xref: /freebsd/usr.sbin/bhyve/pci_emul.c (revision b3e7694832e81d7a904a10f525f8797b753bf0d3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/linker_set.h>
34 #include <sys/mman.h>
35 
36 #include <ctype.h>
37 #include <err.h>
38 #include <errno.h>
39 #include <pthread.h>
40 #include <stdio.h>
41 #include <stdlib.h>
42 #include <string.h>
43 #include <strings.h>
44 #include <assert.h>
45 #include <stdbool.h>
46 #include <sysexits.h>
47 
48 #include <machine/vmm.h>
49 #include <machine/vmm_snapshot.h>
50 #include <vmmapi.h>
51 
52 #include "acpi.h"
53 #include "bhyverun.h"
54 #include "config.h"
55 #include "debug.h"
56 #include "inout.h"
57 #include "ioapic.h"
58 #include "mem.h"
59 #include "pci_emul.h"
60 #include "pci_irq.h"
61 #include "pci_lpc.h"
62 #include "pci_passthru.h"
63 #include "qemu_fwcfg.h"
64 
65 #define CONF1_ADDR_PORT	   0x0cf8
66 #define CONF1_DATA_PORT	   0x0cfc
67 
68 #define CONF1_ENABLE	   0x80000000ul
69 
70 #define	MAXBUSES	(PCI_BUSMAX + 1)
71 #define MAXSLOTS	(PCI_SLOTMAX + 1)
72 #define	MAXFUNCS	(PCI_FUNCMAX + 1)
73 
74 #define GB		(1024 * 1024 * 1024UL)
75 
76 struct funcinfo {
77 	nvlist_t *fi_config;
78 	struct pci_devemu *fi_pde;
79 	struct pci_devinst *fi_devi;
80 };
81 
82 struct intxinfo {
83 	int	ii_count;
84 	int	ii_pirq_pin;
85 	int	ii_ioapic_irq;
86 };
87 
88 struct slotinfo {
89 	struct intxinfo si_intpins[4];
90 	struct funcinfo si_funcs[MAXFUNCS];
91 };
92 
93 struct businfo {
94 	uint16_t iobase, iolimit;		/* I/O window */
95 	uint32_t membase32, memlimit32;		/* mmio window below 4GB */
96 	uint64_t membase64, memlimit64;		/* mmio window above 4GB */
97 	struct slotinfo slotinfo[MAXSLOTS];
98 };
99 
100 static struct businfo *pci_businfo[MAXBUSES];
101 
102 SET_DECLARE(pci_devemu_set, struct pci_devemu);
103 
104 static uint64_t pci_emul_iobase;
105 static uint8_t *pci_emul_rombase;
106 static uint64_t pci_emul_romoffset;
107 static uint8_t *pci_emul_romlim;
108 static uint64_t pci_emul_membase32;
109 static uint64_t pci_emul_membase64;
110 static uint64_t pci_emul_memlim64;
111 
112 struct pci_bar_allocation {
113 	TAILQ_ENTRY(pci_bar_allocation) chain;
114 	struct pci_devinst *pdi;
115 	int idx;
116 	enum pcibar_type type;
117 	uint64_t size;
118 };
119 
120 static TAILQ_HEAD(pci_bar_list, pci_bar_allocation) pci_bars =
121     TAILQ_HEAD_INITIALIZER(pci_bars);
122 
123 struct boot_device {
124 	TAILQ_ENTRY(boot_device) boot_device_chain;
125 	struct pci_devinst *pdi;
126 	int bootindex;
127 };
128 static TAILQ_HEAD(boot_list, boot_device) boot_devices = TAILQ_HEAD_INITIALIZER(
129     boot_devices);
130 
131 #define	PCI_EMUL_IOBASE		0x2000
132 #define	PCI_EMUL_IOLIMIT	0x10000
133 
134 #define PCI_EMUL_ROMSIZE 0x10000000
135 
136 #define	PCI_EMUL_ECFG_BASE	0xE0000000		    /* 3.5GB */
137 #define	PCI_EMUL_ECFG_SIZE	(MAXBUSES * 1024 * 1024)    /* 1MB per bus */
138 SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
139 
140 /*
141  * OVMF always uses 0xC0000000 as base address for 32 bit PCI MMIO. Don't
142  * change this address without changing it in OVMF.
143  */
144 #define PCI_EMUL_MEMBASE32 0xC0000000
145 #define	PCI_EMUL_MEMLIMIT32	PCI_EMUL_ECFG_BASE
146 #define PCI_EMUL_MEMSIZE64	(32*GB)
147 
148 static struct pci_devemu *pci_emul_finddev(const char *name);
149 static void pci_lintr_route(struct pci_devinst *pi);
150 static void pci_lintr_update(struct pci_devinst *pi);
151 static void pci_cfgrw(int in, int bus, int slot, int func, int coff,
152     int bytes, uint32_t *val);
153 
154 static __inline void
155 CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes)
156 {
157 
158 	if (bytes == 1)
159 		pci_set_cfgdata8(pi, coff, val);
160 	else if (bytes == 2)
161 		pci_set_cfgdata16(pi, coff, val);
162 	else
163 		pci_set_cfgdata32(pi, coff, val);
164 }
165 
166 static __inline uint32_t
167 CFGREAD(struct pci_devinst *pi, int coff, int bytes)
168 {
169 
170 	if (bytes == 1)
171 		return (pci_get_cfgdata8(pi, coff));
172 	else if (bytes == 2)
173 		return (pci_get_cfgdata16(pi, coff));
174 	else
175 		return (pci_get_cfgdata32(pi, coff));
176 }
177 
178 static int
179 is_pcir_bar(int coff)
180 {
181 	return (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1));
182 }
183 
184 static int
185 is_pcir_bios(int coff)
186 {
187 	return (coff >= PCIR_BIOS && coff < PCIR_BIOS + 4);
188 }
189 
190 /*
191  * I/O access
192  */
193 
194 /*
195  * Slot options are in the form:
196  *
197  *  <bus>:<slot>:<func>,<emul>[,<config>]
198  *  <slot>[:<func>],<emul>[,<config>]
199  *
200  *  slot is 0..31
201  *  func is 0..7
202  *  emul is a string describing the type of PCI device e.g. virtio-net
203  *  config is an optional string, depending on the device, that can be
204  *  used for configuration.
205  *   Examples are:
206  *     1,virtio-net,tap0
207  *     3:0,dummy
208  */
209 static void
210 pci_parse_slot_usage(char *aopt)
211 {
212 
213 	EPRINTLN("Invalid PCI slot info field \"%s\"", aopt);
214 }
215 
216 /*
217  * Helper function to parse a list of comma-separated options where
218  * each option is formatted as "name[=value]".  If no value is
219  * provided, the option is treated as a boolean and is given a value
220  * of true.
221  */
222 int
223 pci_parse_legacy_config(nvlist_t *nvl, const char *opt)
224 {
225 	char *config, *name, *tofree, *value;
226 
227 	if (opt == NULL)
228 		return (0);
229 
230 	config = tofree = strdup(opt);
231 	while ((name = strsep(&config, ",")) != NULL) {
232 		value = strchr(name, '=');
233 		if (value != NULL) {
234 			*value = '\0';
235 			value++;
236 			set_config_value_node(nvl, name, value);
237 		} else
238 			set_config_bool_node(nvl, name, true);
239 	}
240 	free(tofree);
241 	return (0);
242 }
243 
244 /*
245  * PCI device configuration is stored in MIBs that encode the device's
246  * location:
247  *
248  * pci.<bus>.<slot>.<func>
249  *
250  * Where "bus", "slot", and "func" are all decimal values without
251  * leading zeroes.  Each valid device must have a "device" node which
252  * identifies the driver model of the device.
253  *
254  * Device backends can provide a parser for the "config" string.  If
255  * a custom parser is not provided, pci_parse_legacy_config() is used
256  * to parse the string.
257  */
258 int
259 pci_parse_slot(char *opt)
260 {
261 	char node_name[sizeof("pci.XXX.XX.X")];
262 	struct pci_devemu *pde;
263 	char *emul, *config, *str, *cp;
264 	int error, bnum, snum, fnum;
265 	nvlist_t *nvl;
266 
267 	error = -1;
268 	str = strdup(opt);
269 
270 	emul = config = NULL;
271 	if ((cp = strchr(str, ',')) != NULL) {
272 		*cp = '\0';
273 		emul = cp + 1;
274 		if ((cp = strchr(emul, ',')) != NULL) {
275 			*cp = '\0';
276 			config = cp + 1;
277 		}
278 	} else {
279 		pci_parse_slot_usage(opt);
280 		goto done;
281 	}
282 
283 	/* <bus>:<slot>:<func> */
284 	if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
285 		bnum = 0;
286 		/* <slot>:<func> */
287 		if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
288 			fnum = 0;
289 			/* <slot> */
290 			if (sscanf(str, "%d", &snum) != 1) {
291 				snum = -1;
292 			}
293 		}
294 	}
295 
296 	if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
297 	    fnum < 0 || fnum >= MAXFUNCS) {
298 		pci_parse_slot_usage(opt);
299 		goto done;
300 	}
301 
302 	pde = pci_emul_finddev(emul);
303 	if (pde == NULL) {
304 		EPRINTLN("pci slot %d:%d:%d: unknown device \"%s\"", bnum, snum,
305 		    fnum, emul);
306 		goto done;
307 	}
308 
309 	snprintf(node_name, sizeof(node_name), "pci.%d.%d.%d", bnum, snum,
310 	    fnum);
311 	nvl = find_config_node(node_name);
312 	if (nvl != NULL) {
313 		EPRINTLN("pci slot %d:%d:%d already occupied!", bnum, snum,
314 		    fnum);
315 		goto done;
316 	}
317 	nvl = create_config_node(node_name);
318 	if (pde->pe_alias != NULL)
319 		set_config_value_node(nvl, "device", pde->pe_alias);
320 	else
321 		set_config_value_node(nvl, "device", pde->pe_emu);
322 
323 	if (pde->pe_legacy_config != NULL)
324 		error = pde->pe_legacy_config(nvl, config);
325 	else
326 		error = pci_parse_legacy_config(nvl, config);
327 done:
328 	free(str);
329 	return (error);
330 }
331 
332 void
333 pci_print_supported_devices(void)
334 {
335 	struct pci_devemu **pdpp, *pdp;
336 
337 	SET_FOREACH(pdpp, pci_devemu_set) {
338 		pdp = *pdpp;
339 		printf("%s\n", pdp->pe_emu);
340 	}
341 }
342 
343 uint32_t
344 pci_config_read_reg(const struct pcisel *const host_sel, nvlist_t *nvl,
345     const uint32_t reg, const uint8_t size, const uint32_t def)
346 {
347 	const char *config;
348 	const nvlist_t *pci_regs;
349 
350 	assert(size == 1 || size == 2 || size == 4);
351 
352 	pci_regs = find_relative_config_node(nvl, "pcireg");
353 	if (pci_regs == NULL) {
354 		return def;
355 	}
356 
357 	switch (reg) {
358 	case PCIR_DEVICE:
359 		config = get_config_value_node(pci_regs, "device");
360 		break;
361 	case PCIR_VENDOR:
362 		config = get_config_value_node(pci_regs, "vendor");
363 		break;
364 	case PCIR_REVID:
365 		config = get_config_value_node(pci_regs, "revid");
366 		break;
367 	case PCIR_SUBVEND_0:
368 		config = get_config_value_node(pci_regs, "subvendor");
369 		break;
370 	case PCIR_SUBDEV_0:
371 		config = get_config_value_node(pci_regs, "subdevice");
372 		break;
373 	default:
374 		return (-1);
375 	}
376 
377 	if (config == NULL) {
378 		return def;
379 	} else if (host_sel != NULL && strcmp(config, "host") == 0) {
380 		return read_config(host_sel, reg, size);
381 	} else {
382 		return strtol(config, NULL, 16);
383 	}
384 }
385 
386 static int
387 pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
388 {
389 
390 	if (offset < pi->pi_msix.pba_offset)
391 		return (0);
392 
393 	if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
394 		return (0);
395 	}
396 
397 	return (1);
398 }
399 
400 int
401 pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
402 		     uint64_t value)
403 {
404 	int msix_entry_offset;
405 	int tab_index;
406 	char *dest;
407 
408 	/* support only 4 or 8 byte writes */
409 	if (size != 4 && size != 8)
410 		return (-1);
411 
412 	/*
413 	 * Return if table index is beyond what device supports
414 	 */
415 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
416 	if (tab_index >= pi->pi_msix.table_count)
417 		return (-1);
418 
419 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
420 
421 	/* support only aligned writes */
422 	if ((msix_entry_offset % size) != 0)
423 		return (-1);
424 
425 	dest = (char *)(pi->pi_msix.table + tab_index);
426 	dest += msix_entry_offset;
427 
428 	if (size == 4)
429 		*((uint32_t *)dest) = value;
430 	else
431 		*((uint64_t *)dest) = value;
432 
433 	return (0);
434 }
435 
436 uint64_t
437 pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
438 {
439 	char *dest;
440 	int msix_entry_offset;
441 	int tab_index;
442 	uint64_t retval = ~0;
443 
444 	/*
445 	 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X
446 	 * table but we also allow 1 byte access to accommodate reads from
447 	 * ddb.
448 	 */
449 	if (size != 1 && size != 4 && size != 8)
450 		return (retval);
451 
452 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
453 
454 	/* support only aligned reads */
455 	if ((msix_entry_offset % size) != 0) {
456 		return (retval);
457 	}
458 
459 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
460 
461 	if (tab_index < pi->pi_msix.table_count) {
462 		/* valid MSI-X Table access */
463 		dest = (char *)(pi->pi_msix.table + tab_index);
464 		dest += msix_entry_offset;
465 
466 		if (size == 1)
467 			retval = *((uint8_t *)dest);
468 		else if (size == 4)
469 			retval = *((uint32_t *)dest);
470 		else
471 			retval = *((uint64_t *)dest);
472 	} else if (pci_valid_pba_offset(pi, offset)) {
473 		/* return 0 for PBA access */
474 		retval = 0;
475 	}
476 
477 	return (retval);
478 }
479 
480 int
481 pci_msix_table_bar(struct pci_devinst *pi)
482 {
483 
484 	if (pi->pi_msix.table != NULL)
485 		return (pi->pi_msix.table_bar);
486 	else
487 		return (-1);
488 }
489 
490 int
491 pci_msix_pba_bar(struct pci_devinst *pi)
492 {
493 
494 	if (pi->pi_msix.table != NULL)
495 		return (pi->pi_msix.pba_bar);
496 	else
497 		return (-1);
498 }
499 
500 static int
501 pci_emul_io_handler(struct vmctx *ctx __unused, int in, int port,
502     int bytes, uint32_t *eax, void *arg)
503 {
504 	struct pci_devinst *pdi = arg;
505 	struct pci_devemu *pe = pdi->pi_d;
506 	uint64_t offset;
507 	int i;
508 
509 	assert(port >= 0);
510 
511 	for (i = 0; i <= PCI_BARMAX; i++) {
512 		if (pdi->pi_bar[i].type == PCIBAR_IO &&
513 		    (uint64_t)port >= pdi->pi_bar[i].addr &&
514 		    (uint64_t)port + bytes <=
515 		    pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
516 			offset = port - pdi->pi_bar[i].addr;
517 			if (in)
518 				*eax = (*pe->pe_barread)(pdi, i,
519 							 offset, bytes);
520 			else
521 				(*pe->pe_barwrite)(pdi, i, offset,
522 						   bytes, *eax);
523 			return (0);
524 		}
525 	}
526 	return (-1);
527 }
528 
529 static int
530 pci_emul_mem_handler(struct vcpu *vcpu __unused, int dir,
531     uint64_t addr, int size, uint64_t *val, void *arg1, long arg2)
532 {
533 	struct pci_devinst *pdi = arg1;
534 	struct pci_devemu *pe = pdi->pi_d;
535 	uint64_t offset;
536 	int bidx = (int) arg2;
537 
538 	assert(bidx <= PCI_BARMAX);
539 	assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
540 	       pdi->pi_bar[bidx].type == PCIBAR_MEM64);
541 	assert(addr >= pdi->pi_bar[bidx].addr &&
542 	       addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
543 
544 	offset = addr - pdi->pi_bar[bidx].addr;
545 
546 	if (dir == MEM_F_WRITE) {
547 		if (size == 8) {
548 			(*pe->pe_barwrite)(pdi, bidx, offset,
549 					   4, *val & 0xffffffff);
550 			(*pe->pe_barwrite)(pdi, bidx, offset + 4,
551 					   4, *val >> 32);
552 		} else {
553 			(*pe->pe_barwrite)(pdi, bidx, offset,
554 					   size, *val);
555 		}
556 	} else {
557 		if (size == 8) {
558 			*val = (*pe->pe_barread)(pdi, bidx,
559 						 offset, 4);
560 			*val |= (*pe->pe_barread)(pdi, bidx,
561 						  offset + 4, 4) << 32;
562 		} else {
563 			*val = (*pe->pe_barread)(pdi, bidx,
564 						 offset, size);
565 		}
566 	}
567 
568 	return (0);
569 }
570 
571 
572 static int
573 pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
574 			uint64_t *addr)
575 {
576 	uint64_t base;
577 
578 	assert((size & (size - 1)) == 0);	/* must be a power of 2 */
579 
580 	base = roundup2(*baseptr, size);
581 
582 	if (base + size <= limit) {
583 		*addr = base;
584 		*baseptr = base + size;
585 		return (0);
586 	} else
587 		return (-1);
588 }
589 
590 /*
591  * Register (or unregister) the MMIO or I/O region associated with the BAR
592  * register 'idx' of an emulated pci device.
593  */
594 static void
595 modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
596 {
597 	struct pci_devemu *pe;
598 	int error;
599 	struct inout_port iop;
600 	struct mem_range mr;
601 
602 	pe = pi->pi_d;
603 	switch (pi->pi_bar[idx].type) {
604 	case PCIBAR_IO:
605 		bzero(&iop, sizeof(struct inout_port));
606 		iop.name = pi->pi_name;
607 		iop.port = pi->pi_bar[idx].addr;
608 		iop.size = pi->pi_bar[idx].size;
609 		if (registration) {
610 			iop.flags = IOPORT_F_INOUT;
611 			iop.handler = pci_emul_io_handler;
612 			iop.arg = pi;
613 			error = register_inout(&iop);
614 		} else
615 			error = unregister_inout(&iop);
616 		break;
617 	case PCIBAR_MEM32:
618 	case PCIBAR_MEM64:
619 		bzero(&mr, sizeof(struct mem_range));
620 		mr.name = pi->pi_name;
621 		mr.base = pi->pi_bar[idx].addr;
622 		mr.size = pi->pi_bar[idx].size;
623 		if (registration) {
624 			mr.flags = MEM_F_RW;
625 			mr.handler = pci_emul_mem_handler;
626 			mr.arg1 = pi;
627 			mr.arg2 = idx;
628 			error = register_mem(&mr);
629 		} else
630 			error = unregister_mem(&mr);
631 		break;
632 	case PCIBAR_ROM:
633 		error = 0;
634 		break;
635 	default:
636 		error = EINVAL;
637 		break;
638 	}
639 	assert(error == 0);
640 
641 	if (pe->pe_baraddr != NULL)
642 		(*pe->pe_baraddr)(pi, idx, registration, pi->pi_bar[idx].addr);
643 }
644 
645 static void
646 unregister_bar(struct pci_devinst *pi, int idx)
647 {
648 
649 	modify_bar_registration(pi, idx, 0);
650 }
651 
652 static void
653 register_bar(struct pci_devinst *pi, int idx)
654 {
655 
656 	modify_bar_registration(pi, idx, 1);
657 }
658 
659 /* Is the ROM enabled for the emulated pci device? */
660 static int
661 romen(struct pci_devinst *pi)
662 {
663 	return (pi->pi_bar[PCI_ROM_IDX].lobits & PCIM_BIOS_ENABLE) ==
664 	    PCIM_BIOS_ENABLE;
665 }
666 
667 /* Are we decoding i/o port accesses for the emulated pci device? */
668 static int
669 porten(struct pci_devinst *pi)
670 {
671 	uint16_t cmd;
672 
673 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
674 
675 	return (cmd & PCIM_CMD_PORTEN);
676 }
677 
678 /* Are we decoding memory accesses for the emulated pci device? */
679 static int
680 memen(struct pci_devinst *pi)
681 {
682 	uint16_t cmd;
683 
684 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
685 
686 	return (cmd & PCIM_CMD_MEMEN);
687 }
688 
689 /*
690  * Update the MMIO or I/O address that is decoded by the BAR register.
691  *
692  * If the pci device has enabled the address space decoding then intercept
693  * the address range decoded by the BAR register.
694  */
695 static void
696 update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type)
697 {
698 	int decode;
699 
700 	if (pi->pi_bar[idx].type == PCIBAR_IO)
701 		decode = porten(pi);
702 	else
703 		decode = memen(pi);
704 
705 	if (decode)
706 		unregister_bar(pi, idx);
707 
708 	switch (type) {
709 	case PCIBAR_IO:
710 	case PCIBAR_MEM32:
711 		pi->pi_bar[idx].addr = addr;
712 		break;
713 	case PCIBAR_MEM64:
714 		pi->pi_bar[idx].addr &= ~0xffffffffUL;
715 		pi->pi_bar[idx].addr |= addr;
716 		break;
717 	case PCIBAR_MEMHI64:
718 		pi->pi_bar[idx].addr &= 0xffffffff;
719 		pi->pi_bar[idx].addr |= addr;
720 		break;
721 	default:
722 		assert(0);
723 	}
724 
725 	if (decode)
726 		register_bar(pi, idx);
727 }
728 
729 int
730 pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
731     uint64_t size)
732 {
733 	assert((type == PCIBAR_ROM) || (idx >= 0 && idx <= PCI_BARMAX));
734 	assert((type != PCIBAR_ROM) || (idx == PCI_ROM_IDX));
735 
736 	if ((size & (size - 1)) != 0)
737 		size = 1UL << flsl(size);	/* round up to a power of 2 */
738 
739 	/* Enforce minimum BAR sizes required by the PCI standard */
740 	if (type == PCIBAR_IO) {
741 		if (size < 4)
742 			size = 4;
743 	} else if (type == PCIBAR_ROM) {
744 		if (size < ~PCIM_BIOS_ADDR_MASK + 1)
745 			size = ~PCIM_BIOS_ADDR_MASK + 1;
746 	} else {
747 		if (size < 16)
748 			size = 16;
749 	}
750 
751 	/*
752 	 * To reduce fragmentation of the MMIO space, we allocate the BARs by
753 	 * size. Therefore, don't allocate the BAR yet. We create a list of all
754 	 * BAR allocation which is sorted by BAR size. When all PCI devices are
755 	 * initialized, we will assign an address to the BARs.
756 	 */
757 
758 	/* create a new list entry */
759 	struct pci_bar_allocation *const new_bar = malloc(sizeof(*new_bar));
760 	memset(new_bar, 0, sizeof(*new_bar));
761 	new_bar->pdi = pdi;
762 	new_bar->idx = idx;
763 	new_bar->type = type;
764 	new_bar->size = size;
765 
766 	/*
767 	 * Search for a BAR which size is lower than the size of our newly
768 	 * allocated BAR.
769 	 */
770 	struct pci_bar_allocation *bar = NULL;
771 	TAILQ_FOREACH(bar, &pci_bars, chain) {
772 		if (bar->size < size) {
773 			break;
774 		}
775 	}
776 
777 	if (bar == NULL) {
778 		/*
779 		 * Either the list is empty or new BAR is the smallest BAR of
780 		 * the list. Append it to the end of our list.
781 		 */
782 		TAILQ_INSERT_TAIL(&pci_bars, new_bar, chain);
783 	} else {
784 		/*
785 		 * The found BAR is smaller than our new BAR. For that reason,
786 		 * insert our new BAR before the found BAR.
787 		 */
788 		TAILQ_INSERT_BEFORE(bar, new_bar, chain);
789 	}
790 
791 	/*
792 	 * pci_passthru devices synchronize their physical and virtual command
793 	 * register on init. For that reason, the virtual cmd reg should be
794 	 * updated as early as possible.
795 	 */
796 	uint16_t enbit = 0;
797 	switch (type) {
798 	case PCIBAR_IO:
799 		enbit = PCIM_CMD_PORTEN;
800 		break;
801 	case PCIBAR_MEM64:
802 	case PCIBAR_MEM32:
803 		enbit = PCIM_CMD_MEMEN;
804 		break;
805 	default:
806 		enbit = 0;
807 		break;
808 	}
809 
810 	const uint16_t cmd = pci_get_cfgdata16(pdi, PCIR_COMMAND);
811 	pci_set_cfgdata16(pdi, PCIR_COMMAND, cmd | enbit);
812 
813 	return (0);
814 }
815 
816 static int
817 pci_emul_assign_bar(struct pci_devinst *const pdi, const int idx,
818     const enum pcibar_type type, const uint64_t size)
819 {
820 	int error;
821 	uint64_t *baseptr, limit, addr, mask, lobits, bar;
822 
823 	switch (type) {
824 	case PCIBAR_NONE:
825 		baseptr = NULL;
826 		addr = mask = lobits = 0;
827 		break;
828 	case PCIBAR_IO:
829 		baseptr = &pci_emul_iobase;
830 		limit = PCI_EMUL_IOLIMIT;
831 		mask = PCIM_BAR_IO_BASE;
832 		lobits = PCIM_BAR_IO_SPACE;
833 		break;
834 	case PCIBAR_MEM64:
835 		/*
836 		 * XXX
837 		 * Some drivers do not work well if the 64-bit BAR is allocated
838 		 * above 4GB. Allow for this by allocating small requests under
839 		 * 4GB unless then allocation size is larger than some arbitrary
840 		 * number (128MB currently).
841 		 */
842 		if (size > 128 * 1024 * 1024) {
843 			baseptr = &pci_emul_membase64;
844 			limit = pci_emul_memlim64;
845 			mask = PCIM_BAR_MEM_BASE;
846 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
847 				 PCIM_BAR_MEM_PREFETCH;
848 		} else {
849 			baseptr = &pci_emul_membase32;
850 			limit = PCI_EMUL_MEMLIMIT32;
851 			mask = PCIM_BAR_MEM_BASE;
852 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
853 		}
854 		break;
855 	case PCIBAR_MEM32:
856 		baseptr = &pci_emul_membase32;
857 		limit = PCI_EMUL_MEMLIMIT32;
858 		mask = PCIM_BAR_MEM_BASE;
859 		lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
860 		break;
861 	case PCIBAR_ROM:
862 		/* do not claim memory for ROM. OVMF will do it for us. */
863 		baseptr = NULL;
864 		limit = 0;
865 		mask = PCIM_BIOS_ADDR_MASK;
866 		lobits = 0;
867 		break;
868 	default:
869 		printf("pci_emul_alloc_base: invalid bar type %d\n", type);
870 		assert(0);
871 	}
872 
873 	if (baseptr != NULL) {
874 		error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
875 		if (error != 0)
876 			return (error);
877 	} else {
878 		addr = 0;
879 	}
880 
881 	pdi->pi_bar[idx].type = type;
882 	pdi->pi_bar[idx].addr = addr;
883 	pdi->pi_bar[idx].size = size;
884 	/*
885 	 * passthru devices are using same lobits as physical device they set
886 	 * this property
887 	 */
888 	if (pdi->pi_bar[idx].lobits != 0) {
889 		lobits = pdi->pi_bar[idx].lobits;
890 	} else {
891 		pdi->pi_bar[idx].lobits = lobits;
892 	}
893 
894 	/* Initialize the BAR register in config space */
895 	bar = (addr & mask) | lobits;
896 	pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
897 
898 	if (type == PCIBAR_MEM64) {
899 		assert(idx + 1 <= PCI_BARMAX);
900 		pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
901 		pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
902 	}
903 
904 	if (type != PCIBAR_ROM) {
905 		register_bar(pdi, idx);
906 	}
907 
908 	return (0);
909 }
910 
911 int
912 pci_emul_alloc_rom(struct pci_devinst *const pdi, const uint64_t size,
913     void **const addr)
914 {
915 	/* allocate ROM space once on first call */
916 	if (pci_emul_rombase == 0) {
917 		pci_emul_rombase = vm_create_devmem(pdi->pi_vmctx, VM_PCIROM,
918 		    "pcirom", PCI_EMUL_ROMSIZE);
919 		if (pci_emul_rombase == MAP_FAILED) {
920 			warnx("%s: failed to create rom segment", __func__);
921 			return (-1);
922 		}
923 		pci_emul_romlim = pci_emul_rombase + PCI_EMUL_ROMSIZE;
924 		pci_emul_romoffset = 0;
925 	}
926 
927 	/* ROM size should be a power of 2 and greater than 2 KB */
928 	const uint64_t rom_size = MAX(1UL << flsl(size),
929 	    ~PCIM_BIOS_ADDR_MASK + 1);
930 
931 	/* check if ROM fits into ROM space */
932 	if (pci_emul_romoffset + rom_size > PCI_EMUL_ROMSIZE) {
933 		warnx("%s: no space left in rom segment:", __func__);
934 		warnx("%16lu bytes left",
935 		    PCI_EMUL_ROMSIZE - pci_emul_romoffset);
936 		warnx("%16lu bytes required by %d/%d/%d", rom_size, pdi->pi_bus,
937 		    pdi->pi_slot, pdi->pi_func);
938 		return (-1);
939 	}
940 
941 	/* allocate ROM BAR */
942 	const int error = pci_emul_alloc_bar(pdi, PCI_ROM_IDX, PCIBAR_ROM,
943 	    rom_size);
944 	if (error)
945 		return error;
946 
947 	/* return address */
948 	*addr = pci_emul_rombase + pci_emul_romoffset;
949 
950 	/* save offset into ROM Space */
951 	pdi->pi_romoffset = pci_emul_romoffset;
952 
953 	/* increase offset for next ROM */
954 	pci_emul_romoffset += rom_size;
955 
956 	return (0);
957 }
958 
959 int
960 pci_emul_add_boot_device(struct pci_devinst *pi, int bootindex)
961 {
962 	struct boot_device *new_device, *device;
963 
964 	/* don't permit a negative bootindex */
965 	if (bootindex < 0) {
966 		errx(4, "Invalid bootindex %d for %s", bootindex, pi->pi_name);
967 	}
968 
969 	/* alloc new boot device */
970 	new_device = calloc(1, sizeof(struct boot_device));
971 	if (new_device == NULL) {
972 		return (ENOMEM);
973 	}
974 	new_device->pdi = pi;
975 	new_device->bootindex = bootindex;
976 
977 	/* search for boot device with higher boot index */
978 	TAILQ_FOREACH(device, &boot_devices, boot_device_chain) {
979 		if (device->bootindex == bootindex) {
980 			errx(4,
981 			    "Could not set bootindex %d for %s. Bootindex already occupied by %s",
982 			    bootindex, pi->pi_name, device->pdi->pi_name);
983 		} else if (device->bootindex > bootindex) {
984 			break;
985 		}
986 	}
987 
988 	/* add boot device to queue */
989 	if (device == NULL) {
990 		TAILQ_INSERT_TAIL(&boot_devices, new_device, boot_device_chain);
991 	} else {
992 		TAILQ_INSERT_BEFORE(device, new_device, boot_device_chain);
993 	}
994 
995 	return (0);
996 }
997 
998 #define	CAP_START_OFFSET	0x40
999 static int
1000 pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
1001 {
1002 	int i, capoff, reallen;
1003 	uint16_t sts;
1004 
1005 	assert(caplen > 0);
1006 
1007 	reallen = roundup2(caplen, 4);		/* dword aligned */
1008 
1009 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1010 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
1011 		capoff = CAP_START_OFFSET;
1012 	else
1013 		capoff = pi->pi_capend + 1;
1014 
1015 	/* Check if we have enough space */
1016 	if (capoff + reallen > PCI_REGMAX + 1)
1017 		return (-1);
1018 
1019 	/* Set the previous capability pointer */
1020 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
1021 		pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
1022 		pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
1023 	} else
1024 		pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
1025 
1026 	/* Copy the capability */
1027 	for (i = 0; i < caplen; i++)
1028 		pci_set_cfgdata8(pi, capoff + i, capdata[i]);
1029 
1030 	/* Set the next capability pointer */
1031 	pci_set_cfgdata8(pi, capoff + 1, 0);
1032 
1033 	pi->pi_prevcap = capoff;
1034 	pi->pi_capend = capoff + reallen - 1;
1035 	return (0);
1036 }
1037 
1038 static struct pci_devemu *
1039 pci_emul_finddev(const char *name)
1040 {
1041 	struct pci_devemu **pdpp, *pdp;
1042 
1043 	SET_FOREACH(pdpp, pci_devemu_set) {
1044 		pdp = *pdpp;
1045 		if (!strcmp(pdp->pe_emu, name)) {
1046 			return (pdp);
1047 		}
1048 	}
1049 
1050 	return (NULL);
1051 }
1052 
1053 static int
1054 pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
1055     int func, struct funcinfo *fi)
1056 {
1057 	struct pci_devinst *pdi;
1058 	int err;
1059 
1060 	pdi = calloc(1, sizeof(struct pci_devinst));
1061 
1062 	pdi->pi_vmctx = ctx;
1063 	pdi->pi_bus = bus;
1064 	pdi->pi_slot = slot;
1065 	pdi->pi_func = func;
1066 	pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
1067 	pdi->pi_lintr.pin = 0;
1068 	pdi->pi_lintr.state = IDLE;
1069 	pdi->pi_lintr.pirq_pin = 0;
1070 	pdi->pi_lintr.ioapic_irq = 0;
1071 	pdi->pi_d = pde;
1072 	snprintf(pdi->pi_name, PI_NAMESZ, "%s@pci.%d.%d.%d", pde->pe_emu, bus,
1073 	    slot, func);
1074 
1075 	/* Disable legacy interrupts */
1076 	pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
1077 	pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
1078 
1079 	pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_BUSMASTEREN);
1080 
1081 	err = (*pde->pe_init)(pdi, fi->fi_config);
1082 	if (err == 0)
1083 		fi->fi_devi = pdi;
1084 	else
1085 		free(pdi);
1086 
1087 	return (err);
1088 }
1089 
1090 void
1091 pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
1092 {
1093 	int mmc;
1094 
1095 	/* Number of msi messages must be a power of 2 between 1 and 32 */
1096 	assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
1097 	mmc = ffs(msgnum) - 1;
1098 
1099 	bzero(msicap, sizeof(struct msicap));
1100 	msicap->capid = PCIY_MSI;
1101 	msicap->nextptr = nextptr;
1102 	msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
1103 }
1104 
1105 int
1106 pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
1107 {
1108 	struct msicap msicap;
1109 
1110 	pci_populate_msicap(&msicap, msgnum, 0);
1111 
1112 	return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
1113 }
1114 
1115 static void
1116 pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
1117 		     uint32_t msix_tab_size)
1118 {
1119 
1120 	assert(msix_tab_size % 4096 == 0);
1121 
1122 	bzero(msixcap, sizeof(struct msixcap));
1123 	msixcap->capid = PCIY_MSIX;
1124 
1125 	/*
1126 	 * Message Control Register, all fields set to
1127 	 * zero except for the Table Size.
1128 	 * Note: Table size N is encoded as N-1
1129 	 */
1130 	msixcap->msgctrl = msgnum - 1;
1131 
1132 	/*
1133 	 * MSI-X BAR setup:
1134 	 * - MSI-X table start at offset 0
1135 	 * - PBA table starts at a 4K aligned offset after the MSI-X table
1136 	 */
1137 	msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
1138 	msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
1139 }
1140 
1141 static void
1142 pci_msix_table_init(struct pci_devinst *pi, int table_entries)
1143 {
1144 	int i, table_size;
1145 
1146 	assert(table_entries > 0);
1147 	assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
1148 
1149 	table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
1150 	pi->pi_msix.table = calloc(1, table_size);
1151 
1152 	/* set mask bit of vector control register */
1153 	for (i = 0; i < table_entries; i++)
1154 		pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
1155 }
1156 
1157 int
1158 pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
1159 {
1160 	uint32_t tab_size;
1161 	struct msixcap msixcap;
1162 
1163 	assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
1164 	assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
1165 
1166 	tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
1167 
1168 	/* Align table size to nearest 4K */
1169 	tab_size = roundup2(tab_size, 4096);
1170 
1171 	pi->pi_msix.table_bar = barnum;
1172 	pi->pi_msix.pba_bar   = barnum;
1173 	pi->pi_msix.table_offset = 0;
1174 	pi->pi_msix.table_count = msgnum;
1175 	pi->pi_msix.pba_offset = tab_size;
1176 	pi->pi_msix.pba_size = PBA_SIZE(msgnum);
1177 
1178 	pci_msix_table_init(pi, msgnum);
1179 
1180 	pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
1181 
1182 	/* allocate memory for MSI-X Table and PBA */
1183 	pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
1184 				tab_size + pi->pi_msix.pba_size);
1185 
1186 	return (pci_emul_add_capability(pi, (u_char *)&msixcap,
1187 					sizeof(msixcap)));
1188 }
1189 
1190 static void
1191 msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1192 		 int bytes, uint32_t val)
1193 {
1194 	uint16_t msgctrl, rwmask;
1195 	int off;
1196 
1197 	off = offset - capoff;
1198 	/* Message Control Register */
1199 	if (off == 2 && bytes == 2) {
1200 		rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
1201 		msgctrl = pci_get_cfgdata16(pi, offset);
1202 		msgctrl &= ~rwmask;
1203 		msgctrl |= val & rwmask;
1204 		val = msgctrl;
1205 
1206 		pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
1207 		pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
1208 		pci_lintr_update(pi);
1209 	}
1210 
1211 	CFGWRITE(pi, offset, val, bytes);
1212 }
1213 
1214 static void
1215 msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1216 		int bytes, uint32_t val)
1217 {
1218 	uint16_t msgctrl, rwmask, msgdata, mme;
1219 	uint32_t addrlo;
1220 
1221 	/*
1222 	 * If guest is writing to the message control register make sure
1223 	 * we do not overwrite read-only fields.
1224 	 */
1225 	if ((offset - capoff) == 2 && bytes == 2) {
1226 		rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
1227 		msgctrl = pci_get_cfgdata16(pi, offset);
1228 		msgctrl &= ~rwmask;
1229 		msgctrl |= val & rwmask;
1230 		val = msgctrl;
1231 	}
1232 	CFGWRITE(pi, offset, val, bytes);
1233 
1234 	msgctrl = pci_get_cfgdata16(pi, capoff + 2);
1235 	addrlo = pci_get_cfgdata32(pi, capoff + 4);
1236 	if (msgctrl & PCIM_MSICTRL_64BIT)
1237 		msgdata = pci_get_cfgdata16(pi, capoff + 12);
1238 	else
1239 		msgdata = pci_get_cfgdata16(pi, capoff + 8);
1240 
1241 	mme = msgctrl & PCIM_MSICTRL_MME_MASK;
1242 	pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
1243 	if (pi->pi_msi.enabled) {
1244 		pi->pi_msi.addr = addrlo;
1245 		pi->pi_msi.msg_data = msgdata;
1246 		pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
1247 	} else {
1248 		pi->pi_msi.maxmsgnum = 0;
1249 	}
1250 	pci_lintr_update(pi);
1251 }
1252 
1253 static void
1254 pciecap_cfgwrite(struct pci_devinst *pi, int capoff __unused, int offset,
1255     int bytes, uint32_t val)
1256 {
1257 
1258 	/* XXX don't write to the readonly parts */
1259 	CFGWRITE(pi, offset, val, bytes);
1260 }
1261 
1262 #define	PCIECAP_VERSION	0x2
1263 int
1264 pci_emul_add_pciecap(struct pci_devinst *pi, int type)
1265 {
1266 	int err;
1267 	struct pciecap pciecap;
1268 
1269 	bzero(&pciecap, sizeof(pciecap));
1270 
1271 	/*
1272 	 * Use the integrated endpoint type for endpoints on a root complex bus.
1273 	 *
1274 	 * NB: bhyve currently only supports a single PCI bus that is the root
1275 	 * complex bus, so all endpoints are integrated.
1276 	 */
1277 	if ((type == PCIEM_TYPE_ENDPOINT) && (pi->pi_bus == 0))
1278 		type = PCIEM_TYPE_ROOT_INT_EP;
1279 
1280 	pciecap.capid = PCIY_EXPRESS;
1281 	pciecap.pcie_capabilities = PCIECAP_VERSION | type;
1282 	if (type != PCIEM_TYPE_ROOT_INT_EP) {
1283 		pciecap.link_capabilities = 0x411;	/* gen1, x1 */
1284 		pciecap.link_status = 0x11;		/* gen1, x1 */
1285 	}
1286 
1287 	err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
1288 	return (err);
1289 }
1290 
1291 /*
1292  * This function assumes that 'coff' is in the capabilities region of the
1293  * config space. A capoff parameter of zero will force a search for the
1294  * offset and type.
1295  */
1296 void
1297 pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val,
1298     uint8_t capoff, int capid)
1299 {
1300 	uint8_t nextoff;
1301 
1302 	/* Do not allow un-aligned writes */
1303 	if ((offset & (bytes - 1)) != 0)
1304 		return;
1305 
1306 	if (capoff == 0) {
1307 		/* Find the capability that we want to update */
1308 		capoff = CAP_START_OFFSET;
1309 		while (1) {
1310 			nextoff = pci_get_cfgdata8(pi, capoff + 1);
1311 			if (nextoff == 0)
1312 				break;
1313 			if (offset >= capoff && offset < nextoff)
1314 				break;
1315 
1316 			capoff = nextoff;
1317 		}
1318 		assert(offset >= capoff);
1319 		capid = pci_get_cfgdata8(pi, capoff);
1320 	}
1321 
1322 	/*
1323 	 * Capability ID and Next Capability Pointer are readonly.
1324 	 * However, some o/s's do 4-byte writes that include these.
1325 	 * For this case, trim the write back to 2 bytes and adjust
1326 	 * the data.
1327 	 */
1328 	if (offset == capoff || offset == capoff + 1) {
1329 		if (offset == capoff && bytes == 4) {
1330 			bytes = 2;
1331 			offset += 2;
1332 			val >>= 16;
1333 		} else
1334 			return;
1335 	}
1336 
1337 	switch (capid) {
1338 	case PCIY_MSI:
1339 		msicap_cfgwrite(pi, capoff, offset, bytes, val);
1340 		break;
1341 	case PCIY_MSIX:
1342 		msixcap_cfgwrite(pi, capoff, offset, bytes, val);
1343 		break;
1344 	case PCIY_EXPRESS:
1345 		pciecap_cfgwrite(pi, capoff, offset, bytes, val);
1346 		break;
1347 	default:
1348 		break;
1349 	}
1350 }
1351 
1352 static int
1353 pci_emul_iscap(struct pci_devinst *pi, int offset)
1354 {
1355 	uint16_t sts;
1356 
1357 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1358 	if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
1359 		if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
1360 			return (1);
1361 	}
1362 	return (0);
1363 }
1364 
1365 static int
1366 pci_emul_fallback_handler(struct vcpu *vcpu __unused, int dir,
1367     uint64_t addr __unused, int size __unused, uint64_t *val,
1368     void *arg1 __unused, long arg2 __unused)
1369 {
1370 	/*
1371 	 * Ignore writes; return 0xff's for reads. The mem read code
1372 	 * will take care of truncating to the correct size.
1373 	 */
1374 	if (dir == MEM_F_READ) {
1375 		*val = 0xffffffffffffffff;
1376 	}
1377 
1378 	return (0);
1379 }
1380 
1381 static int
1382 pci_emul_ecfg_handler(struct vcpu *vcpu __unused, int dir, uint64_t addr,
1383     int bytes, uint64_t *val, void *arg1 __unused, long arg2 __unused)
1384 {
1385 	int bus, slot, func, coff, in;
1386 
1387 	coff = addr & 0xfff;
1388 	func = (addr >> 12) & 0x7;
1389 	slot = (addr >> 15) & 0x1f;
1390 	bus = (addr >> 20) & 0xff;
1391 	in = (dir == MEM_F_READ);
1392 	if (in)
1393 		*val = ~0UL;
1394 	pci_cfgrw(in, bus, slot, func, coff, bytes, (uint32_t *)val);
1395 	return (0);
1396 }
1397 
1398 uint64_t
1399 pci_ecfg_base(void)
1400 {
1401 
1402 	return (PCI_EMUL_ECFG_BASE);
1403 }
1404 
1405 static int
1406 init_bootorder(void)
1407 {
1408 	struct boot_device *device;
1409 	FILE *fp;
1410 	char *bootorder;
1411 	size_t bootorder_len;
1412 
1413 	if (TAILQ_EMPTY(&boot_devices))
1414 		return (0);
1415 
1416 	fp = open_memstream(&bootorder, &bootorder_len);
1417 	TAILQ_FOREACH(device, &boot_devices, boot_device_chain) {
1418 		fprintf(fp, "/pci@i0cf8/pci@%d,%d\n",
1419 		    device->pdi->pi_slot, device->pdi->pi_func);
1420 	}
1421 	fclose(fp);
1422 
1423 	return (qemu_fwcfg_add_file("bootorder", bootorder_len, bootorder));
1424 }
1425 
1426 #define	BUSIO_ROUNDUP		32
1427 #define	BUSMEM32_ROUNDUP	(1024 * 1024)
1428 #define	BUSMEM64_ROUNDUP	(512 * 1024 * 1024)
1429 
1430 int
1431 init_pci(struct vmctx *ctx)
1432 {
1433 	char node_name[sizeof("pci.XXX.XX.X")];
1434 	struct mem_range mr;
1435 	struct pci_devemu *pde;
1436 	struct businfo *bi;
1437 	struct slotinfo *si;
1438 	struct funcinfo *fi;
1439 	nvlist_t *nvl;
1440 	const char *emul;
1441 	size_t lowmem;
1442 	int bus, slot, func;
1443 	int error;
1444 
1445 	if (vm_get_lowmem_limit(ctx) > PCI_EMUL_MEMBASE32)
1446 		errx(EX_OSERR, "Invalid lowmem limit");
1447 
1448 	pci_emul_iobase = PCI_EMUL_IOBASE;
1449 	pci_emul_membase32 = PCI_EMUL_MEMBASE32;
1450 
1451 	pci_emul_membase64 = 4*GB + vm_get_highmem_size(ctx);
1452 	pci_emul_membase64 = roundup2(pci_emul_membase64, PCI_EMUL_MEMSIZE64);
1453 	pci_emul_memlim64 = pci_emul_membase64 + PCI_EMUL_MEMSIZE64;
1454 
1455 	TAILQ_INIT(&boot_devices);
1456 
1457 	for (bus = 0; bus < MAXBUSES; bus++) {
1458 		snprintf(node_name, sizeof(node_name), "pci.%d", bus);
1459 		nvl = find_config_node(node_name);
1460 		if (nvl == NULL)
1461 			continue;
1462 		pci_businfo[bus] = calloc(1, sizeof(struct businfo));
1463 		bi = pci_businfo[bus];
1464 
1465 		/*
1466 		 * Keep track of the i/o and memory resources allocated to
1467 		 * this bus.
1468 		 */
1469 		bi->iobase = pci_emul_iobase;
1470 		bi->membase32 = pci_emul_membase32;
1471 		bi->membase64 = pci_emul_membase64;
1472 
1473 		/* first run: init devices */
1474 		for (slot = 0; slot < MAXSLOTS; slot++) {
1475 			si = &bi->slotinfo[slot];
1476 			for (func = 0; func < MAXFUNCS; func++) {
1477 				fi = &si->si_funcs[func];
1478 				snprintf(node_name, sizeof(node_name),
1479 				    "pci.%d.%d.%d", bus, slot, func);
1480 				nvl = find_config_node(node_name);
1481 				if (nvl == NULL)
1482 					continue;
1483 
1484 				fi->fi_config = nvl;
1485 				emul = get_config_value_node(nvl, "device");
1486 				if (emul == NULL) {
1487 					EPRINTLN("pci slot %d:%d:%d: missing "
1488 					    "\"device\" value", bus, slot, func);
1489 					return (EINVAL);
1490 				}
1491 				pde = pci_emul_finddev(emul);
1492 				if (pde == NULL) {
1493 					EPRINTLN("pci slot %d:%d:%d: unknown "
1494 					    "device \"%s\"", bus, slot, func,
1495 					    emul);
1496 					return (EINVAL);
1497 				}
1498 				if (pde->pe_alias != NULL) {
1499 					EPRINTLN("pci slot %d:%d:%d: legacy "
1500 					    "device \"%s\", use \"%s\" instead",
1501 					    bus, slot, func, emul,
1502 					    pde->pe_alias);
1503 					return (EINVAL);
1504 				}
1505 				fi->fi_pde = pde;
1506 				error = pci_emul_init(ctx, pde, bus, slot,
1507 				    func, fi);
1508 				if (error)
1509 					return (error);
1510 			}
1511 		}
1512 
1513 		/* second run: assign BARs and free list */
1514 		struct pci_bar_allocation *bar;
1515 		struct pci_bar_allocation *bar_tmp;
1516 		TAILQ_FOREACH_SAFE(bar, &pci_bars, chain, bar_tmp) {
1517 			pci_emul_assign_bar(bar->pdi, bar->idx, bar->type,
1518 			    bar->size);
1519 			free(bar);
1520 		}
1521 		TAILQ_INIT(&pci_bars);
1522 
1523 		/*
1524 		 * Add some slop to the I/O and memory resources decoded by
1525 		 * this bus to give a guest some flexibility if it wants to
1526 		 * reprogram the BARs.
1527 		 */
1528 		pci_emul_iobase += BUSIO_ROUNDUP;
1529 		pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
1530 		bi->iolimit = pci_emul_iobase;
1531 
1532 		pci_emul_membase32 += BUSMEM32_ROUNDUP;
1533 		pci_emul_membase32 = roundup2(pci_emul_membase32,
1534 		    BUSMEM32_ROUNDUP);
1535 		bi->memlimit32 = pci_emul_membase32;
1536 
1537 		pci_emul_membase64 += BUSMEM64_ROUNDUP;
1538 		pci_emul_membase64 = roundup2(pci_emul_membase64,
1539 		    BUSMEM64_ROUNDUP);
1540 		bi->memlimit64 = pci_emul_membase64;
1541 	}
1542 
1543 	/*
1544 	 * PCI backends are initialized before routing INTx interrupts
1545 	 * so that LPC devices are able to reserve ISA IRQs before
1546 	 * routing PIRQ pins.
1547 	 */
1548 	for (bus = 0; bus < MAXBUSES; bus++) {
1549 		if ((bi = pci_businfo[bus]) == NULL)
1550 			continue;
1551 
1552 		for (slot = 0; slot < MAXSLOTS; slot++) {
1553 			si = &bi->slotinfo[slot];
1554 			for (func = 0; func < MAXFUNCS; func++) {
1555 				fi = &si->si_funcs[func];
1556 				if (fi->fi_devi == NULL)
1557 					continue;
1558 				pci_lintr_route(fi->fi_devi);
1559 			}
1560 		}
1561 	}
1562 	lpc_pirq_routed();
1563 
1564 	if ((error = init_bootorder()) != 0) {
1565 		warnx("%s: Unable to init bootorder", __func__);
1566 		return (error);
1567 	}
1568 
1569 	/*
1570 	 * The guest physical memory map looks like the following:
1571 	 * [0,		    lowmem)		guest system memory
1572 	 * [lowmem,	    0xC0000000)		memory hole (may be absent)
1573 	 * [0xC0000000,     0xE0000000)		PCI hole (32-bit BAR allocation)
1574 	 * [0xE0000000,	    0xF0000000)		PCI extended config window
1575 	 * [0xF0000000,	    4GB)		LAPIC, IOAPIC, HPET, firmware
1576 	 * [4GB,	    4GB + highmem)
1577 	 */
1578 
1579 	/*
1580 	 * Accesses to memory addresses that are not allocated to system
1581 	 * memory or PCI devices return 0xff's.
1582 	 */
1583 	lowmem = vm_get_lowmem_size(ctx);
1584 	bzero(&mr, sizeof(struct mem_range));
1585 	mr.name = "PCI hole";
1586 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1587 	mr.base = lowmem;
1588 	mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
1589 	mr.handler = pci_emul_fallback_handler;
1590 	error = register_mem_fallback(&mr);
1591 	assert(error == 0);
1592 
1593 	/* PCI extended config space */
1594 	bzero(&mr, sizeof(struct mem_range));
1595 	mr.name = "PCI ECFG";
1596 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1597 	mr.base = PCI_EMUL_ECFG_BASE;
1598 	mr.size = PCI_EMUL_ECFG_SIZE;
1599 	mr.handler = pci_emul_ecfg_handler;
1600 	error = register_mem(&mr);
1601 	assert(error == 0);
1602 
1603 	return (0);
1604 }
1605 
1606 static void
1607 pci_apic_prt_entry(int bus __unused, int slot, int pin, int pirq_pin __unused,
1608     int ioapic_irq, void *arg __unused)
1609 {
1610 
1611 	dsdt_line("  Package ()");
1612 	dsdt_line("  {");
1613 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1614 	dsdt_line("    0x%02X,", pin - 1);
1615 	dsdt_line("    Zero,");
1616 	dsdt_line("    0x%X", ioapic_irq);
1617 	dsdt_line("  },");
1618 }
1619 
1620 static void
1621 pci_pirq_prt_entry(int bus __unused, int slot, int pin, int pirq_pin,
1622     int ioapic_irq __unused, void *arg __unused)
1623 {
1624 	char *name;
1625 
1626 	name = lpc_pirq_name(pirq_pin);
1627 	if (name == NULL)
1628 		return;
1629 	dsdt_line("  Package ()");
1630 	dsdt_line("  {");
1631 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1632 	dsdt_line("    0x%02X,", pin - 1);
1633 	dsdt_line("    %s,", name);
1634 	dsdt_line("    0x00");
1635 	dsdt_line("  },");
1636 	free(name);
1637 }
1638 
1639 /*
1640  * A bhyve virtual machine has a flat PCI hierarchy with a root port
1641  * corresponding to each PCI bus.
1642  */
1643 static void
1644 pci_bus_write_dsdt(int bus)
1645 {
1646 	struct businfo *bi;
1647 	struct slotinfo *si;
1648 	struct pci_devinst *pi;
1649 	int count, func, slot;
1650 
1651 	/*
1652 	 * If there are no devices on this 'bus' then just return.
1653 	 */
1654 	if ((bi = pci_businfo[bus]) == NULL) {
1655 		/*
1656 		 * Bus 0 is special because it decodes the I/O ports used
1657 		 * for PCI config space access even if there are no devices
1658 		 * on it.
1659 		 */
1660 		if (bus != 0)
1661 			return;
1662 	}
1663 
1664 	dsdt_line("  Device (PC%02X)", bus);
1665 	dsdt_line("  {");
1666 	dsdt_line("    Name (_HID, EisaId (\"PNP0A03\"))");
1667 
1668 	dsdt_line("    Method (_BBN, 0, NotSerialized)");
1669 	dsdt_line("    {");
1670 	dsdt_line("        Return (0x%08X)", bus);
1671 	dsdt_line("    }");
1672 	dsdt_line("    Name (_CRS, ResourceTemplate ()");
1673 	dsdt_line("    {");
1674 	dsdt_line("      WordBusNumber (ResourceProducer, MinFixed, "
1675 	    "MaxFixed, PosDecode,");
1676 	dsdt_line("        0x0000,             // Granularity");
1677 	dsdt_line("        0x%04X,             // Range Minimum", bus);
1678 	dsdt_line("        0x%04X,             // Range Maximum", bus);
1679 	dsdt_line("        0x0000,             // Translation Offset");
1680 	dsdt_line("        0x0001,             // Length");
1681 	dsdt_line("        ,, )");
1682 
1683 	if (bus == 0) {
1684 		dsdt_indent(3);
1685 		dsdt_fixed_ioport(0xCF8, 8);
1686 		dsdt_unindent(3);
1687 
1688 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1689 		    "PosDecode, EntireRange,");
1690 		dsdt_line("        0x0000,             // Granularity");
1691 		dsdt_line("        0x0000,             // Range Minimum");
1692 		dsdt_line("        0x0CF7,             // Range Maximum");
1693 		dsdt_line("        0x0000,             // Translation Offset");
1694 		dsdt_line("        0x0CF8,             // Length");
1695 		dsdt_line("        ,, , TypeStatic)");
1696 
1697 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1698 		    "PosDecode, EntireRange,");
1699 		dsdt_line("        0x0000,             // Granularity");
1700 		dsdt_line("        0x0D00,             // Range Minimum");
1701 		dsdt_line("        0x%04X,             // Range Maximum",
1702 		    PCI_EMUL_IOBASE - 1);
1703 		dsdt_line("        0x0000,             // Translation Offset");
1704 		dsdt_line("        0x%04X,             // Length",
1705 		    PCI_EMUL_IOBASE - 0x0D00);
1706 		dsdt_line("        ,, , TypeStatic)");
1707 
1708 		if (bi == NULL) {
1709 			dsdt_line("    })");
1710 			goto done;
1711 		}
1712 	}
1713 	assert(bi != NULL);
1714 
1715 	/* i/o window */
1716 	dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1717 	    "PosDecode, EntireRange,");
1718 	dsdt_line("        0x0000,             // Granularity");
1719 	dsdt_line("        0x%04X,             // Range Minimum", bi->iobase);
1720 	dsdt_line("        0x%04X,             // Range Maximum",
1721 	    bi->iolimit - 1);
1722 	dsdt_line("        0x0000,             // Translation Offset");
1723 	dsdt_line("        0x%04X,             // Length",
1724 	    bi->iolimit - bi->iobase);
1725 	dsdt_line("        ,, , TypeStatic)");
1726 
1727 	/* mmio window (32-bit) */
1728 	dsdt_line("      DWordMemory (ResourceProducer, PosDecode, "
1729 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1730 	dsdt_line("        0x00000000,         // Granularity");
1731 	dsdt_line("        0x%08X,         // Range Minimum\n", bi->membase32);
1732 	dsdt_line("        0x%08X,         // Range Maximum\n",
1733 	    bi->memlimit32 - 1);
1734 	dsdt_line("        0x00000000,         // Translation Offset");
1735 	dsdt_line("        0x%08X,         // Length\n",
1736 	    bi->memlimit32 - bi->membase32);
1737 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1738 
1739 	/* mmio window (64-bit) */
1740 	dsdt_line("      QWordMemory (ResourceProducer, PosDecode, "
1741 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1742 	dsdt_line("        0x0000000000000000, // Granularity");
1743 	dsdt_line("        0x%016lX, // Range Minimum\n", bi->membase64);
1744 	dsdt_line("        0x%016lX, // Range Maximum\n",
1745 	    bi->memlimit64 - 1);
1746 	dsdt_line("        0x0000000000000000, // Translation Offset");
1747 	dsdt_line("        0x%016lX, // Length\n",
1748 	    bi->memlimit64 - bi->membase64);
1749 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1750 	dsdt_line("    })");
1751 
1752 	count = pci_count_lintr(bus);
1753 	if (count != 0) {
1754 		dsdt_indent(2);
1755 		dsdt_line("Name (PPRT, Package ()");
1756 		dsdt_line("{");
1757 		pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
1758 		dsdt_line("})");
1759 		dsdt_line("Name (APRT, Package ()");
1760 		dsdt_line("{");
1761 		pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
1762 		dsdt_line("})");
1763 		dsdt_line("Method (_PRT, 0, NotSerialized)");
1764 		dsdt_line("{");
1765 		dsdt_line("  If (PICM)");
1766 		dsdt_line("  {");
1767 		dsdt_line("    Return (APRT)");
1768 		dsdt_line("  }");
1769 		dsdt_line("  Else");
1770 		dsdt_line("  {");
1771 		dsdt_line("    Return (PPRT)");
1772 		dsdt_line("  }");
1773 		dsdt_line("}");
1774 		dsdt_unindent(2);
1775 	}
1776 
1777 	dsdt_indent(2);
1778 	for (slot = 0; slot < MAXSLOTS; slot++) {
1779 		si = &bi->slotinfo[slot];
1780 		for (func = 0; func < MAXFUNCS; func++) {
1781 			pi = si->si_funcs[func].fi_devi;
1782 			if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
1783 				pi->pi_d->pe_write_dsdt(pi);
1784 		}
1785 	}
1786 	dsdt_unindent(2);
1787 done:
1788 	dsdt_line("  }");
1789 }
1790 
1791 void
1792 pci_write_dsdt(void)
1793 {
1794 	int bus;
1795 
1796 	dsdt_indent(1);
1797 	dsdt_line("Name (PICM, 0x00)");
1798 	dsdt_line("Method (_PIC, 1, NotSerialized)");
1799 	dsdt_line("{");
1800 	dsdt_line("  Store (Arg0, PICM)");
1801 	dsdt_line("}");
1802 	dsdt_line("");
1803 	dsdt_line("Scope (_SB)");
1804 	dsdt_line("{");
1805 	for (bus = 0; bus < MAXBUSES; bus++)
1806 		pci_bus_write_dsdt(bus);
1807 	dsdt_line("}");
1808 	dsdt_unindent(1);
1809 }
1810 
1811 int
1812 pci_bus_configured(int bus)
1813 {
1814 	assert(bus >= 0 && bus < MAXBUSES);
1815 	return (pci_businfo[bus] != NULL);
1816 }
1817 
1818 int
1819 pci_msi_enabled(struct pci_devinst *pi)
1820 {
1821 	return (pi->pi_msi.enabled);
1822 }
1823 
1824 int
1825 pci_msi_maxmsgnum(struct pci_devinst *pi)
1826 {
1827 	if (pi->pi_msi.enabled)
1828 		return (pi->pi_msi.maxmsgnum);
1829 	else
1830 		return (0);
1831 }
1832 
1833 int
1834 pci_msix_enabled(struct pci_devinst *pi)
1835 {
1836 
1837 	return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
1838 }
1839 
1840 void
1841 pci_generate_msix(struct pci_devinst *pi, int index)
1842 {
1843 	struct msix_table_entry *mte;
1844 
1845 	if (!pci_msix_enabled(pi))
1846 		return;
1847 
1848 	if (pi->pi_msix.function_mask)
1849 		return;
1850 
1851 	if (index >= pi->pi_msix.table_count)
1852 		return;
1853 
1854 	mte = &pi->pi_msix.table[index];
1855 	if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
1856 		/* XXX Set PBA bit if interrupt is disabled */
1857 		vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data);
1858 	}
1859 }
1860 
1861 void
1862 pci_generate_msi(struct pci_devinst *pi, int index)
1863 {
1864 
1865 	if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
1866 		vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr,
1867 			     pi->pi_msi.msg_data + index);
1868 	}
1869 }
1870 
1871 static bool
1872 pci_lintr_permitted(struct pci_devinst *pi)
1873 {
1874 	uint16_t cmd;
1875 
1876 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
1877 	return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
1878 		(cmd & PCIM_CMD_INTxDIS)));
1879 }
1880 
1881 void
1882 pci_lintr_request(struct pci_devinst *pi)
1883 {
1884 	struct businfo *bi;
1885 	struct slotinfo *si;
1886 	int bestpin, bestcount, pin;
1887 
1888 	bi = pci_businfo[pi->pi_bus];
1889 	assert(bi != NULL);
1890 
1891 	/*
1892 	 * Just allocate a pin from our slot.  The pin will be
1893 	 * assigned IRQs later when interrupts are routed.
1894 	 */
1895 	si = &bi->slotinfo[pi->pi_slot];
1896 	bestpin = 0;
1897 	bestcount = si->si_intpins[0].ii_count;
1898 	for (pin = 1; pin < 4; pin++) {
1899 		if (si->si_intpins[pin].ii_count < bestcount) {
1900 			bestpin = pin;
1901 			bestcount = si->si_intpins[pin].ii_count;
1902 		}
1903 	}
1904 
1905 	si->si_intpins[bestpin].ii_count++;
1906 	pi->pi_lintr.pin = bestpin + 1;
1907 	pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
1908 }
1909 
1910 static void
1911 pci_lintr_route(struct pci_devinst *pi)
1912 {
1913 	struct businfo *bi;
1914 	struct intxinfo *ii;
1915 
1916 	if (pi->pi_lintr.pin == 0)
1917 		return;
1918 
1919 	bi = pci_businfo[pi->pi_bus];
1920 	assert(bi != NULL);
1921 	ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
1922 
1923 	/*
1924 	 * Attempt to allocate an I/O APIC pin for this intpin if one
1925 	 * is not yet assigned.
1926 	 */
1927 	if (ii->ii_ioapic_irq == 0)
1928 		ii->ii_ioapic_irq = ioapic_pci_alloc_irq(pi);
1929 	assert(ii->ii_ioapic_irq > 0);
1930 
1931 	/*
1932 	 * Attempt to allocate a PIRQ pin for this intpin if one is
1933 	 * not yet assigned.
1934 	 */
1935 	if (ii->ii_pirq_pin == 0)
1936 		ii->ii_pirq_pin = pirq_alloc_pin(pi);
1937 	assert(ii->ii_pirq_pin > 0);
1938 
1939 	pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq;
1940 	pi->pi_lintr.pirq_pin = ii->ii_pirq_pin;
1941 	pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin));
1942 }
1943 
1944 void
1945 pci_lintr_assert(struct pci_devinst *pi)
1946 {
1947 
1948 	assert(pi->pi_lintr.pin > 0);
1949 
1950 	pthread_mutex_lock(&pi->pi_lintr.lock);
1951 	if (pi->pi_lintr.state == IDLE) {
1952 		if (pci_lintr_permitted(pi)) {
1953 			pi->pi_lintr.state = ASSERTED;
1954 			pci_irq_assert(pi);
1955 		} else
1956 			pi->pi_lintr.state = PENDING;
1957 	}
1958 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1959 }
1960 
1961 void
1962 pci_lintr_deassert(struct pci_devinst *pi)
1963 {
1964 
1965 	assert(pi->pi_lintr.pin > 0);
1966 
1967 	pthread_mutex_lock(&pi->pi_lintr.lock);
1968 	if (pi->pi_lintr.state == ASSERTED) {
1969 		pi->pi_lintr.state = IDLE;
1970 		pci_irq_deassert(pi);
1971 	} else if (pi->pi_lintr.state == PENDING)
1972 		pi->pi_lintr.state = IDLE;
1973 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1974 }
1975 
1976 static void
1977 pci_lintr_update(struct pci_devinst *pi)
1978 {
1979 
1980 	pthread_mutex_lock(&pi->pi_lintr.lock);
1981 	if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
1982 		pci_irq_deassert(pi);
1983 		pi->pi_lintr.state = PENDING;
1984 	} else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
1985 		pi->pi_lintr.state = ASSERTED;
1986 		pci_irq_assert(pi);
1987 	}
1988 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1989 }
1990 
1991 int
1992 pci_count_lintr(int bus)
1993 {
1994 	int count, slot, pin;
1995 	struct slotinfo *slotinfo;
1996 
1997 	count = 0;
1998 	if (pci_businfo[bus] != NULL) {
1999 		for (slot = 0; slot < MAXSLOTS; slot++) {
2000 			slotinfo = &pci_businfo[bus]->slotinfo[slot];
2001 			for (pin = 0; pin < 4; pin++) {
2002 				if (slotinfo->si_intpins[pin].ii_count != 0)
2003 					count++;
2004 			}
2005 		}
2006 	}
2007 	return (count);
2008 }
2009 
2010 void
2011 pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
2012 {
2013 	struct businfo *bi;
2014 	struct slotinfo *si;
2015 	struct intxinfo *ii;
2016 	int slot, pin;
2017 
2018 	if ((bi = pci_businfo[bus]) == NULL)
2019 		return;
2020 
2021 	for (slot = 0; slot < MAXSLOTS; slot++) {
2022 		si = &bi->slotinfo[slot];
2023 		for (pin = 0; pin < 4; pin++) {
2024 			ii = &si->si_intpins[pin];
2025 			if (ii->ii_count != 0)
2026 				cb(bus, slot, pin + 1, ii->ii_pirq_pin,
2027 				    ii->ii_ioapic_irq, arg);
2028 		}
2029 	}
2030 }
2031 
2032 /*
2033  * Return 1 if the emulated device in 'slot' is a multi-function device.
2034  * Return 0 otherwise.
2035  */
2036 static int
2037 pci_emul_is_mfdev(int bus, int slot)
2038 {
2039 	struct businfo *bi;
2040 	struct slotinfo *si;
2041 	int f, numfuncs;
2042 
2043 	numfuncs = 0;
2044 	if ((bi = pci_businfo[bus]) != NULL) {
2045 		si = &bi->slotinfo[slot];
2046 		for (f = 0; f < MAXFUNCS; f++) {
2047 			if (si->si_funcs[f].fi_devi != NULL) {
2048 				numfuncs++;
2049 			}
2050 		}
2051 	}
2052 	return (numfuncs > 1);
2053 }
2054 
2055 /*
2056  * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
2057  * whether or not is a multi-function being emulated in the pci 'slot'.
2058  */
2059 static void
2060 pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
2061 {
2062 	int mfdev;
2063 
2064 	if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
2065 		mfdev = pci_emul_is_mfdev(bus, slot);
2066 		switch (bytes) {
2067 		case 1:
2068 		case 2:
2069 			*rv &= ~PCIM_MFDEV;
2070 			if (mfdev) {
2071 				*rv |= PCIM_MFDEV;
2072 			}
2073 			break;
2074 		case 4:
2075 			*rv &= ~(PCIM_MFDEV << 16);
2076 			if (mfdev) {
2077 				*rv |= (PCIM_MFDEV << 16);
2078 			}
2079 			break;
2080 		}
2081 	}
2082 }
2083 
2084 /*
2085  * Update device state in response to changes to the PCI command
2086  * register.
2087  */
2088 void
2089 pci_emul_cmd_changed(struct pci_devinst *pi, uint16_t old)
2090 {
2091 	int i;
2092 	uint16_t changed, new;
2093 
2094 	new = pci_get_cfgdata16(pi, PCIR_COMMAND);
2095 	changed = old ^ new;
2096 
2097 	/*
2098 	 * If the MMIO or I/O address space decoding has changed then
2099 	 * register/unregister all BARs that decode that address space.
2100 	 */
2101 	for (i = 0; i <= PCI_BARMAX_WITH_ROM; i++) {
2102 		switch (pi->pi_bar[i].type) {
2103 			case PCIBAR_NONE:
2104 			case PCIBAR_MEMHI64:
2105 				break;
2106 			case PCIBAR_IO:
2107 				/* I/O address space decoding changed? */
2108 				if (changed & PCIM_CMD_PORTEN) {
2109 					if (new & PCIM_CMD_PORTEN)
2110 						register_bar(pi, i);
2111 					else
2112 						unregister_bar(pi, i);
2113 				}
2114 				break;
2115 			case PCIBAR_ROM:
2116 				/* skip (un-)register of ROM if it disabled */
2117 				if (!romen(pi))
2118 					break;
2119 				/* fallthrough */
2120 			case PCIBAR_MEM32:
2121 			case PCIBAR_MEM64:
2122 				/* MMIO address space decoding changed? */
2123 				if (changed & PCIM_CMD_MEMEN) {
2124 					if (new & PCIM_CMD_MEMEN)
2125 						register_bar(pi, i);
2126 					else
2127 						unregister_bar(pi, i);
2128 				}
2129 				break;
2130 			default:
2131 				assert(0);
2132 		}
2133 	}
2134 
2135 	/*
2136 	 * If INTx has been unmasked and is pending, assert the
2137 	 * interrupt.
2138 	 */
2139 	pci_lintr_update(pi);
2140 }
2141 
2142 static void
2143 pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes)
2144 {
2145 	int rshift;
2146 	uint32_t cmd, old, readonly;
2147 
2148 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* stash old value */
2149 
2150 	/*
2151 	 * From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3.
2152 	 *
2153 	 * XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are
2154 	 * 'write 1 to clear'. However these bits are not set to '1' by
2155 	 * any device emulation so it is simpler to treat them as readonly.
2156 	 */
2157 	rshift = (coff & 0x3) * 8;
2158 	readonly = 0xFFFFF880 >> rshift;
2159 
2160 	old = CFGREAD(pi, coff, bytes);
2161 	new &= ~readonly;
2162 	new |= (old & readonly);
2163 	CFGWRITE(pi, coff, new, bytes);			/* update config */
2164 
2165 	pci_emul_cmd_changed(pi, cmd);
2166 }
2167 
2168 static void
2169 pci_cfgrw(int in, int bus, int slot, int func, int coff, int bytes,
2170     uint32_t *valp)
2171 {
2172 	struct businfo *bi;
2173 	struct slotinfo *si;
2174 	struct pci_devinst *pi;
2175 	struct pci_devemu *pe;
2176 	int idx, needcfg;
2177 	uint64_t addr, bar, mask;
2178 
2179 	if ((bi = pci_businfo[bus]) != NULL) {
2180 		si = &bi->slotinfo[slot];
2181 		pi = si->si_funcs[func].fi_devi;
2182 	} else
2183 		pi = NULL;
2184 
2185 	/*
2186 	 * Just return if there is no device at this slot:func or if the
2187 	 * the guest is doing an un-aligned access.
2188 	 */
2189 	if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
2190 	    (coff & (bytes - 1)) != 0) {
2191 		if (in)
2192 			*valp = 0xffffffff;
2193 		return;
2194 	}
2195 
2196 	/*
2197 	 * Ignore all writes beyond the standard config space and return all
2198 	 * ones on reads.
2199 	 */
2200 	if (coff >= PCI_REGMAX + 1) {
2201 		if (in) {
2202 			*valp = 0xffffffff;
2203 			/*
2204 			 * Extended capabilities begin at offset 256 in config
2205 			 * space. Absence of extended capabilities is signaled
2206 			 * with all 0s in the extended capability header at
2207 			 * offset 256.
2208 			 */
2209 			if (coff <= PCI_REGMAX + 4)
2210 				*valp = 0x00000000;
2211 		}
2212 		return;
2213 	}
2214 
2215 	pe = pi->pi_d;
2216 
2217 	/*
2218 	 * Config read
2219 	 */
2220 	if (in) {
2221 		/* Let the device emulation override the default handler */
2222 		if (pe->pe_cfgread != NULL) {
2223 			needcfg = pe->pe_cfgread(pi, coff, bytes, valp);
2224 		} else {
2225 			needcfg = 1;
2226 		}
2227 
2228 		if (needcfg)
2229 			*valp = CFGREAD(pi, coff, bytes);
2230 
2231 		pci_emul_hdrtype_fixup(bus, slot, coff, bytes, valp);
2232 	} else {
2233 		/* Let the device emulation override the default handler */
2234 		if (pe->pe_cfgwrite != NULL &&
2235 		    (*pe->pe_cfgwrite)(pi, coff, bytes, *valp) == 0)
2236 			return;
2237 
2238 		/*
2239 		 * Special handling for write to BAR and ROM registers
2240 		 */
2241 		if (is_pcir_bar(coff) || is_pcir_bios(coff)) {
2242 			/*
2243 			 * Ignore writes to BAR registers that are not
2244 			 * 4-byte aligned.
2245 			 */
2246 			if (bytes != 4 || (coff & 0x3) != 0)
2247 				return;
2248 
2249 			if (is_pcir_bar(coff)) {
2250 				idx = (coff - PCIR_BAR(0)) / 4;
2251 			} else if (is_pcir_bios(coff)) {
2252 				idx = PCI_ROM_IDX;
2253 			} else {
2254 				errx(4, "%s: invalid BAR offset %d", __func__,
2255 				    coff);
2256 			}
2257 
2258 			mask = ~(pi->pi_bar[idx].size - 1);
2259 			switch (pi->pi_bar[idx].type) {
2260 			case PCIBAR_NONE:
2261 				pi->pi_bar[idx].addr = bar = 0;
2262 				break;
2263 			case PCIBAR_IO:
2264 				addr = *valp & mask;
2265 				addr &= 0xffff;
2266 				bar = addr | pi->pi_bar[idx].lobits;
2267 				/*
2268 				 * Register the new BAR value for interception
2269 				 */
2270 				if (addr != pi->pi_bar[idx].addr) {
2271 					update_bar_address(pi, addr, idx,
2272 							   PCIBAR_IO);
2273 				}
2274 				break;
2275 			case PCIBAR_MEM32:
2276 				addr = bar = *valp & mask;
2277 				bar |= pi->pi_bar[idx].lobits;
2278 				if (addr != pi->pi_bar[idx].addr) {
2279 					update_bar_address(pi, addr, idx,
2280 							   PCIBAR_MEM32);
2281 				}
2282 				break;
2283 			case PCIBAR_MEM64:
2284 				addr = bar = *valp & mask;
2285 				bar |= pi->pi_bar[idx].lobits;
2286 				if (addr != (uint32_t)pi->pi_bar[idx].addr) {
2287 					update_bar_address(pi, addr, idx,
2288 							   PCIBAR_MEM64);
2289 				}
2290 				break;
2291 			case PCIBAR_MEMHI64:
2292 				mask = ~(pi->pi_bar[idx - 1].size - 1);
2293 				addr = ((uint64_t)*valp << 32) & mask;
2294 				bar = addr >> 32;
2295 				if (bar != pi->pi_bar[idx - 1].addr >> 32) {
2296 					update_bar_address(pi, addr, idx - 1,
2297 							   PCIBAR_MEMHI64);
2298 				}
2299 				break;
2300 			case PCIBAR_ROM:
2301 				addr = bar = *valp & mask;
2302 				if (memen(pi) && romen(pi)) {
2303 					unregister_bar(pi, idx);
2304 				}
2305 				pi->pi_bar[idx].addr = addr;
2306 				pi->pi_bar[idx].lobits = *valp &
2307 				    PCIM_BIOS_ENABLE;
2308 				/* romen could have changed it value */
2309 				if (memen(pi) && romen(pi)) {
2310 					register_bar(pi, idx);
2311 				}
2312 				bar |= pi->pi_bar[idx].lobits;
2313 				break;
2314 			default:
2315 				assert(0);
2316 			}
2317 			pci_set_cfgdata32(pi, coff, bar);
2318 
2319 		} else if (pci_emul_iscap(pi, coff)) {
2320 			pci_emul_capwrite(pi, coff, bytes, *valp, 0, 0);
2321 		} else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) {
2322 			pci_emul_cmdsts_write(pi, coff, *valp, bytes);
2323 		} else {
2324 			CFGWRITE(pi, coff, *valp, bytes);
2325 		}
2326 	}
2327 }
2328 
2329 static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
2330 
2331 static int
2332 pci_emul_cfgaddr(struct vmctx *ctx __unused, int in,
2333     int port __unused, int bytes, uint32_t *eax, void *arg __unused)
2334 {
2335 	uint32_t x;
2336 
2337 	if (bytes != 4) {
2338 		if (in)
2339 			*eax = (bytes == 2) ? 0xffff : 0xff;
2340 		return (0);
2341 	}
2342 
2343 	if (in) {
2344 		x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff;
2345 		if (cfgenable)
2346 			x |= CONF1_ENABLE;
2347 		*eax = x;
2348 	} else {
2349 		x = *eax;
2350 		cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
2351 		cfgoff = (x & PCI_REGMAX) & ~0x03;
2352 		cfgfunc = (x >> 8) & PCI_FUNCMAX;
2353 		cfgslot = (x >> 11) & PCI_SLOTMAX;
2354 		cfgbus = (x >> 16) & PCI_BUSMAX;
2355 	}
2356 
2357 	return (0);
2358 }
2359 INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
2360 
2361 static int
2362 pci_emul_cfgdata(struct vmctx *ctx __unused, int in, int port,
2363     int bytes, uint32_t *eax, void *arg __unused)
2364 {
2365 	int coff;
2366 
2367 	assert(bytes == 1 || bytes == 2 || bytes == 4);
2368 
2369 	coff = cfgoff + (port - CONF1_DATA_PORT);
2370 	if (cfgenable) {
2371 		pci_cfgrw(in, cfgbus, cfgslot, cfgfunc, coff, bytes, eax);
2372 	} else {
2373 		/* Ignore accesses to cfgdata if not enabled by cfgaddr */
2374 		if (in)
2375 			*eax = 0xffffffff;
2376 	}
2377 	return (0);
2378 }
2379 
2380 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
2381 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
2382 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
2383 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
2384 
2385 #ifdef BHYVE_SNAPSHOT
2386 /*
2387  * Saves/restores PCI device emulated state. Returns 0 on success.
2388  */
2389 static int
2390 pci_snapshot_pci_dev(struct vm_snapshot_meta *meta)
2391 {
2392 	struct pci_devinst *pi;
2393 	int i;
2394 	int ret;
2395 
2396 	pi = meta->dev_data;
2397 
2398 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.enabled, meta, ret, done);
2399 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.addr, meta, ret, done);
2400 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.msg_data, meta, ret, done);
2401 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.maxmsgnum, meta, ret, done);
2402 
2403 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.enabled, meta, ret, done);
2404 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_bar, meta, ret, done);
2405 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_bar, meta, ret, done);
2406 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_offset, meta, ret, done);
2407 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_count, meta, ret, done);
2408 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_offset, meta, ret, done);
2409 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_size, meta, ret, done);
2410 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.function_mask, meta, ret, done);
2411 
2412 	SNAPSHOT_BUF_OR_LEAVE(pi->pi_cfgdata, sizeof(pi->pi_cfgdata),
2413 			      meta, ret, done);
2414 
2415 	for (i = 0; i < (int)nitems(pi->pi_bar); i++) {
2416 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].type, meta, ret, done);
2417 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].size, meta, ret, done);
2418 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].addr, meta, ret, done);
2419 	}
2420 
2421 	/* Restore MSI-X table. */
2422 	for (i = 0; i < pi->pi_msix.table_count; i++) {
2423 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].addr,
2424 				      meta, ret, done);
2425 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].msg_data,
2426 				      meta, ret, done);
2427 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].vector_control,
2428 				      meta, ret, done);
2429 	}
2430 
2431 done:
2432 	return (ret);
2433 }
2434 
2435 int
2436 pci_snapshot(struct vm_snapshot_meta *meta)
2437 {
2438 	struct pci_devemu *pde;
2439 	struct pci_devinst *pdi;
2440 	int ret;
2441 
2442 	assert(meta->dev_name != NULL);
2443 
2444 	pdi = meta->dev_data;
2445 	pde = pdi->pi_d;
2446 
2447 	if (pde->pe_snapshot == NULL)
2448 		return (ENOTSUP);
2449 
2450 	ret = pci_snapshot_pci_dev(meta);
2451 	if (ret == 0)
2452 		ret = (*pde->pe_snapshot)(meta);
2453 
2454 	return (ret);
2455 }
2456 
2457 int
2458 pci_pause(struct pci_devinst *pdi)
2459 {
2460 	struct pci_devemu *pde = pdi->pi_d;
2461 
2462 	if (pde->pe_pause == NULL) {
2463 		/* The pause/resume functionality is optional. */
2464 		return (0);
2465 	}
2466 
2467 	return (*pde->pe_pause)(pdi);
2468 }
2469 
2470 int
2471 pci_resume(struct pci_devinst *pdi)
2472 {
2473 	struct pci_devemu *pde = pdi->pi_d;
2474 
2475 	if (pde->pe_resume == NULL) {
2476 		/* The pause/resume functionality is optional. */
2477 		return (0);
2478 	}
2479 
2480 	return (*pde->pe_resume)(pdi);
2481 }
2482 #endif
2483 
2484 #define PCI_EMUL_TEST
2485 #ifdef PCI_EMUL_TEST
2486 /*
2487  * Define a dummy test device
2488  */
2489 #define DIOSZ	8
2490 #define DMEMSZ	4096
2491 struct pci_emul_dsoftc {
2492 	uint8_t   ioregs[DIOSZ];
2493 	uint8_t	  memregs[2][DMEMSZ];
2494 };
2495 
2496 #define	PCI_EMUL_MSI_MSGS	 4
2497 #define	PCI_EMUL_MSIX_MSGS	16
2498 
2499 static int
2500 pci_emul_dinit(struct pci_devinst *pi, nvlist_t *nvl __unused)
2501 {
2502 	int error;
2503 	struct pci_emul_dsoftc *sc;
2504 
2505 	sc = calloc(1, sizeof(struct pci_emul_dsoftc));
2506 
2507 	pi->pi_arg = sc;
2508 
2509 	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
2510 	pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
2511 	pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
2512 
2513 	error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
2514 	assert(error == 0);
2515 
2516 	error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
2517 	assert(error == 0);
2518 
2519 	error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
2520 	assert(error == 0);
2521 
2522 	error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ);
2523 	assert(error == 0);
2524 
2525 	return (0);
2526 }
2527 
2528 static void
2529 pci_emul_diow(struct pci_devinst *pi, int baridx, uint64_t offset, int size,
2530     uint64_t value)
2531 {
2532 	int i;
2533 	struct pci_emul_dsoftc *sc = pi->pi_arg;
2534 
2535 	if (baridx == 0) {
2536 		if (offset + size > DIOSZ) {
2537 			printf("diow: iow too large, offset %ld size %d\n",
2538 			       offset, size);
2539 			return;
2540 		}
2541 
2542 		if (size == 1) {
2543 			sc->ioregs[offset] = value & 0xff;
2544 		} else if (size == 2) {
2545 			*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
2546 		} else if (size == 4) {
2547 			*(uint32_t *)&sc->ioregs[offset] = value;
2548 		} else {
2549 			printf("diow: iow unknown size %d\n", size);
2550 		}
2551 
2552 		/*
2553 		 * Special magic value to generate an interrupt
2554 		 */
2555 		if (offset == 4 && size == 4 && pci_msi_enabled(pi))
2556 			pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
2557 
2558 		if (value == 0xabcdef) {
2559 			for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
2560 				pci_generate_msi(pi, i);
2561 		}
2562 	}
2563 
2564 	if (baridx == 1 || baridx == 2) {
2565 		if (offset + size > DMEMSZ) {
2566 			printf("diow: memw too large, offset %ld size %d\n",
2567 			       offset, size);
2568 			return;
2569 		}
2570 
2571 		i = baridx - 1;		/* 'memregs' index */
2572 
2573 		if (size == 1) {
2574 			sc->memregs[i][offset] = value;
2575 		} else if (size == 2) {
2576 			*(uint16_t *)&sc->memregs[i][offset] = value;
2577 		} else if (size == 4) {
2578 			*(uint32_t *)&sc->memregs[i][offset] = value;
2579 		} else if (size == 8) {
2580 			*(uint64_t *)&sc->memregs[i][offset] = value;
2581 		} else {
2582 			printf("diow: memw unknown size %d\n", size);
2583 		}
2584 
2585 		/*
2586 		 * magic interrupt ??
2587 		 */
2588 	}
2589 
2590 	if (baridx > 2 || baridx < 0) {
2591 		printf("diow: unknown bar idx %d\n", baridx);
2592 	}
2593 }
2594 
2595 static uint64_t
2596 pci_emul_dior(struct pci_devinst *pi, int baridx, uint64_t offset, int size)
2597 {
2598 	struct pci_emul_dsoftc *sc = pi->pi_arg;
2599 	uint32_t value;
2600 	int i;
2601 
2602 	if (baridx == 0) {
2603 		if (offset + size > DIOSZ) {
2604 			printf("dior: ior too large, offset %ld size %d\n",
2605 			       offset, size);
2606 			return (0);
2607 		}
2608 
2609 		value = 0;
2610 		if (size == 1) {
2611 			value = sc->ioregs[offset];
2612 		} else if (size == 2) {
2613 			value = *(uint16_t *) &sc->ioregs[offset];
2614 		} else if (size == 4) {
2615 			value = *(uint32_t *) &sc->ioregs[offset];
2616 		} else {
2617 			printf("dior: ior unknown size %d\n", size);
2618 		}
2619 	}
2620 
2621 	if (baridx == 1 || baridx == 2) {
2622 		if (offset + size > DMEMSZ) {
2623 			printf("dior: memr too large, offset %ld size %d\n",
2624 			       offset, size);
2625 			return (0);
2626 		}
2627 
2628 		i = baridx - 1;		/* 'memregs' index */
2629 
2630 		if (size == 1) {
2631 			value = sc->memregs[i][offset];
2632 		} else if (size == 2) {
2633 			value = *(uint16_t *) &sc->memregs[i][offset];
2634 		} else if (size == 4) {
2635 			value = *(uint32_t *) &sc->memregs[i][offset];
2636 		} else if (size == 8) {
2637 			value = *(uint64_t *) &sc->memregs[i][offset];
2638 		} else {
2639 			printf("dior: ior unknown size %d\n", size);
2640 		}
2641 	}
2642 
2643 
2644 	if (baridx > 2 || baridx < 0) {
2645 		printf("dior: unknown bar idx %d\n", baridx);
2646 		return (0);
2647 	}
2648 
2649 	return (value);
2650 }
2651 
2652 #ifdef BHYVE_SNAPSHOT
2653 struct pci_devinst *
2654 pci_next(const struct pci_devinst *cursor)
2655 {
2656 	unsigned bus = 0, slot = 0, func = 0;
2657 	struct businfo *bi;
2658 	struct slotinfo *si;
2659 	struct funcinfo *fi;
2660 
2661 	bus = cursor ? cursor->pi_bus : 0;
2662 	slot = cursor ? cursor->pi_slot : 0;
2663 	func = cursor ? (cursor->pi_func + 1) : 0;
2664 
2665 	for (; bus < MAXBUSES; bus++) {
2666 		if ((bi = pci_businfo[bus]) == NULL)
2667 			continue;
2668 
2669 		if (slot >= MAXSLOTS)
2670 			slot = 0;
2671 
2672 		for (; slot < MAXSLOTS; slot++) {
2673 			si = &bi->slotinfo[slot];
2674 			if (func >= MAXFUNCS)
2675 				func = 0;
2676 			for (; func < MAXFUNCS; func++) {
2677 				fi = &si->si_funcs[func];
2678 				if (fi->fi_devi == NULL)
2679 					continue;
2680 
2681 				return (fi->fi_devi);
2682 			}
2683 		}
2684 	}
2685 
2686 	return (NULL);
2687 }
2688 
2689 static int
2690 pci_emul_snapshot(struct vm_snapshot_meta *meta __unused)
2691 {
2692 	return (0);
2693 }
2694 #endif
2695 
2696 static const struct pci_devemu pci_dummy = {
2697 	.pe_emu = "dummy",
2698 	.pe_init = pci_emul_dinit,
2699 	.pe_barwrite = pci_emul_diow,
2700 	.pe_barread = pci_emul_dior,
2701 #ifdef BHYVE_SNAPSHOT
2702 	.pe_snapshot = pci_emul_snapshot,
2703 #endif
2704 };
2705 PCI_EMUL_SET(pci_dummy);
2706 
2707 #endif /* PCI_EMUL_TEST */
2708