xref: /freebsd/usr.sbin/bhyve/pci_emul.c (revision ca53e5aedfebcc1b4091b68e01b2d5cae923f85e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/linker_set.h>
36 #include <vm/vm.h>
37 #include <vm/vm_param.h>
38 #include <vm/pmap.h>
39 
40 #include <ctype.h>
41 #include <errno.h>
42 #include <pthread.h>
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <string.h>
46 #include <strings.h>
47 #include <assert.h>
48 #include <stdbool.h>
49 
50 #include <machine/vmm.h>
51 #include <machine/vmm_snapshot.h>
52 #include <machine/cpufunc.h>
53 #include <machine/specialreg.h>
54 #include <vmmapi.h>
55 
56 #include "acpi.h"
57 #include "bhyverun.h"
58 #include "debug.h"
59 #include "inout.h"
60 #include "ioapic.h"
61 #include "mem.h"
62 #include "pci_emul.h"
63 #include "pci_irq.h"
64 #include "pci_lpc.h"
65 
66 #define CONF1_ADDR_PORT	   0x0cf8
67 #define CONF1_DATA_PORT	   0x0cfc
68 
69 #define CONF1_ENABLE	   0x80000000ul
70 
71 #define	MAXBUSES	(PCI_BUSMAX + 1)
72 #define MAXSLOTS	(PCI_SLOTMAX + 1)
73 #define	MAXFUNCS	(PCI_FUNCMAX + 1)
74 
75 struct funcinfo {
76 	char	*fi_name;
77 	char	*fi_param;
78 	struct pci_devinst *fi_devi;
79 };
80 
81 struct intxinfo {
82 	int	ii_count;
83 	int	ii_pirq_pin;
84 	int	ii_ioapic_irq;
85 };
86 
87 struct slotinfo {
88 	struct intxinfo si_intpins[4];
89 	struct funcinfo si_funcs[MAXFUNCS];
90 };
91 
92 struct businfo {
93 	uint16_t iobase, iolimit;		/* I/O window */
94 	uint32_t membase32, memlimit32;		/* mmio window below 4GB */
95 	uint64_t membase64, memlimit64;		/* mmio window above 4GB */
96 	struct slotinfo slotinfo[MAXSLOTS];
97 };
98 
99 static struct businfo *pci_businfo[MAXBUSES];
100 
101 SET_DECLARE(pci_devemu_set, struct pci_devemu);
102 
103 static uint64_t pci_emul_iobase;
104 static uint64_t pci_emul_membase32;
105 static uint64_t pci_emul_membase64;
106 static uint64_t pci_emul_memlim64;
107 
108 #define	PCI_EMUL_IOBASE		0x2000
109 #define	PCI_EMUL_IOLIMIT	0x10000
110 
111 #define	PCI_EMUL_ECFG_BASE	0xE0000000		    /* 3.5GB */
112 #define	PCI_EMUL_ECFG_SIZE	(MAXBUSES * 1024 * 1024)    /* 1MB per bus */
113 SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
114 
115 #define	PCI_EMUL_MEMLIMIT32	PCI_EMUL_ECFG_BASE
116 
117 static struct pci_devemu *pci_emul_finddev(char *name);
118 static void pci_lintr_route(struct pci_devinst *pi);
119 static void pci_lintr_update(struct pci_devinst *pi);
120 static void pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot,
121     int func, int coff, int bytes, uint32_t *val);
122 
123 static __inline void
124 CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes)
125 {
126 
127 	if (bytes == 1)
128 		pci_set_cfgdata8(pi, coff, val);
129 	else if (bytes == 2)
130 		pci_set_cfgdata16(pi, coff, val);
131 	else
132 		pci_set_cfgdata32(pi, coff, val);
133 }
134 
135 static __inline uint32_t
136 CFGREAD(struct pci_devinst *pi, int coff, int bytes)
137 {
138 
139 	if (bytes == 1)
140 		return (pci_get_cfgdata8(pi, coff));
141 	else if (bytes == 2)
142 		return (pci_get_cfgdata16(pi, coff));
143 	else
144 		return (pci_get_cfgdata32(pi, coff));
145 }
146 
147 /*
148  * I/O access
149  */
150 
151 /*
152  * Slot options are in the form:
153  *
154  *  <bus>:<slot>:<func>,<emul>[,<config>]
155  *  <slot>[:<func>],<emul>[,<config>]
156  *
157  *  slot is 0..31
158  *  func is 0..7
159  *  emul is a string describing the type of PCI device e.g. virtio-net
160  *  config is an optional string, depending on the device, that can be
161  *  used for configuration.
162  *   Examples are:
163  *     1,virtio-net,tap0
164  *     3:0,dummy
165  */
166 static void
167 pci_parse_slot_usage(char *aopt)
168 {
169 
170 	EPRINTLN("Invalid PCI slot info field \"%s\"", aopt);
171 }
172 
173 int
174 pci_parse_slot(char *opt)
175 {
176 	struct businfo *bi;
177 	struct slotinfo *si;
178 	char *emul, *config, *str, *cp;
179 	int error, bnum, snum, fnum;
180 
181 	error = -1;
182 	str = strdup(opt);
183 
184 	emul = config = NULL;
185 	if ((cp = strchr(str, ',')) != NULL) {
186 		*cp = '\0';
187 		emul = cp + 1;
188 		if ((cp = strchr(emul, ',')) != NULL) {
189 			*cp = '\0';
190 			config = cp + 1;
191 		}
192 	} else {
193 		pci_parse_slot_usage(opt);
194 		goto done;
195 	}
196 
197 	/* <bus>:<slot>:<func> */
198 	if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
199 		bnum = 0;
200 		/* <slot>:<func> */
201 		if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
202 			fnum = 0;
203 			/* <slot> */
204 			if (sscanf(str, "%d", &snum) != 1) {
205 				snum = -1;
206 			}
207 		}
208 	}
209 
210 	if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
211 	    fnum < 0 || fnum >= MAXFUNCS) {
212 		pci_parse_slot_usage(opt);
213 		goto done;
214 	}
215 
216 	if (pci_businfo[bnum] == NULL)
217 		pci_businfo[bnum] = calloc(1, sizeof(struct businfo));
218 
219 	bi = pci_businfo[bnum];
220 	si = &bi->slotinfo[snum];
221 
222 	if (si->si_funcs[fnum].fi_name != NULL) {
223 		EPRINTLN("pci slot %d:%d already occupied!",
224 			snum, fnum);
225 		goto done;
226 	}
227 
228 	if (pci_emul_finddev(emul) == NULL) {
229 		EPRINTLN("pci slot %d:%d: unknown device \"%s\"",
230 			snum, fnum, emul);
231 		goto done;
232 	}
233 
234 	error = 0;
235 	si->si_funcs[fnum].fi_name = emul;
236 	si->si_funcs[fnum].fi_param = config;
237 
238 done:
239 	if (error)
240 		free(str);
241 
242 	return (error);
243 }
244 
245 void
246 pci_print_supported_devices()
247 {
248 	struct pci_devemu **pdpp, *pdp;
249 
250 	SET_FOREACH(pdpp, pci_devemu_set) {
251 		pdp = *pdpp;
252 		printf("%s\n", pdp->pe_emu);
253 	}
254 }
255 
256 static int
257 pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
258 {
259 
260 	if (offset < pi->pi_msix.pba_offset)
261 		return (0);
262 
263 	if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
264 		return (0);
265 	}
266 
267 	return (1);
268 }
269 
270 int
271 pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
272 		     uint64_t value)
273 {
274 	int msix_entry_offset;
275 	int tab_index;
276 	char *dest;
277 
278 	/* support only 4 or 8 byte writes */
279 	if (size != 4 && size != 8)
280 		return (-1);
281 
282 	/*
283 	 * Return if table index is beyond what device supports
284 	 */
285 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
286 	if (tab_index >= pi->pi_msix.table_count)
287 		return (-1);
288 
289 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
290 
291 	/* support only aligned writes */
292 	if ((msix_entry_offset % size) != 0)
293 		return (-1);
294 
295 	dest = (char *)(pi->pi_msix.table + tab_index);
296 	dest += msix_entry_offset;
297 
298 	if (size == 4)
299 		*((uint32_t *)dest) = value;
300 	else
301 		*((uint64_t *)dest) = value;
302 
303 	return (0);
304 }
305 
306 uint64_t
307 pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
308 {
309 	char *dest;
310 	int msix_entry_offset;
311 	int tab_index;
312 	uint64_t retval = ~0;
313 
314 	/*
315 	 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X
316 	 * table but we also allow 1 byte access to accommodate reads from
317 	 * ddb.
318 	 */
319 	if (size != 1 && size != 4 && size != 8)
320 		return (retval);
321 
322 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
323 
324 	/* support only aligned reads */
325 	if ((msix_entry_offset % size) != 0) {
326 		return (retval);
327 	}
328 
329 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
330 
331 	if (tab_index < pi->pi_msix.table_count) {
332 		/* valid MSI-X Table access */
333 		dest = (char *)(pi->pi_msix.table + tab_index);
334 		dest += msix_entry_offset;
335 
336 		if (size == 1)
337 			retval = *((uint8_t *)dest);
338 		else if (size == 4)
339 			retval = *((uint32_t *)dest);
340 		else
341 			retval = *((uint64_t *)dest);
342 	} else if (pci_valid_pba_offset(pi, offset)) {
343 		/* return 0 for PBA access */
344 		retval = 0;
345 	}
346 
347 	return (retval);
348 }
349 
350 int
351 pci_msix_table_bar(struct pci_devinst *pi)
352 {
353 
354 	if (pi->pi_msix.table != NULL)
355 		return (pi->pi_msix.table_bar);
356 	else
357 		return (-1);
358 }
359 
360 int
361 pci_msix_pba_bar(struct pci_devinst *pi)
362 {
363 
364 	if (pi->pi_msix.table != NULL)
365 		return (pi->pi_msix.pba_bar);
366 	else
367 		return (-1);
368 }
369 
370 static int
371 pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
372 		    uint32_t *eax, void *arg)
373 {
374 	struct pci_devinst *pdi = arg;
375 	struct pci_devemu *pe = pdi->pi_d;
376 	uint64_t offset;
377 	int i;
378 
379 	for (i = 0; i <= PCI_BARMAX; i++) {
380 		if (pdi->pi_bar[i].type == PCIBAR_IO &&
381 		    port >= pdi->pi_bar[i].addr &&
382 		    port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
383 			offset = port - pdi->pi_bar[i].addr;
384 			if (in)
385 				*eax = (*pe->pe_barread)(ctx, vcpu, pdi, i,
386 							 offset, bytes);
387 			else
388 				(*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset,
389 						   bytes, *eax);
390 			return (0);
391 		}
392 	}
393 	return (-1);
394 }
395 
396 static int
397 pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
398 		     int size, uint64_t *val, void *arg1, long arg2)
399 {
400 	struct pci_devinst *pdi = arg1;
401 	struct pci_devemu *pe = pdi->pi_d;
402 	uint64_t offset;
403 	int bidx = (int) arg2;
404 
405 	assert(bidx <= PCI_BARMAX);
406 	assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
407 	       pdi->pi_bar[bidx].type == PCIBAR_MEM64);
408 	assert(addr >= pdi->pi_bar[bidx].addr &&
409 	       addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
410 
411 	offset = addr - pdi->pi_bar[bidx].addr;
412 
413 	if (dir == MEM_F_WRITE) {
414 		if (size == 8) {
415 			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
416 					   4, *val & 0xffffffff);
417 			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset + 4,
418 					   4, *val >> 32);
419 		} else {
420 			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
421 					   size, *val);
422 		}
423 	} else {
424 		if (size == 8) {
425 			*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
426 						 offset, 4);
427 			*val |= (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
428 						  offset + 4, 4) << 32;
429 		} else {
430 			*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
431 						 offset, size);
432 		}
433 	}
434 
435 	return (0);
436 }
437 
438 
439 static int
440 pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
441 			uint64_t *addr)
442 {
443 	uint64_t base;
444 
445 	assert((size & (size - 1)) == 0);	/* must be a power of 2 */
446 
447 	base = roundup2(*baseptr, size);
448 
449 	if (base + size <= limit) {
450 		*addr = base;
451 		*baseptr = base + size;
452 		return (0);
453 	} else
454 		return (-1);
455 }
456 
457 /*
458  * Register (or unregister) the MMIO or I/O region associated with the BAR
459  * register 'idx' of an emulated pci device.
460  */
461 static void
462 modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
463 {
464 	int error;
465 	struct inout_port iop;
466 	struct mem_range mr;
467 
468 	switch (pi->pi_bar[idx].type) {
469 	case PCIBAR_IO:
470 		bzero(&iop, sizeof(struct inout_port));
471 		iop.name = pi->pi_name;
472 		iop.port = pi->pi_bar[idx].addr;
473 		iop.size = pi->pi_bar[idx].size;
474 		if (registration) {
475 			iop.flags = IOPORT_F_INOUT;
476 			iop.handler = pci_emul_io_handler;
477 			iop.arg = pi;
478 			error = register_inout(&iop);
479 		} else
480 			error = unregister_inout(&iop);
481 		break;
482 	case PCIBAR_MEM32:
483 	case PCIBAR_MEM64:
484 		bzero(&mr, sizeof(struct mem_range));
485 		mr.name = pi->pi_name;
486 		mr.base = pi->pi_bar[idx].addr;
487 		mr.size = pi->pi_bar[idx].size;
488 		if (registration) {
489 			mr.flags = MEM_F_RW;
490 			mr.handler = pci_emul_mem_handler;
491 			mr.arg1 = pi;
492 			mr.arg2 = idx;
493 			error = register_mem(&mr);
494 		} else
495 			error = unregister_mem(&mr);
496 		break;
497 	default:
498 		error = EINVAL;
499 		break;
500 	}
501 	assert(error == 0);
502 }
503 
504 static void
505 unregister_bar(struct pci_devinst *pi, int idx)
506 {
507 
508 	modify_bar_registration(pi, idx, 0);
509 }
510 
511 static void
512 register_bar(struct pci_devinst *pi, int idx)
513 {
514 
515 	modify_bar_registration(pi, idx, 1);
516 }
517 
518 /* Are we decoding i/o port accesses for the emulated pci device? */
519 static int
520 porten(struct pci_devinst *pi)
521 {
522 	uint16_t cmd;
523 
524 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
525 
526 	return (cmd & PCIM_CMD_PORTEN);
527 }
528 
529 /* Are we decoding memory accesses for the emulated pci device? */
530 static int
531 memen(struct pci_devinst *pi)
532 {
533 	uint16_t cmd;
534 
535 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
536 
537 	return (cmd & PCIM_CMD_MEMEN);
538 }
539 
540 /*
541  * Update the MMIO or I/O address that is decoded by the BAR register.
542  *
543  * If the pci device has enabled the address space decoding then intercept
544  * the address range decoded by the BAR register.
545  */
546 static void
547 update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type)
548 {
549 	int decode;
550 
551 	if (pi->pi_bar[idx].type == PCIBAR_IO)
552 		decode = porten(pi);
553 	else
554 		decode = memen(pi);
555 
556 	if (decode)
557 		unregister_bar(pi, idx);
558 
559 	switch (type) {
560 	case PCIBAR_IO:
561 	case PCIBAR_MEM32:
562 		pi->pi_bar[idx].addr = addr;
563 		break;
564 	case PCIBAR_MEM64:
565 		pi->pi_bar[idx].addr &= ~0xffffffffUL;
566 		pi->pi_bar[idx].addr |= addr;
567 		break;
568 	case PCIBAR_MEMHI64:
569 		pi->pi_bar[idx].addr &= 0xffffffff;
570 		pi->pi_bar[idx].addr |= addr;
571 		break;
572 	default:
573 		assert(0);
574 	}
575 
576 	if (decode)
577 		register_bar(pi, idx);
578 }
579 
580 int
581 pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
582     uint64_t size)
583 {
584 	int error;
585 	uint64_t *baseptr, limit, addr, mask, lobits, bar;
586 	uint16_t cmd, enbit;
587 
588 	assert(idx >= 0 && idx <= PCI_BARMAX);
589 
590 	if ((size & (size - 1)) != 0)
591 		size = 1UL << flsl(size);	/* round up to a power of 2 */
592 
593 	/* Enforce minimum BAR sizes required by the PCI standard */
594 	if (type == PCIBAR_IO) {
595 		if (size < 4)
596 			size = 4;
597 	} else {
598 		if (size < 16)
599 			size = 16;
600 	}
601 
602 	switch (type) {
603 	case PCIBAR_NONE:
604 		baseptr = NULL;
605 		addr = mask = lobits = enbit = 0;
606 		break;
607 	case PCIBAR_IO:
608 		baseptr = &pci_emul_iobase;
609 		limit = PCI_EMUL_IOLIMIT;
610 		mask = PCIM_BAR_IO_BASE;
611 		lobits = PCIM_BAR_IO_SPACE;
612 		enbit = PCIM_CMD_PORTEN;
613 		break;
614 	case PCIBAR_MEM64:
615 		/*
616 		 * XXX
617 		 * Some drivers do not work well if the 64-bit BAR is allocated
618 		 * above 4GB. Allow for this by allocating small requests under
619 		 * 4GB unless then allocation size is larger than some arbitrary
620 		 * number (128MB currently).
621 		 */
622 		if (size > 128 * 1024 * 1024) {
623 			baseptr = &pci_emul_membase64;
624 			limit = pci_emul_memlim64;
625 			mask = PCIM_BAR_MEM_BASE;
626 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
627 				 PCIM_BAR_MEM_PREFETCH;
628 		} else {
629 			baseptr = &pci_emul_membase32;
630 			limit = PCI_EMUL_MEMLIMIT32;
631 			mask = PCIM_BAR_MEM_BASE;
632 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
633 		}
634 		enbit = PCIM_CMD_MEMEN;
635 		break;
636 	case PCIBAR_MEM32:
637 		baseptr = &pci_emul_membase32;
638 		limit = PCI_EMUL_MEMLIMIT32;
639 		mask = PCIM_BAR_MEM_BASE;
640 		lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
641 		enbit = PCIM_CMD_MEMEN;
642 		break;
643 	default:
644 		printf("pci_emul_alloc_base: invalid bar type %d\n", type);
645 		assert(0);
646 	}
647 
648 	if (baseptr != NULL) {
649 		error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
650 		if (error != 0)
651 			return (error);
652 	}
653 
654 	pdi->pi_bar[idx].type = type;
655 	pdi->pi_bar[idx].addr = addr;
656 	pdi->pi_bar[idx].size = size;
657 
658 	/* Initialize the BAR register in config space */
659 	bar = (addr & mask) | lobits;
660 	pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
661 
662 	if (type == PCIBAR_MEM64) {
663 		assert(idx + 1 <= PCI_BARMAX);
664 		pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
665 		pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
666 	}
667 
668 	cmd = pci_get_cfgdata16(pdi, PCIR_COMMAND);
669 	if ((cmd & enbit) != enbit)
670 		pci_set_cfgdata16(pdi, PCIR_COMMAND, cmd | enbit);
671 	register_bar(pdi, idx);
672 
673 	return (0);
674 }
675 
676 #define	CAP_START_OFFSET	0x40
677 static int
678 pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
679 {
680 	int i, capoff, reallen;
681 	uint16_t sts;
682 
683 	assert(caplen > 0);
684 
685 	reallen = roundup2(caplen, 4);		/* dword aligned */
686 
687 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
688 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
689 		capoff = CAP_START_OFFSET;
690 	else
691 		capoff = pi->pi_capend + 1;
692 
693 	/* Check if we have enough space */
694 	if (capoff + reallen > PCI_REGMAX + 1)
695 		return (-1);
696 
697 	/* Set the previous capability pointer */
698 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
699 		pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
700 		pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
701 	} else
702 		pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
703 
704 	/* Copy the capability */
705 	for (i = 0; i < caplen; i++)
706 		pci_set_cfgdata8(pi, capoff + i, capdata[i]);
707 
708 	/* Set the next capability pointer */
709 	pci_set_cfgdata8(pi, capoff + 1, 0);
710 
711 	pi->pi_prevcap = capoff;
712 	pi->pi_capend = capoff + reallen - 1;
713 	return (0);
714 }
715 
716 static struct pci_devemu *
717 pci_emul_finddev(char *name)
718 {
719 	struct pci_devemu **pdpp, *pdp;
720 
721 	SET_FOREACH(pdpp, pci_devemu_set) {
722 		pdp = *pdpp;
723 		if (!strcmp(pdp->pe_emu, name)) {
724 			return (pdp);
725 		}
726 	}
727 
728 	return (NULL);
729 }
730 
731 static int
732 pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
733     int func, struct funcinfo *fi)
734 {
735 	struct pci_devinst *pdi;
736 	int err;
737 
738 	pdi = calloc(1, sizeof(struct pci_devinst));
739 
740 	pdi->pi_vmctx = ctx;
741 	pdi->pi_bus = bus;
742 	pdi->pi_slot = slot;
743 	pdi->pi_func = func;
744 	pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
745 	pdi->pi_lintr.pin = 0;
746 	pdi->pi_lintr.state = IDLE;
747 	pdi->pi_lintr.pirq_pin = 0;
748 	pdi->pi_lintr.ioapic_irq = 0;
749 	pdi->pi_d = pde;
750 	snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot);
751 
752 	/* Disable legacy interrupts */
753 	pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
754 	pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
755 
756 	pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_BUSMASTEREN);
757 
758 	err = (*pde->pe_init)(ctx, pdi, fi->fi_param);
759 	if (err == 0)
760 		fi->fi_devi = pdi;
761 	else
762 		free(pdi);
763 
764 	return (err);
765 }
766 
767 void
768 pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
769 {
770 	int mmc;
771 
772 	/* Number of msi messages must be a power of 2 between 1 and 32 */
773 	assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
774 	mmc = ffs(msgnum) - 1;
775 
776 	bzero(msicap, sizeof(struct msicap));
777 	msicap->capid = PCIY_MSI;
778 	msicap->nextptr = nextptr;
779 	msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
780 }
781 
782 int
783 pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
784 {
785 	struct msicap msicap;
786 
787 	pci_populate_msicap(&msicap, msgnum, 0);
788 
789 	return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
790 }
791 
792 static void
793 pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
794 		     uint32_t msix_tab_size)
795 {
796 
797 	assert(msix_tab_size % 4096 == 0);
798 
799 	bzero(msixcap, sizeof(struct msixcap));
800 	msixcap->capid = PCIY_MSIX;
801 
802 	/*
803 	 * Message Control Register, all fields set to
804 	 * zero except for the Table Size.
805 	 * Note: Table size N is encoded as N-1
806 	 */
807 	msixcap->msgctrl = msgnum - 1;
808 
809 	/*
810 	 * MSI-X BAR setup:
811 	 * - MSI-X table start at offset 0
812 	 * - PBA table starts at a 4K aligned offset after the MSI-X table
813 	 */
814 	msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
815 	msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
816 }
817 
818 static void
819 pci_msix_table_init(struct pci_devinst *pi, int table_entries)
820 {
821 	int i, table_size;
822 
823 	assert(table_entries > 0);
824 	assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
825 
826 	table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
827 	pi->pi_msix.table = calloc(1, table_size);
828 
829 	/* set mask bit of vector control register */
830 	for (i = 0; i < table_entries; i++)
831 		pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
832 }
833 
834 int
835 pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
836 {
837 	uint32_t tab_size;
838 	struct msixcap msixcap;
839 
840 	assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
841 	assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
842 
843 	tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
844 
845 	/* Align table size to nearest 4K */
846 	tab_size = roundup2(tab_size, 4096);
847 
848 	pi->pi_msix.table_bar = barnum;
849 	pi->pi_msix.pba_bar   = barnum;
850 	pi->pi_msix.table_offset = 0;
851 	pi->pi_msix.table_count = msgnum;
852 	pi->pi_msix.pba_offset = tab_size;
853 	pi->pi_msix.pba_size = PBA_SIZE(msgnum);
854 
855 	pci_msix_table_init(pi, msgnum);
856 
857 	pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
858 
859 	/* allocate memory for MSI-X Table and PBA */
860 	pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
861 				tab_size + pi->pi_msix.pba_size);
862 
863 	return (pci_emul_add_capability(pi, (u_char *)&msixcap,
864 					sizeof(msixcap)));
865 }
866 
867 static void
868 msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
869 		 int bytes, uint32_t val)
870 {
871 	uint16_t msgctrl, rwmask;
872 	int off;
873 
874 	off = offset - capoff;
875 	/* Message Control Register */
876 	if (off == 2 && bytes == 2) {
877 		rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
878 		msgctrl = pci_get_cfgdata16(pi, offset);
879 		msgctrl &= ~rwmask;
880 		msgctrl |= val & rwmask;
881 		val = msgctrl;
882 
883 		pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
884 		pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
885 		pci_lintr_update(pi);
886 	}
887 
888 	CFGWRITE(pi, offset, val, bytes);
889 }
890 
891 static void
892 msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
893 		int bytes, uint32_t val)
894 {
895 	uint16_t msgctrl, rwmask, msgdata, mme;
896 	uint32_t addrlo;
897 
898 	/*
899 	 * If guest is writing to the message control register make sure
900 	 * we do not overwrite read-only fields.
901 	 */
902 	if ((offset - capoff) == 2 && bytes == 2) {
903 		rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
904 		msgctrl = pci_get_cfgdata16(pi, offset);
905 		msgctrl &= ~rwmask;
906 		msgctrl |= val & rwmask;
907 		val = msgctrl;
908 	}
909 	CFGWRITE(pi, offset, val, bytes);
910 
911 	msgctrl = pci_get_cfgdata16(pi, capoff + 2);
912 	addrlo = pci_get_cfgdata32(pi, capoff + 4);
913 	if (msgctrl & PCIM_MSICTRL_64BIT)
914 		msgdata = pci_get_cfgdata16(pi, capoff + 12);
915 	else
916 		msgdata = pci_get_cfgdata16(pi, capoff + 8);
917 
918 	mme = msgctrl & PCIM_MSICTRL_MME_MASK;
919 	pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
920 	if (pi->pi_msi.enabled) {
921 		pi->pi_msi.addr = addrlo;
922 		pi->pi_msi.msg_data = msgdata;
923 		pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
924 	} else {
925 		pi->pi_msi.maxmsgnum = 0;
926 	}
927 	pci_lintr_update(pi);
928 }
929 
930 void
931 pciecap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
932 		 int bytes, uint32_t val)
933 {
934 
935 	/* XXX don't write to the readonly parts */
936 	CFGWRITE(pi, offset, val, bytes);
937 }
938 
939 #define	PCIECAP_VERSION	0x2
940 int
941 pci_emul_add_pciecap(struct pci_devinst *pi, int type)
942 {
943 	int err;
944 	struct pciecap pciecap;
945 
946 	bzero(&pciecap, sizeof(pciecap));
947 
948 	/*
949 	 * Use the integrated endpoint type for endpoints on a root complex bus.
950 	 *
951 	 * NB: bhyve currently only supports a single PCI bus that is the root
952 	 * complex bus, so all endpoints are integrated.
953 	 */
954 	if ((type == PCIEM_TYPE_ENDPOINT) && (pi->pi_bus == 0))
955 		type = PCIEM_TYPE_ROOT_INT_EP;
956 
957 	pciecap.capid = PCIY_EXPRESS;
958 	pciecap.pcie_capabilities = PCIECAP_VERSION | type;
959 	if (type != PCIEM_TYPE_ROOT_INT_EP) {
960 		pciecap.link_capabilities = 0x411;	/* gen1, x1 */
961 		pciecap.link_status = 0x11;		/* gen1, x1 */
962 	}
963 
964 	err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
965 	return (err);
966 }
967 
968 /*
969  * This function assumes that 'coff' is in the capabilities region of the
970  * config space. A capoff parameter of zero will force a search for the
971  * offset and type.
972  */
973 void
974 pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val,
975     uint8_t capoff, int capid)
976 {
977 	uint8_t nextoff;
978 
979 	/* Do not allow un-aligned writes */
980 	if ((offset & (bytes - 1)) != 0)
981 		return;
982 
983 	if (capoff == 0) {
984 		/* Find the capability that we want to update */
985 		capoff = CAP_START_OFFSET;
986 		while (1) {
987 			nextoff = pci_get_cfgdata8(pi, capoff + 1);
988 			if (nextoff == 0)
989 				break;
990 			if (offset >= capoff && offset < nextoff)
991 				break;
992 
993 			capoff = nextoff;
994 		}
995 		assert(offset >= capoff);
996 		capid = pci_get_cfgdata8(pi, capoff);
997 	}
998 
999 	/*
1000 	 * Capability ID and Next Capability Pointer are readonly.
1001 	 * However, some o/s's do 4-byte writes that include these.
1002 	 * For this case, trim the write back to 2 bytes and adjust
1003 	 * the data.
1004 	 */
1005 	if (offset == capoff || offset == capoff + 1) {
1006 		if (offset == capoff && bytes == 4) {
1007 			bytes = 2;
1008 			offset += 2;
1009 			val >>= 16;
1010 		} else
1011 			return;
1012 	}
1013 
1014 	switch (capid) {
1015 	case PCIY_MSI:
1016 		msicap_cfgwrite(pi, capoff, offset, bytes, val);
1017 		break;
1018 	case PCIY_MSIX:
1019 		msixcap_cfgwrite(pi, capoff, offset, bytes, val);
1020 		break;
1021 	case PCIY_EXPRESS:
1022 		pciecap_cfgwrite(pi, capoff, offset, bytes, val);
1023 		break;
1024 	default:
1025 		break;
1026 	}
1027 }
1028 
1029 static int
1030 pci_emul_iscap(struct pci_devinst *pi, int offset)
1031 {
1032 	uint16_t sts;
1033 
1034 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1035 	if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
1036 		if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
1037 			return (1);
1038 	}
1039 	return (0);
1040 }
1041 
1042 static int
1043 pci_emul_fallback_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
1044 			  int size, uint64_t *val, void *arg1, long arg2)
1045 {
1046 	/*
1047 	 * Ignore writes; return 0xff's for reads. The mem read code
1048 	 * will take care of truncating to the correct size.
1049 	 */
1050 	if (dir == MEM_F_READ) {
1051 		*val = 0xffffffffffffffff;
1052 	}
1053 
1054 	return (0);
1055 }
1056 
1057 static int
1058 pci_emul_ecfg_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
1059     int bytes, uint64_t *val, void *arg1, long arg2)
1060 {
1061 	int bus, slot, func, coff, in;
1062 
1063 	coff = addr & 0xfff;
1064 	func = (addr >> 12) & 0x7;
1065 	slot = (addr >> 15) & 0x1f;
1066 	bus = (addr >> 20) & 0xff;
1067 	in = (dir == MEM_F_READ);
1068 	if (in)
1069 		*val = ~0UL;
1070 	pci_cfgrw(ctx, vcpu, in, bus, slot, func, coff, bytes, (uint32_t *)val);
1071 	return (0);
1072 }
1073 
1074 uint64_t
1075 pci_ecfg_base(void)
1076 {
1077 
1078 	return (PCI_EMUL_ECFG_BASE);
1079 }
1080 
1081 #define	BUSIO_ROUNDUP		32
1082 #define	BUSMEM_ROUNDUP		(1024 * 1024)
1083 
1084 int
1085 init_pci(struct vmctx *ctx)
1086 {
1087 	struct mem_range mr;
1088 	struct pci_devemu *pde;
1089 	struct businfo *bi;
1090 	struct slotinfo *si;
1091 	struct funcinfo *fi;
1092 	size_t lowmem;
1093 	uint64_t cpu_maxphysaddr, pci_emul_memresv64;
1094 	u_int regs[4];
1095 	int bus, slot, func, error;
1096 
1097 	pci_emul_iobase = PCI_EMUL_IOBASE;
1098 	pci_emul_membase32 = vm_get_lowmem_limit(ctx);
1099 
1100 	do_cpuid(0x80000008, regs);
1101 	cpu_maxphysaddr = 1ULL << (regs[0] & 0xff);
1102 	if (cpu_maxphysaddr > VM_MAXUSER_ADDRESS_LA48)
1103 		cpu_maxphysaddr = VM_MAXUSER_ADDRESS_LA48;
1104 	pci_emul_memresv64 = cpu_maxphysaddr / 4;
1105 	/*
1106 	 * Max power of 2 that is less then
1107 	 * cpu_maxphysaddr - pci_emul_memresv64.
1108 	 */
1109 	pci_emul_membase64 = 1ULL << (flsl(cpu_maxphysaddr -
1110 	    pci_emul_memresv64) - 1);
1111 	pci_emul_memlim64 = cpu_maxphysaddr;
1112 
1113 	for (bus = 0; bus < MAXBUSES; bus++) {
1114 		if ((bi = pci_businfo[bus]) == NULL)
1115 			continue;
1116 		/*
1117 		 * Keep track of the i/o and memory resources allocated to
1118 		 * this bus.
1119 		 */
1120 		bi->iobase = pci_emul_iobase;
1121 		bi->membase32 = pci_emul_membase32;
1122 		bi->membase64 = pci_emul_membase64;
1123 
1124 		for (slot = 0; slot < MAXSLOTS; slot++) {
1125 			si = &bi->slotinfo[slot];
1126 			for (func = 0; func < MAXFUNCS; func++) {
1127 				fi = &si->si_funcs[func];
1128 				if (fi->fi_name == NULL)
1129 					continue;
1130 				pde = pci_emul_finddev(fi->fi_name);
1131 				assert(pde != NULL);
1132 				error = pci_emul_init(ctx, pde, bus, slot,
1133 				    func, fi);
1134 				if (error)
1135 					return (error);
1136 			}
1137 		}
1138 
1139 		/*
1140 		 * Add some slop to the I/O and memory resources decoded by
1141 		 * this bus to give a guest some flexibility if it wants to
1142 		 * reprogram the BARs.
1143 		 */
1144 		pci_emul_iobase += BUSIO_ROUNDUP;
1145 		pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
1146 		bi->iolimit = pci_emul_iobase;
1147 
1148 		pci_emul_membase32 += BUSMEM_ROUNDUP;
1149 		pci_emul_membase32 = roundup2(pci_emul_membase32,
1150 		    BUSMEM_ROUNDUP);
1151 		bi->memlimit32 = pci_emul_membase32;
1152 
1153 		pci_emul_membase64 += BUSMEM_ROUNDUP;
1154 		pci_emul_membase64 = roundup2(pci_emul_membase64,
1155 		    BUSMEM_ROUNDUP);
1156 		bi->memlimit64 = pci_emul_membase64;
1157 	}
1158 
1159 	/*
1160 	 * PCI backends are initialized before routing INTx interrupts
1161 	 * so that LPC devices are able to reserve ISA IRQs before
1162 	 * routing PIRQ pins.
1163 	 */
1164 	for (bus = 0; bus < MAXBUSES; bus++) {
1165 		if ((bi = pci_businfo[bus]) == NULL)
1166 			continue;
1167 
1168 		for (slot = 0; slot < MAXSLOTS; slot++) {
1169 			si = &bi->slotinfo[slot];
1170 			for (func = 0; func < MAXFUNCS; func++) {
1171 				fi = &si->si_funcs[func];
1172 				if (fi->fi_devi == NULL)
1173 					continue;
1174 				pci_lintr_route(fi->fi_devi);
1175 			}
1176 		}
1177 	}
1178 	lpc_pirq_routed();
1179 
1180 	/*
1181 	 * The guest physical memory map looks like the following:
1182 	 * [0,		    lowmem)		guest system memory
1183 	 * [lowmem,	    lowmem_limit)	memory hole (may be absent)
1184 	 * [lowmem_limit,   0xE0000000)		PCI hole (32-bit BAR allocation)
1185 	 * [0xE0000000,	    0xF0000000)		PCI extended config window
1186 	 * [0xF0000000,	    4GB)		LAPIC, IOAPIC, HPET, firmware
1187 	 * [4GB,	    4GB + highmem)
1188 	 */
1189 
1190 	/*
1191 	 * Accesses to memory addresses that are not allocated to system
1192 	 * memory or PCI devices return 0xff's.
1193 	 */
1194 	lowmem = vm_get_lowmem_size(ctx);
1195 	bzero(&mr, sizeof(struct mem_range));
1196 	mr.name = "PCI hole";
1197 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1198 	mr.base = lowmem;
1199 	mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
1200 	mr.handler = pci_emul_fallback_handler;
1201 	error = register_mem_fallback(&mr);
1202 	assert(error == 0);
1203 
1204 	/* PCI extended config space */
1205 	bzero(&mr, sizeof(struct mem_range));
1206 	mr.name = "PCI ECFG";
1207 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1208 	mr.base = PCI_EMUL_ECFG_BASE;
1209 	mr.size = PCI_EMUL_ECFG_SIZE;
1210 	mr.handler = pci_emul_ecfg_handler;
1211 	error = register_mem(&mr);
1212 	assert(error == 0);
1213 
1214 	return (0);
1215 }
1216 
1217 static void
1218 pci_apic_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
1219     void *arg)
1220 {
1221 
1222 	dsdt_line("  Package ()");
1223 	dsdt_line("  {");
1224 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1225 	dsdt_line("    0x%02X,", pin - 1);
1226 	dsdt_line("    Zero,");
1227 	dsdt_line("    0x%X", ioapic_irq);
1228 	dsdt_line("  },");
1229 }
1230 
1231 static void
1232 pci_pirq_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
1233     void *arg)
1234 {
1235 	char *name;
1236 
1237 	name = lpc_pirq_name(pirq_pin);
1238 	if (name == NULL)
1239 		return;
1240 	dsdt_line("  Package ()");
1241 	dsdt_line("  {");
1242 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1243 	dsdt_line("    0x%02X,", pin - 1);
1244 	dsdt_line("    %s,", name);
1245 	dsdt_line("    0x00");
1246 	dsdt_line("  },");
1247 	free(name);
1248 }
1249 
1250 /*
1251  * A bhyve virtual machine has a flat PCI hierarchy with a root port
1252  * corresponding to each PCI bus.
1253  */
1254 static void
1255 pci_bus_write_dsdt(int bus)
1256 {
1257 	struct businfo *bi;
1258 	struct slotinfo *si;
1259 	struct pci_devinst *pi;
1260 	int count, func, slot;
1261 
1262 	/*
1263 	 * If there are no devices on this 'bus' then just return.
1264 	 */
1265 	if ((bi = pci_businfo[bus]) == NULL) {
1266 		/*
1267 		 * Bus 0 is special because it decodes the I/O ports used
1268 		 * for PCI config space access even if there are no devices
1269 		 * on it.
1270 		 */
1271 		if (bus != 0)
1272 			return;
1273 	}
1274 
1275 	dsdt_line("  Device (PC%02X)", bus);
1276 	dsdt_line("  {");
1277 	dsdt_line("    Name (_HID, EisaId (\"PNP0A03\"))");
1278 
1279 	dsdt_line("    Method (_BBN, 0, NotSerialized)");
1280 	dsdt_line("    {");
1281 	dsdt_line("        Return (0x%08X)", bus);
1282 	dsdt_line("    }");
1283 	dsdt_line("    Name (_CRS, ResourceTemplate ()");
1284 	dsdt_line("    {");
1285 	dsdt_line("      WordBusNumber (ResourceProducer, MinFixed, "
1286 	    "MaxFixed, PosDecode,");
1287 	dsdt_line("        0x0000,             // Granularity");
1288 	dsdt_line("        0x%04X,             // Range Minimum", bus);
1289 	dsdt_line("        0x%04X,             // Range Maximum", bus);
1290 	dsdt_line("        0x0000,             // Translation Offset");
1291 	dsdt_line("        0x0001,             // Length");
1292 	dsdt_line("        ,, )");
1293 
1294 	if (bus == 0) {
1295 		dsdt_indent(3);
1296 		dsdt_fixed_ioport(0xCF8, 8);
1297 		dsdt_unindent(3);
1298 
1299 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1300 		    "PosDecode, EntireRange,");
1301 		dsdt_line("        0x0000,             // Granularity");
1302 		dsdt_line("        0x0000,             // Range Minimum");
1303 		dsdt_line("        0x0CF7,             // Range Maximum");
1304 		dsdt_line("        0x0000,             // Translation Offset");
1305 		dsdt_line("        0x0CF8,             // Length");
1306 		dsdt_line("        ,, , TypeStatic)");
1307 
1308 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1309 		    "PosDecode, EntireRange,");
1310 		dsdt_line("        0x0000,             // Granularity");
1311 		dsdt_line("        0x0D00,             // Range Minimum");
1312 		dsdt_line("        0x%04X,             // Range Maximum",
1313 		    PCI_EMUL_IOBASE - 1);
1314 		dsdt_line("        0x0000,             // Translation Offset");
1315 		dsdt_line("        0x%04X,             // Length",
1316 		    PCI_EMUL_IOBASE - 0x0D00);
1317 		dsdt_line("        ,, , TypeStatic)");
1318 
1319 		if (bi == NULL) {
1320 			dsdt_line("    })");
1321 			goto done;
1322 		}
1323 	}
1324 	assert(bi != NULL);
1325 
1326 	/* i/o window */
1327 	dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1328 	    "PosDecode, EntireRange,");
1329 	dsdt_line("        0x0000,             // Granularity");
1330 	dsdt_line("        0x%04X,             // Range Minimum", bi->iobase);
1331 	dsdt_line("        0x%04X,             // Range Maximum",
1332 	    bi->iolimit - 1);
1333 	dsdt_line("        0x0000,             // Translation Offset");
1334 	dsdt_line("        0x%04X,             // Length",
1335 	    bi->iolimit - bi->iobase);
1336 	dsdt_line("        ,, , TypeStatic)");
1337 
1338 	/* mmio window (32-bit) */
1339 	dsdt_line("      DWordMemory (ResourceProducer, PosDecode, "
1340 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1341 	dsdt_line("        0x00000000,         // Granularity");
1342 	dsdt_line("        0x%08X,         // Range Minimum\n", bi->membase32);
1343 	dsdt_line("        0x%08X,         // Range Maximum\n",
1344 	    bi->memlimit32 - 1);
1345 	dsdt_line("        0x00000000,         // Translation Offset");
1346 	dsdt_line("        0x%08X,         // Length\n",
1347 	    bi->memlimit32 - bi->membase32);
1348 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1349 
1350 	/* mmio window (64-bit) */
1351 	dsdt_line("      QWordMemory (ResourceProducer, PosDecode, "
1352 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1353 	dsdt_line("        0x0000000000000000, // Granularity");
1354 	dsdt_line("        0x%016lX, // Range Minimum\n", bi->membase64);
1355 	dsdt_line("        0x%016lX, // Range Maximum\n",
1356 	    bi->memlimit64 - 1);
1357 	dsdt_line("        0x0000000000000000, // Translation Offset");
1358 	dsdt_line("        0x%016lX, // Length\n",
1359 	    bi->memlimit64 - bi->membase64);
1360 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1361 	dsdt_line("    })");
1362 
1363 	count = pci_count_lintr(bus);
1364 	if (count != 0) {
1365 		dsdt_indent(2);
1366 		dsdt_line("Name (PPRT, Package ()");
1367 		dsdt_line("{");
1368 		pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
1369 		dsdt_line("})");
1370 		dsdt_line("Name (APRT, Package ()");
1371 		dsdt_line("{");
1372 		pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
1373 		dsdt_line("})");
1374 		dsdt_line("Method (_PRT, 0, NotSerialized)");
1375 		dsdt_line("{");
1376 		dsdt_line("  If (PICM)");
1377 		dsdt_line("  {");
1378 		dsdt_line("    Return (APRT)");
1379 		dsdt_line("  }");
1380 		dsdt_line("  Else");
1381 		dsdt_line("  {");
1382 		dsdt_line("    Return (PPRT)");
1383 		dsdt_line("  }");
1384 		dsdt_line("}");
1385 		dsdt_unindent(2);
1386 	}
1387 
1388 	dsdt_indent(2);
1389 	for (slot = 0; slot < MAXSLOTS; slot++) {
1390 		si = &bi->slotinfo[slot];
1391 		for (func = 0; func < MAXFUNCS; func++) {
1392 			pi = si->si_funcs[func].fi_devi;
1393 			if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
1394 				pi->pi_d->pe_write_dsdt(pi);
1395 		}
1396 	}
1397 	dsdt_unindent(2);
1398 done:
1399 	dsdt_line("  }");
1400 }
1401 
1402 void
1403 pci_write_dsdt(void)
1404 {
1405 	int bus;
1406 
1407 	dsdt_indent(1);
1408 	dsdt_line("Name (PICM, 0x00)");
1409 	dsdt_line("Method (_PIC, 1, NotSerialized)");
1410 	dsdt_line("{");
1411 	dsdt_line("  Store (Arg0, PICM)");
1412 	dsdt_line("}");
1413 	dsdt_line("");
1414 	dsdt_line("Scope (_SB)");
1415 	dsdt_line("{");
1416 	for (bus = 0; bus < MAXBUSES; bus++)
1417 		pci_bus_write_dsdt(bus);
1418 	dsdt_line("}");
1419 	dsdt_unindent(1);
1420 }
1421 
1422 int
1423 pci_bus_configured(int bus)
1424 {
1425 	assert(bus >= 0 && bus < MAXBUSES);
1426 	return (pci_businfo[bus] != NULL);
1427 }
1428 
1429 int
1430 pci_msi_enabled(struct pci_devinst *pi)
1431 {
1432 	return (pi->pi_msi.enabled);
1433 }
1434 
1435 int
1436 pci_msi_maxmsgnum(struct pci_devinst *pi)
1437 {
1438 	if (pi->pi_msi.enabled)
1439 		return (pi->pi_msi.maxmsgnum);
1440 	else
1441 		return (0);
1442 }
1443 
1444 int
1445 pci_msix_enabled(struct pci_devinst *pi)
1446 {
1447 
1448 	return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
1449 }
1450 
1451 void
1452 pci_generate_msix(struct pci_devinst *pi, int index)
1453 {
1454 	struct msix_table_entry *mte;
1455 
1456 	if (!pci_msix_enabled(pi))
1457 		return;
1458 
1459 	if (pi->pi_msix.function_mask)
1460 		return;
1461 
1462 	if (index >= pi->pi_msix.table_count)
1463 		return;
1464 
1465 	mte = &pi->pi_msix.table[index];
1466 	if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
1467 		/* XXX Set PBA bit if interrupt is disabled */
1468 		vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data);
1469 	}
1470 }
1471 
1472 void
1473 pci_generate_msi(struct pci_devinst *pi, int index)
1474 {
1475 
1476 	if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
1477 		vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr,
1478 			     pi->pi_msi.msg_data + index);
1479 	}
1480 }
1481 
1482 static bool
1483 pci_lintr_permitted(struct pci_devinst *pi)
1484 {
1485 	uint16_t cmd;
1486 
1487 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
1488 	return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
1489 		(cmd & PCIM_CMD_INTxDIS)));
1490 }
1491 
1492 void
1493 pci_lintr_request(struct pci_devinst *pi)
1494 {
1495 	struct businfo *bi;
1496 	struct slotinfo *si;
1497 	int bestpin, bestcount, pin;
1498 
1499 	bi = pci_businfo[pi->pi_bus];
1500 	assert(bi != NULL);
1501 
1502 	/*
1503 	 * Just allocate a pin from our slot.  The pin will be
1504 	 * assigned IRQs later when interrupts are routed.
1505 	 */
1506 	si = &bi->slotinfo[pi->pi_slot];
1507 	bestpin = 0;
1508 	bestcount = si->si_intpins[0].ii_count;
1509 	for (pin = 1; pin < 4; pin++) {
1510 		if (si->si_intpins[pin].ii_count < bestcount) {
1511 			bestpin = pin;
1512 			bestcount = si->si_intpins[pin].ii_count;
1513 		}
1514 	}
1515 
1516 	si->si_intpins[bestpin].ii_count++;
1517 	pi->pi_lintr.pin = bestpin + 1;
1518 	pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
1519 }
1520 
1521 static void
1522 pci_lintr_route(struct pci_devinst *pi)
1523 {
1524 	struct businfo *bi;
1525 	struct intxinfo *ii;
1526 
1527 	if (pi->pi_lintr.pin == 0)
1528 		return;
1529 
1530 	bi = pci_businfo[pi->pi_bus];
1531 	assert(bi != NULL);
1532 	ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
1533 
1534 	/*
1535 	 * Attempt to allocate an I/O APIC pin for this intpin if one
1536 	 * is not yet assigned.
1537 	 */
1538 	if (ii->ii_ioapic_irq == 0)
1539 		ii->ii_ioapic_irq = ioapic_pci_alloc_irq(pi);
1540 	assert(ii->ii_ioapic_irq > 0);
1541 
1542 	/*
1543 	 * Attempt to allocate a PIRQ pin for this intpin if one is
1544 	 * not yet assigned.
1545 	 */
1546 	if (ii->ii_pirq_pin == 0)
1547 		ii->ii_pirq_pin = pirq_alloc_pin(pi);
1548 	assert(ii->ii_pirq_pin > 0);
1549 
1550 	pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq;
1551 	pi->pi_lintr.pirq_pin = ii->ii_pirq_pin;
1552 	pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin));
1553 }
1554 
1555 void
1556 pci_lintr_assert(struct pci_devinst *pi)
1557 {
1558 
1559 	assert(pi->pi_lintr.pin > 0);
1560 
1561 	pthread_mutex_lock(&pi->pi_lintr.lock);
1562 	if (pi->pi_lintr.state == IDLE) {
1563 		if (pci_lintr_permitted(pi)) {
1564 			pi->pi_lintr.state = ASSERTED;
1565 			pci_irq_assert(pi);
1566 		} else
1567 			pi->pi_lintr.state = PENDING;
1568 	}
1569 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1570 }
1571 
1572 void
1573 pci_lintr_deassert(struct pci_devinst *pi)
1574 {
1575 
1576 	assert(pi->pi_lintr.pin > 0);
1577 
1578 	pthread_mutex_lock(&pi->pi_lintr.lock);
1579 	if (pi->pi_lintr.state == ASSERTED) {
1580 		pi->pi_lintr.state = IDLE;
1581 		pci_irq_deassert(pi);
1582 	} else if (pi->pi_lintr.state == PENDING)
1583 		pi->pi_lintr.state = IDLE;
1584 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1585 }
1586 
1587 static void
1588 pci_lintr_update(struct pci_devinst *pi)
1589 {
1590 
1591 	pthread_mutex_lock(&pi->pi_lintr.lock);
1592 	if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
1593 		pci_irq_deassert(pi);
1594 		pi->pi_lintr.state = PENDING;
1595 	} else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
1596 		pi->pi_lintr.state = ASSERTED;
1597 		pci_irq_assert(pi);
1598 	}
1599 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1600 }
1601 
1602 int
1603 pci_count_lintr(int bus)
1604 {
1605 	int count, slot, pin;
1606 	struct slotinfo *slotinfo;
1607 
1608 	count = 0;
1609 	if (pci_businfo[bus] != NULL) {
1610 		for (slot = 0; slot < MAXSLOTS; slot++) {
1611 			slotinfo = &pci_businfo[bus]->slotinfo[slot];
1612 			for (pin = 0; pin < 4; pin++) {
1613 				if (slotinfo->si_intpins[pin].ii_count != 0)
1614 					count++;
1615 			}
1616 		}
1617 	}
1618 	return (count);
1619 }
1620 
1621 void
1622 pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
1623 {
1624 	struct businfo *bi;
1625 	struct slotinfo *si;
1626 	struct intxinfo *ii;
1627 	int slot, pin;
1628 
1629 	if ((bi = pci_businfo[bus]) == NULL)
1630 		return;
1631 
1632 	for (slot = 0; slot < MAXSLOTS; slot++) {
1633 		si = &bi->slotinfo[slot];
1634 		for (pin = 0; pin < 4; pin++) {
1635 			ii = &si->si_intpins[pin];
1636 			if (ii->ii_count != 0)
1637 				cb(bus, slot, pin + 1, ii->ii_pirq_pin,
1638 				    ii->ii_ioapic_irq, arg);
1639 		}
1640 	}
1641 }
1642 
1643 /*
1644  * Return 1 if the emulated device in 'slot' is a multi-function device.
1645  * Return 0 otherwise.
1646  */
1647 static int
1648 pci_emul_is_mfdev(int bus, int slot)
1649 {
1650 	struct businfo *bi;
1651 	struct slotinfo *si;
1652 	int f, numfuncs;
1653 
1654 	numfuncs = 0;
1655 	if ((bi = pci_businfo[bus]) != NULL) {
1656 		si = &bi->slotinfo[slot];
1657 		for (f = 0; f < MAXFUNCS; f++) {
1658 			if (si->si_funcs[f].fi_devi != NULL) {
1659 				numfuncs++;
1660 			}
1661 		}
1662 	}
1663 	return (numfuncs > 1);
1664 }
1665 
1666 /*
1667  * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
1668  * whether or not is a multi-function being emulated in the pci 'slot'.
1669  */
1670 static void
1671 pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
1672 {
1673 	int mfdev;
1674 
1675 	if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
1676 		mfdev = pci_emul_is_mfdev(bus, slot);
1677 		switch (bytes) {
1678 		case 1:
1679 		case 2:
1680 			*rv &= ~PCIM_MFDEV;
1681 			if (mfdev) {
1682 				*rv |= PCIM_MFDEV;
1683 			}
1684 			break;
1685 		case 4:
1686 			*rv &= ~(PCIM_MFDEV << 16);
1687 			if (mfdev) {
1688 				*rv |= (PCIM_MFDEV << 16);
1689 			}
1690 			break;
1691 		}
1692 	}
1693 }
1694 
1695 /*
1696  * Update device state in response to changes to the PCI command
1697  * register.
1698  */
1699 void
1700 pci_emul_cmd_changed(struct pci_devinst *pi, uint16_t old)
1701 {
1702 	int i;
1703 	uint16_t changed, new;
1704 
1705 	new = pci_get_cfgdata16(pi, PCIR_COMMAND);
1706 	changed = old ^ new;
1707 
1708 	/*
1709 	 * If the MMIO or I/O address space decoding has changed then
1710 	 * register/unregister all BARs that decode that address space.
1711 	 */
1712 	for (i = 0; i <= PCI_BARMAX; i++) {
1713 		switch (pi->pi_bar[i].type) {
1714 			case PCIBAR_NONE:
1715 			case PCIBAR_MEMHI64:
1716 				break;
1717 			case PCIBAR_IO:
1718 				/* I/O address space decoding changed? */
1719 				if (changed & PCIM_CMD_PORTEN) {
1720 					if (new & PCIM_CMD_PORTEN)
1721 						register_bar(pi, i);
1722 					else
1723 						unregister_bar(pi, i);
1724 				}
1725 				break;
1726 			case PCIBAR_MEM32:
1727 			case PCIBAR_MEM64:
1728 				/* MMIO address space decoding changed? */
1729 				if (changed & PCIM_CMD_MEMEN) {
1730 					if (new & PCIM_CMD_MEMEN)
1731 						register_bar(pi, i);
1732 					else
1733 						unregister_bar(pi, i);
1734 				}
1735 				break;
1736 			default:
1737 				assert(0);
1738 		}
1739 	}
1740 
1741 	/*
1742 	 * If INTx has been unmasked and is pending, assert the
1743 	 * interrupt.
1744 	 */
1745 	pci_lintr_update(pi);
1746 }
1747 
1748 static void
1749 pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes)
1750 {
1751 	int rshift;
1752 	uint32_t cmd, old, readonly;
1753 
1754 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* stash old value */
1755 
1756 	/*
1757 	 * From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3.
1758 	 *
1759 	 * XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are
1760 	 * 'write 1 to clear'. However these bits are not set to '1' by
1761 	 * any device emulation so it is simpler to treat them as readonly.
1762 	 */
1763 	rshift = (coff & 0x3) * 8;
1764 	readonly = 0xFFFFF880 >> rshift;
1765 
1766 	old = CFGREAD(pi, coff, bytes);
1767 	new &= ~readonly;
1768 	new |= (old & readonly);
1769 	CFGWRITE(pi, coff, new, bytes);			/* update config */
1770 
1771 	pci_emul_cmd_changed(pi, cmd);
1772 }
1773 
1774 static void
1775 pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot, int func,
1776     int coff, int bytes, uint32_t *eax)
1777 {
1778 	struct businfo *bi;
1779 	struct slotinfo *si;
1780 	struct pci_devinst *pi;
1781 	struct pci_devemu *pe;
1782 	int idx, needcfg;
1783 	uint64_t addr, bar, mask;
1784 
1785 	if ((bi = pci_businfo[bus]) != NULL) {
1786 		si = &bi->slotinfo[slot];
1787 		pi = si->si_funcs[func].fi_devi;
1788 	} else
1789 		pi = NULL;
1790 
1791 	/*
1792 	 * Just return if there is no device at this slot:func or if the
1793 	 * the guest is doing an un-aligned access.
1794 	 */
1795 	if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
1796 	    (coff & (bytes - 1)) != 0) {
1797 		if (in)
1798 			*eax = 0xffffffff;
1799 		return;
1800 	}
1801 
1802 	/*
1803 	 * Ignore all writes beyond the standard config space and return all
1804 	 * ones on reads.
1805 	 */
1806 	if (coff >= PCI_REGMAX + 1) {
1807 		if (in) {
1808 			*eax = 0xffffffff;
1809 			/*
1810 			 * Extended capabilities begin at offset 256 in config
1811 			 * space. Absence of extended capabilities is signaled
1812 			 * with all 0s in the extended capability header at
1813 			 * offset 256.
1814 			 */
1815 			if (coff <= PCI_REGMAX + 4)
1816 				*eax = 0x00000000;
1817 		}
1818 		return;
1819 	}
1820 
1821 	pe = pi->pi_d;
1822 
1823 	/*
1824 	 * Config read
1825 	 */
1826 	if (in) {
1827 		/* Let the device emulation override the default handler */
1828 		if (pe->pe_cfgread != NULL) {
1829 			needcfg = pe->pe_cfgread(ctx, vcpu, pi, coff, bytes,
1830 			    eax);
1831 		} else {
1832 			needcfg = 1;
1833 		}
1834 
1835 		if (needcfg)
1836 			*eax = CFGREAD(pi, coff, bytes);
1837 
1838 		pci_emul_hdrtype_fixup(bus, slot, coff, bytes, eax);
1839 	} else {
1840 		/* Let the device emulation override the default handler */
1841 		if (pe->pe_cfgwrite != NULL &&
1842 		    (*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0)
1843 			return;
1844 
1845 		/*
1846 		 * Special handling for write to BAR registers
1847 		 */
1848 		if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) {
1849 			/*
1850 			 * Ignore writes to BAR registers that are not
1851 			 * 4-byte aligned.
1852 			 */
1853 			if (bytes != 4 || (coff & 0x3) != 0)
1854 				return;
1855 			idx = (coff - PCIR_BAR(0)) / 4;
1856 			mask = ~(pi->pi_bar[idx].size - 1);
1857 			switch (pi->pi_bar[idx].type) {
1858 			case PCIBAR_NONE:
1859 				pi->pi_bar[idx].addr = bar = 0;
1860 				break;
1861 			case PCIBAR_IO:
1862 				addr = *eax & mask;
1863 				addr &= 0xffff;
1864 				bar = addr | PCIM_BAR_IO_SPACE;
1865 				/*
1866 				 * Register the new BAR value for interception
1867 				 */
1868 				if (addr != pi->pi_bar[idx].addr) {
1869 					update_bar_address(pi, addr, idx,
1870 							   PCIBAR_IO);
1871 				}
1872 				break;
1873 			case PCIBAR_MEM32:
1874 				addr = bar = *eax & mask;
1875 				bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
1876 				if (addr != pi->pi_bar[idx].addr) {
1877 					update_bar_address(pi, addr, idx,
1878 							   PCIBAR_MEM32);
1879 				}
1880 				break;
1881 			case PCIBAR_MEM64:
1882 				addr = bar = *eax & mask;
1883 				bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
1884 				       PCIM_BAR_MEM_PREFETCH;
1885 				if (addr != (uint32_t)pi->pi_bar[idx].addr) {
1886 					update_bar_address(pi, addr, idx,
1887 							   PCIBAR_MEM64);
1888 				}
1889 				break;
1890 			case PCIBAR_MEMHI64:
1891 				mask = ~(pi->pi_bar[idx - 1].size - 1);
1892 				addr = ((uint64_t)*eax << 32) & mask;
1893 				bar = addr >> 32;
1894 				if (bar != pi->pi_bar[idx - 1].addr >> 32) {
1895 					update_bar_address(pi, addr, idx - 1,
1896 							   PCIBAR_MEMHI64);
1897 				}
1898 				break;
1899 			default:
1900 				assert(0);
1901 			}
1902 			pci_set_cfgdata32(pi, coff, bar);
1903 
1904 		} else if (pci_emul_iscap(pi, coff)) {
1905 			pci_emul_capwrite(pi, coff, bytes, *eax, 0, 0);
1906 		} else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) {
1907 			pci_emul_cmdsts_write(pi, coff, *eax, bytes);
1908 		} else {
1909 			CFGWRITE(pi, coff, *eax, bytes);
1910 		}
1911 	}
1912 }
1913 
1914 static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
1915 
1916 static int
1917 pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
1918 		 uint32_t *eax, void *arg)
1919 {
1920 	uint32_t x;
1921 
1922 	if (bytes != 4) {
1923 		if (in)
1924 			*eax = (bytes == 2) ? 0xffff : 0xff;
1925 		return (0);
1926 	}
1927 
1928 	if (in) {
1929 		x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff;
1930 		if (cfgenable)
1931 			x |= CONF1_ENABLE;
1932 		*eax = x;
1933 	} else {
1934 		x = *eax;
1935 		cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
1936 		cfgoff = x & PCI_REGMAX;
1937 		cfgfunc = (x >> 8) & PCI_FUNCMAX;
1938 		cfgslot = (x >> 11) & PCI_SLOTMAX;
1939 		cfgbus = (x >> 16) & PCI_BUSMAX;
1940 	}
1941 
1942 	return (0);
1943 }
1944 INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
1945 
1946 static int
1947 pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
1948 		 uint32_t *eax, void *arg)
1949 {
1950 	int coff;
1951 
1952 	assert(bytes == 1 || bytes == 2 || bytes == 4);
1953 
1954 	coff = cfgoff + (port - CONF1_DATA_PORT);
1955 	if (cfgenable) {
1956 		pci_cfgrw(ctx, vcpu, in, cfgbus, cfgslot, cfgfunc, coff, bytes,
1957 		    eax);
1958 	} else {
1959 		/* Ignore accesses to cfgdata if not enabled by cfgaddr */
1960 		if (in)
1961 			*eax = 0xffffffff;
1962 	}
1963 	return (0);
1964 }
1965 
1966 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
1967 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
1968 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
1969 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
1970 
1971 #ifdef BHYVE_SNAPSHOT
1972 /*
1973  * Saves/restores PCI device emulated state. Returns 0 on success.
1974  */
1975 static int
1976 pci_snapshot_pci_dev(struct vm_snapshot_meta *meta)
1977 {
1978 	struct pci_devinst *pi;
1979 	int i;
1980 	int ret;
1981 
1982 	pi = meta->dev_data;
1983 
1984 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.enabled, meta, ret, done);
1985 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.addr, meta, ret, done);
1986 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.msg_data, meta, ret, done);
1987 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.maxmsgnum, meta, ret, done);
1988 
1989 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.enabled, meta, ret, done);
1990 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_bar, meta, ret, done);
1991 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_bar, meta, ret, done);
1992 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_offset, meta, ret, done);
1993 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_count, meta, ret, done);
1994 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_offset, meta, ret, done);
1995 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_size, meta, ret, done);
1996 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.function_mask, meta, ret, done);
1997 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_page_offset, meta, ret, done);
1998 
1999 	SNAPSHOT_BUF_OR_LEAVE(pi->pi_cfgdata, sizeof(pi->pi_cfgdata),
2000 			      meta, ret, done);
2001 
2002 	for (i = 0; i < nitems(pi->pi_bar); i++) {
2003 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].type, meta, ret, done);
2004 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].size, meta, ret, done);
2005 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].addr, meta, ret, done);
2006 	}
2007 
2008 	/* Restore MSI-X table. */
2009 	for (i = 0; i < pi->pi_msix.table_count; i++) {
2010 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].addr,
2011 				      meta, ret, done);
2012 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].msg_data,
2013 				      meta, ret, done);
2014 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].vector_control,
2015 				      meta, ret, done);
2016 	}
2017 
2018 done:
2019 	return (ret);
2020 }
2021 
2022 static int
2023 pci_find_slotted_dev(const char *dev_name, struct pci_devemu **pde,
2024 		     struct pci_devinst **pdi)
2025 {
2026 	struct businfo *bi;
2027 	struct slotinfo *si;
2028 	struct funcinfo *fi;
2029 	int bus, slot, func;
2030 
2031 	assert(dev_name != NULL);
2032 	assert(pde != NULL);
2033 	assert(pdi != NULL);
2034 
2035 	for (bus = 0; bus < MAXBUSES; bus++) {
2036 		if ((bi = pci_businfo[bus]) == NULL)
2037 			continue;
2038 
2039 		for (slot = 0; slot < MAXSLOTS; slot++) {
2040 			si = &bi->slotinfo[slot];
2041 			for (func = 0; func < MAXFUNCS; func++) {
2042 				fi = &si->si_funcs[func];
2043 				if (fi->fi_name == NULL)
2044 					continue;
2045 				if (strcmp(dev_name, fi->fi_name))
2046 					continue;
2047 
2048 				*pde = pci_emul_finddev(fi->fi_name);
2049 				assert(*pde != NULL);
2050 
2051 				*pdi = fi->fi_devi;
2052 				return (0);
2053 			}
2054 		}
2055 	}
2056 
2057 	return (EINVAL);
2058 }
2059 
2060 int
2061 pci_snapshot(struct vm_snapshot_meta *meta)
2062 {
2063 	struct pci_devemu *pde;
2064 	struct pci_devinst *pdi;
2065 	int ret;
2066 
2067 	assert(meta->dev_name != NULL);
2068 
2069 	ret = pci_find_slotted_dev(meta->dev_name, &pde, &pdi);
2070 	if (ret != 0) {
2071 		fprintf(stderr, "%s: no such name: %s\r\n",
2072 			__func__, meta->dev_name);
2073 		memset(meta->buffer.buf_start, 0, meta->buffer.buf_size);
2074 		return (0);
2075 	}
2076 
2077 	meta->dev_data = pdi;
2078 
2079 	if (pde->pe_snapshot == NULL) {
2080 		fprintf(stderr, "%s: not implemented yet for: %s\r\n",
2081 			__func__, meta->dev_name);
2082 		return (-1);
2083 	}
2084 
2085 	ret = pci_snapshot_pci_dev(meta);
2086 	if (ret != 0) {
2087 		fprintf(stderr, "%s: failed to snapshot pci dev\r\n",
2088 			__func__);
2089 		return (-1);
2090 	}
2091 
2092 	ret = (*pde->pe_snapshot)(meta);
2093 
2094 	return (ret);
2095 }
2096 
2097 int
2098 pci_pause(struct vmctx *ctx, const char *dev_name)
2099 {
2100 	struct pci_devemu *pde;
2101 	struct pci_devinst *pdi;
2102 	int ret;
2103 
2104 	assert(dev_name != NULL);
2105 
2106 	ret = pci_find_slotted_dev(dev_name, &pde, &pdi);
2107 	if (ret != 0) {
2108 		/*
2109 		 * It is possible to call this function without
2110 		 * checking that the device is inserted first.
2111 		 */
2112 		fprintf(stderr, "%s: no such name: %s\n", __func__, dev_name);
2113 		return (0);
2114 	}
2115 
2116 	if (pde->pe_pause == NULL) {
2117 		/* The pause/resume functionality is optional. */
2118 		fprintf(stderr, "%s: not implemented for: %s\n",
2119 			__func__, dev_name);
2120 		return (0);
2121 	}
2122 
2123 	return (*pde->pe_pause)(ctx, pdi);
2124 }
2125 
2126 int
2127 pci_resume(struct vmctx *ctx, const char *dev_name)
2128 {
2129 	struct pci_devemu *pde;
2130 	struct pci_devinst *pdi;
2131 	int ret;
2132 
2133 	assert(dev_name != NULL);
2134 
2135 	ret = pci_find_slotted_dev(dev_name, &pde, &pdi);
2136 	if (ret != 0) {
2137 		/*
2138 		 * It is possible to call this function without
2139 		 * checking that the device is inserted first.
2140 		 */
2141 		fprintf(stderr, "%s: no such name: %s\n", __func__, dev_name);
2142 		return (0);
2143 	}
2144 
2145 	if (pde->pe_resume == NULL) {
2146 		/* The pause/resume functionality is optional. */
2147 		fprintf(stderr, "%s: not implemented for: %s\n",
2148 			__func__, dev_name);
2149 		return (0);
2150 	}
2151 
2152 	return (*pde->pe_resume)(ctx, pdi);
2153 }
2154 #endif
2155 
2156 #define PCI_EMUL_TEST
2157 #ifdef PCI_EMUL_TEST
2158 /*
2159  * Define a dummy test device
2160  */
2161 #define DIOSZ	8
2162 #define DMEMSZ	4096
2163 struct pci_emul_dsoftc {
2164 	uint8_t   ioregs[DIOSZ];
2165 	uint8_t	  memregs[2][DMEMSZ];
2166 };
2167 
2168 #define	PCI_EMUL_MSI_MSGS	 4
2169 #define	PCI_EMUL_MSIX_MSGS	16
2170 
2171 static int
2172 pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
2173 {
2174 	int error;
2175 	struct pci_emul_dsoftc *sc;
2176 
2177 	sc = calloc(1, sizeof(struct pci_emul_dsoftc));
2178 
2179 	pi->pi_arg = sc;
2180 
2181 	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
2182 	pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
2183 	pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
2184 
2185 	error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
2186 	assert(error == 0);
2187 
2188 	error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
2189 	assert(error == 0);
2190 
2191 	error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
2192 	assert(error == 0);
2193 
2194 	error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ);
2195 	assert(error == 0);
2196 
2197 	return (0);
2198 }
2199 
2200 static void
2201 pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2202 	      uint64_t offset, int size, uint64_t value)
2203 {
2204 	int i;
2205 	struct pci_emul_dsoftc *sc = pi->pi_arg;
2206 
2207 	if (baridx == 0) {
2208 		if (offset + size > DIOSZ) {
2209 			printf("diow: iow too large, offset %ld size %d\n",
2210 			       offset, size);
2211 			return;
2212 		}
2213 
2214 		if (size == 1) {
2215 			sc->ioregs[offset] = value & 0xff;
2216 		} else if (size == 2) {
2217 			*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
2218 		} else if (size == 4) {
2219 			*(uint32_t *)&sc->ioregs[offset] = value;
2220 		} else {
2221 			printf("diow: iow unknown size %d\n", size);
2222 		}
2223 
2224 		/*
2225 		 * Special magic value to generate an interrupt
2226 		 */
2227 		if (offset == 4 && size == 4 && pci_msi_enabled(pi))
2228 			pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
2229 
2230 		if (value == 0xabcdef) {
2231 			for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
2232 				pci_generate_msi(pi, i);
2233 		}
2234 	}
2235 
2236 	if (baridx == 1 || baridx == 2) {
2237 		if (offset + size > DMEMSZ) {
2238 			printf("diow: memw too large, offset %ld size %d\n",
2239 			       offset, size);
2240 			return;
2241 		}
2242 
2243 		i = baridx - 1;		/* 'memregs' index */
2244 
2245 		if (size == 1) {
2246 			sc->memregs[i][offset] = value;
2247 		} else if (size == 2) {
2248 			*(uint16_t *)&sc->memregs[i][offset] = value;
2249 		} else if (size == 4) {
2250 			*(uint32_t *)&sc->memregs[i][offset] = value;
2251 		} else if (size == 8) {
2252 			*(uint64_t *)&sc->memregs[i][offset] = value;
2253 		} else {
2254 			printf("diow: memw unknown size %d\n", size);
2255 		}
2256 
2257 		/*
2258 		 * magic interrupt ??
2259 		 */
2260 	}
2261 
2262 	if (baridx > 2 || baridx < 0) {
2263 		printf("diow: unknown bar idx %d\n", baridx);
2264 	}
2265 }
2266 
2267 static uint64_t
2268 pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2269 	      uint64_t offset, int size)
2270 {
2271 	struct pci_emul_dsoftc *sc = pi->pi_arg;
2272 	uint32_t value;
2273 	int i;
2274 
2275 	if (baridx == 0) {
2276 		if (offset + size > DIOSZ) {
2277 			printf("dior: ior too large, offset %ld size %d\n",
2278 			       offset, size);
2279 			return (0);
2280 		}
2281 
2282 		value = 0;
2283 		if (size == 1) {
2284 			value = sc->ioregs[offset];
2285 		} else if (size == 2) {
2286 			value = *(uint16_t *) &sc->ioregs[offset];
2287 		} else if (size == 4) {
2288 			value = *(uint32_t *) &sc->ioregs[offset];
2289 		} else {
2290 			printf("dior: ior unknown size %d\n", size);
2291 		}
2292 	}
2293 
2294 	if (baridx == 1 || baridx == 2) {
2295 		if (offset + size > DMEMSZ) {
2296 			printf("dior: memr too large, offset %ld size %d\n",
2297 			       offset, size);
2298 			return (0);
2299 		}
2300 
2301 		i = baridx - 1;		/* 'memregs' index */
2302 
2303 		if (size == 1) {
2304 			value = sc->memregs[i][offset];
2305 		} else if (size == 2) {
2306 			value = *(uint16_t *) &sc->memregs[i][offset];
2307 		} else if (size == 4) {
2308 			value = *(uint32_t *) &sc->memregs[i][offset];
2309 		} else if (size == 8) {
2310 			value = *(uint64_t *) &sc->memregs[i][offset];
2311 		} else {
2312 			printf("dior: ior unknown size %d\n", size);
2313 		}
2314 	}
2315 
2316 
2317 	if (baridx > 2 || baridx < 0) {
2318 		printf("dior: unknown bar idx %d\n", baridx);
2319 		return (0);
2320 	}
2321 
2322 	return (value);
2323 }
2324 
2325 #ifdef BHYVE_SNAPSHOT
2326 int
2327 pci_emul_snapshot(struct vm_snapshot_meta *meta)
2328 {
2329 
2330 	return (0);
2331 }
2332 #endif
2333 
2334 struct pci_devemu pci_dummy = {
2335 	.pe_emu = "dummy",
2336 	.pe_init = pci_emul_dinit,
2337 	.pe_barwrite = pci_emul_diow,
2338 	.pe_barread = pci_emul_dior,
2339 #ifdef BHYVE_SNAPSHOT
2340 	.pe_snapshot = pci_emul_snapshot,
2341 #endif
2342 };
2343 PCI_EMUL_SET(pci_dummy);
2344 
2345 #endif /* PCI_EMUL_TEST */
2346