xref: /freebsd/usr.sbin/bhyve/pci_nvme.c (revision ed549cb0c53f8438c52593ce811f6fcc812248e9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2017 Shunsuke Mie
5  * Copyright (c) 2018 Leon Dang
6  * Copyright (c) 2020 Chuck Tuffli
7  *
8  * Function crc16 Copyright (c) 2017, Fedor Uporov
9  *     Obtained from function ext2_crc16() in sys/fs/ext2fs/ext2_csum.c
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * bhyve PCIe-NVMe device emulation.
35  *
36  * options:
37  *  -s <n>,nvme,devpath,maxq=#,qsz=#,ioslots=#,sectsz=#,ser=A-Z,eui64=#,dsm=<opt>
38  *
39  *  accepted devpath:
40  *    /dev/blockdev
41  *    /path/to/image
42  *    ram=size_in_MiB
43  *
44  *  maxq    = max number of queues
45  *  qsz     = max elements in each queue
46  *  ioslots = max number of concurrent io requests
47  *  sectsz  = sector size (defaults to blockif sector size)
48  *  ser     = serial number (20-chars max)
49  *  eui64   = IEEE Extended Unique Identifier (8 byte value)
50  *  dsm     = DataSet Management support. Option is one of auto, enable,disable
51  *
52  */
53 
54 /* TODO:
55     - create async event for smart and log
56     - intr coalesce
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include <sys/errno.h>
63 #include <sys/types.h>
64 #include <net/ieee_oui.h>
65 
66 #include <assert.h>
67 #include <pthread.h>
68 #include <pthread_np.h>
69 #include <semaphore.h>
70 #include <stdbool.h>
71 #include <stddef.h>
72 #include <stdint.h>
73 #include <stdio.h>
74 #include <stdlib.h>
75 #include <string.h>
76 
77 #include <machine/atomic.h>
78 #include <machine/vmm.h>
79 #include <vmmapi.h>
80 
81 #include <dev/nvme/nvme.h>
82 
83 #include "bhyverun.h"
84 #include "block_if.h"
85 #include "config.h"
86 #include "debug.h"
87 #include "pci_emul.h"
88 
89 
90 static int nvme_debug = 0;
91 #define	DPRINTF(fmt, args...) if (nvme_debug) PRINTLN(fmt, ##args)
92 #define	WPRINTF(fmt, args...) PRINTLN(fmt, ##args)
93 
94 /* defaults; can be overridden */
95 #define	NVME_MSIX_BAR		4
96 
97 #define	NVME_IOSLOTS		8
98 
99 /* The NVMe spec defines bits 13:4 in BAR0 as reserved */
100 #define NVME_MMIO_SPACE_MIN	(1 << 14)
101 
102 #define	NVME_QUEUES		16
103 #define	NVME_MAX_QENTRIES	2048
104 /* Memory Page size Minimum reported in CAP register */
105 #define	NVME_MPSMIN		0
106 /* MPSMIN converted to bytes */
107 #define	NVME_MPSMIN_BYTES	(1 << (12 + NVME_MPSMIN))
108 
109 #define	NVME_PRP2_ITEMS		(PAGE_SIZE/sizeof(uint64_t))
110 #define	NVME_MDTS		9
111 /* Note the + 1 allows for the initial descriptor to not be page aligned */
112 #define	NVME_MAX_IOVEC		((1 << NVME_MDTS) + 1)
113 #define	NVME_MAX_DATA_SIZE	((1 << NVME_MDTS) * NVME_MPSMIN_BYTES)
114 
115 /* This is a synthetic status code to indicate there is no status */
116 #define NVME_NO_STATUS		0xffff
117 #define NVME_COMPLETION_VALID(c)	((c).status != NVME_NO_STATUS)
118 
119 /* Reported temperature in Kelvin (i.e. room temperature) */
120 #define NVME_TEMPERATURE 296
121 
122 /* helpers */
123 
124 /* Convert a zero-based value into a one-based value */
125 #define ONE_BASED(zero)		((zero) + 1)
126 /* Convert a one-based value into a zero-based value */
127 #define ZERO_BASED(one)		((one)  - 1)
128 
129 /* Encode number of SQ's and CQ's for Set/Get Features */
130 #define NVME_FEATURE_NUM_QUEUES(sc) \
131 	(ZERO_BASED((sc)->num_squeues) & 0xffff) | \
132 	(ZERO_BASED((sc)->num_cqueues) & 0xffff) << 16;
133 
134 #define	NVME_DOORBELL_OFFSET	offsetof(struct nvme_registers, doorbell)
135 
136 enum nvme_controller_register_offsets {
137 	NVME_CR_CAP_LOW = 0x00,
138 	NVME_CR_CAP_HI  = 0x04,
139 	NVME_CR_VS      = 0x08,
140 	NVME_CR_INTMS   = 0x0c,
141 	NVME_CR_INTMC   = 0x10,
142 	NVME_CR_CC      = 0x14,
143 	NVME_CR_CSTS    = 0x1c,
144 	NVME_CR_NSSR    = 0x20,
145 	NVME_CR_AQA     = 0x24,
146 	NVME_CR_ASQ_LOW = 0x28,
147 	NVME_CR_ASQ_HI  = 0x2c,
148 	NVME_CR_ACQ_LOW = 0x30,
149 	NVME_CR_ACQ_HI  = 0x34,
150 };
151 
152 enum nvme_cmd_cdw11 {
153 	NVME_CMD_CDW11_PC  = 0x0001,
154 	NVME_CMD_CDW11_IEN = 0x0002,
155 	NVME_CMD_CDW11_IV  = 0xFFFF0000,
156 };
157 
158 enum nvme_copy_dir {
159 	NVME_COPY_TO_PRP,
160 	NVME_COPY_FROM_PRP,
161 };
162 
163 #define	NVME_CQ_INTEN	0x01
164 #define	NVME_CQ_INTCOAL	0x02
165 
166 struct nvme_completion_queue {
167 	struct nvme_completion *qbase;
168 	pthread_mutex_t	mtx;
169 	uint32_t	size;
170 	uint16_t	tail; /* nvme progress */
171 	uint16_t	head; /* guest progress */
172 	uint16_t	intr_vec;
173 	uint32_t	intr_en;
174 };
175 
176 struct nvme_submission_queue {
177 	struct nvme_command *qbase;
178 	pthread_mutex_t	mtx;
179 	uint32_t	size;
180 	uint16_t	head; /* nvme progress */
181 	uint16_t	tail; /* guest progress */
182 	uint16_t	cqid; /* completion queue id */
183 	int		qpriority;
184 };
185 
186 enum nvme_storage_type {
187 	NVME_STOR_BLOCKIF = 0,
188 	NVME_STOR_RAM = 1,
189 };
190 
191 struct pci_nvme_blockstore {
192 	enum nvme_storage_type type;
193 	void		*ctx;
194 	uint64_t	size;
195 	uint32_t	sectsz;
196 	uint32_t	sectsz_bits;
197 	uint64_t	eui64;
198 	uint32_t	deallocate:1;
199 };
200 
201 /*
202  * Calculate the number of additional page descriptors for guest IO requests
203  * based on the advertised Max Data Transfer (MDTS) and given the number of
204  * default iovec's in a struct blockif_req.
205  */
206 #define MDTS_PAD_SIZE \
207 	( NVME_MAX_IOVEC > BLOCKIF_IOV_MAX ? \
208 	  NVME_MAX_IOVEC - BLOCKIF_IOV_MAX : \
209 	  0 )
210 
211 struct pci_nvme_ioreq {
212 	struct pci_nvme_softc *sc;
213 	STAILQ_ENTRY(pci_nvme_ioreq) link;
214 	struct nvme_submission_queue *nvme_sq;
215 	uint16_t	sqid;
216 
217 	/* command information */
218 	uint16_t	opc;
219 	uint16_t	cid;
220 	uint32_t	nsid;
221 
222 	uint64_t	prev_gpaddr;
223 	size_t		prev_size;
224 	size_t		bytes;
225 
226 	struct blockif_req io_req;
227 
228 	struct iovec	iovpadding[MDTS_PAD_SIZE];
229 };
230 
231 enum nvme_dsm_type {
232 	/* Dataset Management bit in ONCS reflects backing storage capability */
233 	NVME_DATASET_MANAGEMENT_AUTO,
234 	/* Unconditionally set Dataset Management bit in ONCS */
235 	NVME_DATASET_MANAGEMENT_ENABLE,
236 	/* Unconditionally clear Dataset Management bit in ONCS */
237 	NVME_DATASET_MANAGEMENT_DISABLE,
238 };
239 
240 struct pci_nvme_softc;
241 struct nvme_feature_obj;
242 
243 typedef void (*nvme_feature_cb)(struct pci_nvme_softc *,
244     struct nvme_feature_obj *,
245     struct nvme_command *,
246     struct nvme_completion *);
247 
248 struct nvme_feature_obj {
249 	uint32_t	cdw11;
250 	nvme_feature_cb	set;
251 	nvme_feature_cb	get;
252 	bool namespace_specific;
253 };
254 
255 #define NVME_FID_MAX		(NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION + 1)
256 
257 typedef enum {
258 	PCI_NVME_AE_TYPE_ERROR = 0,
259 	PCI_NVME_AE_TYPE_SMART,
260 	PCI_NVME_AE_TYPE_NOTICE,
261 	PCI_NVME_AE_TYPE_IO_CMD = 6,
262 	PCI_NVME_AE_TYPE_VENDOR = 7,
263 	PCI_NVME_AE_TYPE_MAX		/* Must be last */
264 } pci_nvme_async_type;
265 
266 /* Asynchronous Event Requests */
267 struct pci_nvme_aer {
268 	STAILQ_ENTRY(pci_nvme_aer) link;
269 	uint16_t	cid;	/* Command ID of the submitted AER */
270 };
271 
272 /** Asynchronous Event Information - Notice */
273 typedef enum {
274 	PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED = 0,
275 	PCI_NVME_AEI_NOTICE_FW_ACTIVATION,
276 	PCI_NVME_AEI_NOTICE_TELEMETRY_CHANGE,
277 	PCI_NVME_AEI_NOTICE_ANA_CHANGE,
278 	PCI_NVME_AEI_NOTICE_PREDICT_LATENCY_CHANGE,
279 	PCI_NVME_AEI_NOTICE_LBA_STATUS_ALERT,
280 	PCI_NVME_AEI_NOTICE_ENDURANCE_GROUP_CHANGE,
281 	PCI_NVME_AEI_NOTICE_MAX,
282 } pci_nvme_async_event_info_notice;
283 
284 #define PCI_NVME_AEI_NOTICE_SHIFT		8
285 #define PCI_NVME_AEI_NOTICE_MASK(event)	(1 << (event + PCI_NVME_AEI_NOTICE_SHIFT))
286 
287 /* Asynchronous Event Notifications */
288 struct pci_nvme_aen {
289 	pci_nvme_async_type atype;
290 	uint32_t	event_data;
291 	bool		posted;
292 };
293 
294 /*
295  * By default, enable all Asynchrnous Event Notifications:
296  *     SMART / Health Critical Warnings
297  *     Namespace Attribute Notices
298  */
299 #define PCI_NVME_AEN_DEFAULT_MASK	0x11f
300 
301 typedef enum {
302 	NVME_CNTRLTYPE_IO = 1,
303 	NVME_CNTRLTYPE_DISCOVERY = 2,
304 	NVME_CNTRLTYPE_ADMIN = 3,
305 } pci_nvme_cntrl_type;
306 
307 struct pci_nvme_softc {
308 	struct pci_devinst *nsc_pi;
309 
310 	pthread_mutex_t	mtx;
311 
312 	struct nvme_registers regs;
313 
314 	struct nvme_namespace_data  nsdata;
315 	struct nvme_controller_data ctrldata;
316 	struct nvme_error_information_entry err_log;
317 	struct nvme_health_information_page health_log;
318 	struct nvme_firmware_page fw_log;
319 	struct nvme_ns_list ns_log;
320 
321 	struct pci_nvme_blockstore nvstore;
322 
323 	uint16_t	max_qentries;	/* max entries per queue */
324 	uint32_t	max_queues;	/* max number of IO SQ's or CQ's */
325 	uint32_t	num_cqueues;
326 	uint32_t	num_squeues;
327 	bool		num_q_is_set; /* Has host set Number of Queues */
328 
329 	struct pci_nvme_ioreq *ioreqs;
330 	STAILQ_HEAD(, pci_nvme_ioreq) ioreqs_free; /* free list of ioreqs */
331 	uint32_t	pending_ios;
332 	uint32_t	ioslots;
333 	sem_t		iosemlock;
334 
335 	/*
336 	 * Memory mapped Submission and Completion queues
337 	 * Each array includes both Admin and IO queues
338 	 */
339 	struct nvme_completion_queue *compl_queues;
340 	struct nvme_submission_queue *submit_queues;
341 
342 	struct nvme_feature_obj feat[NVME_FID_MAX];
343 
344 	enum nvme_dsm_type dataset_management;
345 
346 	/* Accounting for SMART data */
347 	__uint128_t	read_data_units;
348 	__uint128_t	write_data_units;
349 	__uint128_t	read_commands;
350 	__uint128_t	write_commands;
351 	uint32_t	read_dunits_remainder;
352 	uint32_t	write_dunits_remainder;
353 
354 	STAILQ_HEAD(, pci_nvme_aer) aer_list;
355 	pthread_mutex_t	aer_mtx;
356 	uint32_t	aer_count;
357 	struct pci_nvme_aen aen[PCI_NVME_AE_TYPE_MAX];
358 	pthread_t	aen_tid;
359 	pthread_mutex_t	aen_mtx;
360 	pthread_cond_t	aen_cond;
361 };
362 
363 
364 static void pci_nvme_cq_update(struct pci_nvme_softc *sc,
365     struct nvme_completion_queue *cq,
366     uint32_t cdw0,
367     uint16_t cid,
368     uint16_t sqid,
369     uint16_t status);
370 static struct pci_nvme_ioreq *pci_nvme_get_ioreq(struct pci_nvme_softc *);
371 static void pci_nvme_release_ioreq(struct pci_nvme_softc *, struct pci_nvme_ioreq *);
372 static void pci_nvme_io_done(struct blockif_req *, int);
373 
374 /* Controller Configuration utils */
375 #define	NVME_CC_GET_EN(cc) \
376 	((cc) >> NVME_CC_REG_EN_SHIFT & NVME_CC_REG_EN_MASK)
377 #define	NVME_CC_GET_CSS(cc) \
378 	((cc) >> NVME_CC_REG_CSS_SHIFT & NVME_CC_REG_CSS_MASK)
379 #define	NVME_CC_GET_SHN(cc) \
380 	((cc) >> NVME_CC_REG_SHN_SHIFT & NVME_CC_REG_SHN_MASK)
381 #define	NVME_CC_GET_IOSQES(cc) \
382 	((cc) >> NVME_CC_REG_IOSQES_SHIFT & NVME_CC_REG_IOSQES_MASK)
383 #define	NVME_CC_GET_IOCQES(cc) \
384 	((cc) >> NVME_CC_REG_IOCQES_SHIFT & NVME_CC_REG_IOCQES_MASK)
385 
386 #define	NVME_CC_WRITE_MASK \
387 	((NVME_CC_REG_EN_MASK << NVME_CC_REG_EN_SHIFT) | \
388 	 (NVME_CC_REG_IOSQES_MASK << NVME_CC_REG_IOSQES_SHIFT) | \
389 	 (NVME_CC_REG_IOCQES_MASK << NVME_CC_REG_IOCQES_SHIFT))
390 
391 #define	NVME_CC_NEN_WRITE_MASK \
392 	((NVME_CC_REG_CSS_MASK << NVME_CC_REG_CSS_SHIFT) | \
393 	 (NVME_CC_REG_MPS_MASK << NVME_CC_REG_MPS_SHIFT) | \
394 	 (NVME_CC_REG_AMS_MASK << NVME_CC_REG_AMS_SHIFT))
395 
396 /* Controller Status utils */
397 #define	NVME_CSTS_GET_RDY(sts) \
398 	((sts) >> NVME_CSTS_REG_RDY_SHIFT & NVME_CSTS_REG_RDY_MASK)
399 
400 #define	NVME_CSTS_RDY	(1 << NVME_CSTS_REG_RDY_SHIFT)
401 #define	NVME_CSTS_CFS	(1 << NVME_CSTS_REG_CFS_SHIFT)
402 
403 /* Completion Queue status word utils */
404 #define	NVME_STATUS_P	(1 << NVME_STATUS_P_SHIFT)
405 #define	NVME_STATUS_MASK \
406 	((NVME_STATUS_SCT_MASK << NVME_STATUS_SCT_SHIFT) |\
407 	 (NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT))
408 
409 #define NVME_ONCS_DSM	(NVME_CTRLR_DATA_ONCS_DSM_MASK << \
410 	NVME_CTRLR_DATA_ONCS_DSM_SHIFT)
411 
412 static void nvme_feature_invalid_cb(struct pci_nvme_softc *,
413     struct nvme_feature_obj *,
414     struct nvme_command *,
415     struct nvme_completion *);
416 static void nvme_feature_temperature(struct pci_nvme_softc *,
417     struct nvme_feature_obj *,
418     struct nvme_command *,
419     struct nvme_completion *);
420 static void nvme_feature_num_queues(struct pci_nvme_softc *,
421     struct nvme_feature_obj *,
422     struct nvme_command *,
423     struct nvme_completion *);
424 static void nvme_feature_iv_config(struct pci_nvme_softc *,
425     struct nvme_feature_obj *,
426     struct nvme_command *,
427     struct nvme_completion *);
428 static void nvme_feature_async_event(struct pci_nvme_softc *,
429     struct nvme_feature_obj *,
430     struct nvme_command *,
431     struct nvme_completion *);
432 
433 static void *aen_thr(void *arg);
434 
435 static __inline void
436 cpywithpad(char *dst, size_t dst_size, const char *src, char pad)
437 {
438 	size_t len;
439 
440 	len = strnlen(src, dst_size);
441 	memset(dst, pad, dst_size);
442 	memcpy(dst, src, len);
443 }
444 
445 static __inline void
446 pci_nvme_status_tc(uint16_t *status, uint16_t type, uint16_t code)
447 {
448 
449 	*status &= ~NVME_STATUS_MASK;
450 	*status |= (type & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT |
451 		(code & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
452 }
453 
454 static __inline void
455 pci_nvme_status_genc(uint16_t *status, uint16_t code)
456 {
457 
458 	pci_nvme_status_tc(status, NVME_SCT_GENERIC, code);
459 }
460 
461 /*
462  * Initialize the requested number or IO Submission and Completion Queues.
463  * Admin queues are allocated implicitly.
464  */
465 static void
466 pci_nvme_init_queues(struct pci_nvme_softc *sc, uint32_t nsq, uint32_t ncq)
467 {
468 	uint32_t i;
469 
470 	/*
471 	 * Allocate and initialize the Submission Queues
472 	 */
473 	if (nsq > NVME_QUEUES) {
474 		WPRINTF("%s: clamping number of SQ from %u to %u",
475 					__func__, nsq, NVME_QUEUES);
476 		nsq = NVME_QUEUES;
477 	}
478 
479 	sc->num_squeues = nsq;
480 
481 	sc->submit_queues = calloc(sc->num_squeues + 1,
482 				sizeof(struct nvme_submission_queue));
483 	if (sc->submit_queues == NULL) {
484 		WPRINTF("%s: SQ allocation failed", __func__);
485 		sc->num_squeues = 0;
486 	} else {
487 		struct nvme_submission_queue *sq = sc->submit_queues;
488 
489 		for (i = 0; i < sc->num_squeues + 1; i++)
490 			pthread_mutex_init(&sq[i].mtx, NULL);
491 	}
492 
493 	/*
494 	 * Allocate and initialize the Completion Queues
495 	 */
496 	if (ncq > NVME_QUEUES) {
497 		WPRINTF("%s: clamping number of CQ from %u to %u",
498 					__func__, ncq, NVME_QUEUES);
499 		ncq = NVME_QUEUES;
500 	}
501 
502 	sc->num_cqueues = ncq;
503 
504 	sc->compl_queues = calloc(sc->num_cqueues + 1,
505 				sizeof(struct nvme_completion_queue));
506 	if (sc->compl_queues == NULL) {
507 		WPRINTF("%s: CQ allocation failed", __func__);
508 		sc->num_cqueues = 0;
509 	} else {
510 		struct nvme_completion_queue *cq = sc->compl_queues;
511 
512 		for (i = 0; i < sc->num_cqueues + 1; i++)
513 			pthread_mutex_init(&cq[i].mtx, NULL);
514 	}
515 }
516 
517 static void
518 pci_nvme_init_ctrldata(struct pci_nvme_softc *sc)
519 {
520 	struct nvme_controller_data *cd = &sc->ctrldata;
521 
522 	cd->vid = 0xFB5D;
523 	cd->ssvid = 0x0000;
524 
525 	cpywithpad((char *)cd->mn, sizeof(cd->mn), "bhyve-NVMe", ' ');
526 	cpywithpad((char *)cd->fr, sizeof(cd->fr), "1.0", ' ');
527 
528 	/* Num of submission commands that we can handle at a time (2^rab) */
529 	cd->rab   = 4;
530 
531 	/* FreeBSD OUI */
532 	cd->ieee[0] = 0x58;
533 	cd->ieee[1] = 0x9c;
534 	cd->ieee[2] = 0xfc;
535 
536 	cd->mic = 0;
537 
538 	cd->mdts = NVME_MDTS;	/* max data transfer size (2^mdts * CAP.MPSMIN) */
539 
540 	cd->ver = NVME_REV(1,4);
541 
542 	cd->cntrltype = NVME_CNTRLTYPE_IO;
543 	cd->oacs = 1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT;
544 	cd->oaes = NVMEB(NVME_CTRLR_DATA_OAES_NS_ATTR);
545 	cd->acl = 2;
546 	cd->aerl = 4;
547 
548 	/* Advertise 1, Read-only firmware slot */
549 	cd->frmw = NVMEB(NVME_CTRLR_DATA_FRMW_SLOT1_RO) |
550 	    (1 << NVME_CTRLR_DATA_FRMW_NUM_SLOTS_SHIFT);
551 	cd->lpa = 0;	/* TODO: support some simple things like SMART */
552 	cd->elpe = 0;	/* max error log page entries */
553 	/*
554 	 * Report a single power state (zero-based value)
555 	 * power_state[] values are left as zero to indicate "Not reported"
556 	 */
557 	cd->npss = 0;
558 
559 	/* Warning Composite Temperature Threshold */
560 	cd->wctemp = 0x0157;
561 	cd->cctemp = 0x0157;
562 
563 	/* SANICAP must not be 0 for Revision 1.4 and later NVMe Controllers */
564 	cd->sanicap = (NVME_CTRLR_DATA_SANICAP_NODMMAS_NO <<
565 			NVME_CTRLR_DATA_SANICAP_NODMMAS_SHIFT);
566 
567 	cd->sqes = (6 << NVME_CTRLR_DATA_SQES_MAX_SHIFT) |
568 	    (6 << NVME_CTRLR_DATA_SQES_MIN_SHIFT);
569 	cd->cqes = (4 << NVME_CTRLR_DATA_CQES_MAX_SHIFT) |
570 	    (4 << NVME_CTRLR_DATA_CQES_MIN_SHIFT);
571 	cd->nn = 1;	/* number of namespaces */
572 
573 	cd->oncs = 0;
574 	switch (sc->dataset_management) {
575 	case NVME_DATASET_MANAGEMENT_AUTO:
576 		if (sc->nvstore.deallocate)
577 			cd->oncs |= NVME_ONCS_DSM;
578 		break;
579 	case NVME_DATASET_MANAGEMENT_ENABLE:
580 		cd->oncs |= NVME_ONCS_DSM;
581 		break;
582 	default:
583 		break;
584 	}
585 
586 	cd->fna = NVME_CTRLR_DATA_FNA_FORMAT_ALL_MASK <<
587 	    NVME_CTRLR_DATA_FNA_FORMAT_ALL_SHIFT;
588 
589 	cd->vwc = NVME_CTRLR_DATA_VWC_ALL_NO << NVME_CTRLR_DATA_VWC_ALL_SHIFT;
590 }
591 
592 /*
593  * Calculate the CRC-16 of the given buffer
594  * See copyright attribution at top of file
595  */
596 static uint16_t
597 crc16(uint16_t crc, const void *buffer, unsigned int len)
598 {
599 	const unsigned char *cp = buffer;
600 	/* CRC table for the CRC-16. The poly is 0x8005 (x16 + x15 + x2 + 1). */
601 	static uint16_t const crc16_table[256] = {
602 		0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
603 		0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
604 		0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
605 		0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
606 		0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
607 		0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
608 		0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
609 		0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
610 		0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
611 		0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
612 		0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
613 		0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
614 		0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
615 		0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
616 		0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
617 		0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
618 		0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
619 		0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
620 		0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
621 		0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
622 		0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
623 		0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
624 		0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
625 		0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
626 		0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
627 		0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
628 		0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
629 		0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
630 		0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
631 		0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
632 		0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
633 		0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040
634 	};
635 
636 	while (len--)
637 		crc = (((crc >> 8) & 0xffU) ^
638 		    crc16_table[(crc ^ *cp++) & 0xffU]) & 0x0000ffffU;
639 	return crc;
640 }
641 
642 static void
643 pci_nvme_init_nsdata_size(struct pci_nvme_blockstore *nvstore,
644     struct nvme_namespace_data *nd)
645 {
646 
647 	/* Get capacity and block size information from backing store */
648 	nd->nsze = nvstore->size / nvstore->sectsz;
649 	nd->ncap = nd->nsze;
650 	nd->nuse = nd->nsze;
651 }
652 
653 static void
654 pci_nvme_init_nsdata(struct pci_nvme_softc *sc,
655     struct nvme_namespace_data *nd, uint32_t nsid,
656     struct pci_nvme_blockstore *nvstore)
657 {
658 
659 	pci_nvme_init_nsdata_size(nvstore, nd);
660 
661 	if (nvstore->type == NVME_STOR_BLOCKIF)
662 		nvstore->deallocate = blockif_candelete(nvstore->ctx);
663 
664 	nd->nlbaf = 0; /* NLBAF is a 0's based value (i.e. 1 LBA Format) */
665 	nd->flbas = 0;
666 
667 	/* Create an EUI-64 if user did not provide one */
668 	if (nvstore->eui64 == 0) {
669 		char *data = NULL;
670 		uint64_t eui64 = nvstore->eui64;
671 
672 		asprintf(&data, "%s%u%u%u", get_config_value("name"),
673 		    sc->nsc_pi->pi_bus, sc->nsc_pi->pi_slot,
674 		    sc->nsc_pi->pi_func);
675 
676 		if (data != NULL) {
677 			eui64 = OUI_FREEBSD_NVME_LOW | crc16(0, data, strlen(data));
678 			free(data);
679 		}
680 		nvstore->eui64 = (eui64 << 16) | (nsid & 0xffff);
681 	}
682 	be64enc(nd->eui64, nvstore->eui64);
683 
684 	/* LBA data-sz = 2^lbads */
685 	nd->lbaf[0] = nvstore->sectsz_bits << NVME_NS_DATA_LBAF_LBADS_SHIFT;
686 }
687 
688 static void
689 pci_nvme_init_logpages(struct pci_nvme_softc *sc)
690 {
691 	__uint128_t power_cycles = 1;
692 
693 	memset(&sc->err_log, 0, sizeof(sc->err_log));
694 	memset(&sc->health_log, 0, sizeof(sc->health_log));
695 	memset(&sc->fw_log, 0, sizeof(sc->fw_log));
696 	memset(&sc->ns_log, 0, sizeof(sc->ns_log));
697 
698 	/* Set read/write remainder to round up according to spec */
699 	sc->read_dunits_remainder = 999;
700 	sc->write_dunits_remainder = 999;
701 
702 	/* Set nominal Health values checked by implementations */
703 	sc->health_log.temperature = NVME_TEMPERATURE;
704 	sc->health_log.available_spare = 100;
705 	sc->health_log.available_spare_threshold = 10;
706 
707 	/* Set Active Firmware Info to slot 1 */
708 	sc->fw_log.afi = (1 << NVME_FIRMWARE_PAGE_AFI_SLOT_SHIFT);
709 	memcpy(&sc->fw_log.revision[0], sc->ctrldata.fr,
710 	    sizeof(sc->fw_log.revision[0]));
711 
712 	memcpy(&sc->health_log.power_cycles, &power_cycles,
713 	    sizeof(sc->health_log.power_cycles));
714 }
715 
716 static void
717 pci_nvme_init_features(struct pci_nvme_softc *sc)
718 {
719 	enum nvme_feature	fid;
720 
721 	for (fid = 0; fid < NVME_FID_MAX; fid++) {
722 		switch (fid) {
723 		case NVME_FEAT_ARBITRATION:
724 		case NVME_FEAT_POWER_MANAGEMENT:
725 		case NVME_FEAT_INTERRUPT_COALESCING: //XXX
726 		case NVME_FEAT_WRITE_ATOMICITY:
727 			/* Mandatory but no special handling required */
728 		//XXX hang - case NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG:
729 		//XXX hang - case NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
730 		//		  this returns a data buffer
731 			break;
732 		case NVME_FEAT_TEMPERATURE_THRESHOLD:
733 			sc->feat[fid].set = nvme_feature_temperature;
734 			break;
735 		case NVME_FEAT_ERROR_RECOVERY:
736 			sc->feat[fid].namespace_specific = true;
737 			break;
738 		case NVME_FEAT_NUMBER_OF_QUEUES:
739 			sc->feat[fid].set = nvme_feature_num_queues;
740 			break;
741 		case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
742 			sc->feat[fid].set = nvme_feature_iv_config;
743 			break;
744 		case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
745 			sc->feat[fid].set = nvme_feature_async_event;
746 			/* Enable all AENs by default */
747 			sc->feat[fid].cdw11 = PCI_NVME_AEN_DEFAULT_MASK;
748 			break;
749 		default:
750 			sc->feat[fid].set = nvme_feature_invalid_cb;
751 			sc->feat[fid].get = nvme_feature_invalid_cb;
752 		}
753 	}
754 }
755 
756 static void
757 pci_nvme_aer_reset(struct pci_nvme_softc *sc)
758 {
759 
760 	STAILQ_INIT(&sc->aer_list);
761 	sc->aer_count = 0;
762 }
763 
764 static void
765 pci_nvme_aer_init(struct pci_nvme_softc *sc)
766 {
767 
768 	pthread_mutex_init(&sc->aer_mtx, NULL);
769 	pci_nvme_aer_reset(sc);
770 }
771 
772 static void
773 pci_nvme_aer_destroy(struct pci_nvme_softc *sc)
774 {
775 	struct pci_nvme_aer *aer = NULL;
776 
777 	pthread_mutex_lock(&sc->aer_mtx);
778 	while (!STAILQ_EMPTY(&sc->aer_list)) {
779 		aer = STAILQ_FIRST(&sc->aer_list);
780 		STAILQ_REMOVE_HEAD(&sc->aer_list, link);
781 		free(aer);
782 	}
783 	pthread_mutex_unlock(&sc->aer_mtx);
784 
785 	pci_nvme_aer_reset(sc);
786 }
787 
788 static bool
789 pci_nvme_aer_available(struct pci_nvme_softc *sc)
790 {
791 
792 	return (sc->aer_count != 0);
793 }
794 
795 static bool
796 pci_nvme_aer_limit_reached(struct pci_nvme_softc *sc)
797 {
798 	struct nvme_controller_data *cd = &sc->ctrldata;
799 
800 	/* AERL is a zero based value while aer_count is one's based */
801 	return (sc->aer_count == (cd->aerl + 1));
802 }
803 
804 /*
805  * Add an Async Event Request
806  *
807  * Stores an AER to be returned later if the Controller needs to notify the
808  * host of an event.
809  * Note that while the NVMe spec doesn't require Controllers to return AER's
810  * in order, this implementation does preserve the order.
811  */
812 static int
813 pci_nvme_aer_add(struct pci_nvme_softc *sc, uint16_t cid)
814 {
815 	struct pci_nvme_aer *aer = NULL;
816 
817 	aer = calloc(1, sizeof(struct pci_nvme_aer));
818 	if (aer == NULL)
819 		return (-1);
820 
821 	/* Save the Command ID for use in the completion message */
822 	aer->cid = cid;
823 
824 	pthread_mutex_lock(&sc->aer_mtx);
825 	sc->aer_count++;
826 	STAILQ_INSERT_TAIL(&sc->aer_list, aer, link);
827 	pthread_mutex_unlock(&sc->aer_mtx);
828 
829 	return (0);
830 }
831 
832 /*
833  * Get an Async Event Request structure
834  *
835  * Returns a pointer to an AER previously submitted by the host or NULL if
836  * no AER's exist. Caller is responsible for freeing the returned struct.
837  */
838 static struct pci_nvme_aer *
839 pci_nvme_aer_get(struct pci_nvme_softc *sc)
840 {
841 	struct pci_nvme_aer *aer = NULL;
842 
843 	pthread_mutex_lock(&sc->aer_mtx);
844 	aer = STAILQ_FIRST(&sc->aer_list);
845 	if (aer != NULL) {
846 		STAILQ_REMOVE_HEAD(&sc->aer_list, link);
847 		sc->aer_count--;
848 	}
849 	pthread_mutex_unlock(&sc->aer_mtx);
850 
851 	return (aer);
852 }
853 
854 static void
855 pci_nvme_aen_reset(struct pci_nvme_softc *sc)
856 {
857 	uint32_t	atype;
858 
859 	memset(sc->aen, 0, PCI_NVME_AE_TYPE_MAX * sizeof(struct pci_nvme_aen));
860 
861 	for (atype = 0; atype < PCI_NVME_AE_TYPE_MAX; atype++) {
862 		sc->aen[atype].atype = atype;
863 	}
864 }
865 
866 static void
867 pci_nvme_aen_init(struct pci_nvme_softc *sc)
868 {
869 	char nstr[80];
870 
871 	pci_nvme_aen_reset(sc);
872 
873 	pthread_mutex_init(&sc->aen_mtx, NULL);
874 	pthread_create(&sc->aen_tid, NULL, aen_thr, sc);
875 	snprintf(nstr, sizeof(nstr), "nvme-aen-%d:%d", sc->nsc_pi->pi_slot,
876 	    sc->nsc_pi->pi_func);
877 	pthread_set_name_np(sc->aen_tid, nstr);
878 }
879 
880 static void
881 pci_nvme_aen_destroy(struct pci_nvme_softc *sc)
882 {
883 
884 	pci_nvme_aen_reset(sc);
885 }
886 
887 /* Notify the AEN thread of pending work */
888 static void
889 pci_nvme_aen_notify(struct pci_nvme_softc *sc)
890 {
891 
892 	pthread_cond_signal(&sc->aen_cond);
893 }
894 
895 /*
896  * Post an Asynchronous Event Notification
897  */
898 static int32_t
899 pci_nvme_aen_post(struct pci_nvme_softc *sc, pci_nvme_async_type atype,
900 		uint32_t event_data)
901 {
902 	struct pci_nvme_aen *aen;
903 
904 	if (atype >= PCI_NVME_AE_TYPE_MAX) {
905 		return(EINVAL);
906 	}
907 
908 	pthread_mutex_lock(&sc->aen_mtx);
909 	aen = &sc->aen[atype];
910 
911 	/* Has the controller already posted an event of this type? */
912 	if (aen->posted) {
913 		pthread_mutex_unlock(&sc->aen_mtx);
914 		return(EALREADY);
915 	}
916 
917 	aen->event_data = event_data;
918 	aen->posted = true;
919 	pthread_mutex_unlock(&sc->aen_mtx);
920 
921 	pci_nvme_aen_notify(sc);
922 
923 	return(0);
924 }
925 
926 static void
927 pci_nvme_aen_process(struct pci_nvme_softc *sc)
928 {
929 	struct pci_nvme_aer *aer;
930 	struct pci_nvme_aen *aen;
931 	pci_nvme_async_type atype;
932 	uint32_t mask;
933 	uint16_t status;
934 	uint8_t lid;
935 
936 	assert(pthread_mutex_isowned_np(&sc->aen_mtx));
937 	for (atype = 0; atype < PCI_NVME_AE_TYPE_MAX; atype++) {
938 		aen = &sc->aen[atype];
939 		/* Previous iterations may have depleted the available AER's */
940 		if (!pci_nvme_aer_available(sc)) {
941 			DPRINTF("%s: no AER", __func__);
942 			break;
943 		}
944 
945 		if (!aen->posted) {
946 			DPRINTF("%s: no AEN posted for atype=%#x", __func__, atype);
947 			continue;
948 		}
949 
950 		status = NVME_SC_SUCCESS;
951 
952 		/* Is the event masked? */
953 		mask =
954 		    sc->feat[NVME_FEAT_ASYNC_EVENT_CONFIGURATION].cdw11;
955 
956 		DPRINTF("%s: atype=%#x mask=%#x event_data=%#x", __func__, atype, mask, aen->event_data);
957 		switch (atype) {
958 		case PCI_NVME_AE_TYPE_ERROR:
959 			lid = NVME_LOG_ERROR;
960 			break;
961 		case PCI_NVME_AE_TYPE_SMART:
962 			mask &= 0xff;
963 			if ((mask & aen->event_data) == 0)
964 				continue;
965 			lid = NVME_LOG_HEALTH_INFORMATION;
966 			break;
967 		case PCI_NVME_AE_TYPE_NOTICE:
968 			if (aen->event_data >= PCI_NVME_AEI_NOTICE_MAX) {
969 				EPRINTLN("%s unknown AEN notice type %u",
970 				    __func__, aen->event_data);
971 				status = NVME_SC_INTERNAL_DEVICE_ERROR;
972 				break;
973 			}
974 			if ((PCI_NVME_AEI_NOTICE_MASK(aen->event_data) & mask) == 0)
975 				continue;
976 			switch (aen->event_data) {
977 			case PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED:
978 				lid = NVME_LOG_CHANGED_NAMESPACE;
979 				break;
980 			case PCI_NVME_AEI_NOTICE_FW_ACTIVATION:
981 				lid = NVME_LOG_FIRMWARE_SLOT;
982 				break;
983 			case PCI_NVME_AEI_NOTICE_TELEMETRY_CHANGE:
984 				lid = NVME_LOG_TELEMETRY_CONTROLLER_INITIATED;
985 				break;
986 			case PCI_NVME_AEI_NOTICE_ANA_CHANGE:
987 				lid = NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS;
988 				break;
989 			case PCI_NVME_AEI_NOTICE_PREDICT_LATENCY_CHANGE:
990 				lid = NVME_LOG_PREDICTABLE_LATENCY_EVENT_AGGREGATE;
991 				break;
992 			case PCI_NVME_AEI_NOTICE_LBA_STATUS_ALERT:
993 				lid = NVME_LOG_LBA_STATUS_INFORMATION;
994 				break;
995 			case PCI_NVME_AEI_NOTICE_ENDURANCE_GROUP_CHANGE:
996 				lid = NVME_LOG_ENDURANCE_GROUP_EVENT_AGGREGATE;
997 				break;
998 			default:
999 				lid = 0;
1000 			}
1001 			break;
1002 		default:
1003 			/* bad type?!? */
1004 			EPRINTLN("%s unknown AEN type %u", __func__, atype);
1005 			status = NVME_SC_INTERNAL_DEVICE_ERROR;
1006 			break;
1007 		}
1008 
1009 		aer = pci_nvme_aer_get(sc);
1010 		assert(aer != NULL);
1011 
1012 		DPRINTF("%s: CID=%#x CDW0=%#x", __func__, aer->cid, (lid << 16) | (aen->event_data << 8) | atype);
1013 		pci_nvme_cq_update(sc, &sc->compl_queues[0],
1014 		    (lid << 16) | (aen->event_data << 8) | atype, /* cdw0 */
1015 		    aer->cid,
1016 		    0,		/* SQID */
1017 		    status);
1018 
1019 		aen->event_data = 0;
1020 		aen->posted = false;
1021 
1022 		pci_generate_msix(sc->nsc_pi, 0);
1023 	}
1024 }
1025 
1026 static void *
1027 aen_thr(void *arg)
1028 {
1029 	struct pci_nvme_softc *sc;
1030 
1031 	sc = arg;
1032 
1033 	pthread_mutex_lock(&sc->aen_mtx);
1034 	for (;;) {
1035 		pci_nvme_aen_process(sc);
1036 		pthread_cond_wait(&sc->aen_cond, &sc->aen_mtx);
1037 	}
1038 	pthread_mutex_unlock(&sc->aen_mtx);
1039 
1040 	pthread_exit(NULL);
1041 	return (NULL);
1042 }
1043 
1044 static void
1045 pci_nvme_reset_locked(struct pci_nvme_softc *sc)
1046 {
1047 	uint32_t i;
1048 
1049 	DPRINTF("%s", __func__);
1050 
1051 	sc->regs.cap_lo = (ZERO_BASED(sc->max_qentries) & NVME_CAP_LO_REG_MQES_MASK) |
1052 	    (1 << NVME_CAP_LO_REG_CQR_SHIFT) |
1053 	    (60 << NVME_CAP_LO_REG_TO_SHIFT);
1054 
1055 	sc->regs.cap_hi = 1 << NVME_CAP_HI_REG_CSS_NVM_SHIFT;
1056 
1057 	sc->regs.vs = NVME_REV(1,4);	/* NVMe v1.4 */
1058 
1059 	sc->regs.cc = 0;
1060 
1061 	assert(sc->submit_queues != NULL);
1062 
1063 	for (i = 0; i < sc->num_squeues + 1; i++) {
1064 		sc->submit_queues[i].qbase = NULL;
1065 		sc->submit_queues[i].size = 0;
1066 		sc->submit_queues[i].cqid = 0;
1067 		sc->submit_queues[i].tail = 0;
1068 		sc->submit_queues[i].head = 0;
1069 	}
1070 
1071 	assert(sc->compl_queues != NULL);
1072 
1073 	for (i = 0; i < sc->num_cqueues + 1; i++) {
1074 		sc->compl_queues[i].qbase = NULL;
1075 		sc->compl_queues[i].size = 0;
1076 		sc->compl_queues[i].tail = 0;
1077 		sc->compl_queues[i].head = 0;
1078 	}
1079 
1080 	sc->num_q_is_set = false;
1081 
1082 	pci_nvme_aer_destroy(sc);
1083 	pci_nvme_aen_destroy(sc);
1084 
1085 	/*
1086 	 * Clear CSTS.RDY last to prevent the host from enabling Controller
1087 	 * before cleanup completes
1088 	 */
1089 	sc->regs.csts = 0;
1090 }
1091 
1092 static void
1093 pci_nvme_reset(struct pci_nvme_softc *sc)
1094 {
1095 	pthread_mutex_lock(&sc->mtx);
1096 	pci_nvme_reset_locked(sc);
1097 	pthread_mutex_unlock(&sc->mtx);
1098 }
1099 
1100 static int
1101 pci_nvme_init_controller(struct vmctx *ctx, struct pci_nvme_softc *sc)
1102 {
1103 	uint16_t acqs, asqs;
1104 
1105 	DPRINTF("%s", __func__);
1106 
1107 	/*
1108 	 * NVMe 2.0 states that "enabling a controller while this field is
1109 	 * cleared to 0h produces undefined results" for both ACQS and
1110 	 * ASQS. If zero, set CFS and do not become ready.
1111 	 */
1112 	asqs = ONE_BASED(sc->regs.aqa & NVME_AQA_REG_ASQS_MASK);
1113 	if (asqs < 2) {
1114 		EPRINTLN("%s: illegal ASQS value %#x (aqa=%#x)", __func__,
1115 		    asqs - 1, sc->regs.aqa);
1116 		sc->regs.csts |= NVME_CSTS_CFS;
1117 		return (-1);
1118 	}
1119 	sc->submit_queues[0].size = asqs;
1120 	sc->submit_queues[0].qbase = vm_map_gpa(ctx, sc->regs.asq,
1121 	            sizeof(struct nvme_command) * asqs);
1122 	if (sc->submit_queues[0].qbase == NULL) {
1123 		EPRINTLN("%s: ASQ vm_map_gpa(%lx) failed", __func__,
1124 		    sc->regs.asq);
1125 		sc->regs.csts |= NVME_CSTS_CFS;
1126 		return (-1);
1127 	}
1128 
1129 	DPRINTF("%s mapping Admin-SQ guest 0x%lx, host: %p",
1130 	        __func__, sc->regs.asq, sc->submit_queues[0].qbase);
1131 
1132 	acqs = ONE_BASED((sc->regs.aqa >> NVME_AQA_REG_ACQS_SHIFT) &
1133 	    NVME_AQA_REG_ACQS_MASK);
1134 	if (acqs < 2) {
1135 		EPRINTLN("%s: illegal ACQS value %#x (aqa=%#x)", __func__,
1136 		    acqs - 1, sc->regs.aqa);
1137 		sc->regs.csts |= NVME_CSTS_CFS;
1138 		return (-1);
1139 	}
1140 	sc->compl_queues[0].size = acqs;
1141 	sc->compl_queues[0].qbase = vm_map_gpa(ctx, sc->regs.acq,
1142 	         sizeof(struct nvme_completion) * acqs);
1143 	if (sc->compl_queues[0].qbase == NULL) {
1144 		EPRINTLN("%s: ACQ vm_map_gpa(%lx) failed", __func__,
1145 		    sc->regs.acq);
1146 		sc->regs.csts |= NVME_CSTS_CFS;
1147 		return (-1);
1148 	}
1149 	sc->compl_queues[0].intr_en = NVME_CQ_INTEN;
1150 
1151 	DPRINTF("%s mapping Admin-CQ guest 0x%lx, host: %p",
1152 	        __func__, sc->regs.acq, sc->compl_queues[0].qbase);
1153 
1154 	return (0);
1155 }
1156 
1157 static int
1158 nvme_prp_memcpy(struct vmctx *ctx, uint64_t prp1, uint64_t prp2, uint8_t *b,
1159 	size_t len, enum nvme_copy_dir dir)
1160 {
1161 	uint8_t *p;
1162 	size_t bytes;
1163 
1164 	if (len > (8 * 1024)) {
1165 		return (-1);
1166 	}
1167 
1168 	/* Copy from the start of prp1 to the end of the physical page */
1169 	bytes = PAGE_SIZE - (prp1 & PAGE_MASK);
1170 	bytes = MIN(bytes, len);
1171 
1172 	p = vm_map_gpa(ctx, prp1, bytes);
1173 	if (p == NULL) {
1174 		return (-1);
1175 	}
1176 
1177 	if (dir == NVME_COPY_TO_PRP)
1178 		memcpy(p, b, bytes);
1179 	else
1180 		memcpy(b, p, bytes);
1181 
1182 	b += bytes;
1183 
1184 	len -= bytes;
1185 	if (len == 0) {
1186 		return (0);
1187 	}
1188 
1189 	len = MIN(len, PAGE_SIZE);
1190 
1191 	p = vm_map_gpa(ctx, prp2, len);
1192 	if (p == NULL) {
1193 		return (-1);
1194 	}
1195 
1196 	if (dir == NVME_COPY_TO_PRP)
1197 		memcpy(p, b, len);
1198 	else
1199 		memcpy(b, p, len);
1200 
1201 	return (0);
1202 }
1203 
1204 /*
1205  * Write a Completion Queue Entry update
1206  *
1207  * Write the completion and update the doorbell value
1208  */
1209 static void
1210 pci_nvme_cq_update(struct pci_nvme_softc *sc,
1211 		struct nvme_completion_queue *cq,
1212 		uint32_t cdw0,
1213 		uint16_t cid,
1214 		uint16_t sqid,
1215 		uint16_t status)
1216 {
1217 	struct nvme_submission_queue *sq = &sc->submit_queues[sqid];
1218 	struct nvme_completion *cqe;
1219 
1220 	assert(cq->qbase != NULL);
1221 
1222 	pthread_mutex_lock(&cq->mtx);
1223 
1224 	cqe = &cq->qbase[cq->tail];
1225 
1226 	/* Flip the phase bit */
1227 	status |= (cqe->status ^ NVME_STATUS_P) & NVME_STATUS_P_MASK;
1228 
1229 	cqe->cdw0 = cdw0;
1230 	cqe->sqhd = sq->head;
1231 	cqe->sqid = sqid;
1232 	cqe->cid = cid;
1233 	cqe->status = status;
1234 
1235 	cq->tail++;
1236 	if (cq->tail >= cq->size) {
1237 		cq->tail = 0;
1238 	}
1239 
1240 	pthread_mutex_unlock(&cq->mtx);
1241 }
1242 
1243 static int
1244 nvme_opc_delete_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
1245 	struct nvme_completion* compl)
1246 {
1247 	uint16_t qid = command->cdw10 & 0xffff;
1248 
1249 	DPRINTF("%s DELETE_IO_SQ %u", __func__, qid);
1250 	if (qid == 0 || qid > sc->num_squeues ||
1251 	    (sc->submit_queues[qid].qbase == NULL)) {
1252 		WPRINTF("%s NOT PERMITTED queue id %u / num_squeues %u",
1253 		        __func__, qid, sc->num_squeues);
1254 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1255 		    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1256 		return (1);
1257 	}
1258 
1259 	sc->submit_queues[qid].qbase = NULL;
1260 	sc->submit_queues[qid].cqid = 0;
1261 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1262 	return (1);
1263 }
1264 
1265 static int
1266 nvme_opc_create_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
1267 	struct nvme_completion* compl)
1268 {
1269 	if (command->cdw11 & NVME_CMD_CDW11_PC) {
1270 		uint16_t qid = command->cdw10 & 0xffff;
1271 		struct nvme_submission_queue *nsq;
1272 
1273 		if ((qid == 0) || (qid > sc->num_squeues) ||
1274 		    (sc->submit_queues[qid].qbase != NULL)) {
1275 			WPRINTF("%s queue index %u > num_squeues %u",
1276 			        __func__, qid, sc->num_squeues);
1277 			pci_nvme_status_tc(&compl->status,
1278 			    NVME_SCT_COMMAND_SPECIFIC,
1279 			    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1280 			return (1);
1281 		}
1282 
1283 		nsq = &sc->submit_queues[qid];
1284 		nsq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
1285 		DPRINTF("%s size=%u (max=%u)", __func__, nsq->size, sc->max_qentries);
1286 		if ((nsq->size < 2) || (nsq->size > sc->max_qentries)) {
1287 			/*
1288 			 * Queues must specify at least two entries
1289 			 * NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
1290 			 * "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
1291 			 */
1292 			pci_nvme_status_tc(&compl->status,
1293 			    NVME_SCT_COMMAND_SPECIFIC,
1294 			    NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
1295 			return (1);
1296 		}
1297 		nsq->head = nsq->tail = 0;
1298 
1299 		nsq->cqid = (command->cdw11 >> 16) & 0xffff;
1300 		if ((nsq->cqid == 0) || (nsq->cqid > sc->num_cqueues)) {
1301 			pci_nvme_status_tc(&compl->status,
1302 			    NVME_SCT_COMMAND_SPECIFIC,
1303 			    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1304 			return (1);
1305 		}
1306 
1307 		if (sc->compl_queues[nsq->cqid].qbase == NULL) {
1308 			pci_nvme_status_tc(&compl->status,
1309 			    NVME_SCT_COMMAND_SPECIFIC,
1310 			    NVME_SC_COMPLETION_QUEUE_INVALID);
1311 			return (1);
1312 		}
1313 
1314 		nsq->qpriority = (command->cdw11 >> 1) & 0x03;
1315 
1316 		nsq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1317 		              sizeof(struct nvme_command) * (size_t)nsq->size);
1318 
1319 		DPRINTF("%s sq %u size %u gaddr %p cqid %u", __func__,
1320 		        qid, nsq->size, nsq->qbase, nsq->cqid);
1321 
1322 		pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1323 
1324 		DPRINTF("%s completed creating IOSQ qid %u",
1325 		         __func__, qid);
1326 	} else {
1327 		/*
1328 		 * Guest sent non-cont submission queue request.
1329 		 * This setting is unsupported by this emulation.
1330 		 */
1331 		WPRINTF("%s unsupported non-contig (list-based) "
1332 		         "create i/o submission queue", __func__);
1333 
1334 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1335 	}
1336 	return (1);
1337 }
1338 
1339 static int
1340 nvme_opc_delete_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
1341 	struct nvme_completion* compl)
1342 {
1343 	uint16_t qid = command->cdw10 & 0xffff;
1344 	uint16_t sqid;
1345 
1346 	DPRINTF("%s DELETE_IO_CQ %u", __func__, qid);
1347 	if (qid == 0 || qid > sc->num_cqueues ||
1348 	    (sc->compl_queues[qid].qbase == NULL)) {
1349 		WPRINTF("%s queue index %u / num_cqueues %u",
1350 		        __func__, qid, sc->num_cqueues);
1351 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1352 		    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1353 		return (1);
1354 	}
1355 
1356 	/* Deleting an Active CQ is an error */
1357 	for (sqid = 1; sqid < sc->num_squeues + 1; sqid++)
1358 		if (sc->submit_queues[sqid].cqid == qid) {
1359 			pci_nvme_status_tc(&compl->status,
1360 			    NVME_SCT_COMMAND_SPECIFIC,
1361 			    NVME_SC_INVALID_QUEUE_DELETION);
1362 			return (1);
1363 		}
1364 
1365 	sc->compl_queues[qid].qbase = NULL;
1366 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1367 	return (1);
1368 }
1369 
1370 static int
1371 nvme_opc_create_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
1372 	struct nvme_completion* compl)
1373 {
1374 	struct nvme_completion_queue *ncq;
1375 	uint16_t qid = command->cdw10 & 0xffff;
1376 
1377 	/* Only support Physically Contiguous queues */
1378 	if ((command->cdw11 & NVME_CMD_CDW11_PC) == 0) {
1379 		WPRINTF("%s unsupported non-contig (list-based) "
1380 		         "create i/o completion queue",
1381 		         __func__);
1382 
1383 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1384 		return (1);
1385 	}
1386 
1387 	if ((qid == 0) || (qid > sc->num_cqueues) ||
1388 	    (sc->compl_queues[qid].qbase != NULL)) {
1389 		WPRINTF("%s queue index %u > num_cqueues %u",
1390 			__func__, qid, sc->num_cqueues);
1391 		pci_nvme_status_tc(&compl->status,
1392 		    NVME_SCT_COMMAND_SPECIFIC,
1393 		    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1394 		return (1);
1395  	}
1396 
1397 	ncq = &sc->compl_queues[qid];
1398 	ncq->intr_en = (command->cdw11 & NVME_CMD_CDW11_IEN) >> 1;
1399 	ncq->intr_vec = (command->cdw11 >> 16) & 0xffff;
1400 	if (ncq->intr_vec > (sc->max_queues + 1)) {
1401 		pci_nvme_status_tc(&compl->status,
1402 		    NVME_SCT_COMMAND_SPECIFIC,
1403 		    NVME_SC_INVALID_INTERRUPT_VECTOR);
1404 		return (1);
1405 	}
1406 
1407 	ncq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
1408 	if ((ncq->size < 2) || (ncq->size > sc->max_qentries))  {
1409 		/*
1410 		 * Queues must specify at least two entries
1411 		 * NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
1412 		 * "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
1413 		 */
1414 		pci_nvme_status_tc(&compl->status,
1415 		    NVME_SCT_COMMAND_SPECIFIC,
1416 		    NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
1417 		return (1);
1418 	}
1419 	ncq->head = ncq->tail = 0;
1420 	ncq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
1421 		     command->prp1,
1422 		     sizeof(struct nvme_command) * (size_t)ncq->size);
1423 
1424 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1425 
1426 
1427 	return (1);
1428 }
1429 
1430 static int
1431 nvme_opc_get_log_page(struct pci_nvme_softc* sc, struct nvme_command* command,
1432 	struct nvme_completion* compl)
1433 {
1434 	uint64_t logoff;
1435 	uint32_t logsize;
1436 	uint8_t logpage;
1437 
1438 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1439 
1440 	/*
1441 	 * Command specifies the number of dwords to return in fields NUMDU
1442 	 * and NUMDL. This is a zero-based value.
1443 	 */
1444 	logpage = command->cdw10 & 0xFF;
1445 	logsize = ((command->cdw11 << 16) | (command->cdw10 >> 16)) + 1;
1446 	logsize *= sizeof(uint32_t);
1447 	logoff  = ((uint64_t)(command->cdw13) << 32) | command->cdw12;
1448 
1449 	DPRINTF("%s log page %u len %u", __func__, logpage, logsize);
1450 
1451 	switch (logpage) {
1452 	case NVME_LOG_ERROR:
1453 		if (logoff >= sizeof(sc->err_log)) {
1454 			pci_nvme_status_genc(&compl->status,
1455 			    NVME_SC_INVALID_FIELD);
1456 			break;
1457 		}
1458 
1459 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1460 		    command->prp2, (uint8_t *)&sc->err_log + logoff,
1461 		    MIN(logsize - logoff, sizeof(sc->err_log)),
1462 		    NVME_COPY_TO_PRP);
1463 		break;
1464 	case NVME_LOG_HEALTH_INFORMATION:
1465 		if (logoff >= sizeof(sc->health_log)) {
1466 			pci_nvme_status_genc(&compl->status,
1467 			    NVME_SC_INVALID_FIELD);
1468 			break;
1469 		}
1470 
1471 		pthread_mutex_lock(&sc->mtx);
1472 		memcpy(&sc->health_log.data_units_read, &sc->read_data_units,
1473 		    sizeof(sc->health_log.data_units_read));
1474 		memcpy(&sc->health_log.data_units_written, &sc->write_data_units,
1475 		    sizeof(sc->health_log.data_units_written));
1476 		memcpy(&sc->health_log.host_read_commands, &sc->read_commands,
1477 		    sizeof(sc->health_log.host_read_commands));
1478 		memcpy(&sc->health_log.host_write_commands, &sc->write_commands,
1479 		    sizeof(sc->health_log.host_write_commands));
1480 		pthread_mutex_unlock(&sc->mtx);
1481 
1482 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1483 		    command->prp2, (uint8_t *)&sc->health_log + logoff,
1484 		    MIN(logsize - logoff, sizeof(sc->health_log)),
1485 		    NVME_COPY_TO_PRP);
1486 		break;
1487 	case NVME_LOG_FIRMWARE_SLOT:
1488 		if (logoff >= sizeof(sc->fw_log)) {
1489 			pci_nvme_status_genc(&compl->status,
1490 			    NVME_SC_INVALID_FIELD);
1491 			break;
1492 		}
1493 
1494 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1495 		    command->prp2, (uint8_t *)&sc->fw_log + logoff,
1496 		    MIN(logsize - logoff, sizeof(sc->fw_log)),
1497 		    NVME_COPY_TO_PRP);
1498 		break;
1499 	case NVME_LOG_CHANGED_NAMESPACE:
1500 		if (logoff >= sizeof(sc->ns_log)) {
1501 			pci_nvme_status_genc(&compl->status,
1502 			    NVME_SC_INVALID_FIELD);
1503 			break;
1504 		}
1505 
1506 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1507 		    command->prp2, (uint8_t *)&sc->ns_log + logoff,
1508 		    MIN(logsize - logoff, sizeof(sc->ns_log)),
1509 		    NVME_COPY_TO_PRP);
1510 		memset(&sc->ns_log, 0, sizeof(sc->ns_log));
1511 		break;
1512 	default:
1513 		DPRINTF("%s get log page %x command not supported",
1514 		        __func__, logpage);
1515 
1516 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1517 		    NVME_SC_INVALID_LOG_PAGE);
1518 	}
1519 
1520 	return (1);
1521 }
1522 
1523 static int
1524 nvme_opc_identify(struct pci_nvme_softc* sc, struct nvme_command* command,
1525 	struct nvme_completion* compl)
1526 {
1527 	void *dest;
1528 	uint16_t status;
1529 
1530 	DPRINTF("%s identify 0x%x nsid 0x%x", __func__,
1531 	        command->cdw10 & 0xFF, command->nsid);
1532 
1533 	pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
1534 
1535 	switch (command->cdw10 & 0xFF) {
1536 	case 0x00: /* return Identify Namespace data structure */
1537 		/* Global NS only valid with NS Management */
1538 		if (command->nsid == NVME_GLOBAL_NAMESPACE_TAG) {
1539 			pci_nvme_status_genc(&status,
1540 			    NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
1541 			break;
1542 		}
1543 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1544 		    command->prp2, (uint8_t *)&sc->nsdata, sizeof(sc->nsdata),
1545 		    NVME_COPY_TO_PRP);
1546 		break;
1547 	case 0x01: /* return Identify Controller data structure */
1548 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1549 		    command->prp2, (uint8_t *)&sc->ctrldata,
1550 		    sizeof(sc->ctrldata),
1551 		    NVME_COPY_TO_PRP);
1552 		break;
1553 	case 0x02: /* list of 1024 active NSIDs > CDW1.NSID */
1554 		dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1555 		                  sizeof(uint32_t) * 1024);
1556 		/* All unused entries shall be zero */
1557 		memset(dest, 0, sizeof(uint32_t) * 1024);
1558 		((uint32_t *)dest)[0] = 1;
1559 		break;
1560 	case 0x03: /* list of NSID structures in CDW1.NSID, 4096 bytes */
1561 		if (command->nsid != 1) {
1562 			pci_nvme_status_genc(&status,
1563 			    NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
1564 			break;
1565 		}
1566 		dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1567 		                  sizeof(uint32_t) * 1024);
1568 		/* All bytes after the descriptor shall be zero */
1569 		memset(dest, 0, sizeof(uint32_t) * 1024);
1570 
1571 		/* Return NIDT=1 (i.e. EUI64) descriptor */
1572 		((uint8_t *)dest)[0] = 1;
1573 		((uint8_t *)dest)[1] = sizeof(uint64_t);
1574 		memcpy(((uint8_t *)dest) + 4, sc->nsdata.eui64, sizeof(uint64_t));
1575 		break;
1576 	case 0x13:
1577 		/*
1578 		 * Controller list is optional but used by UNH tests. Return
1579 		 * a valid but empty list.
1580 		 */
1581 		dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1582 		                  sizeof(uint16_t) * 2048);
1583 		memset(dest, 0, sizeof(uint16_t) * 2048);
1584 		break;
1585 	default:
1586 		DPRINTF("%s unsupported identify command requested 0x%x",
1587 		         __func__, command->cdw10 & 0xFF);
1588 		pci_nvme_status_genc(&status, NVME_SC_INVALID_FIELD);
1589 		break;
1590 	}
1591 
1592 	compl->status = status;
1593 	return (1);
1594 }
1595 
1596 static const char *
1597 nvme_fid_to_name(uint8_t fid)
1598 {
1599 	const char *name;
1600 
1601 	switch (fid) {
1602 	case NVME_FEAT_ARBITRATION:
1603 		name = "Arbitration";
1604 		break;
1605 	case NVME_FEAT_POWER_MANAGEMENT:
1606 		name = "Power Management";
1607 		break;
1608 	case NVME_FEAT_LBA_RANGE_TYPE:
1609 		name = "LBA Range Type";
1610 		break;
1611 	case NVME_FEAT_TEMPERATURE_THRESHOLD:
1612 		name = "Temperature Threshold";
1613 		break;
1614 	case NVME_FEAT_ERROR_RECOVERY:
1615 		name = "Error Recovery";
1616 		break;
1617 	case NVME_FEAT_VOLATILE_WRITE_CACHE:
1618 		name = "Volatile Write Cache";
1619 		break;
1620 	case NVME_FEAT_NUMBER_OF_QUEUES:
1621 		name = "Number of Queues";
1622 		break;
1623 	case NVME_FEAT_INTERRUPT_COALESCING:
1624 		name = "Interrupt Coalescing";
1625 		break;
1626 	case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
1627 		name = "Interrupt Vector Configuration";
1628 		break;
1629 	case NVME_FEAT_WRITE_ATOMICITY:
1630 		name = "Write Atomicity Normal";
1631 		break;
1632 	case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
1633 		name = "Asynchronous Event Configuration";
1634 		break;
1635 	case NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
1636 		name = "Autonomous Power State Transition";
1637 		break;
1638 	case NVME_FEAT_HOST_MEMORY_BUFFER:
1639 		name = "Host Memory Buffer";
1640 		break;
1641 	case NVME_FEAT_TIMESTAMP:
1642 		name = "Timestamp";
1643 		break;
1644 	case NVME_FEAT_KEEP_ALIVE_TIMER:
1645 		name = "Keep Alive Timer";
1646 		break;
1647 	case NVME_FEAT_HOST_CONTROLLED_THERMAL_MGMT:
1648 		name = "Host Controlled Thermal Management";
1649 		break;
1650 	case NVME_FEAT_NON_OP_POWER_STATE_CONFIG:
1651 		name = "Non-Operation Power State Config";
1652 		break;
1653 	case NVME_FEAT_READ_RECOVERY_LEVEL_CONFIG:
1654 		name = "Read Recovery Level Config";
1655 		break;
1656 	case NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG:
1657 		name = "Predictable Latency Mode Config";
1658 		break;
1659 	case NVME_FEAT_PREDICTABLE_LATENCY_MODE_WINDOW:
1660 		name = "Predictable Latency Mode Window";
1661 		break;
1662 	case NVME_FEAT_LBA_STATUS_INFORMATION_ATTRIBUTES:
1663 		name = "LBA Status Information Report Interval";
1664 		break;
1665 	case NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
1666 		name = "Host Behavior Support";
1667 		break;
1668 	case NVME_FEAT_SANITIZE_CONFIG:
1669 		name = "Sanitize Config";
1670 		break;
1671 	case NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION:
1672 		name = "Endurance Group Event Configuration";
1673 		break;
1674 	case NVME_FEAT_SOFTWARE_PROGRESS_MARKER:
1675 		name = "Software Progress Marker";
1676 		break;
1677 	case NVME_FEAT_HOST_IDENTIFIER:
1678 		name = "Host Identifier";
1679 		break;
1680 	case NVME_FEAT_RESERVATION_NOTIFICATION_MASK:
1681 		name = "Reservation Notification Mask";
1682 		break;
1683 	case NVME_FEAT_RESERVATION_PERSISTENCE:
1684 		name = "Reservation Persistence";
1685 		break;
1686 	case NVME_FEAT_NAMESPACE_WRITE_PROTECTION_CONFIG:
1687 		name = "Namespace Write Protection Config";
1688 		break;
1689 	default:
1690 		name = "Unknown";
1691 		break;
1692 	}
1693 
1694 	return (name);
1695 }
1696 
1697 static void
1698 nvme_feature_invalid_cb(struct pci_nvme_softc *sc __unused,
1699     struct nvme_feature_obj *feat __unused,
1700     struct nvme_command *command __unused,
1701     struct nvme_completion *compl)
1702 {
1703 	pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1704 }
1705 
1706 static void
1707 nvme_feature_iv_config(struct pci_nvme_softc *sc,
1708     struct nvme_feature_obj *feat __unused,
1709     struct nvme_command *command,
1710     struct nvme_completion *compl)
1711 {
1712 	uint32_t i;
1713 	uint32_t cdw11 = command->cdw11;
1714 	uint16_t iv;
1715 	bool cd;
1716 
1717 	pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1718 
1719 	iv = cdw11 & 0xffff;
1720 	cd = cdw11 & (1 << 16);
1721 
1722 	if (iv > (sc->max_queues + 1)) {
1723 		return;
1724 	}
1725 
1726 	/* No Interrupt Coalescing (i.e. not Coalescing Disable) for Admin Q */
1727 	if ((iv == 0) && !cd)
1728 		return;
1729 
1730 	/* Requested Interrupt Vector must be used by a CQ */
1731 	for (i = 0; i < sc->num_cqueues + 1; i++) {
1732 		if (sc->compl_queues[i].intr_vec == iv) {
1733 			pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1734 		}
1735 	}
1736 }
1737 
1738 #define NVME_ASYNC_EVENT_ENDURANCE_GROUP		(0x4000)
1739 static void
1740 nvme_feature_async_event(struct pci_nvme_softc *sc __unused,
1741     struct nvme_feature_obj *feat __unused,
1742     struct nvme_command *command,
1743     struct nvme_completion *compl)
1744 {
1745 	if (command->cdw11 & NVME_ASYNC_EVENT_ENDURANCE_GROUP)
1746 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1747 }
1748 
1749 #define NVME_TEMP_THRESH_OVER	0
1750 #define NVME_TEMP_THRESH_UNDER	1
1751 static void
1752 nvme_feature_temperature(struct pci_nvme_softc *sc,
1753     struct nvme_feature_obj *feat __unused,
1754     struct nvme_command *command,
1755     struct nvme_completion *compl)
1756 {
1757 	uint16_t	tmpth;	/* Temperature Threshold */
1758 	uint8_t		tmpsel; /* Threshold Temperature Select */
1759 	uint8_t		thsel;  /* Threshold Type Select */
1760 	bool		set_crit = false;
1761 	bool		report_crit;
1762 
1763 	tmpth  = command->cdw11 & 0xffff;
1764 	tmpsel = (command->cdw11 >> 16) & 0xf;
1765 	thsel  = (command->cdw11 >> 20) & 0x3;
1766 
1767 	DPRINTF("%s: tmpth=%#x tmpsel=%#x thsel=%#x", __func__, tmpth, tmpsel, thsel);
1768 
1769 	/* Check for unsupported values */
1770 	if (((tmpsel != 0) && (tmpsel != 0xf)) ||
1771 	    (thsel > NVME_TEMP_THRESH_UNDER)) {
1772 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1773 		return;
1774 	}
1775 
1776 	if (((thsel == NVME_TEMP_THRESH_OVER)  && (NVME_TEMPERATURE >= tmpth)) ||
1777 	    ((thsel == NVME_TEMP_THRESH_UNDER) && (NVME_TEMPERATURE <= tmpth)))
1778 		set_crit = true;
1779 
1780 	pthread_mutex_lock(&sc->mtx);
1781 	if (set_crit)
1782 		sc->health_log.critical_warning |=
1783 		    NVME_CRIT_WARN_ST_TEMPERATURE;
1784 	else
1785 		sc->health_log.critical_warning &=
1786 		    ~NVME_CRIT_WARN_ST_TEMPERATURE;
1787 	pthread_mutex_unlock(&sc->mtx);
1788 
1789 	report_crit = sc->feat[NVME_FEAT_ASYNC_EVENT_CONFIGURATION].cdw11 &
1790 	    NVME_CRIT_WARN_ST_TEMPERATURE;
1791 
1792 	if (set_crit && report_crit)
1793 		pci_nvme_aen_post(sc, PCI_NVME_AE_TYPE_SMART,
1794 		    sc->health_log.critical_warning);
1795 
1796 	DPRINTF("%s: set_crit=%c critical_warning=%#x status=%#x", __func__, set_crit ? 'T':'F', sc->health_log.critical_warning, compl->status);
1797 }
1798 
1799 static void
1800 nvme_feature_num_queues(struct pci_nvme_softc *sc,
1801     struct nvme_feature_obj *feat __unused,
1802     struct nvme_command *command,
1803     struct nvme_completion *compl)
1804 {
1805 	uint16_t nqr;	/* Number of Queues Requested */
1806 
1807 	if (sc->num_q_is_set) {
1808 		WPRINTF("%s: Number of Queues already set", __func__);
1809 		pci_nvme_status_genc(&compl->status,
1810 		    NVME_SC_COMMAND_SEQUENCE_ERROR);
1811 		return;
1812 	}
1813 
1814 	nqr = command->cdw11 & 0xFFFF;
1815 	if (nqr == 0xffff) {
1816 		WPRINTF("%s: Illegal NSQR value %#x", __func__, nqr);
1817 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1818 		return;
1819 	}
1820 
1821 	sc->num_squeues = ONE_BASED(nqr);
1822 	if (sc->num_squeues > sc->max_queues) {
1823 		DPRINTF("NSQR=%u is greater than max %u", sc->num_squeues,
1824 					sc->max_queues);
1825 		sc->num_squeues = sc->max_queues;
1826 	}
1827 
1828 	nqr = (command->cdw11 >> 16) & 0xFFFF;
1829 	if (nqr == 0xffff) {
1830 		WPRINTF("%s: Illegal NCQR value %#x", __func__, nqr);
1831 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1832 		return;
1833 	}
1834 
1835 	sc->num_cqueues = ONE_BASED(nqr);
1836 	if (sc->num_cqueues > sc->max_queues) {
1837 		DPRINTF("NCQR=%u is greater than max %u", sc->num_cqueues,
1838 					sc->max_queues);
1839 		sc->num_cqueues = sc->max_queues;
1840 	}
1841 
1842 	/* Patch the command value which will be saved on callback's return */
1843 	command->cdw11 = NVME_FEATURE_NUM_QUEUES(sc);
1844 	compl->cdw0 = NVME_FEATURE_NUM_QUEUES(sc);
1845 
1846 	sc->num_q_is_set = true;
1847 }
1848 
1849 static int
1850 nvme_opc_set_features(struct pci_nvme_softc *sc, struct nvme_command *command,
1851 	struct nvme_completion *compl)
1852 {
1853 	struct nvme_feature_obj *feat;
1854 	uint32_t nsid = command->nsid;
1855 	uint8_t fid = NVMEV(NVME_FEAT_SET_FID, command->cdw10);
1856 	bool sv = NVMEV(NVME_FEAT_SET_SV, command->cdw10);
1857 
1858 	DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
1859 
1860 	if (fid >= NVME_FID_MAX) {
1861 		DPRINTF("%s invalid feature 0x%x", __func__, fid);
1862 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1863 		return (1);
1864 	}
1865 
1866 	if (sv) {
1867 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1868 		    NVME_SC_FEATURE_NOT_SAVEABLE);
1869 		return (1);
1870 	}
1871 
1872 	feat = &sc->feat[fid];
1873 
1874 	if (feat->namespace_specific && (nsid == NVME_GLOBAL_NAMESPACE_TAG)) {
1875 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1876 		return (1);
1877 	}
1878 
1879 	if (!feat->namespace_specific &&
1880 	    !((nsid == 0) || (nsid == NVME_GLOBAL_NAMESPACE_TAG))) {
1881 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1882 		    NVME_SC_FEATURE_NOT_NS_SPECIFIC);
1883 		return (1);
1884 	}
1885 
1886 	compl->cdw0 = 0;
1887 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1888 
1889 	if (feat->set)
1890 		feat->set(sc, feat, command, compl);
1891 	else {
1892 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1893 		    NVME_SC_FEATURE_NOT_CHANGEABLE);
1894 		return (1);
1895 	}
1896 
1897 	DPRINTF("%s: status=%#x cdw11=%#x", __func__, compl->status, command->cdw11);
1898 	if (compl->status == NVME_SC_SUCCESS) {
1899 		feat->cdw11 = command->cdw11;
1900 		if ((fid == NVME_FEAT_ASYNC_EVENT_CONFIGURATION) &&
1901 		    (command->cdw11 != 0))
1902 			pci_nvme_aen_notify(sc);
1903 	}
1904 
1905 	return (0);
1906 }
1907 
1908 #define NVME_FEATURES_SEL_SUPPORTED	0x3
1909 #define NVME_FEATURES_NS_SPECIFIC	(1 << 1)
1910 
1911 static int
1912 nvme_opc_get_features(struct pci_nvme_softc* sc, struct nvme_command* command,
1913 	struct nvme_completion* compl)
1914 {
1915 	struct nvme_feature_obj *feat;
1916 	uint8_t fid = command->cdw10 & 0xFF;
1917 	uint8_t sel = (command->cdw10 >> 8) & 0x7;
1918 
1919 	DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
1920 
1921 	if (fid >= NVME_FID_MAX) {
1922 		DPRINTF("%s invalid feature 0x%x", __func__, fid);
1923 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1924 		return (1);
1925 	}
1926 
1927 	compl->cdw0 = 0;
1928 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1929 
1930 	feat = &sc->feat[fid];
1931 	if (feat->get) {
1932 		feat->get(sc, feat, command, compl);
1933 	}
1934 
1935 	if (compl->status == NVME_SC_SUCCESS) {
1936 		if ((sel == NVME_FEATURES_SEL_SUPPORTED) && feat->namespace_specific)
1937 			compl->cdw0 = NVME_FEATURES_NS_SPECIFIC;
1938 		else
1939 			compl->cdw0 = feat->cdw11;
1940 	}
1941 
1942 	return (0);
1943 }
1944 
1945 static int
1946 nvme_opc_format_nvm(struct pci_nvme_softc* sc, struct nvme_command* command,
1947 	struct nvme_completion* compl)
1948 {
1949 	uint8_t	ses, lbaf, pi;
1950 
1951 	/* Only supports Secure Erase Setting - User Data Erase */
1952 	ses = (command->cdw10 >> 9) & 0x7;
1953 	if (ses > 0x1) {
1954 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1955 		return (1);
1956 	}
1957 
1958 	/* Only supports a single LBA Format */
1959 	lbaf = command->cdw10 & 0xf;
1960 	if (lbaf != 0) {
1961 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1962 		    NVME_SC_INVALID_FORMAT);
1963 		return (1);
1964 	}
1965 
1966 	/* Doesn't support Protection Infomation */
1967 	pi = (command->cdw10 >> 5) & 0x7;
1968 	if (pi != 0) {
1969 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1970 		return (1);
1971 	}
1972 
1973 	if (sc->nvstore.type == NVME_STOR_RAM) {
1974 		if (sc->nvstore.ctx)
1975 			free(sc->nvstore.ctx);
1976 		sc->nvstore.ctx = calloc(1, sc->nvstore.size);
1977 		pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1978 	} else {
1979 		struct pci_nvme_ioreq *req;
1980 		int err;
1981 
1982 		req = pci_nvme_get_ioreq(sc);
1983 		if (req == NULL) {
1984 			pci_nvme_status_genc(&compl->status,
1985 			    NVME_SC_INTERNAL_DEVICE_ERROR);
1986 			WPRINTF("%s: unable to allocate IO req", __func__);
1987 			return (1);
1988 		}
1989 		req->nvme_sq = &sc->submit_queues[0];
1990 		req->sqid = 0;
1991 		req->opc = command->opc;
1992 		req->cid = command->cid;
1993 		req->nsid = command->nsid;
1994 
1995 		req->io_req.br_offset = 0;
1996 		req->io_req.br_resid = sc->nvstore.size;
1997 		req->io_req.br_callback = pci_nvme_io_done;
1998 
1999 		err = blockif_delete(sc->nvstore.ctx, &req->io_req);
2000 		if (err) {
2001 			pci_nvme_status_genc(&compl->status,
2002 			    NVME_SC_INTERNAL_DEVICE_ERROR);
2003 			pci_nvme_release_ioreq(sc, req);
2004 		} else
2005 			compl->status = NVME_NO_STATUS;
2006 	}
2007 
2008 	return (1);
2009 }
2010 
2011 static int
2012 nvme_opc_abort(struct pci_nvme_softc *sc __unused, struct nvme_command *command,
2013     struct nvme_completion *compl)
2014 {
2015 	DPRINTF("%s submission queue %u, command ID 0x%x", __func__,
2016 	        command->cdw10 & 0xFFFF, (command->cdw10 >> 16) & 0xFFFF);
2017 
2018 	/* TODO: search for the command ID and abort it */
2019 
2020 	compl->cdw0 = 1;
2021 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
2022 	return (1);
2023 }
2024 
2025 static int
2026 nvme_opc_async_event_req(struct pci_nvme_softc* sc,
2027 	struct nvme_command* command, struct nvme_completion* compl)
2028 {
2029 	DPRINTF("%s async event request count=%u aerl=%u cid=%#x", __func__,
2030 	    sc->aer_count, sc->ctrldata.aerl, command->cid);
2031 
2032 	/* Don't exceed the Async Event Request Limit (AERL). */
2033 	if (pci_nvme_aer_limit_reached(sc)) {
2034 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
2035 				NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED);
2036 		return (1);
2037 	}
2038 
2039 	if (pci_nvme_aer_add(sc, command->cid)) {
2040 		pci_nvme_status_tc(&compl->status, NVME_SCT_GENERIC,
2041 				NVME_SC_INTERNAL_DEVICE_ERROR);
2042 		return (1);
2043 	}
2044 
2045 	/*
2046 	 * Raise events when they happen based on the Set Features cmd.
2047 	 * These events happen async, so only set completion successful if
2048 	 * there is an event reflective of the request to get event.
2049 	 */
2050 	compl->status = NVME_NO_STATUS;
2051 	pci_nvme_aen_notify(sc);
2052 
2053 	return (0);
2054 }
2055 
2056 static void
2057 pci_nvme_handle_admin_cmd(struct pci_nvme_softc* sc, uint64_t value)
2058 {
2059 	struct nvme_completion compl;
2060 	struct nvme_command *cmd;
2061 	struct nvme_submission_queue *sq;
2062 	struct nvme_completion_queue *cq;
2063 	uint16_t sqhead;
2064 
2065 	DPRINTF("%s index %u", __func__, (uint32_t)value);
2066 
2067 	sq = &sc->submit_queues[0];
2068 	cq = &sc->compl_queues[0];
2069 
2070 	pthread_mutex_lock(&sq->mtx);
2071 
2072 	sqhead = sq->head;
2073 	DPRINTF("sqhead %u, tail %u", sqhead, sq->tail);
2074 
2075 	while (sqhead != atomic_load_acq_short(&sq->tail)) {
2076 		cmd = &(sq->qbase)[sqhead];
2077 		compl.cdw0 = 0;
2078 		compl.status = 0;
2079 
2080 		switch (cmd->opc) {
2081 		case NVME_OPC_DELETE_IO_SQ:
2082 			DPRINTF("%s command DELETE_IO_SQ", __func__);
2083 			nvme_opc_delete_io_sq(sc, cmd, &compl);
2084 			break;
2085 		case NVME_OPC_CREATE_IO_SQ:
2086 			DPRINTF("%s command CREATE_IO_SQ", __func__);
2087 			nvme_opc_create_io_sq(sc, cmd, &compl);
2088 			break;
2089 		case NVME_OPC_DELETE_IO_CQ:
2090 			DPRINTF("%s command DELETE_IO_CQ", __func__);
2091 			nvme_opc_delete_io_cq(sc, cmd, &compl);
2092 			break;
2093 		case NVME_OPC_CREATE_IO_CQ:
2094 			DPRINTF("%s command CREATE_IO_CQ", __func__);
2095 			nvme_opc_create_io_cq(sc, cmd, &compl);
2096 			break;
2097 		case NVME_OPC_GET_LOG_PAGE:
2098 			DPRINTF("%s command GET_LOG_PAGE", __func__);
2099 			nvme_opc_get_log_page(sc, cmd, &compl);
2100 			break;
2101 		case NVME_OPC_IDENTIFY:
2102 			DPRINTF("%s command IDENTIFY", __func__);
2103 			nvme_opc_identify(sc, cmd, &compl);
2104 			break;
2105 		case NVME_OPC_ABORT:
2106 			DPRINTF("%s command ABORT", __func__);
2107 			nvme_opc_abort(sc, cmd, &compl);
2108 			break;
2109 		case NVME_OPC_SET_FEATURES:
2110 			DPRINTF("%s command SET_FEATURES", __func__);
2111 			nvme_opc_set_features(sc, cmd, &compl);
2112 			break;
2113 		case NVME_OPC_GET_FEATURES:
2114 			DPRINTF("%s command GET_FEATURES", __func__);
2115 			nvme_opc_get_features(sc, cmd, &compl);
2116 			break;
2117 		case NVME_OPC_FIRMWARE_ACTIVATE:
2118 			DPRINTF("%s command FIRMWARE_ACTIVATE", __func__);
2119 			pci_nvme_status_tc(&compl.status,
2120 			    NVME_SCT_COMMAND_SPECIFIC,
2121 			    NVME_SC_INVALID_FIRMWARE_SLOT);
2122 			break;
2123 		case NVME_OPC_ASYNC_EVENT_REQUEST:
2124 			DPRINTF("%s command ASYNC_EVENT_REQ", __func__);
2125 			nvme_opc_async_event_req(sc, cmd, &compl);
2126 			break;
2127 		case NVME_OPC_FORMAT_NVM:
2128 			DPRINTF("%s command FORMAT_NVM", __func__);
2129 			if ((sc->ctrldata.oacs &
2130 			    (1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT)) == 0) {
2131 				pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
2132 				break;
2133 			}
2134 			nvme_opc_format_nvm(sc, cmd, &compl);
2135 			break;
2136 		case NVME_OPC_SECURITY_SEND:
2137 		case NVME_OPC_SECURITY_RECEIVE:
2138 		case NVME_OPC_SANITIZE:
2139 		case NVME_OPC_GET_LBA_STATUS:
2140 			DPRINTF("%s command OPC=%#x (unsupported)", __func__,
2141 			    cmd->opc);
2142 			/* Valid but unsupported opcodes */
2143 			pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_FIELD);
2144 			break;
2145 		default:
2146 			DPRINTF("%s command OPC=%#X (not implemented)",
2147 			    __func__,
2148 			    cmd->opc);
2149 			pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
2150 		}
2151 		sqhead = (sqhead + 1) % sq->size;
2152 
2153 		if (NVME_COMPLETION_VALID(compl)) {
2154 			pci_nvme_cq_update(sc, &sc->compl_queues[0],
2155 			    compl.cdw0,
2156 			    cmd->cid,
2157 			    0,		/* SQID */
2158 			    compl.status);
2159 		}
2160 	}
2161 
2162 	DPRINTF("setting sqhead %u", sqhead);
2163 	sq->head = sqhead;
2164 
2165 	if (cq->head != cq->tail)
2166 		pci_generate_msix(sc->nsc_pi, 0);
2167 
2168 	pthread_mutex_unlock(&sq->mtx);
2169 }
2170 
2171 /*
2172  * Update the Write and Read statistics reported in SMART data
2173  *
2174  * NVMe defines "data unit" as thousand's of 512 byte blocks and is rounded up.
2175  * E.g. 1 data unit is 1 - 1,000 512 byte blocks. 3 data units are 2,001 - 3,000
2176  * 512 byte blocks. Rounding up is acheived by initializing the remainder to 999.
2177  */
2178 static void
2179 pci_nvme_stats_write_read_update(struct pci_nvme_softc *sc, uint8_t opc,
2180     size_t bytes, uint16_t status)
2181 {
2182 
2183 	pthread_mutex_lock(&sc->mtx);
2184 	switch (opc) {
2185 	case NVME_OPC_WRITE:
2186 		sc->write_commands++;
2187 		if (status != NVME_SC_SUCCESS)
2188 			break;
2189 		sc->write_dunits_remainder += (bytes / 512);
2190 		while (sc->write_dunits_remainder >= 1000) {
2191 			sc->write_data_units++;
2192 			sc->write_dunits_remainder -= 1000;
2193 		}
2194 		break;
2195 	case NVME_OPC_READ:
2196 		sc->read_commands++;
2197 		if (status != NVME_SC_SUCCESS)
2198 			break;
2199 		sc->read_dunits_remainder += (bytes / 512);
2200 		while (sc->read_dunits_remainder >= 1000) {
2201 			sc->read_data_units++;
2202 			sc->read_dunits_remainder -= 1000;
2203 		}
2204 		break;
2205 	default:
2206 		DPRINTF("%s: Invalid OPC 0x%02x for stats", __func__, opc);
2207 		break;
2208 	}
2209 	pthread_mutex_unlock(&sc->mtx);
2210 }
2211 
2212 /*
2213  * Check if the combination of Starting LBA (slba) and number of blocks
2214  * exceeds the range of the underlying storage.
2215  *
2216  * Because NVMe specifies the SLBA in blocks as a uint64_t and blockif stores
2217  * the capacity in bytes as a uint64_t, care must be taken to avoid integer
2218  * overflow.
2219  */
2220 static bool
2221 pci_nvme_out_of_range(struct pci_nvme_blockstore *nvstore, uint64_t slba,
2222     uint32_t nblocks)
2223 {
2224 	size_t	offset, bytes;
2225 
2226 	/* Overflow check of multiplying Starting LBA by the sector size */
2227 	if (slba >> (64 - nvstore->sectsz_bits))
2228 		return (true);
2229 
2230 	offset = slba << nvstore->sectsz_bits;
2231 	bytes = nblocks << nvstore->sectsz_bits;
2232 
2233 	/* Overflow check of Number of Logical Blocks */
2234 	if ((nvstore->size <= offset) || ((nvstore->size - offset) < bytes))
2235 		return (true);
2236 
2237 	return (false);
2238 }
2239 
2240 static int
2241 pci_nvme_append_iov_req(struct pci_nvme_softc *sc __unused,
2242     struct pci_nvme_ioreq *req, uint64_t gpaddr, size_t size, uint64_t offset)
2243 {
2244 	int iovidx;
2245 	bool range_is_contiguous;
2246 
2247 	if (req == NULL)
2248 		return (-1);
2249 
2250 	if (req->io_req.br_iovcnt == NVME_MAX_IOVEC) {
2251 		return (-1);
2252 	}
2253 
2254 	/*
2255 	 * Minimize the number of IOVs by concatenating contiguous address
2256 	 * ranges. If the IOV count is zero, there is no previous range to
2257 	 * concatenate.
2258 	 */
2259 	if (req->io_req.br_iovcnt == 0)
2260 		range_is_contiguous = false;
2261 	else
2262 		range_is_contiguous = (req->prev_gpaddr + req->prev_size) == gpaddr;
2263 
2264 	if (range_is_contiguous) {
2265 		iovidx = req->io_req.br_iovcnt - 1;
2266 
2267 		req->io_req.br_iov[iovidx].iov_base =
2268 		    paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
2269 				     req->prev_gpaddr, size);
2270 		if (req->io_req.br_iov[iovidx].iov_base == NULL)
2271 			return (-1);
2272 
2273 		req->prev_size += size;
2274 		req->io_req.br_resid += size;
2275 
2276 		req->io_req.br_iov[iovidx].iov_len = req->prev_size;
2277 	} else {
2278 		iovidx = req->io_req.br_iovcnt;
2279 		if (iovidx == 0) {
2280 			req->io_req.br_offset = offset;
2281 			req->io_req.br_resid = 0;
2282 			req->io_req.br_param = req;
2283 		}
2284 
2285 		req->io_req.br_iov[iovidx].iov_base =
2286 		    paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
2287 				     gpaddr, size);
2288 		if (req->io_req.br_iov[iovidx].iov_base == NULL)
2289 			return (-1);
2290 
2291 		req->io_req.br_iov[iovidx].iov_len = size;
2292 
2293 		req->prev_gpaddr = gpaddr;
2294 		req->prev_size = size;
2295 		req->io_req.br_resid += size;
2296 
2297 		req->io_req.br_iovcnt++;
2298 	}
2299 
2300 	return (0);
2301 }
2302 
2303 static void
2304 pci_nvme_set_completion(struct pci_nvme_softc *sc,
2305     struct nvme_submission_queue *sq, int sqid, uint16_t cid, uint16_t status)
2306 {
2307 	struct nvme_completion_queue *cq = &sc->compl_queues[sq->cqid];
2308 
2309 	DPRINTF("%s sqid %d cqid %u cid %u status: 0x%x 0x%x",
2310 		 __func__, sqid, sq->cqid, cid, NVME_STATUS_GET_SCT(status),
2311 		 NVME_STATUS_GET_SC(status));
2312 
2313 	pci_nvme_cq_update(sc, cq, 0, cid, sqid, status);
2314 
2315 	if (cq->head != cq->tail) {
2316 		if (cq->intr_en & NVME_CQ_INTEN) {
2317 			pci_generate_msix(sc->nsc_pi, cq->intr_vec);
2318 		} else {
2319 			DPRINTF("%s: CQ%u interrupt disabled",
2320 						__func__, sq->cqid);
2321 		}
2322 	}
2323 }
2324 
2325 static void
2326 pci_nvme_release_ioreq(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req)
2327 {
2328 	req->sc = NULL;
2329 	req->nvme_sq = NULL;
2330 	req->sqid = 0;
2331 
2332 	pthread_mutex_lock(&sc->mtx);
2333 
2334 	STAILQ_INSERT_TAIL(&sc->ioreqs_free, req, link);
2335 	sc->pending_ios--;
2336 
2337 	/* when no more IO pending, can set to ready if device reset/enabled */
2338 	if (sc->pending_ios == 0 &&
2339 	    NVME_CC_GET_EN(sc->regs.cc) && !(NVME_CSTS_GET_RDY(sc->regs.csts)))
2340 		sc->regs.csts |= NVME_CSTS_RDY;
2341 
2342 	pthread_mutex_unlock(&sc->mtx);
2343 
2344 	sem_post(&sc->iosemlock);
2345 }
2346 
2347 static struct pci_nvme_ioreq *
2348 pci_nvme_get_ioreq(struct pci_nvme_softc *sc)
2349 {
2350 	struct pci_nvme_ioreq *req = NULL;
2351 
2352 	sem_wait(&sc->iosemlock);
2353 	pthread_mutex_lock(&sc->mtx);
2354 
2355 	req = STAILQ_FIRST(&sc->ioreqs_free);
2356 	assert(req != NULL);
2357 	STAILQ_REMOVE_HEAD(&sc->ioreqs_free, link);
2358 
2359 	req->sc = sc;
2360 
2361 	sc->pending_ios++;
2362 
2363 	pthread_mutex_unlock(&sc->mtx);
2364 
2365 	req->io_req.br_iovcnt = 0;
2366 	req->io_req.br_offset = 0;
2367 	req->io_req.br_resid = 0;
2368 	req->io_req.br_param = req;
2369 	req->prev_gpaddr = 0;
2370 	req->prev_size = 0;
2371 
2372 	return req;
2373 }
2374 
2375 static void
2376 pci_nvme_io_done(struct blockif_req *br, int err)
2377 {
2378 	struct pci_nvme_ioreq *req = br->br_param;
2379 	struct nvme_submission_queue *sq = req->nvme_sq;
2380 	uint16_t code, status;
2381 
2382 	DPRINTF("%s error %d %s", __func__, err, strerror(err));
2383 
2384 	/* TODO return correct error */
2385 	code = err ? NVME_SC_DATA_TRANSFER_ERROR : NVME_SC_SUCCESS;
2386 	pci_nvme_status_genc(&status, code);
2387 
2388 	pci_nvme_set_completion(req->sc, sq, req->sqid, req->cid, status);
2389 	pci_nvme_stats_write_read_update(req->sc, req->opc,
2390 	    req->bytes, status);
2391 	pci_nvme_release_ioreq(req->sc, req);
2392 }
2393 
2394 /*
2395  * Implements the Flush command. The specification states:
2396  *    If a volatile write cache is not present, Flush commands complete
2397  *    successfully and have no effect
2398  * in the description of the Volatile Write Cache (VWC) field of the Identify
2399  * Controller data. Therefore, set status to Success if the command is
2400  * not supported (i.e. RAM or as indicated by the blockif).
2401  */
2402 static bool
2403 nvme_opc_flush(struct pci_nvme_softc *sc __unused,
2404     struct nvme_command *cmd __unused,
2405     struct pci_nvme_blockstore *nvstore,
2406     struct pci_nvme_ioreq *req,
2407     uint16_t *status)
2408 {
2409 	bool pending = false;
2410 
2411 	if (nvstore->type == NVME_STOR_RAM) {
2412 		pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2413 	} else {
2414 		int err;
2415 
2416 		req->io_req.br_callback = pci_nvme_io_done;
2417 
2418 		err = blockif_flush(nvstore->ctx, &req->io_req);
2419 		switch (err) {
2420 		case 0:
2421 			pending = true;
2422 			break;
2423 		case EOPNOTSUPP:
2424 			pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2425 			break;
2426 		default:
2427 			pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2428 		}
2429 	}
2430 
2431 	return (pending);
2432 }
2433 
2434 static uint16_t
2435 nvme_write_read_ram(struct pci_nvme_softc *sc,
2436     struct pci_nvme_blockstore *nvstore,
2437     uint64_t prp1, uint64_t prp2,
2438     size_t offset, uint64_t bytes,
2439     bool is_write)
2440 {
2441 	uint8_t *buf = nvstore->ctx;
2442 	enum nvme_copy_dir dir;
2443 	uint16_t status;
2444 
2445 	if (is_write)
2446 		dir = NVME_COPY_TO_PRP;
2447 	else
2448 		dir = NVME_COPY_FROM_PRP;
2449 
2450 	if (nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, prp1, prp2,
2451 	    buf + offset, bytes, dir))
2452 		pci_nvme_status_genc(&status,
2453 		    NVME_SC_DATA_TRANSFER_ERROR);
2454 	else
2455 		pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
2456 
2457 	return (status);
2458 }
2459 
2460 static uint16_t
2461 nvme_write_read_blockif(struct pci_nvme_softc *sc,
2462     struct pci_nvme_blockstore *nvstore,
2463     struct pci_nvme_ioreq *req,
2464     uint64_t prp1, uint64_t prp2,
2465     size_t offset, uint64_t bytes,
2466     bool is_write)
2467 {
2468 	uint64_t size;
2469 	int err;
2470 	uint16_t status = NVME_NO_STATUS;
2471 
2472 	size = MIN(PAGE_SIZE - (prp1 % PAGE_SIZE), bytes);
2473 	if (pci_nvme_append_iov_req(sc, req, prp1, size, offset)) {
2474 		err = -1;
2475 		goto out;
2476 	}
2477 
2478 	offset += size;
2479 	bytes  -= size;
2480 
2481 	if (bytes == 0) {
2482 		;
2483 	} else if (bytes <= PAGE_SIZE) {
2484 		size = bytes;
2485 		if (pci_nvme_append_iov_req(sc, req, prp2, size, offset)) {
2486 			err = -1;
2487 			goto out;
2488 		}
2489 	} else {
2490 		void *vmctx = sc->nsc_pi->pi_vmctx;
2491 		uint64_t *prp_list = &prp2;
2492 		uint64_t *last = prp_list;
2493 
2494 		/* PRP2 is pointer to a physical region page list */
2495 		while (bytes) {
2496 			/* Last entry in list points to the next list */
2497 			if ((prp_list == last) && (bytes > PAGE_SIZE)) {
2498 				uint64_t prp = *prp_list;
2499 
2500 				prp_list = paddr_guest2host(vmctx, prp,
2501 				    PAGE_SIZE - (prp % PAGE_SIZE));
2502 				if (prp_list == NULL) {
2503 					err = -1;
2504 					goto out;
2505 				}
2506 				last = prp_list + (NVME_PRP2_ITEMS - 1);
2507 			}
2508 
2509 			size = MIN(bytes, PAGE_SIZE);
2510 
2511 			if (pci_nvme_append_iov_req(sc, req, *prp_list, size,
2512 			    offset)) {
2513 				err = -1;
2514 				goto out;
2515 			}
2516 
2517 			offset += size;
2518 			bytes  -= size;
2519 
2520 			prp_list++;
2521 		}
2522 	}
2523 	req->io_req.br_callback = pci_nvme_io_done;
2524 	if (is_write)
2525 		err = blockif_write(nvstore->ctx, &req->io_req);
2526 	else
2527 		err = blockif_read(nvstore->ctx, &req->io_req);
2528 out:
2529 	if (err)
2530 		pci_nvme_status_genc(&status, NVME_SC_DATA_TRANSFER_ERROR);
2531 
2532 	return (status);
2533 }
2534 
2535 static bool
2536 nvme_opc_write_read(struct pci_nvme_softc *sc,
2537     struct nvme_command *cmd,
2538     struct pci_nvme_blockstore *nvstore,
2539     struct pci_nvme_ioreq *req,
2540     uint16_t *status)
2541 {
2542 	uint64_t lba, nblocks, bytes;
2543 	size_t offset;
2544 	bool is_write = cmd->opc == NVME_OPC_WRITE;
2545 	bool pending = false;
2546 
2547 	lba = ((uint64_t)cmd->cdw11 << 32) | cmd->cdw10;
2548 	nblocks = (cmd->cdw12 & 0xFFFF) + 1;
2549 	bytes = nblocks << nvstore->sectsz_bits;
2550 	if (bytes > NVME_MAX_DATA_SIZE) {
2551 		WPRINTF("%s command would exceed MDTS", __func__);
2552 		pci_nvme_status_genc(status, NVME_SC_INVALID_FIELD);
2553 		goto out;
2554 	}
2555 
2556 	if (pci_nvme_out_of_range(nvstore, lba, nblocks)) {
2557 		WPRINTF("%s command would exceed LBA range(slba=%#lx nblocks=%#lx)",
2558 		    __func__, lba, nblocks);
2559 		pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
2560 		goto out;
2561 	}
2562 
2563 	offset = lba << nvstore->sectsz_bits;
2564 
2565 	req->bytes = bytes;
2566 	req->io_req.br_offset = lba;
2567 
2568 	/* PRP bits 1:0 must be zero */
2569 	cmd->prp1 &= ~0x3UL;
2570 	cmd->prp2 &= ~0x3UL;
2571 
2572 	if (nvstore->type == NVME_STOR_RAM) {
2573 		*status = nvme_write_read_ram(sc, nvstore, cmd->prp1,
2574 		    cmd->prp2, offset, bytes, is_write);
2575 	} else {
2576 		*status = nvme_write_read_blockif(sc, nvstore, req,
2577 		    cmd->prp1, cmd->prp2, offset, bytes, is_write);
2578 
2579 		if (*status == NVME_NO_STATUS)
2580 			pending = true;
2581 	}
2582 out:
2583 	if (!pending)
2584 		pci_nvme_stats_write_read_update(sc, cmd->opc, bytes, *status);
2585 
2586 	return (pending);
2587 }
2588 
2589 static void
2590 pci_nvme_dealloc_sm(struct blockif_req *br, int err)
2591 {
2592 	struct pci_nvme_ioreq *req = br->br_param;
2593 	struct pci_nvme_softc *sc = req->sc;
2594 	bool done = true;
2595 	uint16_t status;
2596 
2597 	if (err) {
2598 		pci_nvme_status_genc(&status, NVME_SC_INTERNAL_DEVICE_ERROR);
2599 	} else if ((req->prev_gpaddr + 1) == (req->prev_size)) {
2600 		pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
2601 	} else {
2602 		struct iovec *iov = req->io_req.br_iov;
2603 
2604 		req->prev_gpaddr++;
2605 		iov += req->prev_gpaddr;
2606 
2607 		/* The iov_* values already include the sector size */
2608 		req->io_req.br_offset = (off_t)iov->iov_base;
2609 		req->io_req.br_resid = iov->iov_len;
2610 		if (blockif_delete(sc->nvstore.ctx, &req->io_req)) {
2611 			pci_nvme_status_genc(&status,
2612 			    NVME_SC_INTERNAL_DEVICE_ERROR);
2613 		} else
2614 			done = false;
2615 	}
2616 
2617 	if (done) {
2618 		pci_nvme_set_completion(sc, req->nvme_sq, req->sqid, req->cid,
2619 		    status);
2620 		pci_nvme_release_ioreq(sc, req);
2621 	}
2622 }
2623 
2624 static bool
2625 nvme_opc_dataset_mgmt(struct pci_nvme_softc *sc,
2626     struct nvme_command *cmd,
2627     struct pci_nvme_blockstore *nvstore,
2628     struct pci_nvme_ioreq *req,
2629     uint16_t *status)
2630 {
2631 	struct nvme_dsm_range *range = NULL;
2632 	uint32_t nr, r, non_zero, dr;
2633 	int err;
2634 	bool pending = false;
2635 
2636 	if ((sc->ctrldata.oncs & NVME_ONCS_DSM) == 0) {
2637 		pci_nvme_status_genc(status, NVME_SC_INVALID_OPCODE);
2638 		goto out;
2639 	}
2640 
2641 	nr = cmd->cdw10 & 0xff;
2642 
2643 	/* copy locally because a range entry could straddle PRPs */
2644 	range = calloc(1, NVME_MAX_DSM_TRIM);
2645 	if (range == NULL) {
2646 		pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2647 		goto out;
2648 	}
2649 	nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, cmd->prp1, cmd->prp2,
2650 	    (uint8_t *)range, NVME_MAX_DSM_TRIM, NVME_COPY_FROM_PRP);
2651 
2652 	/* Check for invalid ranges and the number of non-zero lengths */
2653 	non_zero = 0;
2654 	for (r = 0; r <= nr; r++) {
2655 		if (pci_nvme_out_of_range(nvstore,
2656 		    range[r].starting_lba, range[r].length)) {
2657 			pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
2658 			goto out;
2659 		}
2660 		if (range[r].length != 0)
2661 			non_zero++;
2662 	}
2663 
2664 	if (cmd->cdw11 & NVME_DSM_ATTR_DEALLOCATE) {
2665 		size_t offset, bytes;
2666 		int sectsz_bits = sc->nvstore.sectsz_bits;
2667 
2668 		/*
2669 		 * DSM calls are advisory only, and compliant controllers
2670 		 * may choose to take no actions (i.e. return Success).
2671 		 */
2672 		if (!nvstore->deallocate) {
2673 			pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2674 			goto out;
2675 		}
2676 
2677 		/* If all ranges have a zero length, return Success */
2678 		if (non_zero == 0) {
2679 			pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2680 			goto out;
2681 		}
2682 
2683 		if (req == NULL) {
2684 			pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2685 			goto out;
2686 		}
2687 
2688 		offset = range[0].starting_lba << sectsz_bits;
2689 		bytes = range[0].length << sectsz_bits;
2690 
2691 		/*
2692 		 * If the request is for more than a single range, store
2693 		 * the ranges in the br_iov. Optimize for the common case
2694 		 * of a single range.
2695 		 *
2696 		 * Note that NVMe Number of Ranges is a zero based value
2697 		 */
2698 		req->io_req.br_iovcnt = 0;
2699 		req->io_req.br_offset = offset;
2700 		req->io_req.br_resid = bytes;
2701 
2702 		if (nr == 0) {
2703 			req->io_req.br_callback = pci_nvme_io_done;
2704 		} else {
2705 			struct iovec *iov = req->io_req.br_iov;
2706 
2707 			for (r = 0, dr = 0; r <= nr; r++) {
2708 				offset = range[r].starting_lba << sectsz_bits;
2709 				bytes = range[r].length << sectsz_bits;
2710 				if (bytes == 0)
2711 					continue;
2712 
2713 				if ((nvstore->size - offset) < bytes) {
2714 					pci_nvme_status_genc(status,
2715 					    NVME_SC_LBA_OUT_OF_RANGE);
2716 					goto out;
2717 				}
2718 				iov[dr].iov_base = (void *)offset;
2719 				iov[dr].iov_len = bytes;
2720 				dr++;
2721 			}
2722 			req->io_req.br_callback = pci_nvme_dealloc_sm;
2723 
2724 			/*
2725 			 * Use prev_gpaddr to track the current entry and
2726 			 * prev_size to track the number of entries
2727 			 */
2728 			req->prev_gpaddr = 0;
2729 			req->prev_size = dr;
2730 		}
2731 
2732 		err = blockif_delete(nvstore->ctx, &req->io_req);
2733 		if (err)
2734 			pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2735 		else
2736 			pending = true;
2737 	}
2738 out:
2739 	free(range);
2740 	return (pending);
2741 }
2742 
2743 static void
2744 pci_nvme_handle_io_cmd(struct pci_nvme_softc* sc, uint16_t idx)
2745 {
2746 	struct nvme_submission_queue *sq;
2747 	uint16_t status;
2748 	uint16_t sqhead;
2749 
2750 	/* handle all submissions up to sq->tail index */
2751 	sq = &sc->submit_queues[idx];
2752 
2753 	pthread_mutex_lock(&sq->mtx);
2754 
2755 	sqhead = sq->head;
2756 	DPRINTF("nvme_handle_io qid %u head %u tail %u cmdlist %p",
2757 	         idx, sqhead, sq->tail, sq->qbase);
2758 
2759 	while (sqhead != atomic_load_acq_short(&sq->tail)) {
2760 		struct nvme_command *cmd;
2761 		struct pci_nvme_ioreq *req;
2762 		uint32_t nsid;
2763 		bool pending;
2764 
2765 		pending = false;
2766 		req = NULL;
2767 		status = 0;
2768 
2769 		cmd = &sq->qbase[sqhead];
2770 		sqhead = (sqhead + 1) % sq->size;
2771 
2772 		nsid = le32toh(cmd->nsid);
2773 		if ((nsid == 0) || (nsid > sc->ctrldata.nn)) {
2774 			pci_nvme_status_genc(&status,
2775 			    NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
2776 			status |=
2777 			    NVME_STATUS_DNR_MASK << NVME_STATUS_DNR_SHIFT;
2778 			goto complete;
2779  		}
2780 
2781 		req = pci_nvme_get_ioreq(sc);
2782 		if (req == NULL) {
2783 			pci_nvme_status_genc(&status,
2784 			    NVME_SC_INTERNAL_DEVICE_ERROR);
2785 			WPRINTF("%s: unable to allocate IO req", __func__);
2786 			goto complete;
2787 		}
2788 		req->nvme_sq = sq;
2789 		req->sqid = idx;
2790 		req->opc = cmd->opc;
2791 		req->cid = cmd->cid;
2792 		req->nsid = cmd->nsid;
2793 
2794 		switch (cmd->opc) {
2795 		case NVME_OPC_FLUSH:
2796 			pending = nvme_opc_flush(sc, cmd, &sc->nvstore,
2797 			    req, &status);
2798  			break;
2799 		case NVME_OPC_WRITE:
2800 		case NVME_OPC_READ:
2801 			pending = nvme_opc_write_read(sc, cmd, &sc->nvstore,
2802 			    req, &status);
2803 			break;
2804 		case NVME_OPC_WRITE_ZEROES:
2805 			/* TODO: write zeroes
2806 			WPRINTF("%s write zeroes lba 0x%lx blocks %u",
2807 			        __func__, lba, cmd->cdw12 & 0xFFFF); */
2808 			pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
2809 			break;
2810 		case NVME_OPC_DATASET_MANAGEMENT:
2811  			pending = nvme_opc_dataset_mgmt(sc, cmd, &sc->nvstore,
2812 			    req, &status);
2813 			break;
2814  		default:
2815  			WPRINTF("%s unhandled io command 0x%x",
2816 			    __func__, cmd->opc);
2817 			pci_nvme_status_genc(&status, NVME_SC_INVALID_OPCODE);
2818 		}
2819 complete:
2820 		if (!pending) {
2821 			pci_nvme_set_completion(sc, sq, idx, cmd->cid, status);
2822 			if (req != NULL)
2823 				pci_nvme_release_ioreq(sc, req);
2824 		}
2825 	}
2826 
2827 	sq->head = sqhead;
2828 
2829 	pthread_mutex_unlock(&sq->mtx);
2830 }
2831 
2832 static void
2833 pci_nvme_handle_doorbell(struct vmctx *ctx __unused, struct pci_nvme_softc* sc,
2834 	uint64_t idx, int is_sq, uint64_t value)
2835 {
2836 	DPRINTF("nvme doorbell %lu, %s, val 0x%lx",
2837 	        idx, is_sq ? "SQ" : "CQ", value & 0xFFFF);
2838 
2839 	if (is_sq) {
2840 		if (idx > sc->num_squeues) {
2841 			WPRINTF("%s queue index %lu overflow from "
2842 			         "guest (max %u)",
2843 			         __func__, idx, sc->num_squeues);
2844 			return;
2845 		}
2846 
2847 		atomic_store_short(&sc->submit_queues[idx].tail,
2848 		                   (uint16_t)value);
2849 
2850 		if (idx == 0) {
2851 			pci_nvme_handle_admin_cmd(sc, value);
2852 		} else {
2853 			/* submission queue; handle new entries in SQ */
2854 			if (idx > sc->num_squeues) {
2855 				WPRINTF("%s SQ index %lu overflow from "
2856 				         "guest (max %u)",
2857 				         __func__, idx, sc->num_squeues);
2858 				return;
2859 			}
2860 			pci_nvme_handle_io_cmd(sc, (uint16_t)idx);
2861 		}
2862 	} else {
2863 		if (idx > sc->num_cqueues) {
2864 			WPRINTF("%s queue index %lu overflow from "
2865 			         "guest (max %u)",
2866 			         __func__, idx, sc->num_cqueues);
2867 			return;
2868 		}
2869 
2870 		atomic_store_short(&sc->compl_queues[idx].head,
2871 				(uint16_t)value);
2872 	}
2873 }
2874 
2875 static void
2876 pci_nvme_bar0_reg_dumps(const char *func, uint64_t offset, int iswrite)
2877 {
2878 	const char *s = iswrite ? "WRITE" : "READ";
2879 
2880 	switch (offset) {
2881 	case NVME_CR_CAP_LOW:
2882 		DPRINTF("%s %s NVME_CR_CAP_LOW", func, s);
2883 		break;
2884 	case NVME_CR_CAP_HI:
2885 		DPRINTF("%s %s NVME_CR_CAP_HI", func, s);
2886 		break;
2887 	case NVME_CR_VS:
2888 		DPRINTF("%s %s NVME_CR_VS", func, s);
2889 		break;
2890 	case NVME_CR_INTMS:
2891 		DPRINTF("%s %s NVME_CR_INTMS", func, s);
2892 		break;
2893 	case NVME_CR_INTMC:
2894 		DPRINTF("%s %s NVME_CR_INTMC", func, s);
2895 		break;
2896 	case NVME_CR_CC:
2897 		DPRINTF("%s %s NVME_CR_CC", func, s);
2898 		break;
2899 	case NVME_CR_CSTS:
2900 		DPRINTF("%s %s NVME_CR_CSTS", func, s);
2901 		break;
2902 	case NVME_CR_NSSR:
2903 		DPRINTF("%s %s NVME_CR_NSSR", func, s);
2904 		break;
2905 	case NVME_CR_AQA:
2906 		DPRINTF("%s %s NVME_CR_AQA", func, s);
2907 		break;
2908 	case NVME_CR_ASQ_LOW:
2909 		DPRINTF("%s %s NVME_CR_ASQ_LOW", func, s);
2910 		break;
2911 	case NVME_CR_ASQ_HI:
2912 		DPRINTF("%s %s NVME_CR_ASQ_HI", func, s);
2913 		break;
2914 	case NVME_CR_ACQ_LOW:
2915 		DPRINTF("%s %s NVME_CR_ACQ_LOW", func, s);
2916 		break;
2917 	case NVME_CR_ACQ_HI:
2918 		DPRINTF("%s %s NVME_CR_ACQ_HI", func, s);
2919 		break;
2920 	default:
2921 		DPRINTF("unknown nvme bar-0 offset 0x%lx", offset);
2922 	}
2923 
2924 }
2925 
2926 static void
2927 pci_nvme_write_bar_0(struct vmctx *ctx, struct pci_nvme_softc* sc,
2928 	uint64_t offset, int size, uint64_t value)
2929 {
2930 	uint32_t ccreg;
2931 
2932 	if (offset >= NVME_DOORBELL_OFFSET) {
2933 		uint64_t belloffset = offset - NVME_DOORBELL_OFFSET;
2934 		uint64_t idx = belloffset / 8; /* door bell size = 2*int */
2935 		int is_sq = (belloffset % 8) < 4;
2936 
2937 		if ((sc->regs.csts & NVME_CSTS_RDY) == 0) {
2938 			WPRINTF("doorbell write prior to RDY (offset=%#lx)\n",
2939 			    offset);
2940 			return;
2941 		}
2942 
2943 		if (belloffset > ((sc->max_queues+1) * 8 - 4)) {
2944 			WPRINTF("guest attempted an overflow write offset "
2945 			         "0x%lx, val 0x%lx in %s",
2946 			         offset, value, __func__);
2947 			return;
2948 		}
2949 
2950 		if (is_sq) {
2951 			if (sc->submit_queues[idx].qbase == NULL)
2952 				return;
2953 		} else if (sc->compl_queues[idx].qbase == NULL)
2954 			return;
2955 
2956 		pci_nvme_handle_doorbell(ctx, sc, idx, is_sq, value);
2957 		return;
2958 	}
2959 
2960 	DPRINTF("nvme-write offset 0x%lx, size %d, value 0x%lx",
2961 	        offset, size, value);
2962 
2963 	if (size != 4) {
2964 		WPRINTF("guest wrote invalid size %d (offset 0x%lx, "
2965 		         "val 0x%lx) to bar0 in %s",
2966 		         size, offset, value, __func__);
2967 		/* TODO: shutdown device */
2968 		return;
2969 	}
2970 
2971 	pci_nvme_bar0_reg_dumps(__func__, offset, 1);
2972 
2973 	pthread_mutex_lock(&sc->mtx);
2974 
2975 	switch (offset) {
2976 	case NVME_CR_CAP_LOW:
2977 	case NVME_CR_CAP_HI:
2978 		/* readonly */
2979 		break;
2980 	case NVME_CR_VS:
2981 		/* readonly */
2982 		break;
2983 	case NVME_CR_INTMS:
2984 		/* MSI-X, so ignore */
2985 		break;
2986 	case NVME_CR_INTMC:
2987 		/* MSI-X, so ignore */
2988 		break;
2989 	case NVME_CR_CC:
2990 		ccreg = (uint32_t)value;
2991 
2992 		DPRINTF("%s NVME_CR_CC en %x css %x shn %x iosqes %u "
2993 		         "iocqes %u",
2994 		        __func__,
2995 			 NVME_CC_GET_EN(ccreg), NVME_CC_GET_CSS(ccreg),
2996 			 NVME_CC_GET_SHN(ccreg), NVME_CC_GET_IOSQES(ccreg),
2997 			 NVME_CC_GET_IOCQES(ccreg));
2998 
2999 		if (NVME_CC_GET_SHN(ccreg)) {
3000 			/* perform shutdown - flush out data to backend */
3001 			sc->regs.csts &= ~(NVME_CSTS_REG_SHST_MASK <<
3002 			    NVME_CSTS_REG_SHST_SHIFT);
3003 			sc->regs.csts |= NVME_SHST_COMPLETE <<
3004 			    NVME_CSTS_REG_SHST_SHIFT;
3005 		}
3006 		if (NVME_CC_GET_EN(ccreg) != NVME_CC_GET_EN(sc->regs.cc)) {
3007 			if (NVME_CC_GET_EN(ccreg) == 0)
3008 				/* transition 1-> causes controller reset */
3009 				pci_nvme_reset_locked(sc);
3010 			else
3011 				pci_nvme_init_controller(ctx, sc);
3012 		}
3013 
3014 		/* Insert the iocqes, iosqes and en bits from the write */
3015 		sc->regs.cc &= ~NVME_CC_WRITE_MASK;
3016 		sc->regs.cc |= ccreg & NVME_CC_WRITE_MASK;
3017 		if (NVME_CC_GET_EN(ccreg) == 0) {
3018 			/* Insert the ams, mps and css bit fields */
3019 			sc->regs.cc &= ~NVME_CC_NEN_WRITE_MASK;
3020 			sc->regs.cc |= ccreg & NVME_CC_NEN_WRITE_MASK;
3021 			sc->regs.csts &= ~NVME_CSTS_RDY;
3022 		} else if ((sc->pending_ios == 0) &&
3023 		    !(sc->regs.csts & NVME_CSTS_CFS)) {
3024 			sc->regs.csts |= NVME_CSTS_RDY;
3025 		}
3026 		break;
3027 	case NVME_CR_CSTS:
3028 		break;
3029 	case NVME_CR_NSSR:
3030 		/* ignore writes; don't support subsystem reset */
3031 		break;
3032 	case NVME_CR_AQA:
3033 		sc->regs.aqa = (uint32_t)value;
3034 		break;
3035 	case NVME_CR_ASQ_LOW:
3036 		sc->regs.asq = (sc->regs.asq & (0xFFFFFFFF00000000)) |
3037 		               (0xFFFFF000 & value);
3038 		break;
3039 	case NVME_CR_ASQ_HI:
3040 		sc->regs.asq = (sc->regs.asq & (0x00000000FFFFFFFF)) |
3041 		               (value << 32);
3042 		break;
3043 	case NVME_CR_ACQ_LOW:
3044 		sc->regs.acq = (sc->regs.acq & (0xFFFFFFFF00000000)) |
3045 		               (0xFFFFF000 & value);
3046 		break;
3047 	case NVME_CR_ACQ_HI:
3048 		sc->regs.acq = (sc->regs.acq & (0x00000000FFFFFFFF)) |
3049 		               (value << 32);
3050 		break;
3051 	default:
3052 		DPRINTF("%s unknown offset 0x%lx, value 0x%lx size %d",
3053 		         __func__, offset, value, size);
3054 	}
3055 	pthread_mutex_unlock(&sc->mtx);
3056 }
3057 
3058 static void
3059 pci_nvme_write(struct vmctx *ctx, int vcpu __unused, struct pci_devinst *pi,
3060     int baridx, uint64_t offset, int size, uint64_t value)
3061 {
3062 	struct pci_nvme_softc* sc = pi->pi_arg;
3063 
3064 	if (baridx == pci_msix_table_bar(pi) ||
3065 	    baridx == pci_msix_pba_bar(pi)) {
3066 		DPRINTF("nvme-write baridx %d, msix: off 0x%lx, size %d, "
3067 		         " value 0x%lx", baridx, offset, size, value);
3068 
3069 		pci_emul_msix_twrite(pi, offset, size, value);
3070 		return;
3071 	}
3072 
3073 	switch (baridx) {
3074 	case 0:
3075 		pci_nvme_write_bar_0(ctx, sc, offset, size, value);
3076 		break;
3077 
3078 	default:
3079 		DPRINTF("%s unknown baridx %d, val 0x%lx",
3080 		         __func__, baridx, value);
3081 	}
3082 }
3083 
3084 static uint64_t pci_nvme_read_bar_0(struct pci_nvme_softc* sc,
3085 	uint64_t offset, int size)
3086 {
3087 	uint64_t value;
3088 
3089 	pci_nvme_bar0_reg_dumps(__func__, offset, 0);
3090 
3091 	if (offset < NVME_DOORBELL_OFFSET) {
3092 		void *p = &(sc->regs);
3093 		pthread_mutex_lock(&sc->mtx);
3094 		memcpy(&value, (void *)((uintptr_t)p + offset), size);
3095 		pthread_mutex_unlock(&sc->mtx);
3096 	} else {
3097 		value = 0;
3098                 WPRINTF("pci_nvme: read invalid offset %ld", offset);
3099 	}
3100 
3101 	switch (size) {
3102 	case 1:
3103 		value &= 0xFF;
3104 		break;
3105 	case 2:
3106 		value &= 0xFFFF;
3107 		break;
3108 	case 4:
3109 		value &= 0xFFFFFFFF;
3110 		break;
3111 	}
3112 
3113 	DPRINTF("   nvme-read offset 0x%lx, size %d -> value 0x%x",
3114 	         offset, size, (uint32_t)value);
3115 
3116 	return (value);
3117 }
3118 
3119 
3120 
3121 static uint64_t
3122 pci_nvme_read(struct vmctx *ctx __unused, int vcpu __unused,
3123     struct pci_devinst *pi, int baridx, uint64_t offset, int size)
3124 {
3125 	struct pci_nvme_softc* sc = pi->pi_arg;
3126 
3127 	if (baridx == pci_msix_table_bar(pi) ||
3128 	    baridx == pci_msix_pba_bar(pi)) {
3129 		DPRINTF("nvme-read bar: %d, msix: regoff 0x%lx, size %d",
3130 		        baridx, offset, size);
3131 
3132 		return pci_emul_msix_tread(pi, offset, size);
3133 	}
3134 
3135 	switch (baridx) {
3136 	case 0:
3137        		return pci_nvme_read_bar_0(sc, offset, size);
3138 
3139 	default:
3140 		DPRINTF("unknown bar %d, 0x%lx", baridx, offset);
3141 	}
3142 
3143 	return (0);
3144 }
3145 
3146 static int
3147 pci_nvme_parse_config(struct pci_nvme_softc *sc, nvlist_t *nvl)
3148 {
3149 	char bident[sizeof("XX:X:X")];
3150 	const char *value;
3151 	uint32_t sectsz;
3152 
3153 	sc->max_queues = NVME_QUEUES;
3154 	sc->max_qentries = NVME_MAX_QENTRIES;
3155 	sc->ioslots = NVME_IOSLOTS;
3156 	sc->num_squeues = sc->max_queues;
3157 	sc->num_cqueues = sc->max_queues;
3158 	sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
3159 	sectsz = 0;
3160 	snprintf(sc->ctrldata.sn, sizeof(sc->ctrldata.sn),
3161 	         "NVME-%d-%d", sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
3162 
3163 	value = get_config_value_node(nvl, "maxq");
3164 	if (value != NULL)
3165 		sc->max_queues = atoi(value);
3166 	value = get_config_value_node(nvl, "qsz");
3167 	if (value != NULL) {
3168 		sc->max_qentries = atoi(value);
3169 		if (sc->max_qentries <= 0) {
3170 			EPRINTLN("nvme: Invalid qsz option %d",
3171 			    sc->max_qentries);
3172 			return (-1);
3173 		}
3174 	}
3175 	value = get_config_value_node(nvl, "ioslots");
3176 	if (value != NULL) {
3177 		sc->ioslots = atoi(value);
3178 		if (sc->ioslots <= 0) {
3179 			EPRINTLN("Invalid ioslots option %d", sc->ioslots);
3180 			return (-1);
3181 		}
3182 	}
3183 	value = get_config_value_node(nvl, "sectsz");
3184 	if (value != NULL)
3185 		sectsz = atoi(value);
3186 	value = get_config_value_node(nvl, "ser");
3187 	if (value != NULL) {
3188 		/*
3189 		 * This field indicates the Product Serial Number in
3190 		 * 7-bit ASCII, unused bytes should be space characters.
3191 		 * Ref: NVMe v1.3c.
3192 		 */
3193 		cpywithpad((char *)sc->ctrldata.sn,
3194 		    sizeof(sc->ctrldata.sn), value, ' ');
3195 	}
3196 	value = get_config_value_node(nvl, "eui64");
3197 	if (value != NULL)
3198 		sc->nvstore.eui64 = htobe64(strtoull(value, NULL, 0));
3199 	value = get_config_value_node(nvl, "dsm");
3200 	if (value != NULL) {
3201 		if (strcmp(value, "auto") == 0)
3202 			sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
3203 		else if (strcmp(value, "enable") == 0)
3204 			sc->dataset_management = NVME_DATASET_MANAGEMENT_ENABLE;
3205 		else if (strcmp(value, "disable") == 0)
3206 			sc->dataset_management = NVME_DATASET_MANAGEMENT_DISABLE;
3207 	}
3208 
3209 	value = get_config_value_node(nvl, "ram");
3210 	if (value != NULL) {
3211 		uint64_t sz = strtoull(value, NULL, 10);
3212 
3213 		sc->nvstore.type = NVME_STOR_RAM;
3214 		sc->nvstore.size = sz * 1024 * 1024;
3215 		sc->nvstore.ctx = calloc(1, sc->nvstore.size);
3216 		sc->nvstore.sectsz = 4096;
3217 		sc->nvstore.sectsz_bits = 12;
3218 		if (sc->nvstore.ctx == NULL) {
3219 			EPRINTLN("nvme: Unable to allocate RAM");
3220 			return (-1);
3221 		}
3222 	} else {
3223 		snprintf(bident, sizeof(bident), "%d:%d",
3224 		    sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
3225 		sc->nvstore.ctx = blockif_open(nvl, bident);
3226 		if (sc->nvstore.ctx == NULL) {
3227 			EPRINTLN("nvme: Could not open backing file: %s",
3228 			    strerror(errno));
3229 			return (-1);
3230 		}
3231 		sc->nvstore.type = NVME_STOR_BLOCKIF;
3232 		sc->nvstore.size = blockif_size(sc->nvstore.ctx);
3233 	}
3234 
3235 	if (sectsz == 512 || sectsz == 4096 || sectsz == 8192)
3236 		sc->nvstore.sectsz = sectsz;
3237 	else if (sc->nvstore.type != NVME_STOR_RAM)
3238 		sc->nvstore.sectsz = blockif_sectsz(sc->nvstore.ctx);
3239 	for (sc->nvstore.sectsz_bits = 9;
3240 	     (1 << sc->nvstore.sectsz_bits) < sc->nvstore.sectsz;
3241 	     sc->nvstore.sectsz_bits++);
3242 
3243 	if (sc->max_queues <= 0 || sc->max_queues > NVME_QUEUES)
3244 		sc->max_queues = NVME_QUEUES;
3245 
3246 	return (0);
3247 }
3248 
3249 static void
3250 pci_nvme_resized(struct blockif_ctxt *bctxt __unused, void *arg,
3251     size_t new_size)
3252 {
3253 	struct pci_nvme_softc *sc;
3254 	struct pci_nvme_blockstore *nvstore;
3255 	struct nvme_namespace_data *nd;
3256 
3257 	sc = arg;
3258 	nvstore = &sc->nvstore;
3259 	nd = &sc->nsdata;
3260 
3261 	nvstore->size = new_size;
3262 	pci_nvme_init_nsdata_size(nvstore, nd);
3263 
3264 	/* Add changed NSID to list */
3265 	sc->ns_log.ns[0] = 1;
3266 	sc->ns_log.ns[1] = 0;
3267 
3268 	pci_nvme_aen_post(sc, PCI_NVME_AE_TYPE_NOTICE,
3269 	    PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED);
3270 }
3271 
3272 static int
3273 pci_nvme_init(struct vmctx *ctx __unused, struct pci_devinst *pi, nvlist_t *nvl)
3274 {
3275 	struct pci_nvme_softc *sc;
3276 	uint32_t pci_membar_sz;
3277 	int	error;
3278 
3279 	error = 0;
3280 
3281 	sc = calloc(1, sizeof(struct pci_nvme_softc));
3282 	pi->pi_arg = sc;
3283 	sc->nsc_pi = pi;
3284 
3285 	error = pci_nvme_parse_config(sc, nvl);
3286 	if (error < 0)
3287 		goto done;
3288 	else
3289 		error = 0;
3290 
3291 	STAILQ_INIT(&sc->ioreqs_free);
3292 	sc->ioreqs = calloc(sc->ioslots, sizeof(struct pci_nvme_ioreq));
3293 	for (uint32_t i = 0; i < sc->ioslots; i++) {
3294 		STAILQ_INSERT_TAIL(&sc->ioreqs_free, &sc->ioreqs[i], link);
3295 	}
3296 
3297 	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0A0A);
3298 	pci_set_cfgdata16(pi, PCIR_VENDOR, 0xFB5D);
3299 	pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_STORAGE);
3300 	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_STORAGE_NVM);
3301 	pci_set_cfgdata8(pi, PCIR_PROGIF,
3302 	                 PCIP_STORAGE_NVM_ENTERPRISE_NVMHCI_1_0);
3303 
3304 	/*
3305 	 * Allocate size of NVMe registers + doorbell space for all queues.
3306 	 *
3307 	 * The specification requires a minimum memory I/O window size of 16K.
3308 	 * The Windows driver will refuse to start a device with a smaller
3309 	 * window.
3310 	 */
3311 	pci_membar_sz = sizeof(struct nvme_registers) +
3312 	    2 * sizeof(uint32_t) * (sc->max_queues + 1);
3313 	pci_membar_sz = MAX(pci_membar_sz, NVME_MMIO_SPACE_MIN);
3314 
3315 	DPRINTF("nvme membar size: %u", pci_membar_sz);
3316 
3317 	error = pci_emul_alloc_bar(pi, 0, PCIBAR_MEM64, pci_membar_sz);
3318 	if (error) {
3319 		WPRINTF("%s pci alloc mem bar failed", __func__);
3320 		goto done;
3321 	}
3322 
3323 	error = pci_emul_add_msixcap(pi, sc->max_queues + 1, NVME_MSIX_BAR);
3324 	if (error) {
3325 		WPRINTF("%s pci add msixcap failed", __func__);
3326 		goto done;
3327 	}
3328 
3329 	error = pci_emul_add_pciecap(pi, PCIEM_TYPE_ROOT_INT_EP);
3330 	if (error) {
3331 		WPRINTF("%s pci add Express capability failed", __func__);
3332 		goto done;
3333 	}
3334 
3335 	pthread_mutex_init(&sc->mtx, NULL);
3336 	sem_init(&sc->iosemlock, 0, sc->ioslots);
3337 	blockif_register_resize_callback(sc->nvstore.ctx, pci_nvme_resized, sc);
3338 
3339 	pci_nvme_init_queues(sc, sc->max_queues, sc->max_queues);
3340 	/*
3341 	 * Controller data depends on Namespace data so initialize Namespace
3342 	 * data first.
3343 	 */
3344 	pci_nvme_init_nsdata(sc, &sc->nsdata, 1, &sc->nvstore);
3345 	pci_nvme_init_ctrldata(sc);
3346 	pci_nvme_init_logpages(sc);
3347 	pci_nvme_init_features(sc);
3348 
3349 	pci_nvme_aer_init(sc);
3350 	pci_nvme_aen_init(sc);
3351 
3352 	pci_nvme_reset(sc);
3353 
3354 	pci_lintr_request(pi);
3355 
3356 done:
3357 	return (error);
3358 }
3359 
3360 static int
3361 pci_nvme_legacy_config(nvlist_t *nvl, const char *opts)
3362 {
3363 	char *cp, *ram;
3364 
3365 	if (opts == NULL)
3366 		return (0);
3367 
3368 	if (strncmp(opts, "ram=", 4) == 0) {
3369 		cp = strchr(opts, ',');
3370 		if (cp == NULL) {
3371 			set_config_value_node(nvl, "ram", opts + 4);
3372 			return (0);
3373 		}
3374 		ram = strndup(opts + 4, cp - opts - 4);
3375 		set_config_value_node(nvl, "ram", ram);
3376 		free(ram);
3377 		return (pci_parse_legacy_config(nvl, cp + 1));
3378 	} else
3379 		return (blockif_legacy_config(nvl, opts));
3380 }
3381 
3382 static const struct pci_devemu pci_de_nvme = {
3383 	.pe_emu =	"nvme",
3384 	.pe_init =	pci_nvme_init,
3385 	.pe_legacy_config = pci_nvme_legacy_config,
3386 	.pe_barwrite =	pci_nvme_write,
3387 	.pe_barread =	pci_nvme_read
3388 };
3389 PCI_EMUL_SET(pci_de_nvme);
3390