_depth)
1543 			     && (peer_depth < peer_target_depth))
1544 			    || ((peer_bytes + our_bytes) <
1545 				 (peer_blocksize * 2))) {
1546 #endif
1547 			while (((our_depth + peer_depth) <
1548 			        (target_depth + peer_target_depth))
1549 			    || ((peer_bytes + our_bytes) <
1550 				(peer_blocksize * 3))) {
1551 
1552 				retval = camdd_queue(dev, NULL);
1553 				if (retval == 1)
1554 					break;
1555 				else if (retval != 0) {
1556 					error_exit = 1;
1557 					goto bailout;
1558 				}
1559 
1560 				camdd_get_depth(dev, &our_depth, &peer_depth,
1561 						&our_bytes, &peer_bytes);
1562 			}
1563 		}
1564 		/*
1565 		 * See if we have any I/O that is ready to execute.
1566 		 */
1567 		buf = STAILQ_FIRST(&dev->run_queue);
1568 		if (buf != NULL) {
1569 			while (dev->target_queue_depth > dev->cur_active_io) {
1570 				retval = dev->run(dev);
1571 				if (retval == -1) {
1572 					dev->flags |= CAMDD_DEV_FLAG_EOF;
1573 					error_exit = 1;
1574 					break;
1575 				} else if (retval != 0) {
1576 					break;
1577 				}
1578 			}
1579 		}
1580 
1581 		/*
1582 		 * We've reached EOF, or our partner has reached EOF.
1583 		 */
1584 		if ((dev->flags & CAMDD_DEV_FLAG_EOF)
1585 		 || (dev->flags & CAMDD_DEV_FLAG_PEER_EOF)) {
1586 			if (dev->write_dev != 0) {
1587 			 	if ((STAILQ_EMPTY(&dev->work_queue))
1588 				 && (dev->num_run_queue == 0)
1589 				 && (dev->cur_active_io == 0)) {
1590 					goto bailout;
1591 				}
1592 			} else {
1593 				/*
1594 				 * If we're the reader, and the writer
1595 				 * got EOF, he is already done.  If we got
1596 				 * the EOF, then we need to wait until
1597 				 * everything is flushed out for the writer.
1598 				 */
1599 				if (dev->flags & CAMDD_DEV_FLAG_PEER_EOF) {
1600 					goto bailout;
1601 				} else if ((dev->num_peer_work_queue == 0)
1602 					&& (dev->num_peer_done_queue == 0)
1603 					&& (dev->cur_active_io == 0)
1604 					&& (dev->num_run_queue == 0)) {
1605 					goto bailout;
1606 				}
1607 			}
1608 			/*
1609 			 * XXX KDM need to do something about the pending
1610 			 * queue and cleanup resources.
1611 			 */
1612 		}
1613 
1614 		if ((dev->write_dev == 0)
1615 		 && (dev->cur_active_io == 0)
1616 		 && (dev->peer_bytes_queued < dev->peer_dev->blocksize))
1617 			kq_ts = &ts;
1618 		else
1619 			kq_ts = NULL;
1620 
1621 		/*
1622 		 * Run kevent to see if there are events to process.
1623 		 */
1624 		pthread_mutex_unlock(&dev->mutex);
1625 		retval = kevent(dev->kq, NULL, 0, &ke, 1, kq_ts);
1626 		pthread_mutex_lock(&dev->mutex);
1627 		if (retval == -1) {
1628 			warn("%s: error returned from kevent",__func__);
1629 			goto bailout;
1630 		} else if (retval != 0) {
1631 			switch (ke.filter) {
1632 			case EVFILT_READ:
1633 				if (dev->fetch != NULL) {
1634 					retval = dev->fetch(dev);
1635 					if (retval == -1) {
1636 						error_exit = 1;
1637 						goto bailout;
1638 					}
1639 				}
1640 				break;
1641 			case EVFILT_SIGNAL:
1642 				/*
1643 				 * We register for this so we don't get
1644 				 * an error as a result of a SIGINFO or a
1645 				 * SIGINT.  It will actually get handled
1646 				 * by the signal handler.  If we get a
1647 				 * SIGINT, bail out without printing an
1648 				 * error message.  Any other signals
1649 				 * will result in the error message above.
1650 				 */
1651 				if (ke.ident == SIGINT)
1652 					goto bailout;
1653 				break;
1654 			case EVFILT_USER:
1655 				retval = 0;
1656 				/*
1657 				 * Check to see if the other thread has
1658 				 * queued any I/O for us to do.  (In this
1659 				 * case we're the writer.)
1660 				 */
1661 				for (buf = STAILQ_FIRST(&dev->work_queue);
1662 				     buf != NULL;
1663 				     buf = STAILQ_FIRST(&dev->work_queue)) {
1664 					STAILQ_REMOVE_HEAD(&dev->work_queue,
1665 							   work_links);
1666 					retval = camdd_queue(dev, buf);
1667 					/*
1668 					 * We keep going unless we get an
1669 					 * actual error.  If we get EOF, we
1670 					 * still want to remove the buffers
1671 					 * from the queue and send the back
1672 					 * to the reader thread.
1673 					 */
1674 					if (retval == -1) {
1675 						error_exit = 1;
1676 						goto bailout;
1677 					} else
1678 						retval = 0;
1679 				}
1680 
1681 				/*
1682 				 * Next check to see if the other thread has
1683 				 * queued any completed buffers back to us.
1684 				 * (In this case we're the reader.)
1685 				 */
1686 				for (buf = STAILQ_FIRST(&dev->peer_done_queue);
1687 				     buf != NULL;
1688 				     buf = STAILQ_FIRST(&dev->peer_done_queue)){
1689 					STAILQ_REMOVE_HEAD(
1690 					    &dev->peer_done_queue, work_links);
1691 					dev->num_peer_done_queue--;
1692 					camdd_peer_done(buf);
1693 				}
1694 				break;
1695 			default:
1696 				warnx("%s: unknown kevent filter %d",
1697 				      __func__, ke.filter);
1698 				break;
1699 			}
1700 		}
1701 	}
1702 
1703 bailout:
1704 
1705 	dev->flags &= ~CAMDD_DEV_FLAG_ACTIVE;
1706 
1707 	/* XXX KDM cleanup resources here? */
1708 
1709 	pthread_mutex_unlock(&dev->mutex);
1710 
1711 	need_exit = 1;
1712 	sem_post(&camdd_sem);
1713 
1714 	return (NULL);
1715 }
1716 
1717 /*
1718  * Simplistic translation of CCB status to our local status.
1719  */
1720 camdd_buf_status
1721 camdd_ccb_status(union ccb *ccb)
1722 {
1723 	camdd_buf_status status = CAMDD_STATUS_NONE;
1724 	cam_status ccb_status;
1725 
1726 	ccb_status = ccb->ccb_h.status & CAM_STATUS_MASK;
1727 
1728 	switch (ccb_status) {
1729 	case CAM_REQ_CMP: {
1730 		if (ccb->csio.resid == 0) {
1731 			status = CAMDD_STATUS_OK;
1732 		} else if (ccb->csio.dxfer_len > ccb->csio.resid) {
1733 			status = CAMDD_STATUS_SHORT_IO;
1734 		} else {
1735 			status = CAMDD_STATUS_EOF;
1736 		}
1737 		break;
1738 	}
1739 	case CAM_SCSI_STATUS_ERROR: {
1740 		switch (ccb->csio.scsi_status) {
1741 		case SCSI_STATUS_OK:
1742 		case SCSI_STATUS_COND_MET:
1743 		case SCSI_STATUS_INTERMED:
1744 		case SCSI_STATUS_INTERMED_COND_MET:
1745 			status = CAMDD_STATUS_OK;
1746 			break;
1747 		case SCSI_STATUS_CMD_TERMINATED:
1748 		case SCSI_STATUS_CHECK_COND:
1749 		case SCSI_STATUS_QUEUE_FULL:
1750 		case SCSI_STATUS_BUSY:
1751 		case SCSI_STATUS_RESERV_CONFLICT:
1752 		default:
1753 			status = CAMDD_STATUS_ERROR;
1754 			break;
1755 		}
1756 		break;
1757 	}
1758 	default:
1759 		status = CAMDD_STATUS_ERROR;
1760 		break;
1761 	}
1762 
1763 	return (status);
1764 }
1765 
1766 /*
1767  * Queue a buffer to our peer's work thread for writing.
1768  *
1769  * Returns 0 for success, -1 for failure, 1 if the other thread exited.
1770  */
1771 int
1772 camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf)
1773 {
1774 	struct kevent ke;
1775 	STAILQ_HEAD(, camdd_buf) local_queue;
1776 	struct camdd_buf *buf1, *buf2;
1777 	struct camdd_buf_data *data = NULL;
1778 	uint64_t peer_bytes_queued = 0;
1779 	int active = 1;
1780 	int retval = 0;
1781 
1782 	STAILQ_INIT(&local_queue);
1783 
1784 	/*
1785 	 * Since we're the reader, we need to queue our I/O to the writer
1786 	 * in sequential order in order to make sure it gets written out
1787 	 * in sequential order.
1788 	 *
1789 	 * Check the next expected I/O starting offset.  If this doesn't
1790 	 * match, put it on the reorder queue.
1791 	 */
1792 	if ((buf->lba * dev->sector_size) != dev->next_completion_pos_bytes) {
1793 
1794 		/*
1795 		 * If there is nothing on the queue, there is no sorting
1796 		 * needed.
1797 		 */
1798 		if (STAILQ_EMPTY(&dev->reorder_queue)) {
1799 			STAILQ_INSERT_TAIL(&dev->reorder_queue, buf, links);
1800 			dev->num_reorder_queue++;
1801 			goto bailout;
1802 		}
1803 
1804 		/*
1805 		 * Sort in ascending order by starting LBA.  There should
1806 		 * be no identical LBAs.
1807 		 */
1808 		for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1809 		     buf1 = buf2) {
1810 			buf2 = STAILQ_NEXT(buf1, links);
1811 			if (buf->lba < buf1->lba) {
1812 				/*
1813 				 * If we're less than the first one, then
1814 				 * we insert at the head of the list
1815 				 * because this has to be the first element
1816 				 * on the list.
1817 				 */
1818 				STAILQ_INSERT_HEAD(&dev->reorder_queue,
1819 						   buf, links);
1820 				dev->num_reorder_queue++;
1821 				break;
1822 			} else if (buf->lba > buf1->lba) {
1823 				if (buf2 == NULL) {
1824 					STAILQ_INSERT_TAIL(&dev->reorder_queue,
1825 					    buf, links);
1826 					dev->num_reorder_queue++;
1827 					break;
1828 				} else if (buf->lba < buf2->lba) {
1829 					STAILQ_INSERT_AFTER(&dev->reorder_queue,
1830 					    buf1, buf, links);
1831 					dev->num_reorder_queue++;
1832 					break;
1833 				}
1834 			} else {
1835 				errx(1, "Found buffers with duplicate LBA %ju!",
1836 				     buf->lba);
1837 			}
1838 		}
1839 		goto bailout;
1840 	} else {
1841 
1842 		/*
1843 		 * We're the next expected I/O completion, so put ourselves
1844 		 * on the local queue to be sent to the writer.  We use
1845 		 * work_links here so that we can queue this to the
1846 		 * peer_work_queue before taking the buffer off of the
1847 		 * local_queue.
1848 		 */
1849 		dev->next_completion_pos_bytes += buf->len;
1850 		STAILQ_INSERT_TAIL(&local_queue, buf, work_links);
1851 
1852 		/*
1853 		 * Go through the reorder queue looking for more sequential
1854 		 * I/O and add it to the local queue.
1855 		 */
1856 		for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
1857 		     buf1 = STAILQ_FIRST(&dev->reorder_queue)) {
1858 			/*
1859 			 * As soon as we see an I/O that is out of sequence,
1860 			 * we're done.
1861 			 */
1862 			if ((buf1->lba * dev->sector_size) !=
1863 			     dev->next_completion_pos_bytes)
1864 				break;
1865 
1866 			STAILQ_REMOVE_HEAD(&dev->reorder_queue, links);
1867 			dev->num_reorder_queue--;
1868 			STAILQ_INSERT_TAIL(&local_queue, buf1, work_links);
1869 			dev->next_completion_pos_bytes += buf1->len;
1870 		}
1871 	}
1872 
1873 	/*
1874 	 * Setup the event to let the other thread know that it has work
1875 	 * pending.
1876 	 */
1877 	EV_SET(&ke, (uintptr_t)&dev->peer_dev->work_queue, EVFILT_USER, 0,
1878 	       NOTE_TRIGGER, 0, NULL);
1879 
1880 	/*
1881 	 * Put this on our shadow queue so that we know what we've queued
1882 	 * to the other thread.
1883 	 */
1884 	STAILQ_FOREACH_SAFE(buf1, &local_queue, work_links, buf2) {
1885 		if (buf1->buf_type != CAMDD_BUF_DATA) {
1886 			errx(1, "%s: should have a data buffer, not an "
1887 			    "indirect buffer", __func__);
1888 		}
1889 		data = &buf1->buf_type_spec.data;
1890 
1891 		/*
1892 		 * We only need to send one EOF to the writer, and don't
1893 		 * need to continue sending EOFs after that.
1894 		 */
1895 		if (buf1->status == CAMDD_STATUS_EOF) {
1896 			if (dev->flags & CAMDD_DEV_FLAG_EOF_SENT) {
1897 				STAILQ_REMOVE(&local_queue, buf1, camdd_buf,
1898 				    work_links);
1899 				camdd_release_buf(buf1);
1900 				retval = 1;
1901 				continue;
1902 			}
1903 			dev->flags |= CAMDD_DEV_FLAG_EOF_SENT;
1904 		}
1905 
1906 
1907 		STAILQ_INSERT_TAIL(&dev->peer_work_queue, buf1, links);
1908 		peer_bytes_queued += (data->fill_len - data->resid);
1909 		dev->peer_bytes_queued += (data->fill_len - data->resid);
1910 		dev->num_peer_work_queue++;
1911 	}
1912 
1913 	if (STAILQ_FIRST(&local_queue) == NULL)
1914 		goto bailout;
1915 
1916 	/*
1917 	 * Drop our mutex and pick up the other thread's mutex.  We need to
1918 	 * do this to avoid deadlocks.
1919 	 */
1920 	pthread_mutex_unlock(&dev->mutex);
1921 	pthread_mutex_lock(&dev->peer_dev->mutex);
1922 
1923 	if (dev->peer_dev->flags & CAMDD_DEV_FLAG_ACTIVE) {
1924 		/*
1925 		 * Put the buffers on the other thread's incoming work queue.
1926 		 */
1927 		for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
1928 		     buf1 = STAILQ_FIRST(&local_queue)) {
1929 			STAILQ_REMOVE_HEAD(&local_queue, work_links);
1930 			STAILQ_INSERT_TAIL(&dev->peer_dev->work_queue, buf1,
1931 					   work_links);
1932 		}
1933 		/*
1934 		 * Send an event to the other thread's kqueue to let it know
1935 		 * that there is something on the work queue.
1936 		 */
1937 		retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
1938 		if (retval == -1)
1939 			warn("%s: unable to add peer work_queue kevent",
1940 			     __func__);
1941 		else
1942 			retval = 0;
1943 	} else
1944 		active = 0;
1945 
1946 	pthread_mutex_unlock(&dev->peer_dev->mutex);
1947 	pthread_mutex_lock(&dev->mutex);
1948 
1949 	/*
1950 	 * If the other side isn't active, run through the queue and
1951 	 * release all of the buffers.
1952 	 */
1953 	if (active == 0) {
1954 		for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
1955 		     buf1 = STAILQ_FIRST(&local_queue)) {
1956 			STAILQ_REMOVE_HEAD(&local_queue, work_links);
1957 			STAILQ_REMOVE(&dev->peer_work_queue, buf1, camdd_buf,
1958 				      links);
1959 			dev->num_peer_work_queue--;
1960 			camdd_release_buf(buf1);
1961 		}
1962 		dev->peer_bytes_queued -= peer_bytes_queued;
1963 		retval = 1;
1964 	}
1965 
1966 bailout:
1967 	return (retval);
1968 }
1969 
1970 /*
1971  * Return a buffer to the reader thread when we have completed writing it.
1972  */
1973 int
1974 camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf)
1975 {
1976 	struct kevent ke;
1977 	int retval = 0;
1978 
1979 	/*
1980 	 * Setup the event to let the other thread know that we have
1981 	 * completed a buffer.
1982 	 */
1983 	EV_SET(&ke, (uintptr_t)&dev->peer_dev->peer_done_queue, EVFILT_USER, 0,
1984 	       NOTE_TRIGGER, 0, NULL);
1985 
1986 	/*
1987 	 * Drop our lock and acquire the other thread's lock before
1988 	 * manipulating
1989 	 */
1990 	pthread_mutex_unlock(&dev->mutex);
1991 	pthread_mutex_lock(&dev->peer_dev->mutex);
1992 
1993 	/*
1994 	 * Put the buffer on the reader thread's peer done queue now that
1995 	 * we have completed it.
1996 	 */
1997 	STAILQ_INSERT_TAIL(&dev->peer_dev->peer_done_queue, peer_buf,
1998 			   work_links);
1999 	dev->peer_dev->num_peer_done_queue++;
2000 
2001 	/*
2002 	 * Send an event to the peer thread to let it know that we've added
2003 	 * something to its peer done queue.
2004 	 */
2005 	retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
2006 	if (retval == -1)
2007 		warn("%s: unable to add peer_done_queue kevent", __func__);
2008 	else
2009 		retval = 0;
2010 
2011 	/*
2012 	 * Drop the other thread's lock and reacquire ours.
2013 	 */
2014 	pthread_mutex_unlock(&dev->peer_dev->mutex);
2015 	pthread_mutex_lock(&dev->mutex);
2016 
2017 	return (retval);
2018 }
2019 
2020 /*
2021  * Free a buffer that was written out by the writer thread and returned to
2022  * the reader thread.
2023  */
2024 void
2025 camdd_peer_done(struct camdd_buf *buf)
2026 {
2027 	struct camdd_dev *dev;
2028 	struct camdd_buf_data *data;
2029 
2030 	dev = buf->dev;
2031 	if (buf->buf_type != CAMDD_BUF_DATA) {
2032 		errx(1, "%s: should have a data buffer, not an "
2033 		    "indirect buffer", __func__);
2034 	}
2035 
2036 	data = &buf->buf_type_spec.data;
2037 
2038 	STAILQ_REMOVE(&dev->peer_work_queue, buf, camdd_buf, links);
2039 	dev->num_peer_work_queue--;
2040 	dev->peer_bytes_queued -= (data->fill_len - data->resid);
2041 
2042 	if (buf->status == CAMDD_STATUS_EOF)
2043 		dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2044 
2045 	STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2046 }
2047 
2048 /*
2049  * Assumes caller holds the lock for this device.
2050  */
2051 void
2052 camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
2053 		   int *error_count)
2054 {
2055 	int retval = 0;
2056 
2057 	/*
2058 	 * If we're the reader, we need to send the completed I/O
2059 	 * to the writer.  If we're the writer, we need to just
2060 	 * free up resources, or let the reader know if we've
2061 	 * encountered an error.
2062 	 */
2063 	if (dev->write_dev == 0) {
2064 		retval = camdd_queue_peer_buf(dev, buf);
2065 		if (retval != 0)
2066 			(*error_count)++;
2067 	} else {
2068 		struct camdd_buf *tmp_buf, *next_buf;
2069 
2070 		STAILQ_FOREACH_SAFE(tmp_buf, &buf->src_list, src_links,
2071 				    next_buf) {
2072 			struct camdd_buf *src_buf;
2073 			struct camdd_buf_indirect *indirect;
2074 
2075 			STAILQ_REMOVE(&buf->src_list, tmp_buf,
2076 				      camdd_buf, src_links);
2077 
2078 			tmp_buf->status = buf->status;
2079 
2080 			if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
2081 				camdd_complete_peer_buf(dev, tmp_buf);
2082 				continue;
2083 			}
2084 
2085 			indirect = &tmp_buf->buf_type_spec.indirect;
2086 			src_buf = indirect->src_buf;
2087 			src_buf->refcount--;
2088 			/*
2089 			 * XXX KDM we probably need to account for
2090 			 * exactly how many bytes we were able to
2091 			 * write.  Allocate the residual to the
2092 			 * first N buffers?  Or just track the
2093 			 * number of bytes written?  Right now the reader
2094 			 * doesn't do anything with a residual.
2095 			 */
2096 			src_buf->status = buf->status;
2097 			if (src_buf->refcount <= 0)
2098 				camdd_complete_peer_buf(dev, src_buf);
2099 			STAILQ_INSERT_TAIL(&dev->free_indirect_queue,
2100 					   tmp_buf, links);
2101 		}
2102 
2103 		STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2104 	}
2105 }
2106 
2107 /*
2108  * Fetch all completed commands from the pass(4) device.
2109  *
2110  * Returns the number of commands received, or -1 if any of the commands
2111  * completed with an error.  Returns 0 if no commands are available.
2112  */
2113 int
2114 camdd_pass_fetch(struct camdd_dev *dev)
2115 {
2116 	struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2117 	union ccb ccb;
2118 	int retval = 0, num_fetched = 0, error_count = 0;
2119 
2120 	pthread_mutex_unlock(&dev->mutex);
2121 	/*
2122 	 * XXX KDM we don't distinguish between EFAULT and ENOENT.
2123 	 */
2124 	while ((retval = ioctl(pass_dev->dev->fd, CAMIOGET, &ccb)) != -1) {
2125 		struct camdd_buf *buf;
2126 		struct camdd_buf_data *data;
2127 		cam_status ccb_status;
2128 		union ccb *buf_ccb;
2129 
2130 		buf = ccb.ccb_h.ccb_buf;
2131 		data = &buf->buf_type_spec.data;
2132 		buf_ccb = &data->ccb;
2133 
2134 		num_fetched++;
2135 
2136 		/*
2137 		 * Copy the CCB back out so we get status, sense data, etc.
2138 		 */
2139 		bcopy(&ccb, buf_ccb, sizeof(ccb));
2140 
2141 		pthread_mutex_lock(&dev->mutex);
2142 
2143 		/*
2144 		 * We're now done, so take this off the active queue.
2145 		 */
2146 		STAILQ_REMOVE(&dev->active_queue, buf, camdd_buf, links);
2147 		dev->cur_active_io--;
2148 
2149 		ccb_status = ccb.ccb_h.status & CAM_STATUS_MASK;
2150 		if (ccb_status != CAM_REQ_CMP) {
2151 			cam_error_print(pass_dev->dev, &ccb, CAM_ESF_ALL,
2152 					CAM_EPF_ALL, stderr);
2153 		}
2154 
2155 		data->resid = ccb.csio.resid;
2156 		dev->bytes_transferred += (ccb.csio.dxfer_len - ccb.csio.resid);
2157 
2158 		if (buf->status == CAMDD_STATUS_NONE)
2159 			buf->status = camdd_ccb_status(&ccb);
2160 		if (buf->status == CAMDD_STATUS_ERROR)
2161 			error_count++;
2162 		else if (buf->status == CAMDD_STATUS_EOF) {
2163 			/*
2164 			 * Once we queue this buffer to our partner thread,
2165 			 * he will know that we've hit EOF.
2166 			 */
2167 			dev->flags |= CAMDD_DEV_FLAG_EOF;
2168 		}
2169 
2170 		camdd_complete_buf(dev, buf, &error_count);
2171 
2172 		/*
2173 		 * Unlock in preparation for the ioctl call.
2174 		 */
2175 		pthread_mutex_unlock(&dev->mutex);
2176 	}
2177 
2178 	pthread_mutex_lock(&dev->mutex);
2179 
2180 	if (error_count > 0)
2181 		return (-1);
2182 	else
2183 		return (num_fetched);
2184 }
2185 
2186 /*
2187  * Returns -1 for error, 0 for success/continue, and 1 for resource
2188  * shortage/stop processing.
2189  */
2190 int
2191 camdd_file_run(struct camdd_dev *dev)
2192 {
2193 	struct camdd_dev_file *file_dev = &dev->dev_spec.file;
2194 	struct camdd_buf_data *data;
2195 	struct camdd_buf *buf;
2196 	off_t io_offset;
2197 	int retval = 0, write_dev = dev->write_dev;
2198 	int error_count = 0, no_resources = 0, double_buf_needed = 0;
2199 	uint32_t num_sectors = 0, db_len = 0;
2200 
2201 	buf = STAILQ_FIRST(&dev->run_queue);
2202 	if (buf == NULL) {
2203 		no_resources = 1;
2204 		goto bailout;
2205 	} else if ((dev->write_dev == 0)
2206 		&& (dev->flags & (CAMDD_DEV_FLAG_EOF |
2207 				  CAMDD_DEV_FLAG_EOF_SENT))) {
2208 		STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2209 		dev->num_run_queue--;
2210 		buf->status = CAMDD_STATUS_EOF;
2211 		error_count++;
2212 		goto bailout;
2213 	}
2214 
2215 	/*
2216 	 * If we're writing, we need to go through the source buffer list
2217 	 * and create an S/G list.
2218 	 */
2219 	if (write_dev != 0) {
2220 		retval = camdd_buf_sg_create(buf, /*iovec*/ 1,
2221 		    dev->sector_size, &num_sectors, &double_buf_needed);
2222 		if (retval != 0) {
2223 			no_resources = 1;
2224 			goto bailout;
2225 		}
2226 	}
2227 
2228 	STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2229 	dev->num_run_queue--;
2230 
2231 	data = &buf->buf_type_spec.data;
2232 
2233 	/*
2234 	 * pread(2) and pwrite(2) offsets are byte offsets.
2235 	 */
2236 	io_offset = buf->lba * dev->sector_size;
2237 
2238 	/*
2239 	 * Unlock the mutex while we read or write.
2240 	 */
2241 	pthread_mutex_unlock(&dev->mutex);
2242 
2243 	/*
2244 	 * Note that we don't need to double buffer if we're the reader
2245 	 * because in that case, we have allocated a single buffer of
2246 	 * sufficient size to do the read.  This copy is necessary on
2247 	 * writes because if one of the components of the S/G list is not
2248 	 * a sector size multiple, the kernel will reject the write.  This
2249 	 * is unfortunate but not surprising.  So this will make sure that
2250 	 * we're using a single buffer that is a multiple of the sector size.
2251 	 */
2252 	if ((double_buf_needed != 0)
2253 	 && (data->sg_count > 1)
2254 	 && (write_dev != 0)) {
2255 		uint32_t cur_offset;
2256 		int i;
2257 
2258 		if (file_dev->tmp_buf == NULL)
2259 			file_dev->tmp_buf = calloc(dev->blocksize, 1);
2260 		if (file_dev->tmp_buf == NULL) {
2261 			buf->status = CAMDD_STATUS_ERROR;
2262 			error_count++;
2263 			goto bailout;
2264 		}
2265 		for (i = 0, cur_offset = 0; i < data->sg_count; i++) {
2266 			bcopy(data->iovec[i].iov_base,
2267 			    &file_dev->tmp_buf[cur_offset],
2268 			    data->iovec[i].iov_len);
2269 			cur_offset += data->iovec[i].iov_len;
2270 		}
2271 		db_len = cur_offset;
2272 	}
2273 
2274 	if (file_dev->file_flags & CAMDD_FF_CAN_SEEK) {
2275 		if (write_dev == 0) {
2276 			/*
2277 			 * XXX KDM is there any way we would need a S/G
2278 			 * list here?
2279 			 */
2280 			retval = pread(file_dev->fd, data->buf,
2281 			    buf->len, io_offset);
2282 		} else {
2283 			if (double_buf_needed != 0) {
2284 				retval = pwrite(file_dev->fd, file_dev->tmp_buf,
2285 				    db_len, io_offset);
2286 			} else if (data->sg_count == 0) {
2287 				retval = pwrite(file_dev->fd, data->buf,
2288 				    data->fill_len, io_offset);
2289 			} else {
2290 				retval = pwritev(file_dev->fd, data->iovec,
2291 				    data->sg_count, io_offset);
2292 			}
2293 		}
2294 	} else {
2295 		if (write_dev == 0) {
2296 			/*
2297 			 * XXX KDM is there any way we would need a S/G
2298 			 * list here?
2299 			 */
2300 			retval = read(file_dev->fd, data->buf, buf->len);
2301 		} else {
2302 			if (double_buf_needed != 0) {
2303 				retval = write(file_dev->fd, file_dev->tmp_buf,
2304 				    db_len);
2305 			} else if (data->sg_count == 0) {
2306 				retval = write(file_dev->fd, data->buf,
2307 				    data->fill_len);
2308 			} else {
2309 				retval = writev(file_dev->fd, data->iovec,
2310 				    data->sg_count);
2311 			}
2312 		}
2313 	}
2314 
2315 	/* We're done, re-acquire the lock */
2316 	pthread_mutex_lock(&dev->mutex);
2317 
2318 	if (retval >= (ssize_t)data->fill_len) {
2319 		/*
2320 		 * If the bytes transferred is more than the request size,
2321 		 * that indicates an overrun, which should only happen at
2322 		 * the end of a transfer if we have to round up to a sector
2323 		 * boundary.
2324 		 */
2325 		if (buf->status == CAMDD_STATUS_NONE)
2326 			buf->status = CAMDD_STATUS_OK;
2327 		data->resid = 0;
2328 		dev->bytes_transferred += retval;
2329 	} else if (retval == -1) {
2330 		warn("Error %s %s", (write_dev) ? "writing to" :
2331 		    "reading from", file_dev->filename);
2332 
2333 		buf->status = CAMDD_STATUS_ERROR;
2334 		data->resid = data->fill_len;
2335 		error_count++;
2336 
2337 		if (dev->debug == 0)
2338 			goto bailout;
2339 
2340 		if ((double_buf_needed != 0)
2341 		 && (write_dev != 0)) {
2342 			fprintf(stderr, "%s: fd %d, DB buf %p, len %u lba %ju "
2343 			    "offset %ju\n", __func__, file_dev->fd,
2344 			    file_dev->tmp_buf, db_len, (uintmax_t)buf->lba,
2345 			    (uintmax_t)io_offset);
2346 		} else if (data->sg_count == 0) {
2347 			fprintf(stderr, "%s: fd %d, buf %p, len %u, lba %ju "
2348 			    "offset %ju\n", __func__, file_dev->fd, data->buf,
2349 			    data->fill_len, (uintmax_t)buf->lba,
2350 			    (uintmax_t)io_offset);
2351 		} else {
2352 			int i;
2353 
2354 			fprintf(stderr, "%s: fd %d, len %u, lba %ju "
2355 			    "offset %ju\n", __func__, file_dev->fd,
2356 			    data->fill_len, (uintmax_t)buf->lba,
2357 			    (uintmax_t)io_offset);
2358 
2359 			for (i = 0; i < data->sg_count; i++) {
2360 				fprintf(stderr, "index %d ptr %p len %zu\n",
2361 				    i, data->iovec[i].iov_base,
2362 				    data->iovec[i].iov_len);
2363 			}
2364 		}
2365 	} else if (retval == 0) {
2366 		buf->status = CAMDD_STATUS_EOF;
2367 		if (dev->debug != 0)
2368 			printf("%s: got EOF from %s!\n", __func__,
2369 			    file_dev->filename);
2370 		data->resid = data->fill_len;
2371 		error_count++;
2372 	} else if (retval < (ssize_t)data->fill_len) {
2373 		if (buf->status == CAMDD_STATUS_NONE)
2374 			buf->status = CAMDD_STATUS_SHORT_IO;
2375 		data->resid = data->fill_len - retval;
2376 		dev->bytes_transferred += retval;
2377 	}
2378 
2379 bailout:
2380 	if (buf != NULL) {
2381 		if (buf->status == CAMDD_STATUS_EOF) {
2382 			struct camdd_buf *buf2;
2383 			dev->flags |= CAMDD_DEV_FLAG_EOF;
2384 			STAILQ_FOREACH(buf2, &dev->run_queue, links)
2385 				buf2->status = CAMDD_STATUS_EOF;
2386 		}
2387 
2388 		camdd_complete_buf(dev, buf, &error_count);
2389 	}
2390 
2391 	if (error_count != 0)
2392 		return (-1);
2393 	else if (no_resources != 0)
2394 		return (1);
2395 	else
2396 		return (0);
2397 }
2398 
2399 /*
2400  * Execute one command from the run queue.  Returns 0 for success, 1 for
2401  * stop processing, and -1 for error.
2402  */
2403 int
2404 camdd_pass_run(struct camdd_dev *dev)
2405 {
2406 	struct camdd_buf *buf = NULL;
2407 	struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
2408 	struct camdd_buf_data *data;
2409 	uint32_t num_blocks, sectors_used = 0;
2410 	union ccb *ccb;
2411 	int retval = 0, is_write = dev->write_dev;
2412 	int double_buf_needed = 0;
2413 
2414 	buf = STAILQ_FIRST(&dev->run_queue);
2415 	if (buf == NULL) {
2416 		retval = 1;
2417 		goto bailout;
2418 	}
2419 
2420 	/*
2421 	 * If we're writing, we need to go through the source buffer list
2422 	 * and create an S/G list.
2423 	 */
2424 	if (is_write != 0) {
2425 		retval = camdd_buf_sg_create(buf, /*iovec*/ 0,dev->sector_size,
2426 		    &sectors_used, &double_buf_needed);
2427 		if (retval != 0) {
2428 			retval = -1;
2429 			goto bailout;
2430 		}
2431 	}
2432 
2433 	STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
2434 	dev->num_run_queue--;
2435 
2436 	data = &buf->buf_type_spec.data;
2437 
2438 	ccb = &data->ccb;
2439 	bzero(&(&ccb->ccb_h)[1],
2440 	      sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
2441 
2442 	/*
2443 	 * In almost every case the number of blocks should be the device
2444 	 * block size.  The exception may be at the end of an I/O stream
2445 	 * for a partial block or at the end of a device.
2446 	 */
2447 	if (is_write != 0)
2448 		num_blocks = sectors_used;
2449 	else
2450 		num_blocks = data->fill_len / pass_dev->block_len;
2451 
2452 	scsi_read_write(&ccb->csio,
2453 			/*retries*/ dev->retry_count,
2454 			/*cbfcnp*/ NULL,
2455 			/*tag_action*/ MSG_SIMPLE_Q_TAG,
2456 			/*readop*/ (dev->write_dev == 0) ? SCSI_RW_READ :
2457 				   SCSI_RW_WRITE,
2458 			/*byte2*/ 0,
2459 			/*minimum_cmd_size*/ dev->min_cmd_size,
2460 			/*lba*/ buf->lba,
2461 			/*block_count*/ num_blocks,
2462 			/*data_ptr*/ (data->sg_count != 0) ?
2463 				     (uint8_t *)data->segs : data->buf,
2464 			/*dxfer_len*/ (num_blocks * pass_dev->block_len),
2465 			/*sense_len*/ SSD_FULL_SIZE,
2466 			/*timeout*/ dev->io_timeout);
2467 
2468 	/* Disable freezing the device queue */
2469 	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
2470 
2471 	if (dev->retry_count != 0)
2472 		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
2473 
2474 	if (data->sg_count != 0) {
2475 		ccb->csio.sglist_cnt = data->sg_count;
2476 		ccb->ccb_h.flags |= CAM_DATA_SG;
2477 	}
2478 
2479 	/*
2480 	 * Store a pointer to the buffer in the CCB.  The kernel will
2481 	 * restore this when we get it back, and we'll use it to identify
2482 	 * the buffer this CCB came from.
2483 	 */
2484 	ccb->ccb_h.ccb_buf = buf;
2485 
2486 	/*
2487 	 * Unlock our mutex in preparation for issuing the ioctl.
2488 	 */
2489 	pthread_mutex_unlock(&dev->mutex);
2490 	/*
2491 	 * Queue the CCB to the pass(4) driver.
2492 	 */
2493 	if (ioctl(pass_dev->dev->fd, CAMIOQUEUE, ccb) == -1) {
2494 		pthread_mutex_lock(&dev->mutex);
2495 
2496 		warn("%s: error sending CAMIOQUEUE ioctl to %s%u", __func__,
2497 		     pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
2498 		warn("%s: CCB address is %p", __func__, ccb);
2499 		retval = -1;
2500 
2501 		STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
2502 	} else {
2503 		pthread_mutex_lock(&dev->mutex);
2504 
2505 		dev->cur_active_io++;
2506 		STAILQ_INSERT_TAIL(&dev->active_queue, buf, links);
2507 	}
2508 
2509 bailout:
2510 	return (retval);
2511 }
2512 
2513 int
2514 camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len)
2515 {
2516 	struct camdd_dev_pass *pass_dev;
2517 	uint32_t num_blocks;
2518 	int retval = 0;
2519 
2520 	pass_dev = &dev->dev_spec.pass;
2521 
2522 	*lba = dev->next_io_pos_bytes / dev->sector_size;
2523 	*len = dev->blocksize;
2524 	num_blocks = *len / dev->sector_size;
2525 
2526 	/*
2527 	 * If max_sector is 0, then we have no set limit.  This can happen
2528 	 * if we're writing to a file in a filesystem, or reading from
2529 	 * something like /dev/zero.
2530 	 */
2531 	if ((dev->max_sector != 0)
2532 	 || (dev->sector_io_limit != 0)) {
2533 		uint64_t max_sector;
2534 
2535 		if ((dev->max_sector != 0)
2536 		 && (dev->sector_io_limit != 0))
2537 			max_sector = min(dev->sector_io_limit, dev->max_sector);
2538 		else if (dev->max_sector != 0)
2539 			max_sector = dev->max_sector;
2540 		else
2541 			max_sector = dev->sector_io_limit;
2542 
2543 
2544 		/*
2545 		 * Check to see whether we're starting off past the end of
2546 		 * the device.  If so, we need to just send an EOF
2547 		 * notification to the writer.
2548 		 */
2549 		if (*lba > max_sector) {
2550 			*len = 0;
2551 			retval = 1;
2552 		} else if (((*lba + num_blocks) > max_sector + 1)
2553 			|| ((*lba + num_blocks) < *lba)) {
2554 			/*
2555 			 * If we get here (but pass the first check), we
2556 			 * can trim the request length down to go to the
2557 			 * end of the device.
2558 			 */
2559 			num_blocks = (max_sector + 1) - *lba;
2560 			*len = num_blocks * dev->sector_size;
2561 			retval = 1;
2562 		}
2563 	}
2564 
2565 	dev->next_io_pos_bytes += *len;
2566 
2567 	return (retval);
2568 }
2569 
2570 /*
2571  * Returns 0 for success, 1 for EOF detected, and -1 for failure.
2572  */
2573 int
2574 camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf)
2575 {
2576 	struct camdd_buf *buf = NULL;
2577 	struct camdd_buf_data *data;
2578 	struct camdd_dev_pass *pass_dev;
2579 	size_t new_len;
2580 	struct camdd_buf_data *rb_data;
2581 	int is_write = dev->write_dev;
2582 	int eof_flush_needed = 0;
2583 	int retval = 0;
2584 	int error;
2585 
2586 	pass_dev = &dev->dev_spec.pass;
2587 
2588 	/*
2589 	 * If we've gotten EOF or our partner has, we should not continue
2590 	 * queueing I/O.  If we're a writer, though, we should continue
2591 	 * to write any buffers that don't have EOF status.
2592 	 */
2593 	if ((dev->flags & CAMDD_DEV_FLAG_EOF)
2594 	 || ((dev->flags & CAMDD_DEV_FLAG_PEER_EOF)
2595 	  && (is_write == 0))) {
2596 		/*
2597 		 * Tell the worker thread that we have seen EOF.
2598 		 */
2599 		retval = 1;
2600 
2601 		/*
2602 		 * If we're the writer, send the buffer back with EOF status.
2603 		 */
2604 		if (is_write) {
2605 			read_buf->status = CAMDD_STATUS_EOF;
2606 
2607 			error = camdd_complete_peer_buf(dev, read_buf);
2608 		}
2609 		goto bailout;
2610 	}
2611 
2612 	if (is_write == 0) {
2613 		buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2614 		if (buf == NULL) {
2615 			retval = -1;
2616 			goto bailout;
2617 		}
2618 		data = &buf->buf_type_spec.data;
2619 
2620 		retval = camdd_get_next_lba_len(dev, &buf->lba, &buf->len);
2621 		if (retval != 0) {
2622 			buf->status = CAMDD_STATUS_EOF;
2623 
2624 		 	if ((buf->len == 0)
2625 			 && ((dev->flags & (CAMDD_DEV_FLAG_EOF_SENT |
2626 			     CAMDD_DEV_FLAG_EOF_QUEUED)) != 0)) {
2627 				camdd_release_buf(buf);
2628 				goto bailout;
2629 			}
2630 			dev->flags |= CAMDD_DEV_FLAG_EOF_QUEUED;
2631 		}
2632 
2633 		data->fill_len = buf->len;
2634 		data->src_start_offset = buf->lba * dev->sector_size;
2635 
2636 		/*
2637 		 * Put this on the run queue.
2638 		 */
2639 		STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2640 		dev->num_run_queue++;
2641 
2642 		/* We're done. */
2643 		goto bailout;
2644 	}
2645 
2646 	/*
2647 	 * Check for new EOF status from the reader.
2648 	 */
2649 	if ((read_buf->status == CAMDD_STATUS_EOF)
2650 	 || (read_buf->status == CAMDD_STATUS_ERROR)) {
2651 		dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
2652 		if ((STAILQ_FIRST(&dev->pending_queue) == NULL)
2653 		 && (read_buf->len == 0)) {
2654 			camdd_complete_peer_buf(dev, read_buf);
2655 			retval = 1;
2656 			goto bailout;
2657 		} else
2658 			eof_flush_needed = 1;
2659 	}
2660 
2661 	/*
2662 	 * See if we have a buffer we're composing with pieces from our
2663 	 * partner thread.
2664 	 */
2665 	buf = STAILQ_FIRST(&dev->pending_queue);
2666 	if (buf == NULL) {
2667 		uint64_t lba;
2668 		ssize_t len;
2669 
2670 		retval = camdd_get_next_lba_len(dev, &lba, &len);
2671 		if (retval != 0) {
2672 			read_buf->status = CAMDD_STATUS_EOF;
2673 
2674 			if (len == 0) {
2675 				dev->flags |= CAMDD_DEV_FLAG_EOF;
2676 				error = camdd_complete_peer_buf(dev, read_buf);
2677 				goto bailout;
2678 			}
2679 		}
2680 
2681 		/*
2682 		 * If we don't have a pending buffer, we need to grab a new
2683 		 * one from the free list or allocate another one.
2684 		 */
2685 		buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2686 		if (buf == NULL) {
2687 			retval = 1;
2688 			goto bailout;
2689 		}
2690 
2691 		buf->lba = lba;
2692 		buf->len = len;
2693 
2694 		STAILQ_INSERT_TAIL(&dev->pending_queue, buf, links);
2695 		dev->num_pending_queue++;
2696 	}
2697 
2698 	data = &buf->buf_type_spec.data;
2699 
2700 	rb_data = &read_buf->buf_type_spec.data;
2701 
2702 	if ((rb_data->src_start_offset != dev->next_peer_pos_bytes)
2703 	 && (dev->debug != 0)) {
2704 		printf("%s: WARNING: reader offset %#jx != expected offset "
2705 		    "%#jx\n", __func__, (uintmax_t)rb_data->src_start_offset,
2706 		    (uintmax_t)dev->next_peer_pos_bytes);
2707 	}
2708 	dev->next_peer_pos_bytes = rb_data->src_start_offset +
2709 	    (rb_data->fill_len - rb_data->resid);
2710 
2711 	new_len = (rb_data->fill_len - rb_data->resid) + data->fill_len;
2712 	if (new_len < buf->len) {
2713 		/*
2714 		 * There are three cases here:
2715 		 * 1. We need more data to fill up a block, so we put
2716 		 *    this I/O on the queue and wait for more I/O.
2717 		 * 2. We have a pending buffer in the queue that is
2718 		 *    smaller than our blocksize, but we got an EOF.  So we
2719 		 *    need to go ahead and flush the write out.
2720 		 * 3. We got an error.
2721 		 */
2722 
2723 		/*
2724 		 * Increment our fill length.
2725 		 */
2726 		data->fill_len += (rb_data->fill_len - rb_data->resid);
2727 
2728 		/*
2729 		 * Add the new read buffer to the list for writing.
2730 		 */
2731 		STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2732 
2733 		/* Increment the count */
2734 		buf->src_count++;
2735 
2736 		if (eof_flush_needed == 0) {
2737 			/*
2738 			 * We need to exit, because we don't have enough
2739 			 * data yet.
2740 			 */
2741 			goto bailout;
2742 		} else {
2743 			/*
2744 			 * Take the buffer off of the pending queue.
2745 			 */
2746 			STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2747 				      links);
2748 			dev->num_pending_queue--;
2749 
2750 			/*
2751 			 * If we need an EOF flush, but there is no data
2752 			 * to flush, go ahead and return this buffer.
2753 			 */
2754 			if (data->fill_len == 0) {
2755 				camdd_complete_buf(dev, buf, /*error_count*/0);
2756 				retval = 1;
2757 				goto bailout;
2758 			}
2759 
2760 			/*
2761 			 * Put this on the next queue for execution.
2762 			 */
2763 			STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2764 			dev->num_run_queue++;
2765 		}
2766 	} else if (new_len == buf->len) {
2767 		/*
2768 		 * We have enough data to completey fill one block,
2769 		 * so we're ready to issue the I/O.
2770 		 */
2771 
2772 		/*
2773 		 * Take the buffer off of the pending queue.
2774 		 */
2775 		STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, links);
2776 		dev->num_pending_queue--;
2777 
2778 		/*
2779 		 * Add the new read buffer to the list for writing.
2780 		 */
2781 		STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
2782 
2783 		/* Increment the count */
2784 		buf->src_count++;
2785 
2786 		/*
2787 		 * Increment our fill length.
2788 		 */
2789 		data->fill_len += (rb_data->fill_len - rb_data->resid);
2790 
2791 		/*
2792 		 * Put this on the next queue for execution.
2793 		 */
2794 		STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2795 		dev->num_run_queue++;
2796 	} else {
2797 		struct camdd_buf *idb;
2798 		struct camdd_buf_indirect *indirect;
2799 		uint32_t len_to_go, cur_offset;
2800 
2801 
2802 		idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2803 		if (idb == NULL) {
2804 			retval = 1;
2805 			goto bailout;
2806 		}
2807 		indirect = &idb->buf_type_spec.indirect;
2808 		indirect->src_buf = read_buf;
2809 		read_buf->refcount++;
2810 		indirect->offset = 0;
2811 		indirect->start_ptr = rb_data->buf;
2812 		/*
2813 		 * We've already established that there is more
2814 		 * data in read_buf than we have room for in our
2815 		 * current write request.  So this particular chunk
2816 		 * of the request should just be the remainder
2817 		 * needed to fill up a block.
2818 		 */
2819 		indirect->len = buf->len - (data->fill_len - data->resid);
2820 
2821 		camdd_buf_add_child(buf, idb);
2822 
2823 		/*
2824 		 * This buffer is ready to execute, so we can take
2825 		 * it off the pending queue and put it on the run
2826 		 * queue.
2827 		 */
2828 		STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
2829 			      links);
2830 		dev->num_pending_queue--;
2831 		STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
2832 		dev->num_run_queue++;
2833 
2834 		cur_offset = indirect->offset + indirect->len;
2835 
2836 		/*
2837 		 * The resulting I/O would be too large to fit in
2838 		 * one block.  We need to split this I/O into
2839 		 * multiple pieces.  Allocate as many buffers as needed.
2840 		 */
2841 		for (len_to_go = rb_data->fill_len - rb_data->resid -
2842 		     indirect->len; len_to_go > 0;) {
2843 			struct camdd_buf *new_buf;
2844 			struct camdd_buf_data *new_data;
2845 			uint64_t lba;
2846 			ssize_t len;
2847 
2848 			retval = camdd_get_next_lba_len(dev, &lba, &len);
2849 			if ((retval != 0)
2850 			 && (len == 0)) {
2851 				/*
2852 				 * The device has already been marked
2853 				 * as EOF, and there is no space left.
2854 				 */
2855 				goto bailout;
2856 			}
2857 
2858 			new_buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
2859 			if (new_buf == NULL) {
2860 				retval = 1;
2861 				goto bailout;
2862 			}
2863 
2864 			new_buf->lba = lba;
2865 			new_buf->len = len;
2866 
2867 			idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
2868 			if (idb == NULL) {
2869 				retval = 1;
2870 				goto bailout;
2871 			}
2872 
2873 			indirect = &idb->buf_type_spec.indirect;
2874 
2875 			indirect->src_buf = read_buf;
2876 			read_buf->refcount++;
2877 			indirect->offset = cur_offset;
2878 			indirect->start_ptr = rb_data->buf + cur_offset;
2879 			indirect->len = min(len_to_go, new_buf->len);
2880 #if 0
2881 			if (((indirect->len % dev->sector_size) != 0)
2882 			 || ((indirect->offset % dev->sector_size) != 0)) {
2883 				warnx("offset %ju len %ju not aligned with "
2884 				    "sector size %u", indirect->offset,
2885 				    (uintmax_t)indirect->len, dev->sector_size);
2886 			}
2887 #endif
2888 			cur_offset += indirect->len;
2889 			len_to_go -= indirect->len;
2890 
2891 			camdd_buf_add_child(new_buf, idb);
2892 
2893 			new_data = &new_buf->buf_type_spec.data;
2894 
2895 			if ((new_data->fill_len == new_buf->len)
2896 			 || (eof_flush_needed != 0)) {
2897 				STAILQ_INSERT_TAIL(&dev->run_queue,
2898 						   new_buf, links);
2899 				dev->num_run_queue++;
2900 			} else if (new_data->fill_len < buf->len) {
2901 				STAILQ_INSERT_TAIL(&dev->pending_queue,
2902 					   	new_buf, links);
2903 				dev->num_pending_queue++;
2904 			} else {
2905 				warnx("%s: too much data in new "
2906 				      "buffer!", __func__);
2907 				retval = 1;
2908 				goto bailout;
2909 			}
2910 		}
2911 	}
2912 
2913 bailout:
2914 	return (retval);
2915 }
2916 
2917 void
2918 camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
2919 		uint32_t *peer_depth, uint32_t *our_bytes, uint32_t *peer_bytes)
2920 {
2921 	*our_depth = dev->cur_active_io + dev->num_run_queue;
2922 	if (dev->num_peer_work_queue >
2923 	    dev->num_peer_done_queue)
2924 		*peer_depth = dev->num_peer_work_queue -
2925 			      dev->num_peer_done_queue;
2926 	else
2927 		*peer_depth = 0;
2928 	*our_bytes = *our_depth * dev->blocksize;
2929 	*peer_bytes = dev->peer_bytes_queued;
2930 }
2931 
2932 void
2933 camdd_sig_handler(int sig)
2934 {
2935 	if (sig == SIGINFO)
2936 		need_status = 1;
2937 	else {
2938 		need_exit = 1;
2939 		error_exit = 1;
2940 	}
2941 
2942 	sem_post(&camdd_sem);
2943 }
2944 
2945 void
2946 camdd_print_status(struct camdd_dev *camdd_dev, struct camdd_dev *other_dev,
2947 		   struct timespec *start_time)
2948 {
2949 	struct timespec done_time;
2950 	uint64_t total_ns;
2951 	long double mb_sec, total_sec;
2952 	int error = 0;
2953 
2954 	error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &done_time);
2955 	if (error != 0) {
2956 		warn("Unable to get done time");
2957 		return;
2958 	}
2959 
2960 	timespecsub(&done_time, start_time);
2961 
2962 	total_ns = done_time.tv_nsec + (done_time.tv_sec * 1000000000);
2963 	total_sec = total_ns;
2964 	total_sec /= 1000000000;
2965 
2966 	fprintf(stderr, "%ju bytes %s %s\n%ju bytes %s %s\n"
2967 		"%.4Lf seconds elapsed\n",
2968 		(uintmax_t)camdd_dev->bytes_transferred,
2969 		(camdd_dev->write_dev == 0) ?  "read from" : "written to",
2970 		camdd_dev->device_name,
2971 		(uintmax_t)other_dev->bytes_transferred,
2972 		(other_dev->write_dev == 0) ? "read from" : "written to",
2973 		other_dev->device_name, total_sec);
2974 
2975 	mb_sec = min(other_dev->bytes_transferred,camdd_dev->bytes_transferred);
2976 	mb_sec /= 1024 * 1024;
2977 	mb_sec *= 1000000000;
2978 	mb_sec /= total_ns;
2979 	fprintf(stderr, "%.2Lf MB/sec\n", mb_sec);
2980 }
2981 
2982 int
2983 camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts, uint64_t max_io,
2984 	 int retry_count, int timeout)
2985 {
2986 	char *device = NULL;
2987 	struct cam_device *new_cam_dev = NULL;
2988 	struct camdd_dev *devs[2];
2989 	struct timespec start_time;
2990 	pthread_t threads[2];
2991 	int unit = 0;
2992 	int error = 0;
2993 	int i;
2994 
2995 	if (num_io_opts != 2) {
2996 		warnx("Must have one input and one output path");
2997 		error = 1;
2998 		goto bailout;
2999 	}
3000 
3001 	bzero(devs, sizeof(devs));
3002 
3003 	for (i = 0; i < num_io_opts; i++) {
3004 		switch (io_opts[i].dev_type) {
3005 		case CAMDD_DEV_PASS: {
3006 			camdd_argmask new_arglist = CAMDD_ARG_NONE;
3007 			int bus = 0, target = 0, lun = 0;
3008 			char name[30];
3009 			int rv;
3010 
3011 			if (isdigit(io_opts[i].dev_name[0])) {
3012 				/* device specified as bus:target[:lun] */
3013 				rv = parse_btl(io_opts[i].dev_name, &bus,
3014 				    &target, &lun, &new_arglist);
3015 				if (rv < 2) {
3016 					warnx("numeric device specification "
3017 					     "must be either bus:target, or "
3018 					     "bus:target:lun");
3019 					error = 1;
3020 					goto bailout;
3021 				}
3022 				/* default to 0 if lun was not specified */
3023 				if ((new_arglist & CAMDD_ARG_LUN) == 0) {
3024 					lun = 0;
3025 					new_arglist |= CAMDD_ARG_LUN;
3026 				}
3027 			} else {
3028 				if (cam_get_device(io_opts[i].dev_name, name,
3029 						   sizeof name, &unit) == -1) {
3030 					warnx("%s", cam_errbuf);
3031 					error = 1;
3032 					goto bailout;
3033 				}
3034 				device = strdup(name);
3035 				new_arglist |= CAMDD_ARG_DEVICE |CAMDD_ARG_UNIT;
3036 			}
3037 
3038 			if (new_arglist & (CAMDD_ARG_BUS | CAMDD_ARG_TARGET))
3039 				new_cam_dev = cam_open_btl(bus, target, lun,
3040 				    O_RDWR, NULL);
3041 			else
3042 				new_cam_dev = cam_open_spec_device(device, unit,
3043 				    O_RDWR, NULL);
3044 			if (new_cam_dev == NULL) {
3045 				warnx("%s", cam_errbuf);
3046 				error = 1;
3047 				goto bailout;
3048 			}
3049 
3050 			devs[i] = camdd_probe_pass(new_cam_dev,
3051 			    /*io_opts*/ &io_opts[i],
3052 			    CAMDD_ARG_ERR_RECOVER,
3053 			    /*probe_retry_count*/ 3,
3054 			    /*probe_timeout*/ 5000,
3055 			    /*io_retry_count*/ retry_count,
3056 			    /*io_timeout*/ timeout);
3057 			if (devs[i] == NULL) {
3058 				warn("Unable to probe device %s%u",
3059 				     new_cam_dev->device_name,
3060 				     new_cam_dev->dev_unit_num);
3061 				error = 1;
3062 				goto bailout;
3063 			}
3064 			break;
3065 		}
3066 		case CAMDD_DEV_FILE: {
3067 			int fd = -1;
3068 
3069 			if (io_opts[i].dev_name[0] == '-') {
3070 				if (io_opts[i].write_dev != 0)
3071 					fd = STDOUT_FILENO;
3072 				else
3073 					fd = STDIN_FILENO;
3074 			} else {
3075 				if (io_opts[i].write_dev != 0) {
3076 					fd = open(io_opts[i].dev_name,
3077 					    O_RDWR | O_CREAT, S_IWUSR |S_IRUSR);
3078 				} else {
3079 					fd = open(io_opts[i].dev_name,
3080 					    O_RDONLY);
3081 				}
3082 			}
3083 			if (fd == -1) {
3084 				warn("error opening file %s",
3085 				    io_opts[i].dev_name);
3086 				error = 1;
3087 				goto bailout;
3088 			}
3089 
3090 			devs[i] = camdd_probe_file(fd, &io_opts[i],
3091 			    retry_count, timeout);
3092 			if (devs[i] == NULL) {
3093 				error = 1;
3094 				goto bailout;
3095 			}
3096 
3097 			break;
3098 		}
3099 		default:
3100 			warnx("Unknown device type %d (%s)",
3101 			    io_opts[i].dev_type, io_opts[i].dev_name);
3102 			error = 1;
3103 			goto bailout;
3104 			break; /*NOTREACHED */
3105 		}
3106 
3107 		devs[i]->write_dev = io_opts[i].write_dev;
3108 
3109 		devs[i]->start_offset_bytes = io_opts[i].offset;
3110 
3111 		if (max_io != 0) {
3112 			devs[i]->sector_io_limit =
3113 			    (devs[i]->start_offset_bytes /
3114 			    devs[i]->sector_size) +
3115 			    (max_io / devs[i]->sector_size) - 1;
3116 			devs[i]->sector_io_limit =
3117 			    (devs[i]->start_offset_bytes /
3118 			    devs[i]->sector_size) +
3119 			    (max_io / devs[i]->sector_size) - 1;
3120 		}
3121 
3122 		devs[i]->next_io_pos_bytes = devs[i]->start_offset_bytes;
3123 		devs[i]->next_completion_pos_bytes =devs[i]->start_offset_bytes;
3124 	}
3125 
3126 	devs[0]->peer_dev = devs[1];
3127 	devs[1]->peer_dev = devs[0];
3128 	devs[0]->next_peer_pos_bytes = devs[0]->peer_dev->next_io_pos_bytes;
3129 	devs[1]->next_peer_pos_bytes = devs[1]->peer_dev->next_io_pos_bytes;
3130 
3131 	sem_init(&camdd_sem, /*pshared*/ 0, 0);
3132 
3133 	signal(SIGINFO, camdd_sig_handler);
3134 	signal(SIGINT, camdd_sig_handler);
3135 
3136 	error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &start_time);
3137 	if (error != 0) {
3138 		warn("Unable to get start time");
3139 		goto bailout;
3140 	}
3141 
3142 	for (i = 0; i < num_io_opts; i++) {
3143 		error = pthread_create(&threads[i], NULL, camdd_worker,
3144 				       (void *)devs[i]);
3145 		if (error != 0) {
3146 			warnc(error, "pthread_create() failed");
3147 			goto bailout;
3148 		}
3149 	}
3150 
3151 	for (;;) {
3152 		if ((sem_wait(&camdd_sem) == -1)
3153 		 || (need_exit != 0)) {
3154 			struct kevent ke;
3155 
3156 			for (i = 0; i < num_io_opts; i++) {
3157 				EV_SET(&ke, (uintptr_t)&devs[i]->work_queue,
3158 				    EVFILT_USER, 0, NOTE_TRIGGER, 0, NULL);
3159 
3160 				devs[i]->flags |= CAMDD_DEV_FLAG_EOF;
3161 
3162 				error = kevent(devs[i]->kq, &ke, 1, NULL, 0,
3163 						NULL);
3164 				if (error == -1)
3165 					warn("%s: unable to wake up thread",
3166 					    __func__);
3167 				error = 0;
3168 			}
3169 			break;
3170 		} else if (need_status != 0) {
3171 			camdd_print_status(devs[0], devs[1], &start_time);
3172 			need_status = 0;
3173 		}
3174 	}
3175 	for (i = 0; i < num_io_opts; i++) {
3176 		pthread_join(threads[i], NULL);
3177 	}
3178 
3179 	camdd_print_status(devs[0], devs[1], &start_time);
3180 
3181 bailout:
3182 
3183 	for (i = 0; i < num_io_opts; i++)
3184 		camdd_free_dev(devs[i]);
3185 
3186 	return (error + error_exit);
3187 }
3188 
3189 void
3190 usage(void)
3191 {
3192 	fprintf(stderr,
3193 "usage:  camdd <-i|-o pass=pass0,bs=1M,offset=1M,depth=4>\n"
3194 "              <-i|-o file=/tmp/file,bs=512K,offset=1M>\n"
3195 "              <-i|-o file=/dev/da0,bs=512K,offset=1M>\n"
3196 "              <-i|-o file=/dev/nsa0,bs=512K>\n"
3197 "              [-C retry_count][-E][-m max_io_amt][-t timeout_secs][-v][-h]\n"
3198 "Option description\n"
3199 "-i <arg=val>  Specify input device/file and parameters\n"
3200 "-o <arg=val>  Specify output device/file and parameters\n"
3201 "Input and Output parameters\n"
3202 "pass=name     Specify a pass(4) device like pass0 or /dev/pass0\n"
3203 "file=name     Specify a file or device, /tmp/foo, /dev/da0, /dev/null\n"
3204 "              or - for stdin/stdout\n"
3205 "bs=blocksize  Specify blocksize in bytes, or using K, M, G, etc. suffix\n"
3206 "offset=len    Specify starting offset in bytes or using K, M, G suffix\n"
3207 "              NOTE: offset cannot be specified on tapes, pipes, stdin/out\n"
3208 "depth=N       Specify a numeric queue depth.  This only applies to pass(4)\n"
3209 "mcs=N         Specify a minimum cmd size for pass(4) read/write commands\n"
3210 "Optional arguments\n"
3211 "-C retry_cnt  Specify a retry count for pass(4) devices\n"
3212 "-E            Enable CAM error recovery for pass(4) devices\n"
3213 "-m max_io     Specify the maximum amount to be transferred in bytes or\n"
3214 "              using K, G, M, etc. suffixes\n"
3215 "-t timeout    Specify the I/O timeout to use with pass(4) devices\n"
3216 "-v            Enable verbose error recovery\n"
3217 "-h            Print this message\n");
3218 }
3219 
3220 
3221 int
3222 camdd_parse_io_opts(char *args, int is_write, struct camdd_io_opts *io_opts)
3223 {
3224 	char *tmpstr, *tmpstr2;
3225 	char *orig_tmpstr = NULL;
3226 	int retval = 0;
3227 
3228 	io_opts->write_dev = is_write;
3229 
3230 	tmpstr = strdup(args);
3231 	if (tmpstr == NULL) {
3232 		warn("strdup failed");
3233 		retval = 1;
3234 		goto bailout;
3235 	}
3236 	orig_tmpstr = tmpstr;
3237 	while ((tmpstr2 = strsep(&tmpstr, ",")) != NULL) {
3238 		char *name, *value;
3239 
3240 		/*
3241 		 * If the user creates an empty parameter by putting in two
3242 		 * commas, skip over it and look for the next field.
3243 		 */
3244 		if (*tmpstr2 == '\0')
3245 			continue;
3246 
3247 		name = strsep(&tmpstr2, "=");
3248 		if (*name == '\0') {
3249 			warnx("Got empty I/O parameter name");
3250 			retval = 1;
3251 			goto bailout;
3252 		}
3253 		value = strsep(&tmpstr2, "=");
3254 		if ((value == NULL)
3255 		 || (*value == '\0')) {
3256 			warnx("Empty I/O parameter value for %s", name);
3257 			retval = 1;
3258 			goto bailout;
3259 		}
3260 		if (strncasecmp(name, "file", 4) == 0) {
3261 			io_opts->dev_type = CAMDD_DEV_FILE;
3262 			io_opts->dev_name = strdup(value);
3263 			if (io_opts->dev_name == NULL) {
3264 				warn("Error allocating memory");
3265 				retval = 1;
3266 				goto bailout;
3267 			}
3268 		} else if (strncasecmp(name, "pass", 4) == 0) {
3269 			io_opts->dev_type = CAMDD_DEV_PASS;
3270 			io_opts->dev_name = strdup(value);
3271 			if (io_opts->dev_name == NULL) {
3272 				warn("Error allocating memory");
3273 				retval = 1;
3274 				goto bailout;
3275 			}
3276 		} else if ((strncasecmp(name, "bs", 2) == 0)
3277 			|| (strncasecmp(name, "blocksize", 9) == 0)) {
3278 			retval = expand_number(value, &io_opts->blocksize);
3279 			if (retval == -1) {
3280 				warn("expand_number(3) failed on %s=%s", name,
3281 				    value);
3282 				retval = 1;
3283 				goto bailout;
3284 			}
3285 		} else if (strncasecmp(name, "depth", 5) == 0) {
3286 			char *endptr;
3287 
3288 			io_opts->queue_depth = strtoull(value, &endptr, 0);
3289 			if (*endptr != '\0') {
3290 				warnx("invalid queue depth %s", value);
3291 				retval = 1;
3292 				goto bailout;
3293 			}
3294 		} else if (strncasecmp(name, "mcs", 3) == 0) {
3295 			char *endptr;
3296 
3297 			io_opts->min_cmd_size = strtol(value, &endptr, 0);
3298 			if ((*endptr != '\0')
3299 			 || ((io_opts->min_cmd_size > 16)
3300 			  || (io_opts->min_cmd_size < 0))) {
3301 				warnx("invalid minimum cmd size %s", value);
3302 				retval = 1;
3303 				goto bailout;
3304 			}
3305 		} else if (strncasecmp(name, "offset", 6) == 0) {
3306 			retval = expand_number(value, &io_opts->offset);
3307 			if (retval == -1) {
3308 				warn("expand_number(3) failed on %s=%s", name,
3309 				    value);
3310 				retval = 1;
3311 				goto bailout;
3312 			}
3313 		} else if (strncasecmp(name, "debug", 5) == 0) {
3314 			char *endptr;
3315 
3316 			io_opts->debug = strtoull(value, &endptr, 0);
3317 			if (*endptr != '\0') {
3318 				warnx("invalid debug level %s", value);
3319 				retval = 1;
3320 				goto bailout;
3321 			}
3322 		} else {
3323 			warnx("Unrecognized parameter %s=%s", name, value);
3324 		}
3325 	}
3326 bailout:
3327 	free(orig_tmpstr);
3328 
3329 	return (retval);
3330 }
3331 
3332 int
3333 main(int argc, char **argv)
3334 {
3335 	int c;
3336 	camdd_argmask arglist = CAMDD_ARG_NONE;
3337 	int timeout = 0, retry_count = 1;
3338 	int error = 0;
3339 	uint64_t max_io = 0;
3340 	struct camdd_io_opts *opt_list = NULL;
3341 
3342 	if (argc == 1) {
3343 		usage();
3344 		exit(1);
3345 	}
3346 
3347 	opt_list = calloc(2, sizeof(struct camdd_io_opts));
3348 	if (opt_list == NULL) {
3349 		warn("Unable to allocate option list");
3350 		error = 1;
3351 		goto bailout;
3352 	}
3353 
3354 	while ((c = getopt(argc, argv, "C:Ehi:m:o:t:v")) != -1){
3355 		switch (c) {
3356 		case 'C':
3357 			retry_count = strtol(optarg, NULL, 0);
3358 			if (retry_count < 0)
3359 				errx(1, "retry count %d is < 0",
3360 				     retry_count);
3361 			arglist |= CAMDD_ARG_RETRIES;
3362 			break;
3363 		case 'E':
3364 			arglist |= CAMDD_ARG_ERR_RECOVER;
3365 			break;
3366 		case 'i':
3367 		case 'o':
3368 			if (((c == 'i')
3369 			  && (opt_list[0].dev_type != CAMDD_DEV_NONE))
3370 			 || ((c == 'o')
3371 			  && (opt_list[1].dev_type != CAMDD_DEV_NONE))) {
3372 				errx(1, "Only one input and output path "
3373 				    "allowed");
3374 			}
3375 			error = camdd_parse_io_opts(optarg, (c == 'o') ? 1 : 0,
3376 			    (c == 'o') ? &opt_list[1] : &opt_list[0]);
3377 			if (error != 0)
3378 				goto bailout;
3379 			break;
3380 		case 'm':
3381 			error = expand_number(optarg, &max_io);
3382 			if (error == -1) {
3383 				warn("invalid maximum I/O amount %s", optarg);
3384 				error = 1;
3385 				goto bailout;
3386 			}
3387 			break;
3388 		case 't':
3389 			timeout = strtol(optarg, NULL, 0);
3390 			if (timeout < 0)
3391 				errx(1, "invalid timeout %d", timeout);
3392 			/* Convert the timeout from seconds to ms */
3393 			timeout *= 1000;
3394 			arglist |= CAMDD_ARG_TIMEOUT;
3395 			break;
3396 		case 'v':
3397 			arglist |= CAMDD_ARG_VERBOSE;
3398 			break;
3399 		case 'h':
3400 		default:
3401 			usage();
3402 			exit(1);
3403 			break; /*NOTREACHED*/
3404 		}
3405 	}
3406 
3407 	if ((opt_list[0].dev_type == CAMDD_DEV_NONE)
3408 	 || (opt_list[1].dev_type == CAMDD_DEV_NONE))
3409 		errx(1, "Must specify both -i and -o");
3410 
3411 	/*
3412 	 * Set the timeout if the user hasn't specified one.
3413 	 */
3414 	if (timeout == 0)
3415 		timeout = CAMDD_PASS_RW_TIMEOUT;
3416 
3417 	error = camdd_rw(opt_list, 2, max_io, retry_count, timeout);
3418 
3419 bailout:
3420 	free(opt_list);
3421 
3422 	exit(error);
3423 }
3424