1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/linker_set.h> 34 35 #include <ctype.h> 36 #include <errno.h> 37 #include <pthread.h> 38 #include <stdio.h> 39 #include <stdlib.h> 40 #include <string.h> 41 #include <strings.h> 42 #include <assert.h> 43 #include <stdbool.h> 44 45 #include <machine/vmm.h> 46 #include <vmmapi.h> 47 48 #include "acpi.h" 49 #include "bhyverun.h" 50 #include "inout.h" 51 #include "ioapic.h" 52 #include "mem.h" 53 #include "pci_emul.h" 54 #include "pci_irq.h" 55 #include "pci_lpc.h" 56 57 #define CONF1_ADDR_PORT 0x0cf8 58 #define CONF1_DATA_PORT 0x0cfc 59 60 #define CONF1_ENABLE 0x80000000ul 61 62 #define MAXBUSES (PCI_BUSMAX + 1) 63 #define MAXSLOTS (PCI_SLOTMAX + 1) 64 #define MAXFUNCS (PCI_FUNCMAX + 1) 65 66 struct funcinfo { 67 char *fi_name; 68 char *fi_param; 69 struct pci_devinst *fi_devi; 70 }; 71 72 struct intxinfo { 73 int ii_count; 74 int ii_pirq_pin; 75 int ii_ioapic_irq; 76 }; 77 78 struct slotinfo { 79 struct intxinfo si_intpins[4]; 80 struct funcinfo si_funcs[MAXFUNCS]; 81 }; 82 83 struct businfo { 84 uint16_t iobase, iolimit; /* I/O window */ 85 uint32_t membase32, memlimit32; /* mmio window below 4GB */ 86 uint64_t membase64, memlimit64; /* mmio window above 4GB */ 87 struct slotinfo slotinfo[MAXSLOTS]; 88 }; 89 90 static struct businfo *pci_businfo[MAXBUSES]; 91 92 SET_DECLARE(pci_devemu_set, struct pci_devemu); 93 94 static uint64_t pci_emul_iobase; 95 static uint64_t pci_emul_membase32; 96 static uint64_t pci_emul_membase64; 97 98 #define PCI_EMUL_IOBASE 0x2000 99 #define PCI_EMUL_IOLIMIT 0x10000 100 101 #define PCI_EMUL_ECFG_BASE 0xE0000000 /* 3.5GB */ 102 #define PCI_EMUL_ECFG_SIZE (MAXBUSES * 1024 * 1024) /* 1MB per bus */ 103 SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE); 104 105 #define PCI_EMUL_MEMLIMIT32 PCI_EMUL_ECFG_BASE 106 107 #define PCI_EMUL_MEMBASE64 0xD000000000UL 108 #define PCI_EMUL_MEMLIMIT64 0xFD00000000UL 109 110 static struct pci_devemu *pci_emul_finddev(char *name); 111 static void pci_lintr_route(struct pci_devinst *pi); 112 static void pci_lintr_update(struct pci_devinst *pi); 113 static void pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot, 114 int func, int coff, int bytes, uint32_t *val); 115 116 static __inline void 117 CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes) 118 { 119 120 if (bytes == 1) 121 pci_set_cfgdata8(pi, coff, val); 122 else if (bytes == 2) 123 pci_set_cfgdata16(pi, coff, val); 124 else 125 pci_set_cfgdata32(pi, coff, val); 126 } 127 128 static __inline uint32_t 129 CFGREAD(struct pci_devinst *pi, int coff, int bytes) 130 { 131 132 if (bytes == 1) 133 return (pci_get_cfgdata8(pi, coff)); 134 else if (bytes == 2) 135 return (pci_get_cfgdata16(pi, coff)); 136 else 137 return (pci_get_cfgdata32(pi, coff)); 138 } 139 140 /* 141 * I/O access 142 */ 143 144 /* 145 * Slot options are in the form: 146 * 147 * <bus>:<slot>:<func>,<emul>[,<config>] 148 * <slot>[:<func>],<emul>[,<config>] 149 * 150 * slot is 0..31 151 * func is 0..7 152 * emul is a string describing the type of PCI device e.g. virtio-net 153 * config is an optional string, depending on the device, that can be 154 * used for configuration. 155 * Examples are: 156 * 1,virtio-net,tap0 157 * 3:0,dummy 158 */ 159 static void 160 pci_parse_slot_usage(char *aopt) 161 { 162 163 fprintf(stderr, "Invalid PCI slot info field \"%s\"\n", aopt); 164 } 165 166 int 167 pci_parse_slot(char *opt) 168 { 169 struct businfo *bi; 170 struct slotinfo *si; 171 char *emul, *config, *str, *cp; 172 int error, bnum, snum, fnum; 173 174 error = -1; 175 str = strdup(opt); 176 177 emul = config = NULL; 178 if ((cp = strchr(str, ',')) != NULL) { 179 *cp = '\0'; 180 emul = cp + 1; 181 if ((cp = strchr(emul, ',')) != NULL) { 182 *cp = '\0'; 183 config = cp + 1; 184 } 185 } else { 186 pci_parse_slot_usage(opt); 187 goto done; 188 } 189 190 /* <bus>:<slot>:<func> */ 191 if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) { 192 bnum = 0; 193 /* <slot>:<func> */ 194 if (sscanf(str, "%d:%d", &snum, &fnum) != 2) { 195 fnum = 0; 196 /* <slot> */ 197 if (sscanf(str, "%d", &snum) != 1) { 198 snum = -1; 199 } 200 } 201 } 202 203 if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS || 204 fnum < 0 || fnum >= MAXFUNCS) { 205 pci_parse_slot_usage(opt); 206 goto done; 207 } 208 209 if (pci_businfo[bnum] == NULL) 210 pci_businfo[bnum] = calloc(1, sizeof(struct businfo)); 211 212 bi = pci_businfo[bnum]; 213 si = &bi->slotinfo[snum]; 214 215 if (si->si_funcs[fnum].fi_name != NULL) { 216 fprintf(stderr, "pci slot %d:%d already occupied!\n", 217 snum, fnum); 218 goto done; 219 } 220 221 if (pci_emul_finddev(emul) == NULL) { 222 fprintf(stderr, "pci slot %d:%d: unknown device \"%s\"\n", 223 snum, fnum, emul); 224 goto done; 225 } 226 227 error = 0; 228 si->si_funcs[fnum].fi_name = emul; 229 si->si_funcs[fnum].fi_param = config; 230 231 done: 232 if (error) 233 free(str); 234 235 return (error); 236 } 237 238 static int 239 pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset) 240 { 241 242 if (offset < pi->pi_msix.pba_offset) 243 return (0); 244 245 if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) { 246 return (0); 247 } 248 249 return (1); 250 } 251 252 int 253 pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size, 254 uint64_t value) 255 { 256 int msix_entry_offset; 257 int tab_index; 258 char *dest; 259 260 /* support only 4 or 8 byte writes */ 261 if (size != 4 && size != 8) 262 return (-1); 263 264 /* 265 * Return if table index is beyond what device supports 266 */ 267 tab_index = offset / MSIX_TABLE_ENTRY_SIZE; 268 if (tab_index >= pi->pi_msix.table_count) 269 return (-1); 270 271 msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE; 272 273 /* support only aligned writes */ 274 if ((msix_entry_offset % size) != 0) 275 return (-1); 276 277 dest = (char *)(pi->pi_msix.table + tab_index); 278 dest += msix_entry_offset; 279 280 if (size == 4) 281 *((uint32_t *)dest) = value; 282 else 283 *((uint64_t *)dest) = value; 284 285 return (0); 286 } 287 288 uint64_t 289 pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size) 290 { 291 char *dest; 292 int msix_entry_offset; 293 int tab_index; 294 uint64_t retval = ~0; 295 296 /* 297 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X 298 * table but we also allow 1 byte access to accommodate reads from 299 * ddb. 300 */ 301 if (size != 1 && size != 4 && size != 8) 302 return (retval); 303 304 msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE; 305 306 /* support only aligned reads */ 307 if ((msix_entry_offset % size) != 0) { 308 return (retval); 309 } 310 311 tab_index = offset / MSIX_TABLE_ENTRY_SIZE; 312 313 if (tab_index < pi->pi_msix.table_count) { 314 /* valid MSI-X Table access */ 315 dest = (char *)(pi->pi_msix.table + tab_index); 316 dest += msix_entry_offset; 317 318 if (size == 1) 319 retval = *((uint8_t *)dest); 320 else if (size == 4) 321 retval = *((uint32_t *)dest); 322 else 323 retval = *((uint64_t *)dest); 324 } else if (pci_valid_pba_offset(pi, offset)) { 325 /* return 0 for PBA access */ 326 retval = 0; 327 } 328 329 return (retval); 330 } 331 332 int 333 pci_msix_table_bar(struct pci_devinst *pi) 334 { 335 336 if (pi->pi_msix.table != NULL) 337 return (pi->pi_msix.table_bar); 338 else 339 return (-1); 340 } 341 342 int 343 pci_msix_pba_bar(struct pci_devinst *pi) 344 { 345 346 if (pi->pi_msix.table != NULL) 347 return (pi->pi_msix.pba_bar); 348 else 349 return (-1); 350 } 351 352 static int 353 pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes, 354 uint32_t *eax, void *arg) 355 { 356 struct pci_devinst *pdi = arg; 357 struct pci_devemu *pe = pdi->pi_d; 358 uint64_t offset; 359 int i; 360 361 for (i = 0; i <= PCI_BARMAX; i++) { 362 if (pdi->pi_bar[i].type == PCIBAR_IO && 363 port >= pdi->pi_bar[i].addr && 364 port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) { 365 offset = port - pdi->pi_bar[i].addr; 366 if (in) 367 *eax = (*pe->pe_barread)(ctx, vcpu, pdi, i, 368 offset, bytes); 369 else 370 (*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset, 371 bytes, *eax); 372 return (0); 373 } 374 } 375 return (-1); 376 } 377 378 static int 379 pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr, 380 int size, uint64_t *val, void *arg1, long arg2) 381 { 382 struct pci_devinst *pdi = arg1; 383 struct pci_devemu *pe = pdi->pi_d; 384 uint64_t offset; 385 int bidx = (int) arg2; 386 387 assert(bidx <= PCI_BARMAX); 388 assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 || 389 pdi->pi_bar[bidx].type == PCIBAR_MEM64); 390 assert(addr >= pdi->pi_bar[bidx].addr && 391 addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size); 392 393 offset = addr - pdi->pi_bar[bidx].addr; 394 395 if (dir == MEM_F_WRITE) { 396 if (size == 8) { 397 (*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset, 398 4, *val & 0xffffffff); 399 (*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset + 4, 400 4, *val >> 32); 401 } else { 402 (*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset, 403 size, *val); 404 } 405 } else { 406 if (size == 8) { 407 *val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx, 408 offset, 4); 409 *val |= (*pe->pe_barread)(ctx, vcpu, pdi, bidx, 410 offset + 4, 4) << 32; 411 } else { 412 *val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx, 413 offset, size); 414 } 415 } 416 417 return (0); 418 } 419 420 421 static int 422 pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size, 423 uint64_t *addr) 424 { 425 uint64_t base; 426 427 assert((size & (size - 1)) == 0); /* must be a power of 2 */ 428 429 base = roundup2(*baseptr, size); 430 431 if (base + size <= limit) { 432 *addr = base; 433 *baseptr = base + size; 434 return (0); 435 } else 436 return (-1); 437 } 438 439 int 440 pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type, 441 uint64_t size) 442 { 443 444 return (pci_emul_alloc_pbar(pdi, idx, 0, type, size)); 445 } 446 447 /* 448 * Register (or unregister) the MMIO or I/O region associated with the BAR 449 * register 'idx' of an emulated pci device. 450 */ 451 static void 452 modify_bar_registration(struct pci_devinst *pi, int idx, int registration) 453 { 454 int error; 455 struct inout_port iop; 456 struct mem_range mr; 457 458 switch (pi->pi_bar[idx].type) { 459 case PCIBAR_IO: 460 bzero(&iop, sizeof(struct inout_port)); 461 iop.name = pi->pi_name; 462 iop.port = pi->pi_bar[idx].addr; 463 iop.size = pi->pi_bar[idx].size; 464 if (registration) { 465 iop.flags = IOPORT_F_INOUT; 466 iop.handler = pci_emul_io_handler; 467 iop.arg = pi; 468 error = register_inout(&iop); 469 } else 470 error = unregister_inout(&iop); 471 break; 472 case PCIBAR_MEM32: 473 case PCIBAR_MEM64: 474 bzero(&mr, sizeof(struct mem_range)); 475 mr.name = pi->pi_name; 476 mr.base = pi->pi_bar[idx].addr; 477 mr.size = pi->pi_bar[idx].size; 478 if (registration) { 479 mr.flags = MEM_F_RW; 480 mr.handler = pci_emul_mem_handler; 481 mr.arg1 = pi; 482 mr.arg2 = idx; 483 error = register_mem(&mr); 484 } else 485 error = unregister_mem(&mr); 486 break; 487 default: 488 error = EINVAL; 489 break; 490 } 491 assert(error == 0); 492 } 493 494 static void 495 unregister_bar(struct pci_devinst *pi, int idx) 496 { 497 498 modify_bar_registration(pi, idx, 0); 499 } 500 501 static void 502 register_bar(struct pci_devinst *pi, int idx) 503 { 504 505 modify_bar_registration(pi, idx, 1); 506 } 507 508 /* Are we decoding i/o port accesses for the emulated pci device? */ 509 static int 510 porten(struct pci_devinst *pi) 511 { 512 uint16_t cmd; 513 514 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); 515 516 return (cmd & PCIM_CMD_PORTEN); 517 } 518 519 /* Are we decoding memory accesses for the emulated pci device? */ 520 static int 521 memen(struct pci_devinst *pi) 522 { 523 uint16_t cmd; 524 525 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); 526 527 return (cmd & PCIM_CMD_MEMEN); 528 } 529 530 /* 531 * Update the MMIO or I/O address that is decoded by the BAR register. 532 * 533 * If the pci device has enabled the address space decoding then intercept 534 * the address range decoded by the BAR register. 535 */ 536 static void 537 update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type) 538 { 539 int decode; 540 541 if (pi->pi_bar[idx].type == PCIBAR_IO) 542 decode = porten(pi); 543 else 544 decode = memen(pi); 545 546 if (decode) 547 unregister_bar(pi, idx); 548 549 switch (type) { 550 case PCIBAR_IO: 551 case PCIBAR_MEM32: 552 pi->pi_bar[idx].addr = addr; 553 break; 554 case PCIBAR_MEM64: 555 pi->pi_bar[idx].addr &= ~0xffffffffUL; 556 pi->pi_bar[idx].addr |= addr; 557 break; 558 case PCIBAR_MEMHI64: 559 pi->pi_bar[idx].addr &= 0xffffffff; 560 pi->pi_bar[idx].addr |= addr; 561 break; 562 default: 563 assert(0); 564 } 565 566 if (decode) 567 register_bar(pi, idx); 568 } 569 570 int 571 pci_emul_alloc_pbar(struct pci_devinst *pdi, int idx, uint64_t hostbase, 572 enum pcibar_type type, uint64_t size) 573 { 574 int error; 575 uint64_t *baseptr, limit, addr, mask, lobits, bar; 576 577 assert(idx >= 0 && idx <= PCI_BARMAX); 578 579 if ((size & (size - 1)) != 0) 580 size = 1UL << flsl(size); /* round up to a power of 2 */ 581 582 /* Enforce minimum BAR sizes required by the PCI standard */ 583 if (type == PCIBAR_IO) { 584 if (size < 4) 585 size = 4; 586 } else { 587 if (size < 16) 588 size = 16; 589 } 590 591 switch (type) { 592 case PCIBAR_NONE: 593 baseptr = NULL; 594 addr = mask = lobits = 0; 595 break; 596 case PCIBAR_IO: 597 baseptr = &pci_emul_iobase; 598 limit = PCI_EMUL_IOLIMIT; 599 mask = PCIM_BAR_IO_BASE; 600 lobits = PCIM_BAR_IO_SPACE; 601 break; 602 case PCIBAR_MEM64: 603 /* 604 * XXX 605 * Some drivers do not work well if the 64-bit BAR is allocated 606 * above 4GB. Allow for this by allocating small requests under 607 * 4GB unless then allocation size is larger than some arbitrary 608 * number (32MB currently). 609 */ 610 if (size > 32 * 1024 * 1024) { 611 /* 612 * XXX special case for device requiring peer-peer DMA 613 */ 614 if (size == 0x100000000UL) 615 baseptr = &hostbase; 616 else 617 baseptr = &pci_emul_membase64; 618 limit = PCI_EMUL_MEMLIMIT64; 619 mask = PCIM_BAR_MEM_BASE; 620 lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 | 621 PCIM_BAR_MEM_PREFETCH; 622 break; 623 } else { 624 baseptr = &pci_emul_membase32; 625 limit = PCI_EMUL_MEMLIMIT32; 626 mask = PCIM_BAR_MEM_BASE; 627 lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64; 628 } 629 break; 630 case PCIBAR_MEM32: 631 baseptr = &pci_emul_membase32; 632 limit = PCI_EMUL_MEMLIMIT32; 633 mask = PCIM_BAR_MEM_BASE; 634 lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32; 635 break; 636 default: 637 printf("pci_emul_alloc_base: invalid bar type %d\n", type); 638 assert(0); 639 } 640 641 if (baseptr != NULL) { 642 error = pci_emul_alloc_resource(baseptr, limit, size, &addr); 643 if (error != 0) 644 return (error); 645 } 646 647 pdi->pi_bar[idx].type = type; 648 pdi->pi_bar[idx].addr = addr; 649 pdi->pi_bar[idx].size = size; 650 651 /* Initialize the BAR register in config space */ 652 bar = (addr & mask) | lobits; 653 pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar); 654 655 if (type == PCIBAR_MEM64) { 656 assert(idx + 1 <= PCI_BARMAX); 657 pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64; 658 pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32); 659 } 660 661 register_bar(pdi, idx); 662 663 return (0); 664 } 665 666 #define CAP_START_OFFSET 0x40 667 static int 668 pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen) 669 { 670 int i, capoff, reallen; 671 uint16_t sts; 672 673 assert(caplen > 0); 674 675 reallen = roundup2(caplen, 4); /* dword aligned */ 676 677 sts = pci_get_cfgdata16(pi, PCIR_STATUS); 678 if ((sts & PCIM_STATUS_CAPPRESENT) == 0) 679 capoff = CAP_START_OFFSET; 680 else 681 capoff = pi->pi_capend + 1; 682 683 /* Check if we have enough space */ 684 if (capoff + reallen > PCI_REGMAX + 1) 685 return (-1); 686 687 /* Set the previous capability pointer */ 688 if ((sts & PCIM_STATUS_CAPPRESENT) == 0) { 689 pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff); 690 pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT); 691 } else 692 pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff); 693 694 /* Copy the capability */ 695 for (i = 0; i < caplen; i++) 696 pci_set_cfgdata8(pi, capoff + i, capdata[i]); 697 698 /* Set the next capability pointer */ 699 pci_set_cfgdata8(pi, capoff + 1, 0); 700 701 pi->pi_prevcap = capoff; 702 pi->pi_capend = capoff + reallen - 1; 703 return (0); 704 } 705 706 static struct pci_devemu * 707 pci_emul_finddev(char *name) 708 { 709 struct pci_devemu **pdpp, *pdp; 710 711 SET_FOREACH(pdpp, pci_devemu_set) { 712 pdp = *pdpp; 713 if (!strcmp(pdp->pe_emu, name)) { 714 return (pdp); 715 } 716 } 717 718 return (NULL); 719 } 720 721 static int 722 pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot, 723 int func, struct funcinfo *fi) 724 { 725 struct pci_devinst *pdi; 726 int err; 727 728 pdi = calloc(1, sizeof(struct pci_devinst)); 729 730 pdi->pi_vmctx = ctx; 731 pdi->pi_bus = bus; 732 pdi->pi_slot = slot; 733 pdi->pi_func = func; 734 pthread_mutex_init(&pdi->pi_lintr.lock, NULL); 735 pdi->pi_lintr.pin = 0; 736 pdi->pi_lintr.state = IDLE; 737 pdi->pi_lintr.pirq_pin = 0; 738 pdi->pi_lintr.ioapic_irq = 0; 739 pdi->pi_d = pde; 740 snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot); 741 742 /* Disable legacy interrupts */ 743 pci_set_cfgdata8(pdi, PCIR_INTLINE, 255); 744 pci_set_cfgdata8(pdi, PCIR_INTPIN, 0); 745 746 pci_set_cfgdata8(pdi, PCIR_COMMAND, 747 PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN); 748 749 err = (*pde->pe_init)(ctx, pdi, fi->fi_param); 750 if (err == 0) 751 fi->fi_devi = pdi; 752 else 753 free(pdi); 754 755 return (err); 756 } 757 758 void 759 pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr) 760 { 761 int mmc; 762 763 /* Number of msi messages must be a power of 2 between 1 and 32 */ 764 assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32); 765 mmc = ffs(msgnum) - 1; 766 767 bzero(msicap, sizeof(struct msicap)); 768 msicap->capid = PCIY_MSI; 769 msicap->nextptr = nextptr; 770 msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1); 771 } 772 773 int 774 pci_emul_add_msicap(struct pci_devinst *pi, int msgnum) 775 { 776 struct msicap msicap; 777 778 pci_populate_msicap(&msicap, msgnum, 0); 779 780 return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap))); 781 } 782 783 static void 784 pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum, 785 uint32_t msix_tab_size) 786 { 787 788 assert(msix_tab_size % 4096 == 0); 789 790 bzero(msixcap, sizeof(struct msixcap)); 791 msixcap->capid = PCIY_MSIX; 792 793 /* 794 * Message Control Register, all fields set to 795 * zero except for the Table Size. 796 * Note: Table size N is encoded as N-1 797 */ 798 msixcap->msgctrl = msgnum - 1; 799 800 /* 801 * MSI-X BAR setup: 802 * - MSI-X table start at offset 0 803 * - PBA table starts at a 4K aligned offset after the MSI-X table 804 */ 805 msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK; 806 msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK); 807 } 808 809 static void 810 pci_msix_table_init(struct pci_devinst *pi, int table_entries) 811 { 812 int i, table_size; 813 814 assert(table_entries > 0); 815 assert(table_entries <= MAX_MSIX_TABLE_ENTRIES); 816 817 table_size = table_entries * MSIX_TABLE_ENTRY_SIZE; 818 pi->pi_msix.table = calloc(1, table_size); 819 820 /* set mask bit of vector control register */ 821 for (i = 0; i < table_entries; i++) 822 pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK; 823 } 824 825 int 826 pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum) 827 { 828 uint32_t tab_size; 829 struct msixcap msixcap; 830 831 assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES); 832 assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0); 833 834 tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE; 835 836 /* Align table size to nearest 4K */ 837 tab_size = roundup2(tab_size, 4096); 838 839 pi->pi_msix.table_bar = barnum; 840 pi->pi_msix.pba_bar = barnum; 841 pi->pi_msix.table_offset = 0; 842 pi->pi_msix.table_count = msgnum; 843 pi->pi_msix.pba_offset = tab_size; 844 pi->pi_msix.pba_size = PBA_SIZE(msgnum); 845 846 pci_msix_table_init(pi, msgnum); 847 848 pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size); 849 850 /* allocate memory for MSI-X Table and PBA */ 851 pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32, 852 tab_size + pi->pi_msix.pba_size); 853 854 return (pci_emul_add_capability(pi, (u_char *)&msixcap, 855 sizeof(msixcap))); 856 } 857 858 void 859 msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset, 860 int bytes, uint32_t val) 861 { 862 uint16_t msgctrl, rwmask; 863 int off; 864 865 off = offset - capoff; 866 /* Message Control Register */ 867 if (off == 2 && bytes == 2) { 868 rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK; 869 msgctrl = pci_get_cfgdata16(pi, offset); 870 msgctrl &= ~rwmask; 871 msgctrl |= val & rwmask; 872 val = msgctrl; 873 874 pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE; 875 pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK; 876 pci_lintr_update(pi); 877 } 878 879 CFGWRITE(pi, offset, val, bytes); 880 } 881 882 void 883 msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset, 884 int bytes, uint32_t val) 885 { 886 uint16_t msgctrl, rwmask, msgdata, mme; 887 uint32_t addrlo; 888 889 /* 890 * If guest is writing to the message control register make sure 891 * we do not overwrite read-only fields. 892 */ 893 if ((offset - capoff) == 2 && bytes == 2) { 894 rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE; 895 msgctrl = pci_get_cfgdata16(pi, offset); 896 msgctrl &= ~rwmask; 897 msgctrl |= val & rwmask; 898 val = msgctrl; 899 900 addrlo = pci_get_cfgdata32(pi, capoff + 4); 901 if (msgctrl & PCIM_MSICTRL_64BIT) 902 msgdata = pci_get_cfgdata16(pi, capoff + 12); 903 else 904 msgdata = pci_get_cfgdata16(pi, capoff + 8); 905 906 mme = msgctrl & PCIM_MSICTRL_MME_MASK; 907 pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0; 908 if (pi->pi_msi.enabled) { 909 pi->pi_msi.addr = addrlo; 910 pi->pi_msi.msg_data = msgdata; 911 pi->pi_msi.maxmsgnum = 1 << (mme >> 4); 912 } else { 913 pi->pi_msi.maxmsgnum = 0; 914 } 915 pci_lintr_update(pi); 916 } 917 918 CFGWRITE(pi, offset, val, bytes); 919 } 920 921 void 922 pciecap_cfgwrite(struct pci_devinst *pi, int capoff, int offset, 923 int bytes, uint32_t val) 924 { 925 926 /* XXX don't write to the readonly parts */ 927 CFGWRITE(pi, offset, val, bytes); 928 } 929 930 #define PCIECAP_VERSION 0x2 931 int 932 pci_emul_add_pciecap(struct pci_devinst *pi, int type) 933 { 934 int err; 935 struct pciecap pciecap; 936 937 if (type != PCIEM_TYPE_ROOT_PORT) 938 return (-1); 939 940 bzero(&pciecap, sizeof(pciecap)); 941 942 pciecap.capid = PCIY_EXPRESS; 943 pciecap.pcie_capabilities = PCIECAP_VERSION | PCIEM_TYPE_ROOT_PORT; 944 pciecap.link_capabilities = 0x411; /* gen1, x1 */ 945 pciecap.link_status = 0x11; /* gen1, x1 */ 946 947 err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap)); 948 return (err); 949 } 950 951 /* 952 * This function assumes that 'coff' is in the capabilities region of the 953 * config space. 954 */ 955 static void 956 pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val) 957 { 958 int capid; 959 uint8_t capoff, nextoff; 960 961 /* Do not allow un-aligned writes */ 962 if ((offset & (bytes - 1)) != 0) 963 return; 964 965 /* Find the capability that we want to update */ 966 capoff = CAP_START_OFFSET; 967 while (1) { 968 nextoff = pci_get_cfgdata8(pi, capoff + 1); 969 if (nextoff == 0) 970 break; 971 if (offset >= capoff && offset < nextoff) 972 break; 973 974 capoff = nextoff; 975 } 976 assert(offset >= capoff); 977 978 /* 979 * Capability ID and Next Capability Pointer are readonly. 980 * However, some o/s's do 4-byte writes that include these. 981 * For this case, trim the write back to 2 bytes and adjust 982 * the data. 983 */ 984 if (offset == capoff || offset == capoff + 1) { 985 if (offset == capoff && bytes == 4) { 986 bytes = 2; 987 offset += 2; 988 val >>= 16; 989 } else 990 return; 991 } 992 993 capid = pci_get_cfgdata8(pi, capoff); 994 switch (capid) { 995 case PCIY_MSI: 996 msicap_cfgwrite(pi, capoff, offset, bytes, val); 997 break; 998 case PCIY_MSIX: 999 msixcap_cfgwrite(pi, capoff, offset, bytes, val); 1000 break; 1001 case PCIY_EXPRESS: 1002 pciecap_cfgwrite(pi, capoff, offset, bytes, val); 1003 break; 1004 default: 1005 break; 1006 } 1007 } 1008 1009 static int 1010 pci_emul_iscap(struct pci_devinst *pi, int offset) 1011 { 1012 uint16_t sts; 1013 1014 sts = pci_get_cfgdata16(pi, PCIR_STATUS); 1015 if ((sts & PCIM_STATUS_CAPPRESENT) != 0) { 1016 if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend) 1017 return (1); 1018 } 1019 return (0); 1020 } 1021 1022 static int 1023 pci_emul_fallback_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr, 1024 int size, uint64_t *val, void *arg1, long arg2) 1025 { 1026 /* 1027 * Ignore writes; return 0xff's for reads. The mem read code 1028 * will take care of truncating to the correct size. 1029 */ 1030 if (dir == MEM_F_READ) { 1031 *val = 0xffffffffffffffff; 1032 } 1033 1034 return (0); 1035 } 1036 1037 static int 1038 pci_emul_ecfg_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr, 1039 int bytes, uint64_t *val, void *arg1, long arg2) 1040 { 1041 int bus, slot, func, coff, in; 1042 1043 coff = addr & 0xfff; 1044 func = (addr >> 12) & 0x7; 1045 slot = (addr >> 15) & 0x1f; 1046 bus = (addr >> 20) & 0xff; 1047 in = (dir == MEM_F_READ); 1048 if (in) 1049 *val = ~0UL; 1050 pci_cfgrw(ctx, vcpu, in, bus, slot, func, coff, bytes, (uint32_t *)val); 1051 return (0); 1052 } 1053 1054 uint64_t 1055 pci_ecfg_base(void) 1056 { 1057 1058 return (PCI_EMUL_ECFG_BASE); 1059 } 1060 1061 #define BUSIO_ROUNDUP 32 1062 #define BUSMEM_ROUNDUP (1024 * 1024) 1063 1064 int 1065 init_pci(struct vmctx *ctx) 1066 { 1067 struct mem_range mr; 1068 struct pci_devemu *pde; 1069 struct businfo *bi; 1070 struct slotinfo *si; 1071 struct funcinfo *fi; 1072 size_t lowmem; 1073 int bus, slot, func; 1074 int error; 1075 1076 pci_emul_iobase = PCI_EMUL_IOBASE; 1077 pci_emul_membase32 = vm_get_lowmem_limit(ctx); 1078 pci_emul_membase64 = PCI_EMUL_MEMBASE64; 1079 1080 for (bus = 0; bus < MAXBUSES; bus++) { 1081 if ((bi = pci_businfo[bus]) == NULL) 1082 continue; 1083 /* 1084 * Keep track of the i/o and memory resources allocated to 1085 * this bus. 1086 */ 1087 bi->iobase = pci_emul_iobase; 1088 bi->membase32 = pci_emul_membase32; 1089 bi->membase64 = pci_emul_membase64; 1090 1091 for (slot = 0; slot < MAXSLOTS; slot++) { 1092 si = &bi->slotinfo[slot]; 1093 for (func = 0; func < MAXFUNCS; func++) { 1094 fi = &si->si_funcs[func]; 1095 if (fi->fi_name == NULL) 1096 continue; 1097 pde = pci_emul_finddev(fi->fi_name); 1098 assert(pde != NULL); 1099 error = pci_emul_init(ctx, pde, bus, slot, 1100 func, fi); 1101 if (error) 1102 return (error); 1103 } 1104 } 1105 1106 /* 1107 * Add some slop to the I/O and memory resources decoded by 1108 * this bus to give a guest some flexibility if it wants to 1109 * reprogram the BARs. 1110 */ 1111 pci_emul_iobase += BUSIO_ROUNDUP; 1112 pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP); 1113 bi->iolimit = pci_emul_iobase; 1114 1115 pci_emul_membase32 += BUSMEM_ROUNDUP; 1116 pci_emul_membase32 = roundup2(pci_emul_membase32, 1117 BUSMEM_ROUNDUP); 1118 bi->memlimit32 = pci_emul_membase32; 1119 1120 pci_emul_membase64 += BUSMEM_ROUNDUP; 1121 pci_emul_membase64 = roundup2(pci_emul_membase64, 1122 BUSMEM_ROUNDUP); 1123 bi->memlimit64 = pci_emul_membase64; 1124 } 1125 1126 /* 1127 * PCI backends are initialized before routing INTx interrupts 1128 * so that LPC devices are able to reserve ISA IRQs before 1129 * routing PIRQ pins. 1130 */ 1131 for (bus = 0; bus < MAXBUSES; bus++) { 1132 if ((bi = pci_businfo[bus]) == NULL) 1133 continue; 1134 1135 for (slot = 0; slot < MAXSLOTS; slot++) { 1136 si = &bi->slotinfo[slot]; 1137 for (func = 0; func < MAXFUNCS; func++) { 1138 fi = &si->si_funcs[func]; 1139 if (fi->fi_devi == NULL) 1140 continue; 1141 pci_lintr_route(fi->fi_devi); 1142 } 1143 } 1144 } 1145 lpc_pirq_routed(); 1146 1147 /* 1148 * The guest physical memory map looks like the following: 1149 * [0, lowmem) guest system memory 1150 * [lowmem, lowmem_limit) memory hole (may be absent) 1151 * [lowmem_limit, 0xE0000000) PCI hole (32-bit BAR allocation) 1152 * [0xE0000000, 0xF0000000) PCI extended config window 1153 * [0xF0000000, 4GB) LAPIC, IOAPIC, HPET, firmware 1154 * [4GB, 4GB + highmem) 1155 */ 1156 1157 /* 1158 * Accesses to memory addresses that are not allocated to system 1159 * memory or PCI devices return 0xff's. 1160 */ 1161 lowmem = vm_get_lowmem_size(ctx); 1162 bzero(&mr, sizeof(struct mem_range)); 1163 mr.name = "PCI hole"; 1164 mr.flags = MEM_F_RW | MEM_F_IMMUTABLE; 1165 mr.base = lowmem; 1166 mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem; 1167 mr.handler = pci_emul_fallback_handler; 1168 error = register_mem_fallback(&mr); 1169 assert(error == 0); 1170 1171 /* PCI extended config space */ 1172 bzero(&mr, sizeof(struct mem_range)); 1173 mr.name = "PCI ECFG"; 1174 mr.flags = MEM_F_RW | MEM_F_IMMUTABLE; 1175 mr.base = PCI_EMUL_ECFG_BASE; 1176 mr.size = PCI_EMUL_ECFG_SIZE; 1177 mr.handler = pci_emul_ecfg_handler; 1178 error = register_mem(&mr); 1179 assert(error == 0); 1180 1181 return (0); 1182 } 1183 1184 static void 1185 pci_apic_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq, 1186 void *arg) 1187 { 1188 1189 dsdt_line(" Package ()"); 1190 dsdt_line(" {"); 1191 dsdt_line(" 0x%X,", slot << 16 | 0xffff); 1192 dsdt_line(" 0x%02X,", pin - 1); 1193 dsdt_line(" Zero,"); 1194 dsdt_line(" 0x%X", ioapic_irq); 1195 dsdt_line(" },"); 1196 } 1197 1198 static void 1199 pci_pirq_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq, 1200 void *arg) 1201 { 1202 char *name; 1203 1204 name = lpc_pirq_name(pirq_pin); 1205 if (name == NULL) 1206 return; 1207 dsdt_line(" Package ()"); 1208 dsdt_line(" {"); 1209 dsdt_line(" 0x%X,", slot << 16 | 0xffff); 1210 dsdt_line(" 0x%02X,", pin - 1); 1211 dsdt_line(" %s,", name); 1212 dsdt_line(" 0x00"); 1213 dsdt_line(" },"); 1214 free(name); 1215 } 1216 1217 /* 1218 * A bhyve virtual machine has a flat PCI hierarchy with a root port 1219 * corresponding to each PCI bus. 1220 */ 1221 static void 1222 pci_bus_write_dsdt(int bus) 1223 { 1224 struct businfo *bi; 1225 struct slotinfo *si; 1226 struct pci_devinst *pi; 1227 int count, func, slot; 1228 1229 /* 1230 * If there are no devices on this 'bus' then just return. 1231 */ 1232 if ((bi = pci_businfo[bus]) == NULL) { 1233 /* 1234 * Bus 0 is special because it decodes the I/O ports used 1235 * for PCI config space access even if there are no devices 1236 * on it. 1237 */ 1238 if (bus != 0) 1239 return; 1240 } 1241 1242 dsdt_line(" Device (PC%02X)", bus); 1243 dsdt_line(" {"); 1244 dsdt_line(" Name (_HID, EisaId (\"PNP0A03\"))"); 1245 dsdt_line(" Name (_ADR, Zero)"); 1246 1247 dsdt_line(" Method (_BBN, 0, NotSerialized)"); 1248 dsdt_line(" {"); 1249 dsdt_line(" Return (0x%08X)", bus); 1250 dsdt_line(" }"); 1251 dsdt_line(" Name (_CRS, ResourceTemplate ()"); 1252 dsdt_line(" {"); 1253 dsdt_line(" WordBusNumber (ResourceProducer, MinFixed, " 1254 "MaxFixed, PosDecode,"); 1255 dsdt_line(" 0x0000, // Granularity"); 1256 dsdt_line(" 0x%04X, // Range Minimum", bus); 1257 dsdt_line(" 0x%04X, // Range Maximum", bus); 1258 dsdt_line(" 0x0000, // Translation Offset"); 1259 dsdt_line(" 0x0001, // Length"); 1260 dsdt_line(" ,, )"); 1261 1262 if (bus == 0) { 1263 dsdt_indent(3); 1264 dsdt_fixed_ioport(0xCF8, 8); 1265 dsdt_unindent(3); 1266 1267 dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, " 1268 "PosDecode, EntireRange,"); 1269 dsdt_line(" 0x0000, // Granularity"); 1270 dsdt_line(" 0x0000, // Range Minimum"); 1271 dsdt_line(" 0x0CF7, // Range Maximum"); 1272 dsdt_line(" 0x0000, // Translation Offset"); 1273 dsdt_line(" 0x0CF8, // Length"); 1274 dsdt_line(" ,, , TypeStatic)"); 1275 1276 dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, " 1277 "PosDecode, EntireRange,"); 1278 dsdt_line(" 0x0000, // Granularity"); 1279 dsdt_line(" 0x0D00, // Range Minimum"); 1280 dsdt_line(" 0x%04X, // Range Maximum", 1281 PCI_EMUL_IOBASE - 1); 1282 dsdt_line(" 0x0000, // Translation Offset"); 1283 dsdt_line(" 0x%04X, // Length", 1284 PCI_EMUL_IOBASE - 0x0D00); 1285 dsdt_line(" ,, , TypeStatic)"); 1286 1287 if (bi == NULL) { 1288 dsdt_line(" })"); 1289 goto done; 1290 } 1291 } 1292 assert(bi != NULL); 1293 1294 /* i/o window */ 1295 dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, " 1296 "PosDecode, EntireRange,"); 1297 dsdt_line(" 0x0000, // Granularity"); 1298 dsdt_line(" 0x%04X, // Range Minimum", bi->iobase); 1299 dsdt_line(" 0x%04X, // Range Maximum", 1300 bi->iolimit - 1); 1301 dsdt_line(" 0x0000, // Translation Offset"); 1302 dsdt_line(" 0x%04X, // Length", 1303 bi->iolimit - bi->iobase); 1304 dsdt_line(" ,, , TypeStatic)"); 1305 1306 /* mmio window (32-bit) */ 1307 dsdt_line(" DWordMemory (ResourceProducer, PosDecode, " 1308 "MinFixed, MaxFixed, NonCacheable, ReadWrite,"); 1309 dsdt_line(" 0x00000000, // Granularity"); 1310 dsdt_line(" 0x%08X, // Range Minimum\n", bi->membase32); 1311 dsdt_line(" 0x%08X, // Range Maximum\n", 1312 bi->memlimit32 - 1); 1313 dsdt_line(" 0x00000000, // Translation Offset"); 1314 dsdt_line(" 0x%08X, // Length\n", 1315 bi->memlimit32 - bi->membase32); 1316 dsdt_line(" ,, , AddressRangeMemory, TypeStatic)"); 1317 1318 /* mmio window (64-bit) */ 1319 dsdt_line(" QWordMemory (ResourceProducer, PosDecode, " 1320 "MinFixed, MaxFixed, NonCacheable, ReadWrite,"); 1321 dsdt_line(" 0x0000000000000000, // Granularity"); 1322 dsdt_line(" 0x%016lX, // Range Minimum\n", bi->membase64); 1323 dsdt_line(" 0x%016lX, // Range Maximum\n", 1324 bi->memlimit64 - 1); 1325 dsdt_line(" 0x0000000000000000, // Translation Offset"); 1326 dsdt_line(" 0x%016lX, // Length\n", 1327 bi->memlimit64 - bi->membase64); 1328 dsdt_line(" ,, , AddressRangeMemory, TypeStatic)"); 1329 dsdt_line(" })"); 1330 1331 count = pci_count_lintr(bus); 1332 if (count != 0) { 1333 dsdt_indent(2); 1334 dsdt_line("Name (PPRT, Package ()"); 1335 dsdt_line("{"); 1336 pci_walk_lintr(bus, pci_pirq_prt_entry, NULL); 1337 dsdt_line("})"); 1338 dsdt_line("Name (APRT, Package ()"); 1339 dsdt_line("{"); 1340 pci_walk_lintr(bus, pci_apic_prt_entry, NULL); 1341 dsdt_line("})"); 1342 dsdt_line("Method (_PRT, 0, NotSerialized)"); 1343 dsdt_line("{"); 1344 dsdt_line(" If (PICM)"); 1345 dsdt_line(" {"); 1346 dsdt_line(" Return (APRT)"); 1347 dsdt_line(" }"); 1348 dsdt_line(" Else"); 1349 dsdt_line(" {"); 1350 dsdt_line(" Return (PPRT)"); 1351 dsdt_line(" }"); 1352 dsdt_line("}"); 1353 dsdt_unindent(2); 1354 } 1355 1356 dsdt_indent(2); 1357 for (slot = 0; slot < MAXSLOTS; slot++) { 1358 si = &bi->slotinfo[slot]; 1359 for (func = 0; func < MAXFUNCS; func++) { 1360 pi = si->si_funcs[func].fi_devi; 1361 if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL) 1362 pi->pi_d->pe_write_dsdt(pi); 1363 } 1364 } 1365 dsdt_unindent(2); 1366 done: 1367 dsdt_line(" }"); 1368 } 1369 1370 void 1371 pci_write_dsdt(void) 1372 { 1373 int bus; 1374 1375 dsdt_indent(1); 1376 dsdt_line("Name (PICM, 0x00)"); 1377 dsdt_line("Method (_PIC, 1, NotSerialized)"); 1378 dsdt_line("{"); 1379 dsdt_line(" Store (Arg0, PICM)"); 1380 dsdt_line("}"); 1381 dsdt_line(""); 1382 dsdt_line("Scope (_SB)"); 1383 dsdt_line("{"); 1384 for (bus = 0; bus < MAXBUSES; bus++) 1385 pci_bus_write_dsdt(bus); 1386 dsdt_line("}"); 1387 dsdt_unindent(1); 1388 } 1389 1390 int 1391 pci_bus_configured(int bus) 1392 { 1393 assert(bus >= 0 && bus < MAXBUSES); 1394 return (pci_businfo[bus] != NULL); 1395 } 1396 1397 int 1398 pci_msi_enabled(struct pci_devinst *pi) 1399 { 1400 return (pi->pi_msi.enabled); 1401 } 1402 1403 int 1404 pci_msi_maxmsgnum(struct pci_devinst *pi) 1405 { 1406 if (pi->pi_msi.enabled) 1407 return (pi->pi_msi.maxmsgnum); 1408 else 1409 return (0); 1410 } 1411 1412 int 1413 pci_msix_enabled(struct pci_devinst *pi) 1414 { 1415 1416 return (pi->pi_msix.enabled && !pi->pi_msi.enabled); 1417 } 1418 1419 void 1420 pci_generate_msix(struct pci_devinst *pi, int index) 1421 { 1422 struct msix_table_entry *mte; 1423 1424 if (!pci_msix_enabled(pi)) 1425 return; 1426 1427 if (pi->pi_msix.function_mask) 1428 return; 1429 1430 if (index >= pi->pi_msix.table_count) 1431 return; 1432 1433 mte = &pi->pi_msix.table[index]; 1434 if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) { 1435 /* XXX Set PBA bit if interrupt is disabled */ 1436 vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data); 1437 } 1438 } 1439 1440 void 1441 pci_generate_msi(struct pci_devinst *pi, int index) 1442 { 1443 1444 if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) { 1445 vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr, 1446 pi->pi_msi.msg_data + index); 1447 } 1448 } 1449 1450 static bool 1451 pci_lintr_permitted(struct pci_devinst *pi) 1452 { 1453 uint16_t cmd; 1454 1455 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); 1456 return (!(pi->pi_msi.enabled || pi->pi_msix.enabled || 1457 (cmd & PCIM_CMD_INTxDIS))); 1458 } 1459 1460 void 1461 pci_lintr_request(struct pci_devinst *pi) 1462 { 1463 struct businfo *bi; 1464 struct slotinfo *si; 1465 int bestpin, bestcount, pin; 1466 1467 bi = pci_businfo[pi->pi_bus]; 1468 assert(bi != NULL); 1469 1470 /* 1471 * Just allocate a pin from our slot. The pin will be 1472 * assigned IRQs later when interrupts are routed. 1473 */ 1474 si = &bi->slotinfo[pi->pi_slot]; 1475 bestpin = 0; 1476 bestcount = si->si_intpins[0].ii_count; 1477 for (pin = 1; pin < 4; pin++) { 1478 if (si->si_intpins[pin].ii_count < bestcount) { 1479 bestpin = pin; 1480 bestcount = si->si_intpins[pin].ii_count; 1481 } 1482 } 1483 1484 si->si_intpins[bestpin].ii_count++; 1485 pi->pi_lintr.pin = bestpin + 1; 1486 pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1); 1487 } 1488 1489 static void 1490 pci_lintr_route(struct pci_devinst *pi) 1491 { 1492 struct businfo *bi; 1493 struct intxinfo *ii; 1494 1495 if (pi->pi_lintr.pin == 0) 1496 return; 1497 1498 bi = pci_businfo[pi->pi_bus]; 1499 assert(bi != NULL); 1500 ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1]; 1501 1502 /* 1503 * Attempt to allocate an I/O APIC pin for this intpin if one 1504 * is not yet assigned. 1505 */ 1506 if (ii->ii_ioapic_irq == 0) 1507 ii->ii_ioapic_irq = ioapic_pci_alloc_irq(pi); 1508 assert(ii->ii_ioapic_irq > 0); 1509 1510 /* 1511 * Attempt to allocate a PIRQ pin for this intpin if one is 1512 * not yet assigned. 1513 */ 1514 if (ii->ii_pirq_pin == 0) 1515 ii->ii_pirq_pin = pirq_alloc_pin(pi); 1516 assert(ii->ii_pirq_pin > 0); 1517 1518 pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq; 1519 pi->pi_lintr.pirq_pin = ii->ii_pirq_pin; 1520 pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin)); 1521 } 1522 1523 void 1524 pci_lintr_assert(struct pci_devinst *pi) 1525 { 1526 1527 assert(pi->pi_lintr.pin > 0); 1528 1529 pthread_mutex_lock(&pi->pi_lintr.lock); 1530 if (pi->pi_lintr.state == IDLE) { 1531 if (pci_lintr_permitted(pi)) { 1532 pi->pi_lintr.state = ASSERTED; 1533 pci_irq_assert(pi); 1534 } else 1535 pi->pi_lintr.state = PENDING; 1536 } 1537 pthread_mutex_unlock(&pi->pi_lintr.lock); 1538 } 1539 1540 void 1541 pci_lintr_deassert(struct pci_devinst *pi) 1542 { 1543 1544 assert(pi->pi_lintr.pin > 0); 1545 1546 pthread_mutex_lock(&pi->pi_lintr.lock); 1547 if (pi->pi_lintr.state == ASSERTED) { 1548 pi->pi_lintr.state = IDLE; 1549 pci_irq_deassert(pi); 1550 } else if (pi->pi_lintr.state == PENDING) 1551 pi->pi_lintr.state = IDLE; 1552 pthread_mutex_unlock(&pi->pi_lintr.lock); 1553 } 1554 1555 static void 1556 pci_lintr_update(struct pci_devinst *pi) 1557 { 1558 1559 pthread_mutex_lock(&pi->pi_lintr.lock); 1560 if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) { 1561 pci_irq_deassert(pi); 1562 pi->pi_lintr.state = PENDING; 1563 } else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) { 1564 pi->pi_lintr.state = ASSERTED; 1565 pci_irq_assert(pi); 1566 } 1567 pthread_mutex_unlock(&pi->pi_lintr.lock); 1568 } 1569 1570 int 1571 pci_count_lintr(int bus) 1572 { 1573 int count, slot, pin; 1574 struct slotinfo *slotinfo; 1575 1576 count = 0; 1577 if (pci_businfo[bus] != NULL) { 1578 for (slot = 0; slot < MAXSLOTS; slot++) { 1579 slotinfo = &pci_businfo[bus]->slotinfo[slot]; 1580 for (pin = 0; pin < 4; pin++) { 1581 if (slotinfo->si_intpins[pin].ii_count != 0) 1582 count++; 1583 } 1584 } 1585 } 1586 return (count); 1587 } 1588 1589 void 1590 pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg) 1591 { 1592 struct businfo *bi; 1593 struct slotinfo *si; 1594 struct intxinfo *ii; 1595 int slot, pin; 1596 1597 if ((bi = pci_businfo[bus]) == NULL) 1598 return; 1599 1600 for (slot = 0; slot < MAXSLOTS; slot++) { 1601 si = &bi->slotinfo[slot]; 1602 for (pin = 0; pin < 4; pin++) { 1603 ii = &si->si_intpins[pin]; 1604 if (ii->ii_count != 0) 1605 cb(bus, slot, pin + 1, ii->ii_pirq_pin, 1606 ii->ii_ioapic_irq, arg); 1607 } 1608 } 1609 } 1610 1611 /* 1612 * Return 1 if the emulated device in 'slot' is a multi-function device. 1613 * Return 0 otherwise. 1614 */ 1615 static int 1616 pci_emul_is_mfdev(int bus, int slot) 1617 { 1618 struct businfo *bi; 1619 struct slotinfo *si; 1620 int f, numfuncs; 1621 1622 numfuncs = 0; 1623 if ((bi = pci_businfo[bus]) != NULL) { 1624 si = &bi->slotinfo[slot]; 1625 for (f = 0; f < MAXFUNCS; f++) { 1626 if (si->si_funcs[f].fi_devi != NULL) { 1627 numfuncs++; 1628 } 1629 } 1630 } 1631 return (numfuncs > 1); 1632 } 1633 1634 /* 1635 * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on 1636 * whether or not is a multi-function being emulated in the pci 'slot'. 1637 */ 1638 static void 1639 pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv) 1640 { 1641 int mfdev; 1642 1643 if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) { 1644 mfdev = pci_emul_is_mfdev(bus, slot); 1645 switch (bytes) { 1646 case 1: 1647 case 2: 1648 *rv &= ~PCIM_MFDEV; 1649 if (mfdev) { 1650 *rv |= PCIM_MFDEV; 1651 } 1652 break; 1653 case 4: 1654 *rv &= ~(PCIM_MFDEV << 16); 1655 if (mfdev) { 1656 *rv |= (PCIM_MFDEV << 16); 1657 } 1658 break; 1659 } 1660 } 1661 } 1662 1663 static void 1664 pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes) 1665 { 1666 int i, rshift; 1667 uint32_t cmd, cmd2, changed, old, readonly; 1668 1669 cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); /* stash old value */ 1670 1671 /* 1672 * From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3. 1673 * 1674 * XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are 1675 * 'write 1 to clear'. However these bits are not set to '1' by 1676 * any device emulation so it is simpler to treat them as readonly. 1677 */ 1678 rshift = (coff & 0x3) * 8; 1679 readonly = 0xFFFFF880 >> rshift; 1680 1681 old = CFGREAD(pi, coff, bytes); 1682 new &= ~readonly; 1683 new |= (old & readonly); 1684 CFGWRITE(pi, coff, new, bytes); /* update config */ 1685 1686 cmd2 = pci_get_cfgdata16(pi, PCIR_COMMAND); /* get updated value */ 1687 changed = cmd ^ cmd2; 1688 1689 /* 1690 * If the MMIO or I/O address space decoding has changed then 1691 * register/unregister all BARs that decode that address space. 1692 */ 1693 for (i = 0; i <= PCI_BARMAX; i++) { 1694 switch (pi->pi_bar[i].type) { 1695 case PCIBAR_NONE: 1696 case PCIBAR_MEMHI64: 1697 break; 1698 case PCIBAR_IO: 1699 /* I/O address space decoding changed? */ 1700 if (changed & PCIM_CMD_PORTEN) { 1701 if (porten(pi)) 1702 register_bar(pi, i); 1703 else 1704 unregister_bar(pi, i); 1705 } 1706 break; 1707 case PCIBAR_MEM32: 1708 case PCIBAR_MEM64: 1709 /* MMIO address space decoding changed? */ 1710 if (changed & PCIM_CMD_MEMEN) { 1711 if (memen(pi)) 1712 register_bar(pi, i); 1713 else 1714 unregister_bar(pi, i); 1715 } 1716 break; 1717 default: 1718 assert(0); 1719 } 1720 } 1721 1722 /* 1723 * If INTx has been unmasked and is pending, assert the 1724 * interrupt. 1725 */ 1726 pci_lintr_update(pi); 1727 } 1728 1729 static void 1730 pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot, int func, 1731 int coff, int bytes, uint32_t *eax) 1732 { 1733 struct businfo *bi; 1734 struct slotinfo *si; 1735 struct pci_devinst *pi; 1736 struct pci_devemu *pe; 1737 int idx, needcfg; 1738 uint64_t addr, bar, mask; 1739 1740 if ((bi = pci_businfo[bus]) != NULL) { 1741 si = &bi->slotinfo[slot]; 1742 pi = si->si_funcs[func].fi_devi; 1743 } else 1744 pi = NULL; 1745 1746 /* 1747 * Just return if there is no device at this slot:func or if the 1748 * the guest is doing an un-aligned access. 1749 */ 1750 if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) || 1751 (coff & (bytes - 1)) != 0) { 1752 if (in) 1753 *eax = 0xffffffff; 1754 return; 1755 } 1756 1757 /* 1758 * Ignore all writes beyond the standard config space and return all 1759 * ones on reads. 1760 */ 1761 if (coff >= PCI_REGMAX + 1) { 1762 if (in) { 1763 *eax = 0xffffffff; 1764 /* 1765 * Extended capabilities begin at offset 256 in config 1766 * space. Absence of extended capabilities is signaled 1767 * with all 0s in the extended capability header at 1768 * offset 256. 1769 */ 1770 if (coff <= PCI_REGMAX + 4) 1771 *eax = 0x00000000; 1772 } 1773 return; 1774 } 1775 1776 pe = pi->pi_d; 1777 1778 /* 1779 * Config read 1780 */ 1781 if (in) { 1782 /* Let the device emulation override the default handler */ 1783 if (pe->pe_cfgread != NULL) { 1784 needcfg = pe->pe_cfgread(ctx, vcpu, pi, coff, bytes, 1785 eax); 1786 } else { 1787 needcfg = 1; 1788 } 1789 1790 if (needcfg) 1791 *eax = CFGREAD(pi, coff, bytes); 1792 1793 pci_emul_hdrtype_fixup(bus, slot, coff, bytes, eax); 1794 } else { 1795 /* Let the device emulation override the default handler */ 1796 if (pe->pe_cfgwrite != NULL && 1797 (*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0) 1798 return; 1799 1800 /* 1801 * Special handling for write to BAR registers 1802 */ 1803 if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) { 1804 /* 1805 * Ignore writes to BAR registers that are not 1806 * 4-byte aligned. 1807 */ 1808 if (bytes != 4 || (coff & 0x3) != 0) 1809 return; 1810 idx = (coff - PCIR_BAR(0)) / 4; 1811 mask = ~(pi->pi_bar[idx].size - 1); 1812 switch (pi->pi_bar[idx].type) { 1813 case PCIBAR_NONE: 1814 pi->pi_bar[idx].addr = bar = 0; 1815 break; 1816 case PCIBAR_IO: 1817 addr = *eax & mask; 1818 addr &= 0xffff; 1819 bar = addr | PCIM_BAR_IO_SPACE; 1820 /* 1821 * Register the new BAR value for interception 1822 */ 1823 if (addr != pi->pi_bar[idx].addr) { 1824 update_bar_address(pi, addr, idx, 1825 PCIBAR_IO); 1826 } 1827 break; 1828 case PCIBAR_MEM32: 1829 addr = bar = *eax & mask; 1830 bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32; 1831 if (addr != pi->pi_bar[idx].addr) { 1832 update_bar_address(pi, addr, idx, 1833 PCIBAR_MEM32); 1834 } 1835 break; 1836 case PCIBAR_MEM64: 1837 addr = bar = *eax & mask; 1838 bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 | 1839 PCIM_BAR_MEM_PREFETCH; 1840 if (addr != (uint32_t)pi->pi_bar[idx].addr) { 1841 update_bar_address(pi, addr, idx, 1842 PCIBAR_MEM64); 1843 } 1844 break; 1845 case PCIBAR_MEMHI64: 1846 mask = ~(pi->pi_bar[idx - 1].size - 1); 1847 addr = ((uint64_t)*eax << 32) & mask; 1848 bar = addr >> 32; 1849 if (bar != pi->pi_bar[idx - 1].addr >> 32) { 1850 update_bar_address(pi, addr, idx - 1, 1851 PCIBAR_MEMHI64); 1852 } 1853 break; 1854 default: 1855 assert(0); 1856 } 1857 pci_set_cfgdata32(pi, coff, bar); 1858 1859 } else if (pci_emul_iscap(pi, coff)) { 1860 pci_emul_capwrite(pi, coff, bytes, *eax); 1861 } else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) { 1862 pci_emul_cmdsts_write(pi, coff, *eax, bytes); 1863 } else { 1864 CFGWRITE(pi, coff, *eax, bytes); 1865 } 1866 } 1867 } 1868 1869 static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff; 1870 1871 static int 1872 pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes, 1873 uint32_t *eax, void *arg) 1874 { 1875 uint32_t x; 1876 1877 if (bytes != 4) { 1878 if (in) 1879 *eax = (bytes == 2) ? 0xffff : 0xff; 1880 return (0); 1881 } 1882 1883 if (in) { 1884 x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff; 1885 if (cfgenable) 1886 x |= CONF1_ENABLE; 1887 *eax = x; 1888 } else { 1889 x = *eax; 1890 cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE; 1891 cfgoff = x & PCI_REGMAX; 1892 cfgfunc = (x >> 8) & PCI_FUNCMAX; 1893 cfgslot = (x >> 11) & PCI_SLOTMAX; 1894 cfgbus = (x >> 16) & PCI_BUSMAX; 1895 } 1896 1897 return (0); 1898 } 1899 INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr); 1900 1901 static int 1902 pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes, 1903 uint32_t *eax, void *arg) 1904 { 1905 int coff; 1906 1907 assert(bytes == 1 || bytes == 2 || bytes == 4); 1908 1909 coff = cfgoff + (port - CONF1_DATA_PORT); 1910 if (cfgenable) { 1911 pci_cfgrw(ctx, vcpu, in, cfgbus, cfgslot, cfgfunc, coff, bytes, 1912 eax); 1913 } else { 1914 /* Ignore accesses to cfgdata if not enabled by cfgaddr */ 1915 if (in) 1916 *eax = 0xffffffff; 1917 } 1918 return (0); 1919 } 1920 1921 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata); 1922 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata); 1923 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata); 1924 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata); 1925 1926 #define PCI_EMUL_TEST 1927 #ifdef PCI_EMUL_TEST 1928 /* 1929 * Define a dummy test device 1930 */ 1931 #define DIOSZ 8 1932 #define DMEMSZ 4096 1933 struct pci_emul_dsoftc { 1934 uint8_t ioregs[DIOSZ]; 1935 uint8_t memregs[2][DMEMSZ]; 1936 }; 1937 1938 #define PCI_EMUL_MSI_MSGS 4 1939 #define PCI_EMUL_MSIX_MSGS 16 1940 1941 static int 1942 pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, char *opts) 1943 { 1944 int error; 1945 struct pci_emul_dsoftc *sc; 1946 1947 sc = calloc(1, sizeof(struct pci_emul_dsoftc)); 1948 1949 pi->pi_arg = sc; 1950 1951 pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001); 1952 pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD); 1953 pci_set_cfgdata8(pi, PCIR_CLASS, 0x02); 1954 1955 error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS); 1956 assert(error == 0); 1957 1958 error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ); 1959 assert(error == 0); 1960 1961 error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ); 1962 assert(error == 0); 1963 1964 error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ); 1965 assert(error == 0); 1966 1967 return (0); 1968 } 1969 1970 static void 1971 pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx, 1972 uint64_t offset, int size, uint64_t value) 1973 { 1974 int i; 1975 struct pci_emul_dsoftc *sc = pi->pi_arg; 1976 1977 if (baridx == 0) { 1978 if (offset + size > DIOSZ) { 1979 printf("diow: iow too large, offset %ld size %d\n", 1980 offset, size); 1981 return; 1982 } 1983 1984 if (size == 1) { 1985 sc->ioregs[offset] = value & 0xff; 1986 } else if (size == 2) { 1987 *(uint16_t *)&sc->ioregs[offset] = value & 0xffff; 1988 } else if (size == 4) { 1989 *(uint32_t *)&sc->ioregs[offset] = value; 1990 } else { 1991 printf("diow: iow unknown size %d\n", size); 1992 } 1993 1994 /* 1995 * Special magic value to generate an interrupt 1996 */ 1997 if (offset == 4 && size == 4 && pci_msi_enabled(pi)) 1998 pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi)); 1999 2000 if (value == 0xabcdef) { 2001 for (i = 0; i < pci_msi_maxmsgnum(pi); i++) 2002 pci_generate_msi(pi, i); 2003 } 2004 } 2005 2006 if (baridx == 1 || baridx == 2) { 2007 if (offset + size > DMEMSZ) { 2008 printf("diow: memw too large, offset %ld size %d\n", 2009 offset, size); 2010 return; 2011 } 2012 2013 i = baridx - 1; /* 'memregs' index */ 2014 2015 if (size == 1) { 2016 sc->memregs[i][offset] = value; 2017 } else if (size == 2) { 2018 *(uint16_t *)&sc->memregs[i][offset] = value; 2019 } else if (size == 4) { 2020 *(uint32_t *)&sc->memregs[i][offset] = value; 2021 } else if (size == 8) { 2022 *(uint64_t *)&sc->memregs[i][offset] = value; 2023 } else { 2024 printf("diow: memw unknown size %d\n", size); 2025 } 2026 2027 /* 2028 * magic interrupt ?? 2029 */ 2030 } 2031 2032 if (baridx > 2 || baridx < 0) { 2033 printf("diow: unknown bar idx %d\n", baridx); 2034 } 2035 } 2036 2037 static uint64_t 2038 pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx, 2039 uint64_t offset, int size) 2040 { 2041 struct pci_emul_dsoftc *sc = pi->pi_arg; 2042 uint32_t value; 2043 int i; 2044 2045 if (baridx == 0) { 2046 if (offset + size > DIOSZ) { 2047 printf("dior: ior too large, offset %ld size %d\n", 2048 offset, size); 2049 return (0); 2050 } 2051 2052 value = 0; 2053 if (size == 1) { 2054 value = sc->ioregs[offset]; 2055 } else if (size == 2) { 2056 value = *(uint16_t *) &sc->ioregs[offset]; 2057 } else if (size == 4) { 2058 value = *(uint32_t *) &sc->ioregs[offset]; 2059 } else { 2060 printf("dior: ior unknown size %d\n", size); 2061 } 2062 } 2063 2064 if (baridx == 1 || baridx == 2) { 2065 if (offset + size > DMEMSZ) { 2066 printf("dior: memr too large, offset %ld size %d\n", 2067 offset, size); 2068 return (0); 2069 } 2070 2071 i = baridx - 1; /* 'memregs' index */ 2072 2073 if (size == 1) { 2074 value = sc->memregs[i][offset]; 2075 } else if (size == 2) { 2076 value = *(uint16_t *) &sc->memregs[i][offset]; 2077 } else if (size == 4) { 2078 value = *(uint32_t *) &sc->memregs[i][offset]; 2079 } else if (size == 8) { 2080 value = *(uint64_t *) &sc->memregs[i][offset]; 2081 } else { 2082 printf("dior: ior unknown size %d\n", size); 2083 } 2084 } 2085 2086 2087 if (baridx > 2 || baridx < 0) { 2088 printf("dior: unknown bar idx %d\n", baridx); 2089 return (0); 2090 } 2091 2092 return (value); 2093 } 2094 2095 struct pci_devemu pci_dummy = { 2096 .pe_emu = "dummy", 2097 .pe_init = pci_emul_dinit, 2098 .pe_barwrite = pci_emul_diow, 2099 .pe_barread = pci_emul_dior 2100 }; 2101 PCI_EMUL_SET(pci_dummy); 2102 2103 #endif /* PCI_EMUL_TEST */ 2104