1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2017 Shunsuke Mie 5 * Copyright (c) 2018 Leon Dang 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * bhyve PCIe-NVMe device emulation. 31 * 32 * options: 33 * -s <n>,nvme,devpath,maxq=#,qsz=#,ioslots=#,sectsz=#,ser=A-Z 34 * 35 * accepted devpath: 36 * /dev/blockdev 37 * /path/to/image 38 * ram=size_in_MiB 39 * 40 * maxq = max number of queues 41 * qsz = max elements in each queue 42 * ioslots = max number of concurrent io requests 43 * sectsz = sector size (defaults to blockif sector size) 44 * ser = serial number (20-chars max) 45 * 46 */ 47 48 /* TODO: 49 - create async event for smart and log 50 - intr coalesce 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include <sys/types.h> 57 58 #include <assert.h> 59 #include <pthread.h> 60 #include <semaphore.h> 61 #include <stdbool.h> 62 #include <stddef.h> 63 #include <stdint.h> 64 #include <stdio.h> 65 #include <stdlib.h> 66 #include <string.h> 67 68 #include <machine/atomic.h> 69 #include <machine/vmm.h> 70 #include <vmmapi.h> 71 72 #include <dev/nvme/nvme.h> 73 74 #include "bhyverun.h" 75 #include "block_if.h" 76 #include "pci_emul.h" 77 78 79 static int nvme_debug = 0; 80 #define DPRINTF(params) if (nvme_debug) printf params 81 #define WPRINTF(params) printf params 82 83 /* defaults; can be overridden */ 84 #define NVME_MSIX_BAR 4 85 86 #define NVME_IOSLOTS 8 87 88 #define NVME_QUEUES 16 89 #define NVME_MAX_QENTRIES 2048 90 91 #define NVME_PRP2_ITEMS (PAGE_SIZE/sizeof(uint64_t)) 92 #define NVME_MAX_BLOCKIOVS 512 93 94 /* helpers */ 95 96 /* Convert a zero-based value into a one-based value */ 97 #define ONE_BASED(zero) ((zero) + 1) 98 /* Convert a one-based value into a zero-based value */ 99 #define ZERO_BASED(one) ((one) - 1) 100 101 /* Encode number of SQ's and CQ's for Set/Get Features */ 102 #define NVME_FEATURE_NUM_QUEUES(sc) \ 103 (ZERO_BASED((sc)->num_squeues) & 0xffff) | \ 104 (ZERO_BASED((sc)->num_cqueues) & 0xffff) << 16; 105 106 #define NVME_DOORBELL_OFFSET offsetof(struct nvme_registers, doorbell) 107 108 enum nvme_controller_register_offsets { 109 NVME_CR_CAP_LOW = 0x00, 110 NVME_CR_CAP_HI = 0x04, 111 NVME_CR_VS = 0x08, 112 NVME_CR_INTMS = 0x0c, 113 NVME_CR_INTMC = 0x10, 114 NVME_CR_CC = 0x14, 115 NVME_CR_CSTS = 0x1c, 116 NVME_CR_NSSR = 0x20, 117 NVME_CR_AQA = 0x24, 118 NVME_CR_ASQ_LOW = 0x28, 119 NVME_CR_ASQ_HI = 0x2c, 120 NVME_CR_ACQ_LOW = 0x30, 121 NVME_CR_ACQ_HI = 0x34, 122 }; 123 124 enum nvme_cmd_cdw11 { 125 NVME_CMD_CDW11_PC = 0x0001, 126 NVME_CMD_CDW11_IEN = 0x0002, 127 NVME_CMD_CDW11_IV = 0xFFFF0000, 128 }; 129 130 #define NVME_CQ_INTEN 0x01 131 #define NVME_CQ_INTCOAL 0x02 132 133 struct nvme_completion_queue { 134 struct nvme_completion *qbase; 135 uint32_t size; 136 uint16_t tail; /* nvme progress */ 137 uint16_t head; /* guest progress */ 138 uint16_t intr_vec; 139 uint32_t intr_en; 140 pthread_mutex_t mtx; 141 }; 142 143 struct nvme_submission_queue { 144 struct nvme_command *qbase; 145 uint32_t size; 146 uint16_t head; /* nvme progress */ 147 uint16_t tail; /* guest progress */ 148 uint16_t cqid; /* completion queue id */ 149 int busy; /* queue is being processed */ 150 int qpriority; 151 }; 152 153 enum nvme_storage_type { 154 NVME_STOR_BLOCKIF = 0, 155 NVME_STOR_RAM = 1, 156 }; 157 158 struct pci_nvme_blockstore { 159 enum nvme_storage_type type; 160 void *ctx; 161 uint64_t size; 162 uint32_t sectsz; 163 uint32_t sectsz_bits; 164 }; 165 166 struct pci_nvme_ioreq { 167 struct pci_nvme_softc *sc; 168 struct pci_nvme_ioreq *next; 169 struct nvme_submission_queue *nvme_sq; 170 uint16_t sqid; 171 172 /* command information */ 173 uint16_t opc; 174 uint16_t cid; 175 uint32_t nsid; 176 177 uint64_t prev_gpaddr; 178 size_t prev_size; 179 180 /* 181 * lock if all iovs consumed (big IO); 182 * complete transaction before continuing 183 */ 184 pthread_mutex_t mtx; 185 pthread_cond_t cv; 186 187 struct blockif_req io_req; 188 189 /* pad to fit up to 512 page descriptors from guest IO request */ 190 struct iovec iovpadding[NVME_MAX_BLOCKIOVS-BLOCKIF_IOV_MAX]; 191 }; 192 193 struct pci_nvme_softc { 194 struct pci_devinst *nsc_pi; 195 196 pthread_mutex_t mtx; 197 198 struct nvme_registers regs; 199 200 struct nvme_namespace_data nsdata; 201 struct nvme_controller_data ctrldata; 202 203 struct pci_nvme_blockstore nvstore; 204 205 uint16_t max_qentries; /* max entries per queue */ 206 uint32_t max_queues; /* max number of IO SQ's or CQ's */ 207 uint32_t num_cqueues; 208 uint32_t num_squeues; 209 210 struct pci_nvme_ioreq *ioreqs; 211 struct pci_nvme_ioreq *ioreqs_free; /* free list of ioreqs */ 212 uint32_t pending_ios; 213 uint32_t ioslots; 214 sem_t iosemlock; 215 216 /* 217 * Memory mapped Submission and Completion queues 218 * Each array includes both Admin and IO queues 219 */ 220 struct nvme_completion_queue *compl_queues; 221 struct nvme_submission_queue *submit_queues; 222 223 /* controller features */ 224 uint32_t intr_coales_aggr_time; /* 0x08: uS to delay intr */ 225 uint32_t intr_coales_aggr_thresh; /* 0x08: compl-Q entries */ 226 uint32_t async_ev_config; /* 0x0B: async event config */ 227 }; 228 229 230 static void pci_nvme_io_partial(struct blockif_req *br, int err); 231 232 /* Controller Configuration utils */ 233 #define NVME_CC_GET_EN(cc) \ 234 ((cc) >> NVME_CC_REG_EN_SHIFT & NVME_CC_REG_EN_MASK) 235 #define NVME_CC_GET_CSS(cc) \ 236 ((cc) >> NVME_CC_REG_CSS_SHIFT & NVME_CC_REG_CSS_MASK) 237 #define NVME_CC_GET_SHN(cc) \ 238 ((cc) >> NVME_CC_REG_SHN_SHIFT & NVME_CC_REG_SHN_MASK) 239 #define NVME_CC_GET_IOSQES(cc) \ 240 ((cc) >> NVME_CC_REG_IOSQES_SHIFT & NVME_CC_REG_IOSQES_MASK) 241 #define NVME_CC_GET_IOCQES(cc) \ 242 ((cc) >> NVME_CC_REG_IOCQES_SHIFT & NVME_CC_REG_IOCQES_MASK) 243 244 #define NVME_CC_WRITE_MASK \ 245 ((NVME_CC_REG_EN_MASK << NVME_CC_REG_EN_SHIFT) | \ 246 (NVME_CC_REG_IOSQES_MASK << NVME_CC_REG_IOSQES_SHIFT) | \ 247 (NVME_CC_REG_IOCQES_MASK << NVME_CC_REG_IOCQES_SHIFT)) 248 249 #define NVME_CC_NEN_WRITE_MASK \ 250 ((NVME_CC_REG_CSS_MASK << NVME_CC_REG_CSS_SHIFT) | \ 251 (NVME_CC_REG_MPS_MASK << NVME_CC_REG_MPS_SHIFT) | \ 252 (NVME_CC_REG_AMS_MASK << NVME_CC_REG_AMS_SHIFT)) 253 254 /* Controller Status utils */ 255 #define NVME_CSTS_GET_RDY(sts) \ 256 ((sts) >> NVME_CSTS_REG_RDY_SHIFT & NVME_CSTS_REG_RDY_MASK) 257 258 #define NVME_CSTS_RDY (1 << NVME_CSTS_REG_RDY_SHIFT) 259 260 /* Completion Queue status word utils */ 261 #define NVME_STATUS_P (1 << NVME_STATUS_P_SHIFT) 262 #define NVME_STATUS_MASK \ 263 ((NVME_STATUS_SCT_MASK << NVME_STATUS_SCT_SHIFT) |\ 264 (NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT)) 265 266 static __inline void 267 cpywithpad(char *dst, size_t dst_size, const char *src, char pad) 268 { 269 size_t len; 270 271 len = strnlen(src, dst_size); 272 memset(dst, pad, dst_size); 273 memcpy(dst, src, len); 274 } 275 276 static __inline void 277 pci_nvme_status_tc(uint16_t *status, uint16_t type, uint16_t code) 278 { 279 280 *status &= ~NVME_STATUS_MASK; 281 *status |= (type & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT | 282 (code & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT; 283 } 284 285 static __inline void 286 pci_nvme_status_genc(uint16_t *status, uint16_t code) 287 { 288 289 pci_nvme_status_tc(status, NVME_SCT_GENERIC, code); 290 } 291 292 static __inline void 293 pci_nvme_toggle_phase(uint16_t *status, int prev) 294 { 295 296 if (prev) 297 *status &= ~NVME_STATUS_P; 298 else 299 *status |= NVME_STATUS_P; 300 } 301 302 static void 303 pci_nvme_init_ctrldata(struct pci_nvme_softc *sc) 304 { 305 struct nvme_controller_data *cd = &sc->ctrldata; 306 307 cd->vid = 0xFB5D; 308 cd->ssvid = 0x0000; 309 310 cpywithpad((char *)cd->mn, sizeof(cd->mn), "bhyve-NVMe", ' '); 311 cpywithpad((char *)cd->fr, sizeof(cd->fr), "1.0", ' '); 312 313 /* Num of submission commands that we can handle at a time (2^rab) */ 314 cd->rab = 4; 315 316 /* FreeBSD OUI */ 317 cd->ieee[0] = 0x58; 318 cd->ieee[1] = 0x9c; 319 cd->ieee[2] = 0xfc; 320 321 cd->mic = 0; 322 323 cd->mdts = 9; /* max data transfer size (2^mdts * CAP.MPSMIN) */ 324 325 cd->ver = 0x00010300; 326 327 cd->oacs = 1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT; 328 cd->acl = 2; 329 cd->aerl = 4; 330 331 cd->lpa = 0; /* TODO: support some simple things like SMART */ 332 cd->elpe = 0; /* max error log page entries */ 333 cd->npss = 1; /* number of power states support */ 334 335 /* Warning Composite Temperature Threshold */ 336 cd->wctemp = 0x0157; 337 338 cd->sqes = (6 << NVME_CTRLR_DATA_SQES_MAX_SHIFT) | 339 (6 << NVME_CTRLR_DATA_SQES_MIN_SHIFT); 340 cd->cqes = (4 << NVME_CTRLR_DATA_CQES_MAX_SHIFT) | 341 (4 << NVME_CTRLR_DATA_CQES_MIN_SHIFT); 342 cd->nn = 1; /* number of namespaces */ 343 344 cd->fna = 0x03; 345 346 cd->power_state[0].mp = 10; 347 } 348 349 static void 350 pci_nvme_init_nsdata(struct pci_nvme_softc *sc) 351 { 352 struct nvme_namespace_data *nd; 353 354 nd = &sc->nsdata; 355 356 nd->nsze = sc->nvstore.size / sc->nvstore.sectsz; 357 nd->ncap = nd->nsze; 358 nd->nuse = nd->nsze; 359 360 /* Get LBA and backstore information from backing store */ 361 nd->nlbaf = 0; /* NLBAF is a 0's based value (i.e. 1 LBA Format) */ 362 /* LBA data-sz = 2^lbads */ 363 nd->lbaf[0] = sc->nvstore.sectsz_bits << NVME_NS_DATA_LBAF_LBADS_SHIFT; 364 365 nd->flbas = 0; 366 } 367 368 static void 369 pci_nvme_reset_locked(struct pci_nvme_softc *sc) 370 { 371 DPRINTF(("%s\r\n", __func__)); 372 373 sc->regs.cap_lo = (ZERO_BASED(sc->max_qentries) & NVME_CAP_LO_REG_MQES_MASK) | 374 (1 << NVME_CAP_LO_REG_CQR_SHIFT) | 375 (60 << NVME_CAP_LO_REG_TO_SHIFT); 376 377 sc->regs.cap_hi = 1 << NVME_CAP_HI_REG_CSS_NVM_SHIFT; 378 379 sc->regs.vs = 0x00010300; /* NVMe v1.3 */ 380 381 sc->regs.cc = 0; 382 sc->regs.csts = 0; 383 384 sc->num_cqueues = sc->num_squeues = sc->max_queues; 385 if (sc->submit_queues != NULL) { 386 for (int i = 0; i < sc->num_squeues + 1; i++) { 387 /* 388 * The Admin Submission Queue is at index 0. 389 * It must not be changed at reset otherwise the 390 * emulation will be out of sync with the guest. 391 */ 392 if (i != 0) { 393 sc->submit_queues[i].qbase = NULL; 394 sc->submit_queues[i].size = 0; 395 sc->submit_queues[i].cqid = 0; 396 } 397 sc->submit_queues[i].tail = 0; 398 sc->submit_queues[i].head = 0; 399 sc->submit_queues[i].busy = 0; 400 } 401 } else 402 sc->submit_queues = calloc(sc->num_squeues + 1, 403 sizeof(struct nvme_submission_queue)); 404 405 if (sc->compl_queues != NULL) { 406 for (int i = 0; i < sc->num_cqueues + 1; i++) { 407 /* See Admin Submission Queue note above */ 408 if (i != 0) { 409 sc->compl_queues[i].qbase = NULL; 410 sc->compl_queues[i].size = 0; 411 } 412 413 sc->compl_queues[i].tail = 0; 414 sc->compl_queues[i].head = 0; 415 } 416 } else { 417 sc->compl_queues = calloc(sc->num_cqueues + 1, 418 sizeof(struct nvme_completion_queue)); 419 420 for (int i = 0; i < sc->num_cqueues + 1; i++) 421 pthread_mutex_init(&sc->compl_queues[i].mtx, NULL); 422 } 423 } 424 425 static void 426 pci_nvme_reset(struct pci_nvme_softc *sc) 427 { 428 pthread_mutex_lock(&sc->mtx); 429 pci_nvme_reset_locked(sc); 430 pthread_mutex_unlock(&sc->mtx); 431 } 432 433 static void 434 pci_nvme_init_controller(struct vmctx *ctx, struct pci_nvme_softc *sc) 435 { 436 uint16_t acqs, asqs; 437 438 DPRINTF(("%s\r\n", __func__)); 439 440 asqs = (sc->regs.aqa & NVME_AQA_REG_ASQS_MASK) + 1; 441 sc->submit_queues[0].size = asqs; 442 sc->submit_queues[0].qbase = vm_map_gpa(ctx, sc->regs.asq, 443 sizeof(struct nvme_command) * asqs); 444 445 DPRINTF(("%s mapping Admin-SQ guest 0x%lx, host: %p\r\n", 446 __func__, sc->regs.asq, sc->submit_queues[0].qbase)); 447 448 acqs = ((sc->regs.aqa >> NVME_AQA_REG_ACQS_SHIFT) & 449 NVME_AQA_REG_ACQS_MASK) + 1; 450 sc->compl_queues[0].size = acqs; 451 sc->compl_queues[0].qbase = vm_map_gpa(ctx, sc->regs.acq, 452 sizeof(struct nvme_completion) * acqs); 453 DPRINTF(("%s mapping Admin-CQ guest 0x%lx, host: %p\r\n", 454 __func__, sc->regs.acq, sc->compl_queues[0].qbase)); 455 } 456 457 static int 458 nvme_opc_delete_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command, 459 struct nvme_completion* compl) 460 { 461 uint16_t qid = command->cdw10 & 0xffff; 462 463 DPRINTF(("%s DELETE_IO_SQ %u\r\n", __func__, qid)); 464 if (qid == 0 || qid > sc->num_squeues) { 465 WPRINTF(("%s NOT PERMITTED queue id %u / num_squeues %u\r\n", 466 __func__, qid, sc->num_squeues)); 467 pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, 468 NVME_SC_INVALID_QUEUE_IDENTIFIER); 469 return (1); 470 } 471 472 sc->submit_queues[qid].qbase = NULL; 473 pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); 474 return (1); 475 } 476 477 static int 478 nvme_opc_create_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command, 479 struct nvme_completion* compl) 480 { 481 if (command->cdw11 & NVME_CMD_CDW11_PC) { 482 uint16_t qid = command->cdw10 & 0xffff; 483 struct nvme_submission_queue *nsq; 484 485 if ((qid == 0) || (qid > sc->num_squeues)) { 486 WPRINTF(("%s queue index %u > num_squeues %u\r\n", 487 __func__, qid, sc->num_squeues)); 488 pci_nvme_status_tc(&compl->status, 489 NVME_SCT_COMMAND_SPECIFIC, 490 NVME_SC_INVALID_QUEUE_IDENTIFIER); 491 return (1); 492 } 493 494 nsq = &sc->submit_queues[qid]; 495 nsq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff); 496 497 nsq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1, 498 sizeof(struct nvme_command) * (size_t)nsq->size); 499 nsq->cqid = (command->cdw11 >> 16) & 0xffff; 500 nsq->qpriority = (command->cdw11 >> 1) & 0x03; 501 502 DPRINTF(("%s sq %u size %u gaddr %p cqid %u\r\n", __func__, 503 qid, nsq->size, nsq->qbase, nsq->cqid)); 504 505 pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); 506 507 DPRINTF(("%s completed creating IOSQ qid %u\r\n", 508 __func__, qid)); 509 } else { 510 /* 511 * Guest sent non-cont submission queue request. 512 * This setting is unsupported by this emulation. 513 */ 514 WPRINTF(("%s unsupported non-contig (list-based) " 515 "create i/o submission queue\r\n", __func__)); 516 517 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); 518 } 519 return (1); 520 } 521 522 static int 523 nvme_opc_delete_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command, 524 struct nvme_completion* compl) 525 { 526 uint16_t qid = command->cdw10 & 0xffff; 527 528 DPRINTF(("%s DELETE_IO_CQ %u\r\n", __func__, qid)); 529 if (qid == 0 || qid > sc->num_cqueues) { 530 WPRINTF(("%s queue index %u / num_cqueues %u\r\n", 531 __func__, qid, sc->num_cqueues)); 532 pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, 533 NVME_SC_INVALID_QUEUE_IDENTIFIER); 534 return (1); 535 } 536 537 sc->compl_queues[qid].qbase = NULL; 538 pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); 539 return (1); 540 } 541 542 static int 543 nvme_opc_create_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command, 544 struct nvme_completion* compl) 545 { 546 if (command->cdw11 & NVME_CMD_CDW11_PC) { 547 uint16_t qid = command->cdw10 & 0xffff; 548 struct nvme_completion_queue *ncq; 549 550 if ((qid == 0) || (qid > sc->num_cqueues)) { 551 WPRINTF(("%s queue index %u > num_cqueues %u\r\n", 552 __func__, qid, sc->num_cqueues)); 553 pci_nvme_status_tc(&compl->status, 554 NVME_SCT_COMMAND_SPECIFIC, 555 NVME_SC_INVALID_QUEUE_IDENTIFIER); 556 return (1); 557 } 558 559 ncq = &sc->compl_queues[qid]; 560 ncq->intr_en = (command->cdw11 & NVME_CMD_CDW11_IEN) >> 1; 561 ncq->intr_vec = (command->cdw11 >> 16) & 0xffff; 562 ncq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff); 563 564 ncq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx, 565 command->prp1, 566 sizeof(struct nvme_command) * (size_t)ncq->size); 567 568 pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); 569 } else { 570 /* 571 * Non-contig completion queue unsupported. 572 */ 573 WPRINTF(("%s unsupported non-contig (list-based) " 574 "create i/o completion queue\r\n", 575 __func__)); 576 577 /* 0x12 = Invalid Use of Controller Memory Buffer */ 578 pci_nvme_status_genc(&compl->status, 0x12); 579 } 580 581 return (1); 582 } 583 584 static int 585 nvme_opc_get_log_page(struct pci_nvme_softc* sc, struct nvme_command* command, 586 struct nvme_completion* compl) 587 { 588 uint32_t logsize = (1 + ((command->cdw10 >> 16) & 0xFFF)) * 2; 589 uint8_t logpage = command->cdw10 & 0xFF; 590 void *data; 591 592 DPRINTF(("%s log page %u len %u\r\n", __func__, logpage, logsize)); 593 594 if (logpage >= 1 && logpage <= 3) 595 data = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1, 596 PAGE_SIZE); 597 598 pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); 599 600 switch (logpage) { 601 case 0x01: /* Error information */ 602 memset(data, 0, logsize > PAGE_SIZE ? PAGE_SIZE : logsize); 603 break; 604 case 0x02: /* SMART/Health information */ 605 /* TODO: present some smart info */ 606 memset(data, 0, logsize > PAGE_SIZE ? PAGE_SIZE : logsize); 607 break; 608 case 0x03: /* Firmware slot information */ 609 memset(data, 0, logsize > PAGE_SIZE ? PAGE_SIZE : logsize); 610 break; 611 default: 612 WPRINTF(("%s get log page %x command not supported\r\n", 613 __func__, logpage)); 614 615 pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, 616 NVME_SC_INVALID_LOG_PAGE); 617 } 618 619 return (1); 620 } 621 622 static int 623 nvme_opc_identify(struct pci_nvme_softc* sc, struct nvme_command* command, 624 struct nvme_completion* compl) 625 { 626 void *dest; 627 628 DPRINTF(("%s identify 0x%x nsid 0x%x\r\n", __func__, 629 command->cdw10 & 0xFF, command->nsid)); 630 631 switch (command->cdw10 & 0xFF) { 632 case 0x00: /* return Identify Namespace data structure */ 633 dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1, 634 sizeof(sc->nsdata)); 635 memcpy(dest, &sc->nsdata, sizeof(sc->nsdata)); 636 break; 637 case 0x01: /* return Identify Controller data structure */ 638 dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1, 639 sizeof(sc->ctrldata)); 640 memcpy(dest, &sc->ctrldata, sizeof(sc->ctrldata)); 641 break; 642 case 0x02: /* list of 1024 active NSIDs > CDW1.NSID */ 643 dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1, 644 sizeof(uint32_t) * 1024); 645 ((uint32_t *)dest)[0] = 1; 646 ((uint32_t *)dest)[1] = 0; 647 break; 648 case 0x11: 649 pci_nvme_status_genc(&compl->status, 650 NVME_SC_INVALID_NAMESPACE_OR_FORMAT); 651 return (1); 652 case 0x03: /* list of NSID structures in CDW1.NSID, 4096 bytes */ 653 case 0x10: 654 case 0x12: 655 case 0x13: 656 case 0x14: 657 case 0x15: 658 default: 659 DPRINTF(("%s unsupported identify command requested 0x%x\r\n", 660 __func__, command->cdw10 & 0xFF)); 661 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); 662 return (1); 663 } 664 665 pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); 666 return (1); 667 } 668 669 static int 670 nvme_set_feature_queues(struct pci_nvme_softc* sc, struct nvme_command* command, 671 struct nvme_completion* compl) 672 { 673 uint16_t nqr; /* Number of Queues Requested */ 674 675 nqr = command->cdw11 & 0xFFFF; 676 if (nqr == 0xffff) { 677 WPRINTF(("%s: Illegal NSQR value %#x\n", __func__, nqr)); 678 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); 679 return (-1); 680 } 681 682 sc->num_squeues = ONE_BASED(nqr); 683 if (sc->num_squeues > sc->max_queues) { 684 DPRINTF(("NSQR=%u is greater than max %u\n", sc->num_squeues, 685 sc->max_queues)); 686 sc->num_squeues = sc->max_queues; 687 } 688 689 nqr = (command->cdw11 >> 16) & 0xFFFF; 690 if (nqr == 0xffff) { 691 WPRINTF(("%s: Illegal NCQR value %#x\n", __func__, nqr)); 692 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); 693 return (-1); 694 } 695 696 sc->num_cqueues = ONE_BASED(nqr); 697 if (sc->num_cqueues > sc->max_queues) { 698 DPRINTF(("NCQR=%u is greater than max %u\n", sc->num_cqueues, 699 sc->max_queues)); 700 sc->num_cqueues = sc->max_queues; 701 } 702 703 compl->cdw0 = NVME_FEATURE_NUM_QUEUES(sc); 704 705 return (0); 706 } 707 708 static int 709 nvme_opc_set_features(struct pci_nvme_softc* sc, struct nvme_command* command, 710 struct nvme_completion* compl) 711 { 712 int feature = command->cdw10 & 0xFF; 713 uint32_t iv; 714 715 DPRINTF(("%s feature 0x%x\r\n", __func__, feature)); 716 compl->cdw0 = 0; 717 718 switch (feature) { 719 case NVME_FEAT_ARBITRATION: 720 DPRINTF((" arbitration 0x%x\r\n", command->cdw11)); 721 break; 722 case NVME_FEAT_POWER_MANAGEMENT: 723 DPRINTF((" power management 0x%x\r\n", command->cdw11)); 724 break; 725 case NVME_FEAT_LBA_RANGE_TYPE: 726 DPRINTF((" lba range 0x%x\r\n", command->cdw11)); 727 break; 728 case NVME_FEAT_TEMPERATURE_THRESHOLD: 729 DPRINTF((" temperature threshold 0x%x\r\n", command->cdw11)); 730 break; 731 case NVME_FEAT_ERROR_RECOVERY: 732 DPRINTF((" error recovery 0x%x\r\n", command->cdw11)); 733 break; 734 case NVME_FEAT_VOLATILE_WRITE_CACHE: 735 DPRINTF((" volatile write cache 0x%x\r\n", command->cdw11)); 736 break; 737 case NVME_FEAT_NUMBER_OF_QUEUES: 738 nvme_set_feature_queues(sc, command, compl); 739 break; 740 case NVME_FEAT_INTERRUPT_COALESCING: 741 DPRINTF((" interrupt coalescing 0x%x\r\n", command->cdw11)); 742 743 /* in uS */ 744 sc->intr_coales_aggr_time = ((command->cdw11 >> 8) & 0xFF)*100; 745 746 sc->intr_coales_aggr_thresh = command->cdw11 & 0xFF; 747 break; 748 case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION: 749 iv = command->cdw11 & 0xFFFF; 750 751 DPRINTF((" interrupt vector configuration 0x%x\r\n", 752 command->cdw11)); 753 754 for (uint32_t i = 0; i < sc->num_cqueues + 1; i++) { 755 if (sc->compl_queues[i].intr_vec == iv) { 756 if (command->cdw11 & (1 << 16)) 757 sc->compl_queues[i].intr_en |= 758 NVME_CQ_INTCOAL; 759 else 760 sc->compl_queues[i].intr_en &= 761 ~NVME_CQ_INTCOAL; 762 } 763 } 764 break; 765 case NVME_FEAT_WRITE_ATOMICITY: 766 DPRINTF((" write atomicity 0x%x\r\n", command->cdw11)); 767 break; 768 case NVME_FEAT_ASYNC_EVENT_CONFIGURATION: 769 DPRINTF((" async event configuration 0x%x\r\n", 770 command->cdw11)); 771 sc->async_ev_config = command->cdw11; 772 break; 773 case NVME_FEAT_SOFTWARE_PROGRESS_MARKER: 774 DPRINTF((" software progress marker 0x%x\r\n", 775 command->cdw11)); 776 break; 777 case 0x0C: 778 DPRINTF((" autonomous power state transition 0x%x\r\n", 779 command->cdw11)); 780 break; 781 default: 782 WPRINTF(("%s invalid feature\r\n", __func__)); 783 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); 784 return (1); 785 } 786 787 pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); 788 return (1); 789 } 790 791 static int 792 nvme_opc_get_features(struct pci_nvme_softc* sc, struct nvme_command* command, 793 struct nvme_completion* compl) 794 { 795 int feature = command->cdw10 & 0xFF; 796 797 DPRINTF(("%s feature 0x%x\r\n", __func__, feature)); 798 799 compl->cdw0 = 0; 800 801 switch (feature) { 802 case NVME_FEAT_ARBITRATION: 803 DPRINTF((" arbitration\r\n")); 804 break; 805 case NVME_FEAT_POWER_MANAGEMENT: 806 DPRINTF((" power management\r\n")); 807 break; 808 case NVME_FEAT_LBA_RANGE_TYPE: 809 DPRINTF((" lba range\r\n")); 810 break; 811 case NVME_FEAT_TEMPERATURE_THRESHOLD: 812 DPRINTF((" temperature threshold\r\n")); 813 switch ((command->cdw11 >> 20) & 0x3) { 814 case 0: 815 /* Over temp threshold */ 816 compl->cdw0 = 0xFFFF; 817 break; 818 case 1: 819 /* Under temp threshold */ 820 compl->cdw0 = 0; 821 break; 822 default: 823 WPRINTF((" invalid threshold type select\r\n")); 824 pci_nvme_status_genc(&compl->status, 825 NVME_SC_INVALID_FIELD); 826 return (1); 827 } 828 break; 829 case NVME_FEAT_ERROR_RECOVERY: 830 DPRINTF((" error recovery\r\n")); 831 break; 832 case NVME_FEAT_VOLATILE_WRITE_CACHE: 833 DPRINTF((" volatile write cache\r\n")); 834 break; 835 case NVME_FEAT_NUMBER_OF_QUEUES: 836 compl->cdw0 = NVME_FEATURE_NUM_QUEUES(sc); 837 838 DPRINTF((" number of queues (submit %u, completion %u)\r\n", 839 compl->cdw0 & 0xFFFF, 840 (compl->cdw0 >> 16) & 0xFFFF)); 841 842 break; 843 case NVME_FEAT_INTERRUPT_COALESCING: 844 DPRINTF((" interrupt coalescing\r\n")); 845 break; 846 case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION: 847 DPRINTF((" interrupt vector configuration\r\n")); 848 break; 849 case NVME_FEAT_WRITE_ATOMICITY: 850 DPRINTF((" write atomicity\r\n")); 851 break; 852 case NVME_FEAT_ASYNC_EVENT_CONFIGURATION: 853 DPRINTF((" async event configuration\r\n")); 854 sc->async_ev_config = command->cdw11; 855 break; 856 case NVME_FEAT_SOFTWARE_PROGRESS_MARKER: 857 DPRINTF((" software progress marker\r\n")); 858 break; 859 case 0x0C: 860 DPRINTF((" autonomous power state transition\r\n")); 861 break; 862 default: 863 WPRINTF(("%s invalid feature 0x%x\r\n", __func__, feature)); 864 pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD); 865 return (1); 866 } 867 868 pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); 869 return (1); 870 } 871 872 static int 873 nvme_opc_abort(struct pci_nvme_softc* sc, struct nvme_command* command, 874 struct nvme_completion* compl) 875 { 876 DPRINTF(("%s submission queue %u, command ID 0x%x\r\n", __func__, 877 command->cdw10 & 0xFFFF, (command->cdw10 >> 16) & 0xFFFF)); 878 879 /* TODO: search for the command ID and abort it */ 880 881 compl->cdw0 = 1; 882 pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS); 883 return (1); 884 } 885 886 static int 887 nvme_opc_async_event_req(struct pci_nvme_softc* sc, 888 struct nvme_command* command, struct nvme_completion* compl) 889 { 890 DPRINTF(("%s async event request 0x%x\r\n", __func__, command->cdw11)); 891 892 /* 893 * TODO: raise events when they happen based on the Set Features cmd. 894 * These events happen async, so only set completion successful if 895 * there is an event reflective of the request to get event. 896 */ 897 pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC, 898 NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED); 899 return (0); 900 } 901 902 static void 903 pci_nvme_handle_admin_cmd(struct pci_nvme_softc* sc, uint64_t value) 904 { 905 struct nvme_completion compl; 906 struct nvme_command *cmd; 907 struct nvme_submission_queue *sq; 908 struct nvme_completion_queue *cq; 909 int do_intr = 0; 910 uint16_t sqhead; 911 912 DPRINTF(("%s index %u\r\n", __func__, (uint32_t)value)); 913 914 sq = &sc->submit_queues[0]; 915 916 sqhead = atomic_load_acq_short(&sq->head); 917 918 if (atomic_testandset_int(&sq->busy, 1)) { 919 DPRINTF(("%s SQ busy, head %u, tail %u\r\n", 920 __func__, sqhead, sq->tail)); 921 return; 922 } 923 924 DPRINTF(("sqhead %u, tail %u\r\n", sqhead, sq->tail)); 925 926 while (sqhead != atomic_load_acq_short(&sq->tail)) { 927 cmd = &(sq->qbase)[sqhead]; 928 compl.status = 0; 929 930 switch (cmd->opc) { 931 case NVME_OPC_DELETE_IO_SQ: 932 DPRINTF(("%s command DELETE_IO_SQ\r\n", __func__)); 933 do_intr |= nvme_opc_delete_io_sq(sc, cmd, &compl); 934 break; 935 case NVME_OPC_CREATE_IO_SQ: 936 DPRINTF(("%s command CREATE_IO_SQ\r\n", __func__)); 937 do_intr |= nvme_opc_create_io_sq(sc, cmd, &compl); 938 break; 939 case NVME_OPC_DELETE_IO_CQ: 940 DPRINTF(("%s command DELETE_IO_CQ\r\n", __func__)); 941 do_intr |= nvme_opc_delete_io_cq(sc, cmd, &compl); 942 break; 943 case NVME_OPC_CREATE_IO_CQ: 944 DPRINTF(("%s command CREATE_IO_CQ\r\n", __func__)); 945 do_intr |= nvme_opc_create_io_cq(sc, cmd, &compl); 946 break; 947 case NVME_OPC_GET_LOG_PAGE: 948 DPRINTF(("%s command GET_LOG_PAGE\r\n", __func__)); 949 do_intr |= nvme_opc_get_log_page(sc, cmd, &compl); 950 break; 951 case NVME_OPC_IDENTIFY: 952 DPRINTF(("%s command IDENTIFY\r\n", __func__)); 953 do_intr |= nvme_opc_identify(sc, cmd, &compl); 954 break; 955 case NVME_OPC_ABORT: 956 DPRINTF(("%s command ABORT\r\n", __func__)); 957 do_intr |= nvme_opc_abort(sc, cmd, &compl); 958 break; 959 case NVME_OPC_SET_FEATURES: 960 DPRINTF(("%s command SET_FEATURES\r\n", __func__)); 961 do_intr |= nvme_opc_set_features(sc, cmd, &compl); 962 break; 963 case NVME_OPC_GET_FEATURES: 964 DPRINTF(("%s command GET_FEATURES\r\n", __func__)); 965 do_intr |= nvme_opc_get_features(sc, cmd, &compl); 966 break; 967 case NVME_OPC_ASYNC_EVENT_REQUEST: 968 DPRINTF(("%s command ASYNC_EVENT_REQ\r\n", __func__)); 969 /* XXX dont care, unhandled for now 970 do_intr |= nvme_opc_async_event_req(sc, cmd, &compl); 971 */ 972 break; 973 default: 974 WPRINTF(("0x%x command is not implemented\r\n", 975 cmd->opc)); 976 } 977 978 /* for now skip async event generation */ 979 if (cmd->opc != NVME_OPC_ASYNC_EVENT_REQUEST) { 980 struct nvme_completion *cp; 981 int phase; 982 983 cq = &sc->compl_queues[0]; 984 985 cp = &(cq->qbase)[cq->tail]; 986 cp->cdw0 = compl.cdw0; 987 cp->sqid = 0; 988 cp->sqhd = sqhead; 989 cp->cid = cmd->cid; 990 991 phase = NVME_STATUS_GET_P(cp->status); 992 cp->status = compl.status; 993 pci_nvme_toggle_phase(&cp->status, phase); 994 995 cq->tail = (cq->tail + 1) % cq->size; 996 } 997 sqhead = (sqhead + 1) % sq->size; 998 } 999 1000 DPRINTF(("setting sqhead %u\r\n", sqhead)); 1001 atomic_store_short(&sq->head, sqhead); 1002 atomic_store_int(&sq->busy, 0); 1003 1004 if (do_intr) 1005 pci_generate_msix(sc->nsc_pi, 0); 1006 1007 } 1008 1009 static int 1010 pci_nvme_append_iov_req(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req, 1011 uint64_t gpaddr, size_t size, int do_write, uint64_t lba) 1012 { 1013 int iovidx; 1014 1015 if (req != NULL) { 1016 /* concatenate contig block-iovs to minimize number of iovs */ 1017 if ((req->prev_gpaddr + req->prev_size) == gpaddr) { 1018 iovidx = req->io_req.br_iovcnt - 1; 1019 1020 req->io_req.br_iov[iovidx].iov_base = 1021 paddr_guest2host(req->sc->nsc_pi->pi_vmctx, 1022 req->prev_gpaddr, size); 1023 1024 req->prev_size += size; 1025 req->io_req.br_resid += size; 1026 1027 req->io_req.br_iov[iovidx].iov_len = req->prev_size; 1028 } else { 1029 pthread_mutex_lock(&req->mtx); 1030 1031 iovidx = req->io_req.br_iovcnt; 1032 if (iovidx == NVME_MAX_BLOCKIOVS) { 1033 int err = 0; 1034 1035 DPRINTF(("large I/O, doing partial req\r\n")); 1036 1037 iovidx = 0; 1038 req->io_req.br_iovcnt = 0; 1039 1040 req->io_req.br_callback = pci_nvme_io_partial; 1041 1042 if (!do_write) 1043 err = blockif_read(sc->nvstore.ctx, 1044 &req->io_req); 1045 else 1046 err = blockif_write(sc->nvstore.ctx, 1047 &req->io_req); 1048 1049 /* wait until req completes before cont */ 1050 if (err == 0) 1051 pthread_cond_wait(&req->cv, &req->mtx); 1052 } 1053 if (iovidx == 0) { 1054 req->io_req.br_offset = lba; 1055 req->io_req.br_resid = 0; 1056 req->io_req.br_param = req; 1057 } 1058 1059 req->io_req.br_iov[iovidx].iov_base = 1060 paddr_guest2host(req->sc->nsc_pi->pi_vmctx, 1061 gpaddr, size); 1062 1063 req->io_req.br_iov[iovidx].iov_len = size; 1064 1065 req->prev_gpaddr = gpaddr; 1066 req->prev_size = size; 1067 req->io_req.br_resid += size; 1068 1069 req->io_req.br_iovcnt++; 1070 1071 pthread_mutex_unlock(&req->mtx); 1072 } 1073 } else { 1074 /* RAM buffer: read/write directly */ 1075 void *p = sc->nvstore.ctx; 1076 void *gptr; 1077 1078 if ((lba + size) > sc->nvstore.size) { 1079 WPRINTF(("%s write would overflow RAM\r\n", __func__)); 1080 return (-1); 1081 } 1082 1083 p = (void *)((uintptr_t)p + (uintptr_t)lba); 1084 gptr = paddr_guest2host(sc->nsc_pi->pi_vmctx, gpaddr, size); 1085 if (do_write) 1086 memcpy(p, gptr, size); 1087 else 1088 memcpy(gptr, p, size); 1089 } 1090 return (0); 1091 } 1092 1093 static void 1094 pci_nvme_set_completion(struct pci_nvme_softc *sc, 1095 struct nvme_submission_queue *sq, int sqid, uint16_t cid, 1096 uint32_t cdw0, uint16_t status, int ignore_busy) 1097 { 1098 struct nvme_completion_queue *cq = &sc->compl_queues[sq->cqid]; 1099 struct nvme_completion *compl; 1100 int do_intr = 0; 1101 int phase; 1102 1103 DPRINTF(("%s sqid %d cqid %u cid %u status: 0x%x 0x%x\r\n", 1104 __func__, sqid, sq->cqid, cid, NVME_STATUS_GET_SCT(status), 1105 NVME_STATUS_GET_SC(status))); 1106 1107 pthread_mutex_lock(&cq->mtx); 1108 1109 assert(cq->qbase != NULL); 1110 1111 compl = &cq->qbase[cq->tail]; 1112 1113 compl->sqhd = atomic_load_acq_short(&sq->head); 1114 compl->sqid = sqid; 1115 compl->cid = cid; 1116 1117 // toggle phase 1118 phase = NVME_STATUS_GET_P(compl->status); 1119 compl->status = status; 1120 pci_nvme_toggle_phase(&compl->status, phase); 1121 1122 cq->tail = (cq->tail + 1) % cq->size; 1123 1124 if (cq->intr_en & NVME_CQ_INTEN) 1125 do_intr = 1; 1126 1127 pthread_mutex_unlock(&cq->mtx); 1128 1129 if (ignore_busy || !atomic_load_acq_int(&sq->busy)) 1130 if (do_intr) 1131 pci_generate_msix(sc->nsc_pi, cq->intr_vec); 1132 } 1133 1134 static void 1135 pci_nvme_release_ioreq(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req) 1136 { 1137 req->sc = NULL; 1138 req->nvme_sq = NULL; 1139 req->sqid = 0; 1140 1141 pthread_mutex_lock(&sc->mtx); 1142 1143 req->next = sc->ioreqs_free; 1144 sc->ioreqs_free = req; 1145 sc->pending_ios--; 1146 1147 /* when no more IO pending, can set to ready if device reset/enabled */ 1148 if (sc->pending_ios == 0 && 1149 NVME_CC_GET_EN(sc->regs.cc) && !(NVME_CSTS_GET_RDY(sc->regs.csts))) 1150 sc->regs.csts |= NVME_CSTS_RDY; 1151 1152 pthread_mutex_unlock(&sc->mtx); 1153 1154 sem_post(&sc->iosemlock); 1155 } 1156 1157 static struct pci_nvme_ioreq * 1158 pci_nvme_get_ioreq(struct pci_nvme_softc *sc) 1159 { 1160 struct pci_nvme_ioreq *req = NULL;; 1161 1162 sem_wait(&sc->iosemlock); 1163 pthread_mutex_lock(&sc->mtx); 1164 1165 req = sc->ioreqs_free; 1166 assert(req != NULL); 1167 1168 sc->ioreqs_free = req->next; 1169 1170 req->next = NULL; 1171 req->sc = sc; 1172 1173 sc->pending_ios++; 1174 1175 pthread_mutex_unlock(&sc->mtx); 1176 1177 req->io_req.br_iovcnt = 0; 1178 req->io_req.br_offset = 0; 1179 req->io_req.br_resid = 0; 1180 req->io_req.br_param = req; 1181 req->prev_gpaddr = 0; 1182 req->prev_size = 0; 1183 1184 return req; 1185 } 1186 1187 static void 1188 pci_nvme_io_done(struct blockif_req *br, int err) 1189 { 1190 struct pci_nvme_ioreq *req = br->br_param; 1191 struct nvme_submission_queue *sq = req->nvme_sq; 1192 uint16_t code, status; 1193 1194 DPRINTF(("%s error %d %s\r\n", __func__, err, strerror(err))); 1195 1196 /* TODO return correct error */ 1197 code = err ? NVME_SC_DATA_TRANSFER_ERROR : NVME_SC_SUCCESS; 1198 pci_nvme_status_genc(&status, code); 1199 1200 pci_nvme_set_completion(req->sc, sq, req->sqid, req->cid, 0, status, 0); 1201 pci_nvme_release_ioreq(req->sc, req); 1202 } 1203 1204 static void 1205 pci_nvme_io_partial(struct blockif_req *br, int err) 1206 { 1207 struct pci_nvme_ioreq *req = br->br_param; 1208 1209 DPRINTF(("%s error %d %s\r\n", __func__, err, strerror(err))); 1210 1211 pthread_cond_signal(&req->cv); 1212 } 1213 1214 1215 static void 1216 pci_nvme_handle_io_cmd(struct pci_nvme_softc* sc, uint16_t idx) 1217 { 1218 struct nvme_submission_queue *sq; 1219 uint16_t status; 1220 uint16_t sqhead; 1221 int err; 1222 1223 /* handle all submissions up to sq->tail index */ 1224 sq = &sc->submit_queues[idx]; 1225 1226 if (atomic_testandset_int(&sq->busy, 1)) { 1227 DPRINTF(("%s sqid %u busy\r\n", __func__, idx)); 1228 return; 1229 } 1230 1231 sqhead = atomic_load_acq_short(&sq->head); 1232 1233 DPRINTF(("nvme_handle_io qid %u head %u tail %u cmdlist %p\r\n", 1234 idx, sqhead, sq->tail, sq->qbase)); 1235 1236 while (sqhead != atomic_load_acq_short(&sq->tail)) { 1237 struct nvme_command *cmd; 1238 struct pci_nvme_ioreq *req = NULL; 1239 uint64_t lba; 1240 uint64_t nblocks, bytes, size, cpsz; 1241 1242 /* TODO: support scatter gather list handling */ 1243 1244 cmd = &sq->qbase[sqhead]; 1245 sqhead = (sqhead + 1) % sq->size; 1246 1247 lba = ((uint64_t)cmd->cdw11 << 32) | cmd->cdw10; 1248 1249 if (cmd->opc == NVME_OPC_FLUSH) { 1250 pci_nvme_status_genc(&status, NVME_SC_SUCCESS); 1251 pci_nvme_set_completion(sc, sq, idx, cmd->cid, 0, 1252 status, 1); 1253 1254 continue; 1255 } else if (cmd->opc == 0x08) { 1256 /* TODO: write zeroes */ 1257 WPRINTF(("%s write zeroes lba 0x%lx blocks %u\r\n", 1258 __func__, lba, cmd->cdw12 & 0xFFFF)); 1259 pci_nvme_status_genc(&status, NVME_SC_SUCCESS); 1260 pci_nvme_set_completion(sc, sq, idx, cmd->cid, 0, 1261 status, 1); 1262 1263 continue; 1264 } 1265 1266 nblocks = (cmd->cdw12 & 0xFFFF) + 1; 1267 1268 bytes = nblocks * sc->nvstore.sectsz; 1269 1270 if (sc->nvstore.type == NVME_STOR_BLOCKIF) { 1271 req = pci_nvme_get_ioreq(sc); 1272 req->nvme_sq = sq; 1273 req->sqid = idx; 1274 } 1275 1276 /* 1277 * If data starts mid-page and flows into the next page, then 1278 * increase page count 1279 */ 1280 1281 DPRINTF(("[h%u:t%u:n%u] %s starting LBA 0x%lx blocks %lu " 1282 "(%lu-bytes)\r\n", 1283 sqhead==0 ? sq->size-1 : sqhead-1, sq->tail, sq->size, 1284 cmd->opc == NVME_OPC_WRITE ? 1285 "WRITE" : "READ", 1286 lba, nblocks, bytes)); 1287 1288 cmd->prp1 &= ~(0x03UL); 1289 cmd->prp2 &= ~(0x03UL); 1290 1291 DPRINTF((" prp1 0x%lx prp2 0x%lx\r\n", cmd->prp1, cmd->prp2)); 1292 1293 size = bytes; 1294 lba *= sc->nvstore.sectsz; 1295 1296 cpsz = PAGE_SIZE - (cmd->prp1 % PAGE_SIZE); 1297 1298 if (cpsz > bytes) 1299 cpsz = bytes; 1300 1301 if (req != NULL) { 1302 req->io_req.br_offset = ((uint64_t)cmd->cdw11 << 32) | 1303 cmd->cdw10; 1304 req->opc = cmd->opc; 1305 req->cid = cmd->cid; 1306 req->nsid = cmd->nsid; 1307 } 1308 1309 err = pci_nvme_append_iov_req(sc, req, cmd->prp1, cpsz, 1310 cmd->opc == NVME_OPC_WRITE, lba); 1311 lba += cpsz; 1312 size -= cpsz; 1313 1314 if (size == 0) 1315 goto iodone; 1316 1317 if (size <= PAGE_SIZE) { 1318 /* prp2 is second (and final) page in transfer */ 1319 1320 err = pci_nvme_append_iov_req(sc, req, cmd->prp2, 1321 size, 1322 cmd->opc == NVME_OPC_WRITE, 1323 lba); 1324 } else { 1325 uint64_t *prp_list; 1326 int i; 1327 1328 /* prp2 is pointer to a physical region page list */ 1329 prp_list = paddr_guest2host(sc->nsc_pi->pi_vmctx, 1330 cmd->prp2, PAGE_SIZE); 1331 1332 i = 0; 1333 while (size != 0) { 1334 cpsz = MIN(size, PAGE_SIZE); 1335 1336 /* 1337 * Move to linked physical region page list 1338 * in last item. 1339 */ 1340 if (i == (NVME_PRP2_ITEMS-1) && 1341 size > PAGE_SIZE) { 1342 assert((prp_list[i] & (PAGE_SIZE-1)) == 0); 1343 prp_list = paddr_guest2host( 1344 sc->nsc_pi->pi_vmctx, 1345 prp_list[i], PAGE_SIZE); 1346 i = 0; 1347 } 1348 if (prp_list[i] == 0) { 1349 WPRINTF(("PRP2[%d] = 0 !!!\r\n", i)); 1350 err = 1; 1351 break; 1352 } 1353 1354 err = pci_nvme_append_iov_req(sc, req, 1355 prp_list[i], cpsz, 1356 cmd->opc == NVME_OPC_WRITE, lba); 1357 if (err) 1358 break; 1359 1360 lba += cpsz; 1361 size -= cpsz; 1362 i++; 1363 } 1364 } 1365 1366 iodone: 1367 if (sc->nvstore.type == NVME_STOR_RAM) { 1368 uint16_t code, status; 1369 1370 code = err ? NVME_SC_LBA_OUT_OF_RANGE : 1371 NVME_SC_SUCCESS; 1372 pci_nvme_status_genc(&status, code); 1373 1374 pci_nvme_set_completion(sc, sq, idx, cmd->cid, 0, 1375 status, 1); 1376 1377 continue; 1378 } 1379 1380 1381 if (err) 1382 goto do_error; 1383 1384 req->io_req.br_callback = pci_nvme_io_done; 1385 1386 err = 0; 1387 switch (cmd->opc) { 1388 case NVME_OPC_READ: 1389 err = blockif_read(sc->nvstore.ctx, &req->io_req); 1390 break; 1391 case NVME_OPC_WRITE: 1392 err = blockif_write(sc->nvstore.ctx, &req->io_req); 1393 break; 1394 default: 1395 WPRINTF(("%s unhandled io command 0x%x\r\n", 1396 __func__, cmd->opc)); 1397 err = 1; 1398 } 1399 1400 do_error: 1401 if (err) { 1402 uint16_t status; 1403 1404 pci_nvme_status_genc(&status, 1405 NVME_SC_DATA_TRANSFER_ERROR); 1406 1407 pci_nvme_set_completion(sc, sq, idx, cmd->cid, 0, 1408 status, 1); 1409 pci_nvme_release_ioreq(sc, req); 1410 } 1411 } 1412 1413 atomic_store_short(&sq->head, sqhead); 1414 atomic_store_int(&sq->busy, 0); 1415 } 1416 1417 static void 1418 pci_nvme_handle_doorbell(struct vmctx *ctx, struct pci_nvme_softc* sc, 1419 uint64_t idx, int is_sq, uint64_t value) 1420 { 1421 DPRINTF(("nvme doorbell %lu, %s, val 0x%lx\r\n", 1422 idx, is_sq ? "SQ" : "CQ", value & 0xFFFF)); 1423 1424 if (is_sq) { 1425 atomic_store_short(&sc->submit_queues[idx].tail, 1426 (uint16_t)value); 1427 1428 if (idx == 0) { 1429 pci_nvme_handle_admin_cmd(sc, value); 1430 } else { 1431 /* submission queue; handle new entries in SQ */ 1432 if (idx > sc->num_squeues) { 1433 WPRINTF(("%s SQ index %lu overflow from " 1434 "guest (max %u)\r\n", 1435 __func__, idx, sc->num_squeues)); 1436 return; 1437 } 1438 pci_nvme_handle_io_cmd(sc, (uint16_t)idx); 1439 } 1440 } else { 1441 if (idx > sc->num_cqueues) { 1442 WPRINTF(("%s queue index %lu overflow from " 1443 "guest (max %u)\r\n", 1444 __func__, idx, sc->num_cqueues)); 1445 return; 1446 } 1447 1448 sc->compl_queues[idx].head = (uint16_t)value; 1449 } 1450 } 1451 1452 static void 1453 pci_nvme_bar0_reg_dumps(const char *func, uint64_t offset, int iswrite) 1454 { 1455 const char *s = iswrite ? "WRITE" : "READ"; 1456 1457 switch (offset) { 1458 case NVME_CR_CAP_LOW: 1459 DPRINTF(("%s %s NVME_CR_CAP_LOW\r\n", func, s)); 1460 break; 1461 case NVME_CR_CAP_HI: 1462 DPRINTF(("%s %s NVME_CR_CAP_HI\r\n", func, s)); 1463 break; 1464 case NVME_CR_VS: 1465 DPRINTF(("%s %s NVME_CR_VS\r\n", func, s)); 1466 break; 1467 case NVME_CR_INTMS: 1468 DPRINTF(("%s %s NVME_CR_INTMS\r\n", func, s)); 1469 break; 1470 case NVME_CR_INTMC: 1471 DPRINTF(("%s %s NVME_CR_INTMC\r\n", func, s)); 1472 break; 1473 case NVME_CR_CC: 1474 DPRINTF(("%s %s NVME_CR_CC\r\n", func, s)); 1475 break; 1476 case NVME_CR_CSTS: 1477 DPRINTF(("%s %s NVME_CR_CSTS\r\n", func, s)); 1478 break; 1479 case NVME_CR_NSSR: 1480 DPRINTF(("%s %s NVME_CR_NSSR\r\n", func, s)); 1481 break; 1482 case NVME_CR_AQA: 1483 DPRINTF(("%s %s NVME_CR_AQA\r\n", func, s)); 1484 break; 1485 case NVME_CR_ASQ_LOW: 1486 DPRINTF(("%s %s NVME_CR_ASQ_LOW\r\n", func, s)); 1487 break; 1488 case NVME_CR_ASQ_HI: 1489 DPRINTF(("%s %s NVME_CR_ASQ_HI\r\n", func, s)); 1490 break; 1491 case NVME_CR_ACQ_LOW: 1492 DPRINTF(("%s %s NVME_CR_ACQ_LOW\r\n", func, s)); 1493 break; 1494 case NVME_CR_ACQ_HI: 1495 DPRINTF(("%s %s NVME_CR_ACQ_HI\r\n", func, s)); 1496 break; 1497 default: 1498 DPRINTF(("unknown nvme bar-0 offset 0x%lx\r\n", offset)); 1499 } 1500 1501 } 1502 1503 static void 1504 pci_nvme_write_bar_0(struct vmctx *ctx, struct pci_nvme_softc* sc, 1505 uint64_t offset, int size, uint64_t value) 1506 { 1507 uint32_t ccreg; 1508 1509 if (offset >= NVME_DOORBELL_OFFSET) { 1510 uint64_t belloffset = offset - NVME_DOORBELL_OFFSET; 1511 uint64_t idx = belloffset / 8; /* door bell size = 2*int */ 1512 int is_sq = (belloffset % 8) < 4; 1513 1514 if (belloffset > ((sc->max_queues+1) * 8 - 4)) { 1515 WPRINTF(("guest attempted an overflow write offset " 1516 "0x%lx, val 0x%lx in %s", 1517 offset, value, __func__)); 1518 return; 1519 } 1520 1521 pci_nvme_handle_doorbell(ctx, sc, idx, is_sq, value); 1522 return; 1523 } 1524 1525 DPRINTF(("nvme-write offset 0x%lx, size %d, value 0x%lx\r\n", 1526 offset, size, value)); 1527 1528 if (size != 4) { 1529 WPRINTF(("guest wrote invalid size %d (offset 0x%lx, " 1530 "val 0x%lx) to bar0 in %s", 1531 size, offset, value, __func__)); 1532 /* TODO: shutdown device */ 1533 return; 1534 } 1535 1536 pci_nvme_bar0_reg_dumps(__func__, offset, 1); 1537 1538 pthread_mutex_lock(&sc->mtx); 1539 1540 switch (offset) { 1541 case NVME_CR_CAP_LOW: 1542 case NVME_CR_CAP_HI: 1543 /* readonly */ 1544 break; 1545 case NVME_CR_VS: 1546 /* readonly */ 1547 break; 1548 case NVME_CR_INTMS: 1549 /* MSI-X, so ignore */ 1550 break; 1551 case NVME_CR_INTMC: 1552 /* MSI-X, so ignore */ 1553 break; 1554 case NVME_CR_CC: 1555 ccreg = (uint32_t)value; 1556 1557 DPRINTF(("%s NVME_CR_CC en %x css %x shn %x iosqes %u " 1558 "iocqes %u\r\n", 1559 __func__, 1560 NVME_CC_GET_EN(ccreg), NVME_CC_GET_CSS(ccreg), 1561 NVME_CC_GET_SHN(ccreg), NVME_CC_GET_IOSQES(ccreg), 1562 NVME_CC_GET_IOCQES(ccreg))); 1563 1564 if (NVME_CC_GET_SHN(ccreg)) { 1565 /* perform shutdown - flush out data to backend */ 1566 sc->regs.csts &= ~(NVME_CSTS_REG_SHST_MASK << 1567 NVME_CSTS_REG_SHST_SHIFT); 1568 sc->regs.csts |= NVME_SHST_COMPLETE << 1569 NVME_CSTS_REG_SHST_SHIFT; 1570 } 1571 if (NVME_CC_GET_EN(ccreg) != NVME_CC_GET_EN(sc->regs.cc)) { 1572 if (NVME_CC_GET_EN(ccreg) == 0) 1573 /* transition 1-> causes controller reset */ 1574 pci_nvme_reset_locked(sc); 1575 else 1576 pci_nvme_init_controller(ctx, sc); 1577 } 1578 1579 /* Insert the iocqes, iosqes and en bits from the write */ 1580 sc->regs.cc &= ~NVME_CC_WRITE_MASK; 1581 sc->regs.cc |= ccreg & NVME_CC_WRITE_MASK; 1582 if (NVME_CC_GET_EN(ccreg) == 0) { 1583 /* Insert the ams, mps and css bit fields */ 1584 sc->regs.cc &= ~NVME_CC_NEN_WRITE_MASK; 1585 sc->regs.cc |= ccreg & NVME_CC_NEN_WRITE_MASK; 1586 sc->regs.csts &= ~NVME_CSTS_RDY; 1587 } else if (sc->pending_ios == 0) { 1588 sc->regs.csts |= NVME_CSTS_RDY; 1589 } 1590 break; 1591 case NVME_CR_CSTS: 1592 break; 1593 case NVME_CR_NSSR: 1594 /* ignore writes; don't support subsystem reset */ 1595 break; 1596 case NVME_CR_AQA: 1597 sc->regs.aqa = (uint32_t)value; 1598 break; 1599 case NVME_CR_ASQ_LOW: 1600 sc->regs.asq = (sc->regs.asq & (0xFFFFFFFF00000000)) | 1601 (0xFFFFF000 & value); 1602 break; 1603 case NVME_CR_ASQ_HI: 1604 sc->regs.asq = (sc->regs.asq & (0x00000000FFFFFFFF)) | 1605 (value << 32); 1606 break; 1607 case NVME_CR_ACQ_LOW: 1608 sc->regs.acq = (sc->regs.acq & (0xFFFFFFFF00000000)) | 1609 (0xFFFFF000 & value); 1610 break; 1611 case NVME_CR_ACQ_HI: 1612 sc->regs.acq = (sc->regs.acq & (0x00000000FFFFFFFF)) | 1613 (value << 32); 1614 break; 1615 default: 1616 DPRINTF(("%s unknown offset 0x%lx, value 0x%lx size %d\r\n", 1617 __func__, offset, value, size)); 1618 } 1619 pthread_mutex_unlock(&sc->mtx); 1620 } 1621 1622 static void 1623 pci_nvme_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, 1624 int baridx, uint64_t offset, int size, uint64_t value) 1625 { 1626 struct pci_nvme_softc* sc = pi->pi_arg; 1627 1628 if (baridx == pci_msix_table_bar(pi) || 1629 baridx == pci_msix_pba_bar(pi)) { 1630 DPRINTF(("nvme-write baridx %d, msix: off 0x%lx, size %d, " 1631 " value 0x%lx\r\n", baridx, offset, size, value)); 1632 1633 pci_emul_msix_twrite(pi, offset, size, value); 1634 return; 1635 } 1636 1637 switch (baridx) { 1638 case 0: 1639 pci_nvme_write_bar_0(ctx, sc, offset, size, value); 1640 break; 1641 1642 default: 1643 DPRINTF(("%s unknown baridx %d, val 0x%lx\r\n", 1644 __func__, baridx, value)); 1645 } 1646 } 1647 1648 static uint64_t pci_nvme_read_bar_0(struct pci_nvme_softc* sc, 1649 uint64_t offset, int size) 1650 { 1651 uint64_t value; 1652 1653 pci_nvme_bar0_reg_dumps(__func__, offset, 0); 1654 1655 if (offset < NVME_DOORBELL_OFFSET) { 1656 void *p = &(sc->regs); 1657 pthread_mutex_lock(&sc->mtx); 1658 memcpy(&value, (void *)((uintptr_t)p + offset), size); 1659 pthread_mutex_unlock(&sc->mtx); 1660 } else { 1661 value = 0; 1662 WPRINTF(("pci_nvme: read invalid offset %ld\r\n", offset)); 1663 } 1664 1665 switch (size) { 1666 case 1: 1667 value &= 0xFF; 1668 break; 1669 case 2: 1670 value &= 0xFFFF; 1671 break; 1672 case 4: 1673 value &= 0xFFFFFFFF; 1674 break; 1675 } 1676 1677 DPRINTF((" nvme-read offset 0x%lx, size %d -> value 0x%x\r\n", 1678 offset, size, (uint32_t)value)); 1679 1680 return (value); 1681 } 1682 1683 1684 1685 static uint64_t 1686 pci_nvme_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx, 1687 uint64_t offset, int size) 1688 { 1689 struct pci_nvme_softc* sc = pi->pi_arg; 1690 1691 if (baridx == pci_msix_table_bar(pi) || 1692 baridx == pci_msix_pba_bar(pi)) { 1693 DPRINTF(("nvme-read bar: %d, msix: regoff 0x%lx, size %d\r\n", 1694 baridx, offset, size)); 1695 1696 return pci_emul_msix_tread(pi, offset, size); 1697 } 1698 1699 switch (baridx) { 1700 case 0: 1701 return pci_nvme_read_bar_0(sc, offset, size); 1702 1703 default: 1704 DPRINTF(("unknown bar %d, 0x%lx\r\n", baridx, offset)); 1705 } 1706 1707 return (0); 1708 } 1709 1710 1711 static int 1712 pci_nvme_parse_opts(struct pci_nvme_softc *sc, char *opts) 1713 { 1714 char bident[sizeof("XX:X:X")]; 1715 char *uopt, *xopts, *config; 1716 uint32_t sectsz; 1717 int optidx; 1718 1719 sc->max_queues = NVME_QUEUES; 1720 sc->max_qentries = NVME_MAX_QENTRIES; 1721 sc->ioslots = NVME_IOSLOTS; 1722 sc->num_squeues = sc->max_queues; 1723 sc->num_cqueues = sc->max_queues; 1724 sectsz = 0; 1725 1726 uopt = strdup(opts); 1727 optidx = 0; 1728 snprintf(sc->ctrldata.sn, sizeof(sc->ctrldata.sn), 1729 "NVME-%d-%d", sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func); 1730 for (xopts = strtok(uopt, ","); 1731 xopts != NULL; 1732 xopts = strtok(NULL, ",")) { 1733 1734 if ((config = strchr(xopts, '=')) != NULL) 1735 *config++ = '\0'; 1736 1737 if (!strcmp("maxq", xopts)) { 1738 sc->max_queues = atoi(config); 1739 } else if (!strcmp("qsz", xopts)) { 1740 sc->max_qentries = atoi(config); 1741 } else if (!strcmp("ioslots", xopts)) { 1742 sc->ioslots = atoi(config); 1743 } else if (!strcmp("sectsz", xopts)) { 1744 sectsz = atoi(config); 1745 } else if (!strcmp("ser", xopts)) { 1746 /* 1747 * This field indicates the Product Serial Number in 1748 * 7-bit ASCII, unused bytes should be space characters. 1749 * Ref: NVMe v1.3c. 1750 */ 1751 cpywithpad((char *)sc->ctrldata.sn, 1752 sizeof(sc->ctrldata.sn), config, ' '); 1753 } else if (!strcmp("ram", xopts)) { 1754 uint64_t sz = strtoull(&xopts[4], NULL, 10); 1755 1756 sc->nvstore.type = NVME_STOR_RAM; 1757 sc->nvstore.size = sz * 1024 * 1024; 1758 sc->nvstore.ctx = calloc(1, sc->nvstore.size); 1759 sc->nvstore.sectsz = 4096; 1760 sc->nvstore.sectsz_bits = 12; 1761 if (sc->nvstore.ctx == NULL) { 1762 perror("Unable to allocate RAM"); 1763 free(uopt); 1764 return (-1); 1765 } 1766 } else if (optidx == 0) { 1767 snprintf(bident, sizeof(bident), "%d:%d", 1768 sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func); 1769 sc->nvstore.ctx = blockif_open(xopts, bident); 1770 if (sc->nvstore.ctx == NULL) { 1771 perror("Could not open backing file"); 1772 free(uopt); 1773 return (-1); 1774 } 1775 sc->nvstore.type = NVME_STOR_BLOCKIF; 1776 sc->nvstore.size = blockif_size(sc->nvstore.ctx); 1777 } else { 1778 fprintf(stderr, "Invalid option %s\n", xopts); 1779 free(uopt); 1780 return (-1); 1781 } 1782 1783 optidx++; 1784 } 1785 free(uopt); 1786 1787 if (sc->nvstore.ctx == NULL || sc->nvstore.size == 0) { 1788 fprintf(stderr, "backing store not specified\n"); 1789 return (-1); 1790 } 1791 if (sectsz == 512 || sectsz == 4096 || sectsz == 8192) 1792 sc->nvstore.sectsz = sectsz; 1793 else if (sc->nvstore.type != NVME_STOR_RAM) 1794 sc->nvstore.sectsz = blockif_sectsz(sc->nvstore.ctx); 1795 for (sc->nvstore.sectsz_bits = 9; 1796 (1 << sc->nvstore.sectsz_bits) < sc->nvstore.sectsz; 1797 sc->nvstore.sectsz_bits++); 1798 1799 if (sc->max_queues <= 0 || sc->max_queues > NVME_QUEUES) 1800 sc->max_queues = NVME_QUEUES; 1801 1802 if (sc->max_qentries <= 0) { 1803 fprintf(stderr, "Invalid qsz option\n"); 1804 return (-1); 1805 } 1806 if (sc->ioslots <= 0) { 1807 fprintf(stderr, "Invalid ioslots option\n"); 1808 return (-1); 1809 } 1810 1811 return (0); 1812 } 1813 1814 static int 1815 pci_nvme_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts) 1816 { 1817 struct pci_nvme_softc *sc; 1818 uint32_t pci_membar_sz; 1819 int error; 1820 1821 error = 0; 1822 1823 sc = calloc(1, sizeof(struct pci_nvme_softc)); 1824 pi->pi_arg = sc; 1825 sc->nsc_pi = pi; 1826 1827 error = pci_nvme_parse_opts(sc, opts); 1828 if (error < 0) 1829 goto done; 1830 else 1831 error = 0; 1832 1833 sc->ioreqs = calloc(sc->ioslots, sizeof(struct pci_nvme_ioreq)); 1834 for (int i = 0; i < sc->ioslots; i++) { 1835 if (i < (sc->ioslots-1)) 1836 sc->ioreqs[i].next = &sc->ioreqs[i+1]; 1837 pthread_mutex_init(&sc->ioreqs[i].mtx, NULL); 1838 pthread_cond_init(&sc->ioreqs[i].cv, NULL); 1839 } 1840 sc->ioreqs_free = sc->ioreqs; 1841 sc->intr_coales_aggr_thresh = 1; 1842 1843 pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0A0A); 1844 pci_set_cfgdata16(pi, PCIR_VENDOR, 0xFB5D); 1845 pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_STORAGE); 1846 pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_STORAGE_NVM); 1847 pci_set_cfgdata8(pi, PCIR_PROGIF, 1848 PCIP_STORAGE_NVM_ENTERPRISE_NVMHCI_1_0); 1849 1850 /* allocate size of nvme registers + doorbell space for all queues */ 1851 pci_membar_sz = sizeof(struct nvme_registers) + 1852 2*sizeof(uint32_t)*(sc->max_queues + 1); 1853 1854 DPRINTF(("nvme membar size: %u\r\n", pci_membar_sz)); 1855 1856 error = pci_emul_alloc_bar(pi, 0, PCIBAR_MEM64, pci_membar_sz); 1857 if (error) { 1858 WPRINTF(("%s pci alloc mem bar failed\r\n", __func__)); 1859 goto done; 1860 } 1861 1862 error = pci_emul_add_msixcap(pi, sc->max_queues + 1, NVME_MSIX_BAR); 1863 if (error) { 1864 WPRINTF(("%s pci add msixcap failed\r\n", __func__)); 1865 goto done; 1866 } 1867 1868 pthread_mutex_init(&sc->mtx, NULL); 1869 sem_init(&sc->iosemlock, 0, sc->ioslots); 1870 1871 pci_nvme_reset(sc); 1872 pci_nvme_init_ctrldata(sc); 1873 pci_nvme_init_nsdata(sc); 1874 1875 pci_lintr_request(pi); 1876 1877 done: 1878 return (error); 1879 } 1880 1881 1882 struct pci_devemu pci_de_nvme = { 1883 .pe_emu = "nvme", 1884 .pe_init = pci_nvme_init, 1885 .pe_barwrite = pci_nvme_write, 1886 .pe_barread = pci_nvme_read 1887 }; 1888 PCI_EMUL_SET(pci_de_nvme); 1889