xref: /freebsd/usr.sbin/bhyve/pci_emul.c (revision 95d45410b5100e07f6f98450bcd841a8945d4726)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/linker_set.h>
34 #include <sys/errno.h>
35 
36 #include <ctype.h>
37 #include <pthread.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <strings.h>
42 #include <assert.h>
43 #include <stdbool.h>
44 
45 #include <machine/vmm.h>
46 #include <vmmapi.h>
47 
48 #include "acpi.h"
49 #include "bhyverun.h"
50 #include "inout.h"
51 #include "ioapic.h"
52 #include "mem.h"
53 #include "pci_emul.h"
54 #include "pci_irq.h"
55 #include "pci_lpc.h"
56 
57 #define CONF1_ADDR_PORT    0x0cf8
58 #define CONF1_DATA_PORT    0x0cfc
59 
60 #define CONF1_ENABLE	   0x80000000ul
61 
62 #define	CFGWRITE(pi,off,val,b)						\
63 do {									\
64 	if ((b) == 1) {							\
65 		pci_set_cfgdata8((pi),(off),(val));			\
66 	} else if ((b) == 2) {						\
67 		pci_set_cfgdata16((pi),(off),(val));			\
68 	} else {							\
69 		pci_set_cfgdata32((pi),(off),(val));			\
70 	}								\
71 } while (0)
72 
73 #define	MAXBUSES	(PCI_BUSMAX + 1)
74 #define MAXSLOTS	(PCI_SLOTMAX + 1)
75 #define	MAXFUNCS	(PCI_FUNCMAX + 1)
76 
77 struct funcinfo {
78 	char	*fi_name;
79 	char	*fi_param;
80 	struct pci_devinst *fi_devi;
81 };
82 
83 struct intxinfo {
84 	int	ii_count;
85 	int	ii_pirq_pin;
86 	int	ii_ioapic_irq;
87 };
88 
89 struct slotinfo {
90 	struct intxinfo si_intpins[4];
91 	struct funcinfo si_funcs[MAXFUNCS];
92 };
93 
94 struct businfo {
95 	uint16_t iobase, iolimit;		/* I/O window */
96 	uint32_t membase32, memlimit32;		/* mmio window below 4GB */
97 	uint64_t membase64, memlimit64;		/* mmio window above 4GB */
98 	struct slotinfo slotinfo[MAXSLOTS];
99 };
100 
101 static struct businfo *pci_businfo[MAXBUSES];
102 
103 SET_DECLARE(pci_devemu_set, struct pci_devemu);
104 
105 static uint64_t pci_emul_iobase;
106 static uint64_t pci_emul_membase32;
107 static uint64_t pci_emul_membase64;
108 
109 #define	PCI_EMUL_IOBASE		0x2000
110 #define	PCI_EMUL_IOLIMIT	0x10000
111 
112 #define	PCI_EMUL_MEMLIMIT32	0xE0000000	/* 3.5GB */
113 
114 #define	PCI_EMUL_MEMBASE64	0xD000000000UL
115 #define	PCI_EMUL_MEMLIMIT64	0xFD00000000UL
116 
117 static struct pci_devemu *pci_emul_finddev(char *name);
118 static void	pci_lintr_route(struct pci_devinst *pi);
119 static void	pci_lintr_update(struct pci_devinst *pi);
120 
121 static struct mem_range pci_mem_hole;
122 
123 /*
124  * I/O access
125  */
126 
127 /*
128  * Slot options are in the form:
129  *
130  *  <bus>:<slot>:<func>,<emul>[,<config>]
131  *  <slot>[:<func>],<emul>[,<config>]
132  *
133  *  slot is 0..31
134  *  func is 0..7
135  *  emul is a string describing the type of PCI device e.g. virtio-net
136  *  config is an optional string, depending on the device, that can be
137  *  used for configuration.
138  *   Examples are:
139  *     1,virtio-net,tap0
140  *     3:0,dummy
141  */
142 static void
143 pci_parse_slot_usage(char *aopt)
144 {
145 
146 	fprintf(stderr, "Invalid PCI slot info field \"%s\"\n", aopt);
147 }
148 
149 int
150 pci_parse_slot(char *opt)
151 {
152 	struct businfo *bi;
153 	struct slotinfo *si;
154 	char *emul, *config, *str, *cp;
155 	int error, bnum, snum, fnum;
156 
157 	error = -1;
158 	str = strdup(opt);
159 
160 	emul = config = NULL;
161 	if ((cp = strchr(str, ',')) != NULL) {
162 		*cp = '\0';
163 		emul = cp + 1;
164 		if ((cp = strchr(emul, ',')) != NULL) {
165 			*cp = '\0';
166 			config = cp + 1;
167 		}
168 	} else {
169 		pci_parse_slot_usage(opt);
170 		goto done;
171 	}
172 
173 	/* <bus>:<slot>:<func> */
174 	if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
175 		bnum = 0;
176 		/* <slot>:<func> */
177 		if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
178 			fnum = 0;
179 			/* <slot> */
180 			if (sscanf(str, "%d", &snum) != 1) {
181 				snum = -1;
182 			}
183 		}
184 	}
185 
186 	if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
187 	    fnum < 0 || fnum >= MAXFUNCS) {
188 		pci_parse_slot_usage(opt);
189 		goto done;
190 	}
191 
192 	if (pci_businfo[bnum] == NULL)
193 		pci_businfo[bnum] = calloc(1, sizeof(struct businfo));
194 
195 	bi = pci_businfo[bnum];
196 	si = &bi->slotinfo[snum];
197 
198 	if (si->si_funcs[fnum].fi_name != NULL) {
199 		fprintf(stderr, "pci slot %d:%d already occupied!\n",
200 			snum, fnum);
201 		goto done;
202 	}
203 
204 	if (pci_emul_finddev(emul) == NULL) {
205 		fprintf(stderr, "pci slot %d:%d: unknown device \"%s\"\n",
206 			snum, fnum, emul);
207 		goto done;
208 	}
209 
210 	error = 0;
211 	si->si_funcs[fnum].fi_name = emul;
212 	si->si_funcs[fnum].fi_param = config;
213 
214 done:
215 	if (error)
216 		free(str);
217 
218 	return (error);
219 }
220 
221 static int
222 pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
223 {
224 
225 	if (offset < pi->pi_msix.pba_offset)
226 		return (0);
227 
228 	if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
229 		return (0);
230 	}
231 
232 	return (1);
233 }
234 
235 int
236 pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
237 		     uint64_t value)
238 {
239 	int msix_entry_offset;
240 	int tab_index;
241 	char *dest;
242 
243 	/* support only 4 or 8 byte writes */
244 	if (size != 4 && size != 8)
245 		return (-1);
246 
247 	/*
248 	 * Return if table index is beyond what device supports
249 	 */
250 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
251 	if (tab_index >= pi->pi_msix.table_count)
252 		return (-1);
253 
254 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
255 
256 	/* support only aligned writes */
257 	if ((msix_entry_offset % size) != 0)
258 		return (-1);
259 
260 	dest = (char *)(pi->pi_msix.table + tab_index);
261 	dest += msix_entry_offset;
262 
263 	if (size == 4)
264 		*((uint32_t *)dest) = value;
265 	else
266 		*((uint64_t *)dest) = value;
267 
268 	return (0);
269 }
270 
271 uint64_t
272 pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
273 {
274 	char *dest;
275 	int msix_entry_offset;
276 	int tab_index;
277 	uint64_t retval = ~0;
278 
279 	/*
280 	 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X
281 	 * table but we also allow 1 byte access to accomodate reads from
282 	 * ddb.
283 	 */
284 	if (size != 1 && size != 4 && size != 8)
285 		return (retval);
286 
287 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
288 
289 	/* support only aligned reads */
290 	if ((msix_entry_offset % size) != 0) {
291 		return (retval);
292 	}
293 
294 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
295 
296 	if (tab_index < pi->pi_msix.table_count) {
297 		/* valid MSI-X Table access */
298 		dest = (char *)(pi->pi_msix.table + tab_index);
299 		dest += msix_entry_offset;
300 
301 		if (size == 1)
302 			retval = *((uint8_t *)dest);
303 		else if (size == 4)
304 			retval = *((uint32_t *)dest);
305 		else
306 			retval = *((uint64_t *)dest);
307 	} else if (pci_valid_pba_offset(pi, offset)) {
308 		/* return 0 for PBA access */
309 		retval = 0;
310 	}
311 
312 	return (retval);
313 }
314 
315 int
316 pci_msix_table_bar(struct pci_devinst *pi)
317 {
318 
319 	if (pi->pi_msix.table != NULL)
320 		return (pi->pi_msix.table_bar);
321 	else
322 		return (-1);
323 }
324 
325 int
326 pci_msix_pba_bar(struct pci_devinst *pi)
327 {
328 
329 	if (pi->pi_msix.table != NULL)
330 		return (pi->pi_msix.pba_bar);
331 	else
332 		return (-1);
333 }
334 
335 static int
336 pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
337 		    uint32_t *eax, void *arg)
338 {
339 	struct pci_devinst *pdi = arg;
340 	struct pci_devemu *pe = pdi->pi_d;
341 	uint64_t offset;
342 	int i;
343 
344 	for (i = 0; i <= PCI_BARMAX; i++) {
345 		if (pdi->pi_bar[i].type == PCIBAR_IO &&
346 		    port >= pdi->pi_bar[i].addr &&
347 		    port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
348 			offset = port - pdi->pi_bar[i].addr;
349 			if (in)
350 				*eax = (*pe->pe_barread)(ctx, vcpu, pdi, i,
351 							 offset, bytes);
352 			else
353 				(*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset,
354 						   bytes, *eax);
355 			return (0);
356 		}
357 	}
358 	return (-1);
359 }
360 
361 static int
362 pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
363 		     int size, uint64_t *val, void *arg1, long arg2)
364 {
365 	struct pci_devinst *pdi = arg1;
366 	struct pci_devemu *pe = pdi->pi_d;
367 	uint64_t offset;
368 	int bidx = (int) arg2;
369 
370 	assert(bidx <= PCI_BARMAX);
371 	assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
372 	       pdi->pi_bar[bidx].type == PCIBAR_MEM64);
373 	assert(addr >= pdi->pi_bar[bidx].addr &&
374 	       addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
375 
376 	offset = addr - pdi->pi_bar[bidx].addr;
377 
378 	if (dir == MEM_F_WRITE) {
379 		if (size == 8) {
380 			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
381 					   4, *val & 0xffffffff);
382 			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset + 4,
383 					   4, *val >> 32);
384 		} else {
385 			(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
386 					   size, *val);
387 		}
388 	} else {
389 		if (size == 8) {
390 			*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
391 						 offset, 4);
392 			*val |= (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
393 						  offset + 4, 4) << 32;
394 		} else {
395 			*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
396 						 offset, size);
397 		}
398 	}
399 
400 	return (0);
401 }
402 
403 
404 static int
405 pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
406 			uint64_t *addr)
407 {
408 	uint64_t base;
409 
410 	assert((size & (size - 1)) == 0);	/* must be a power of 2 */
411 
412 	base = roundup2(*baseptr, size);
413 
414 	if (base + size <= limit) {
415 		*addr = base;
416 		*baseptr = base + size;
417 		return (0);
418 	} else
419 		return (-1);
420 }
421 
422 int
423 pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
424 		   uint64_t size)
425 {
426 
427 	return (pci_emul_alloc_pbar(pdi, idx, 0, type, size));
428 }
429 
430 /*
431  * Register (or unregister) the MMIO or I/O region associated with the BAR
432  * register 'idx' of an emulated pci device.
433  */
434 static void
435 modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
436 {
437 	int error;
438 	struct inout_port iop;
439 	struct mem_range mr;
440 
441 	switch (pi->pi_bar[idx].type) {
442 	case PCIBAR_IO:
443 		bzero(&iop, sizeof(struct inout_port));
444 		iop.name = pi->pi_name;
445 		iop.port = pi->pi_bar[idx].addr;
446 		iop.size = pi->pi_bar[idx].size;
447 		if (registration) {
448 			iop.flags = IOPORT_F_INOUT;
449 			iop.handler = pci_emul_io_handler;
450 			iop.arg = pi;
451 			error = register_inout(&iop);
452 		} else
453 			error = unregister_inout(&iop);
454 		break;
455 	case PCIBAR_MEM32:
456 	case PCIBAR_MEM64:
457 		bzero(&mr, sizeof(struct mem_range));
458 		mr.name = pi->pi_name;
459 		mr.base = pi->pi_bar[idx].addr;
460 		mr.size = pi->pi_bar[idx].size;
461 		if (registration) {
462 			mr.flags = MEM_F_RW;
463 			mr.handler = pci_emul_mem_handler;
464 			mr.arg1 = pi;
465 			mr.arg2 = idx;
466 			error = register_mem(&mr);
467 		} else
468 			error = unregister_mem(&mr);
469 		break;
470 	default:
471 		error = EINVAL;
472 		break;
473 	}
474 	assert(error == 0);
475 }
476 
477 static void
478 unregister_bar(struct pci_devinst *pi, int idx)
479 {
480 
481 	modify_bar_registration(pi, idx, 0);
482 }
483 
484 static void
485 register_bar(struct pci_devinst *pi, int idx)
486 {
487 
488 	modify_bar_registration(pi, idx, 1);
489 }
490 
491 /* Are we decoding i/o port accesses for the emulated pci device? */
492 static int
493 porten(struct pci_devinst *pi)
494 {
495 	uint16_t cmd;
496 
497 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
498 
499 	return (cmd & PCIM_CMD_PORTEN);
500 }
501 
502 /* Are we decoding memory accesses for the emulated pci device? */
503 static int
504 memen(struct pci_devinst *pi)
505 {
506 	uint16_t cmd;
507 
508 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
509 
510 	return (cmd & PCIM_CMD_MEMEN);
511 }
512 
513 /*
514  * Update the MMIO or I/O address that is decoded by the BAR register.
515  *
516  * If the pci device has enabled the address space decoding then intercept
517  * the address range decoded by the BAR register.
518  */
519 static void
520 update_bar_address(struct  pci_devinst *pi, uint64_t addr, int idx, int type)
521 {
522 	int decode;
523 
524 	if (pi->pi_bar[idx].type == PCIBAR_IO)
525 		decode = porten(pi);
526 	else
527 		decode = memen(pi);
528 
529 	if (decode)
530 		unregister_bar(pi, idx);
531 
532 	switch (type) {
533 	case PCIBAR_IO:
534 	case PCIBAR_MEM32:
535 		pi->pi_bar[idx].addr = addr;
536 		break;
537 	case PCIBAR_MEM64:
538 		pi->pi_bar[idx].addr &= ~0xffffffffUL;
539 		pi->pi_bar[idx].addr |= addr;
540 		break;
541 	case PCIBAR_MEMHI64:
542 		pi->pi_bar[idx].addr &= 0xffffffff;
543 		pi->pi_bar[idx].addr |= addr;
544 		break;
545 	default:
546 		assert(0);
547 	}
548 
549 	if (decode)
550 		register_bar(pi, idx);
551 }
552 
553 int
554 pci_emul_alloc_pbar(struct pci_devinst *pdi, int idx, uint64_t hostbase,
555 		    enum pcibar_type type, uint64_t size)
556 {
557 	int error;
558 	uint64_t *baseptr, limit, addr, mask, lobits, bar;
559 
560 	assert(idx >= 0 && idx <= PCI_BARMAX);
561 
562 	if ((size & (size - 1)) != 0)
563 		size = 1UL << flsl(size);	/* round up to a power of 2 */
564 
565 	/* Enforce minimum BAR sizes required by the PCI standard */
566 	if (type == PCIBAR_IO) {
567 		if (size < 4)
568 			size = 4;
569 	} else {
570 		if (size < 16)
571 			size = 16;
572 	}
573 
574 	switch (type) {
575 	case PCIBAR_NONE:
576 		baseptr = NULL;
577 		addr = mask = lobits = 0;
578 		break;
579 	case PCIBAR_IO:
580 		baseptr = &pci_emul_iobase;
581 		limit = PCI_EMUL_IOLIMIT;
582 		mask = PCIM_BAR_IO_BASE;
583 		lobits = PCIM_BAR_IO_SPACE;
584 		break;
585 	case PCIBAR_MEM64:
586 		/*
587 		 * XXX
588 		 * Some drivers do not work well if the 64-bit BAR is allocated
589 		 * above 4GB. Allow for this by allocating small requests under
590 		 * 4GB unless then allocation size is larger than some arbitrary
591 		 * number (32MB currently).
592 		 */
593 		if (size > 32 * 1024 * 1024) {
594 			/*
595 			 * XXX special case for device requiring peer-peer DMA
596 			 */
597 			if (size == 0x100000000UL)
598 				baseptr = &hostbase;
599 			else
600 				baseptr = &pci_emul_membase64;
601 			limit = PCI_EMUL_MEMLIMIT64;
602 			mask = PCIM_BAR_MEM_BASE;
603 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
604 				 PCIM_BAR_MEM_PREFETCH;
605 			break;
606 		} else {
607 			baseptr = &pci_emul_membase32;
608 			limit = PCI_EMUL_MEMLIMIT32;
609 			mask = PCIM_BAR_MEM_BASE;
610 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
611 		}
612 		break;
613 	case PCIBAR_MEM32:
614 		baseptr = &pci_emul_membase32;
615 		limit = PCI_EMUL_MEMLIMIT32;
616 		mask = PCIM_BAR_MEM_BASE;
617 		lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
618 		break;
619 	default:
620 		printf("pci_emul_alloc_base: invalid bar type %d\n", type);
621 		assert(0);
622 	}
623 
624 	if (baseptr != NULL) {
625 		error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
626 		if (error != 0)
627 			return (error);
628 	}
629 
630 	pdi->pi_bar[idx].type = type;
631 	pdi->pi_bar[idx].addr = addr;
632 	pdi->pi_bar[idx].size = size;
633 
634 	/* Initialize the BAR register in config space */
635 	bar = (addr & mask) | lobits;
636 	pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
637 
638 	if (type == PCIBAR_MEM64) {
639 		assert(idx + 1 <= PCI_BARMAX);
640 		pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
641 		pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
642 	}
643 
644 	register_bar(pdi, idx);
645 
646 	return (0);
647 }
648 
649 #define	CAP_START_OFFSET	0x40
650 static int
651 pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
652 {
653 	int i, capoff, reallen;
654 	uint16_t sts;
655 
656 	assert(caplen > 0);
657 
658 	reallen = roundup2(caplen, 4);		/* dword aligned */
659 
660 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
661 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
662 		capoff = CAP_START_OFFSET;
663 	else
664 		capoff = pi->pi_capend + 1;
665 
666 	/* Check if we have enough space */
667 	if (capoff + reallen > PCI_REGMAX + 1)
668 		return (-1);
669 
670 	/* Set the previous capability pointer */
671 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
672 		pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
673 		pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
674 	} else
675 		pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
676 
677 	/* Copy the capability */
678 	for (i = 0; i < caplen; i++)
679 		pci_set_cfgdata8(pi, capoff + i, capdata[i]);
680 
681 	/* Set the next capability pointer */
682 	pci_set_cfgdata8(pi, capoff + 1, 0);
683 
684 	pi->pi_prevcap = capoff;
685 	pi->pi_capend = capoff + reallen - 1;
686 	return (0);
687 }
688 
689 static struct pci_devemu *
690 pci_emul_finddev(char *name)
691 {
692 	struct pci_devemu **pdpp, *pdp;
693 
694 	SET_FOREACH(pdpp, pci_devemu_set) {
695 		pdp = *pdpp;
696 		if (!strcmp(pdp->pe_emu, name)) {
697 			return (pdp);
698 		}
699 	}
700 
701 	return (NULL);
702 }
703 
704 static int
705 pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
706     int func, struct funcinfo *fi)
707 {
708 	struct pci_devinst *pdi;
709 	int err;
710 
711 	pdi = calloc(1, sizeof(struct pci_devinst));
712 
713 	pdi->pi_vmctx = ctx;
714 	pdi->pi_bus = bus;
715 	pdi->pi_slot = slot;
716 	pdi->pi_func = func;
717 	pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
718 	pdi->pi_lintr.pin = 0;
719 	pdi->pi_lintr.state = IDLE;
720 	pdi->pi_lintr.pirq_pin = 0;
721 	pdi->pi_lintr.ioapic_irq = 0;
722 	pdi->pi_d = pde;
723 	snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot);
724 
725 	/* Disable legacy interrupts */
726 	pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
727 	pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
728 
729 	pci_set_cfgdata8(pdi, PCIR_COMMAND,
730 		    PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
731 
732 	err = (*pde->pe_init)(ctx, pdi, fi->fi_param);
733 	if (err == 0)
734 		fi->fi_devi = pdi;
735 	else
736 		free(pdi);
737 
738 	return (err);
739 }
740 
741 void
742 pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
743 {
744 	int mmc;
745 
746 	CTASSERT(sizeof(struct msicap) == 14);
747 
748 	/* Number of msi messages must be a power of 2 between 1 and 32 */
749 	assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
750 	mmc = ffs(msgnum) - 1;
751 
752 	bzero(msicap, sizeof(struct msicap));
753 	msicap->capid = PCIY_MSI;
754 	msicap->nextptr = nextptr;
755 	msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
756 }
757 
758 int
759 pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
760 {
761 	struct msicap msicap;
762 
763 	pci_populate_msicap(&msicap, msgnum, 0);
764 
765 	return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
766 }
767 
768 static void
769 pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
770 		     uint32_t msix_tab_size)
771 {
772 	CTASSERT(sizeof(struct msixcap) == 12);
773 
774 	assert(msix_tab_size % 4096 == 0);
775 
776 	bzero(msixcap, sizeof(struct msixcap));
777 	msixcap->capid = PCIY_MSIX;
778 
779 	/*
780 	 * Message Control Register, all fields set to
781 	 * zero except for the Table Size.
782 	 * Note: Table size N is encoded as N-1
783 	 */
784 	msixcap->msgctrl = msgnum - 1;
785 
786 	/*
787 	 * MSI-X BAR setup:
788 	 * - MSI-X table start at offset 0
789 	 * - PBA table starts at a 4K aligned offset after the MSI-X table
790 	 */
791 	msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
792 	msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
793 }
794 
795 static void
796 pci_msix_table_init(struct pci_devinst *pi, int table_entries)
797 {
798 	int i, table_size;
799 
800 	assert(table_entries > 0);
801 	assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
802 
803 	table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
804 	pi->pi_msix.table = calloc(1, table_size);
805 
806 	/* set mask bit of vector control register */
807 	for (i = 0; i < table_entries; i++)
808 		pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
809 }
810 
811 int
812 pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
813 {
814 	uint32_t tab_size;
815 	struct msixcap msixcap;
816 
817 	assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
818 	assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
819 
820 	tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
821 
822 	/* Align table size to nearest 4K */
823 	tab_size = roundup2(tab_size, 4096);
824 
825 	pi->pi_msix.table_bar = barnum;
826 	pi->pi_msix.pba_bar   = barnum;
827 	pi->pi_msix.table_offset = 0;
828 	pi->pi_msix.table_count = msgnum;
829 	pi->pi_msix.pba_offset = tab_size;
830 	pi->pi_msix.pba_size = PBA_SIZE(msgnum);
831 
832 	pci_msix_table_init(pi, msgnum);
833 
834 	pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
835 
836 	/* allocate memory for MSI-X Table and PBA */
837 	pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
838 				tab_size + pi->pi_msix.pba_size);
839 
840 	return (pci_emul_add_capability(pi, (u_char *)&msixcap,
841 					sizeof(msixcap)));
842 }
843 
844 void
845 msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
846 		 int bytes, uint32_t val)
847 {
848 	uint16_t msgctrl, rwmask;
849 	int off, table_bar;
850 
851 	off = offset - capoff;
852 	table_bar = pi->pi_msix.table_bar;
853 	/* Message Control Register */
854 	if (off == 2 && bytes == 2) {
855 		rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
856 		msgctrl = pci_get_cfgdata16(pi, offset);
857 		msgctrl &= ~rwmask;
858 		msgctrl |= val & rwmask;
859 		val = msgctrl;
860 
861 		pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
862 		pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
863 		pci_lintr_update(pi);
864 	}
865 
866 	CFGWRITE(pi, offset, val, bytes);
867 }
868 
869 void
870 msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
871 		int bytes, uint32_t val)
872 {
873 	uint16_t msgctrl, rwmask, msgdata, mme;
874 	uint32_t addrlo;
875 
876 	/*
877 	 * If guest is writing to the message control register make sure
878 	 * we do not overwrite read-only fields.
879 	 */
880 	if ((offset - capoff) == 2 && bytes == 2) {
881 		rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
882 		msgctrl = pci_get_cfgdata16(pi, offset);
883 		msgctrl &= ~rwmask;
884 		msgctrl |= val & rwmask;
885 		val = msgctrl;
886 
887 		addrlo = pci_get_cfgdata32(pi, capoff + 4);
888 		if (msgctrl & PCIM_MSICTRL_64BIT)
889 			msgdata = pci_get_cfgdata16(pi, capoff + 12);
890 		else
891 			msgdata = pci_get_cfgdata16(pi, capoff + 8);
892 
893 		mme = msgctrl & PCIM_MSICTRL_MME_MASK;
894 		pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
895 		if (pi->pi_msi.enabled) {
896 			pi->pi_msi.addr = addrlo;
897 			pi->pi_msi.msg_data = msgdata;
898 			pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
899 		} else {
900 			pi->pi_msi.maxmsgnum = 0;
901 		}
902 		pci_lintr_update(pi);
903 	}
904 
905 	CFGWRITE(pi, offset, val, bytes);
906 }
907 
908 void
909 pciecap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
910 		 int bytes, uint32_t val)
911 {
912 
913 	/* XXX don't write to the readonly parts */
914 	CFGWRITE(pi, offset, val, bytes);
915 }
916 
917 #define	PCIECAP_VERSION	0x2
918 int
919 pci_emul_add_pciecap(struct pci_devinst *pi, int type)
920 {
921 	int err;
922 	struct pciecap pciecap;
923 
924 	CTASSERT(sizeof(struct pciecap) == 60);
925 
926 	if (type != PCIEM_TYPE_ROOT_PORT)
927 		return (-1);
928 
929 	bzero(&pciecap, sizeof(pciecap));
930 
931 	pciecap.capid = PCIY_EXPRESS;
932 	pciecap.pcie_capabilities = PCIECAP_VERSION | PCIEM_TYPE_ROOT_PORT;
933 	pciecap.link_capabilities = 0x411;	/* gen1, x1 */
934 	pciecap.link_status = 0x11;		/* gen1, x1 */
935 
936 	err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
937 	return (err);
938 }
939 
940 /*
941  * This function assumes that 'coff' is in the capabilities region of the
942  * config space.
943  */
944 static void
945 pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val)
946 {
947 	int capid;
948 	uint8_t capoff, nextoff;
949 
950 	/* Do not allow un-aligned writes */
951 	if ((offset & (bytes - 1)) != 0)
952 		return;
953 
954 	/* Find the capability that we want to update */
955 	capoff = CAP_START_OFFSET;
956 	while (1) {
957 		nextoff = pci_get_cfgdata8(pi, capoff + 1);
958 		if (nextoff == 0)
959 			break;
960 		if (offset >= capoff && offset < nextoff)
961 			break;
962 
963 		capoff = nextoff;
964 	}
965 	assert(offset >= capoff);
966 
967 	/*
968 	 * Capability ID and Next Capability Pointer are readonly.
969 	 * However, some o/s's do 4-byte writes that include these.
970 	 * For this case, trim the write back to 2 bytes and adjust
971 	 * the data.
972 	 */
973 	if (offset == capoff || offset == capoff + 1) {
974 		if (offset == capoff && bytes == 4) {
975 			bytes = 2;
976 			offset += 2;
977 			val >>= 16;
978 		} else
979 			return;
980 	}
981 
982 	capid = pci_get_cfgdata8(pi, capoff);
983 	switch (capid) {
984 	case PCIY_MSI:
985 		msicap_cfgwrite(pi, capoff, offset, bytes, val);
986 		break;
987 	case PCIY_MSIX:
988 		msixcap_cfgwrite(pi, capoff, offset, bytes, val);
989 		break;
990 	case PCIY_EXPRESS:
991 		pciecap_cfgwrite(pi, capoff, offset, bytes, val);
992 		break;
993 	default:
994 		break;
995 	}
996 }
997 
998 static int
999 pci_emul_iscap(struct pci_devinst *pi, int offset)
1000 {
1001 	uint16_t sts;
1002 
1003 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1004 	if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
1005 		if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
1006 			return (1);
1007 	}
1008 	return (0);
1009 }
1010 
1011 static int
1012 pci_emul_fallback_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
1013 			  int size, uint64_t *val, void *arg1, long arg2)
1014 {
1015 	/*
1016 	 * Ignore writes; return 0xff's for reads. The mem read code
1017 	 * will take care of truncating to the correct size.
1018 	 */
1019 	if (dir == MEM_F_READ) {
1020 		*val = 0xffffffffffffffff;
1021 	}
1022 
1023 	return (0);
1024 }
1025 
1026 #define	BUSIO_ROUNDUP		32
1027 #define	BUSMEM_ROUNDUP		(1024 * 1024)
1028 
1029 int
1030 init_pci(struct vmctx *ctx)
1031 {
1032 	struct pci_devemu *pde;
1033 	struct businfo *bi;
1034 	struct slotinfo *si;
1035 	struct funcinfo *fi;
1036 	size_t lowmem;
1037 	int bus, slot, func;
1038 	int error;
1039 
1040 	pci_emul_iobase = PCI_EMUL_IOBASE;
1041 	pci_emul_membase32 = vm_get_lowmem_limit(ctx);
1042 	pci_emul_membase64 = PCI_EMUL_MEMBASE64;
1043 
1044 	for (bus = 0; bus < MAXBUSES; bus++) {
1045 		if ((bi = pci_businfo[bus]) == NULL)
1046 			continue;
1047 		/*
1048 		 * Keep track of the i/o and memory resources allocated to
1049 		 * this bus.
1050 		 */
1051 		bi->iobase = pci_emul_iobase;
1052 		bi->membase32 = pci_emul_membase32;
1053 		bi->membase64 = pci_emul_membase64;
1054 
1055 		for (slot = 0; slot < MAXSLOTS; slot++) {
1056 			si = &bi->slotinfo[slot];
1057 			for (func = 0; func < MAXFUNCS; func++) {
1058 				fi = &si->si_funcs[func];
1059 				if (fi->fi_name == NULL)
1060 					continue;
1061 				pde = pci_emul_finddev(fi->fi_name);
1062 				assert(pde != NULL);
1063 				error = pci_emul_init(ctx, pde, bus, slot,
1064 				    func, fi);
1065 				if (error)
1066 					return (error);
1067 			}
1068 		}
1069 
1070 		/*
1071 		 * Add some slop to the I/O and memory resources decoded by
1072 		 * this bus to give a guest some flexibility if it wants to
1073 		 * reprogram the BARs.
1074 		 */
1075 		pci_emul_iobase += BUSIO_ROUNDUP;
1076 		pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
1077 		bi->iolimit = pci_emul_iobase;
1078 
1079 		pci_emul_membase32 += BUSMEM_ROUNDUP;
1080 		pci_emul_membase32 = roundup2(pci_emul_membase32,
1081 		    BUSMEM_ROUNDUP);
1082 		bi->memlimit32 = pci_emul_membase32;
1083 
1084 		pci_emul_membase64 += BUSMEM_ROUNDUP;
1085 		pci_emul_membase64 = roundup2(pci_emul_membase64,
1086 		    BUSMEM_ROUNDUP);
1087 		bi->memlimit64 = pci_emul_membase64;
1088 	}
1089 
1090 	/*
1091 	 * PCI backends are initialized before routing INTx interrupts
1092 	 * so that LPC devices are able to reserve ISA IRQs before
1093 	 * routing PIRQ pins.
1094 	 */
1095 	for (bus = 0; bus < MAXBUSES; bus++) {
1096 		if ((bi = pci_businfo[bus]) == NULL)
1097 			continue;
1098 
1099 		for (slot = 0; slot < MAXSLOTS; slot++) {
1100 			si = &bi->slotinfo[slot];
1101 			for (func = 0; func < MAXFUNCS; func++) {
1102 				fi = &si->si_funcs[func];
1103 				if (fi->fi_devi == NULL)
1104 					continue;
1105 				pci_lintr_route(fi->fi_devi);
1106 			}
1107 		}
1108 	}
1109 	lpc_pirq_routed();
1110 
1111 	/*
1112 	 * The guest physical memory map looks like the following:
1113 	 * [0,		    lowmem)		guest system memory
1114 	 * [lowmem,	    lowmem_limit)	memory hole (may be absent)
1115 	 * [lowmem_limit,   4GB)		PCI hole (32-bit BAR allocation)
1116 	 * [4GB,	    4GB + highmem)
1117 	 *
1118 	 * Accesses to memory addresses that are not allocated to system
1119 	 * memory or PCI devices return 0xff's.
1120 	 */
1121 	lowmem = vm_get_lowmem_size(ctx);
1122 
1123 	memset(&pci_mem_hole, 0, sizeof(struct mem_range));
1124 	pci_mem_hole.name = "PCI hole";
1125 	pci_mem_hole.flags = MEM_F_RW;
1126 	pci_mem_hole.base = lowmem;
1127 	pci_mem_hole.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
1128 	pci_mem_hole.handler = pci_emul_fallback_handler;
1129 
1130 	error = register_mem_fallback(&pci_mem_hole);
1131 	assert(error == 0);
1132 
1133 	return (0);
1134 }
1135 
1136 static void
1137 pci_apic_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
1138     void *arg)
1139 {
1140 
1141 	dsdt_line("  Package ()");
1142 	dsdt_line("  {");
1143 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1144 	dsdt_line("    0x%02X,", pin - 1);
1145 	dsdt_line("    Zero,");
1146 	dsdt_line("    0x%X", ioapic_irq);
1147 	dsdt_line("  },");
1148 }
1149 
1150 static void
1151 pci_pirq_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
1152     void *arg)
1153 {
1154 	char *name;
1155 
1156 	name = lpc_pirq_name(pirq_pin);
1157 	if (name == NULL)
1158 		return;
1159 	dsdt_line("  Package ()");
1160 	dsdt_line("  {");
1161 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1162 	dsdt_line("    0x%02X,", pin - 1);
1163 	dsdt_line("    %s,", name);
1164 	dsdt_line("    0x00");
1165 	dsdt_line("  },");
1166 	free(name);
1167 }
1168 
1169 /*
1170  * A bhyve virtual machine has a flat PCI hierarchy with a root port
1171  * corresponding to each PCI bus.
1172  */
1173 static void
1174 pci_bus_write_dsdt(int bus)
1175 {
1176 	struct businfo *bi;
1177 	struct slotinfo *si;
1178 	struct pci_devinst *pi;
1179 	int count, func, slot;
1180 
1181 	/*
1182 	 * If there are no devices on this 'bus' then just return.
1183 	 */
1184 	if ((bi = pci_businfo[bus]) == NULL) {
1185 		/*
1186 		 * Bus 0 is special because it decodes the I/O ports used
1187 		 * for PCI config space access even if there are no devices
1188 		 * on it.
1189 		 */
1190 		if (bus != 0)
1191 			return;
1192 	}
1193 
1194 	dsdt_line("  Device (PC%02X)", bus);
1195 	dsdt_line("  {");
1196 	dsdt_line("    Name (_HID, EisaId (\"PNP0A03\"))");
1197 	dsdt_line("    Name (_ADR, Zero)");
1198 
1199 	dsdt_line("    Method (_BBN, 0, NotSerialized)");
1200 	dsdt_line("    {");
1201 	dsdt_line("        Return (0x%08X)", bus);
1202 	dsdt_line("    }");
1203 	dsdt_line("    Name (_CRS, ResourceTemplate ()");
1204 	dsdt_line("    {");
1205 	dsdt_line("      WordBusNumber (ResourceProducer, MinFixed, "
1206 	    "MaxFixed, PosDecode,");
1207 	dsdt_line("        0x0000,             // Granularity");
1208 	dsdt_line("        0x%04X,             // Range Minimum", bus);
1209 	dsdt_line("        0x%04X,             // Range Maximum", bus);
1210 	dsdt_line("        0x0000,             // Translation Offset");
1211 	dsdt_line("        0x0001,             // Length");
1212 	dsdt_line("        ,, )");
1213 
1214 	if (bus == 0) {
1215 		dsdt_indent(3);
1216 		dsdt_fixed_ioport(0xCF8, 8);
1217 		dsdt_unindent(3);
1218 
1219 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1220 		    "PosDecode, EntireRange,");
1221 		dsdt_line("        0x0000,             // Granularity");
1222 		dsdt_line("        0x0000,             // Range Minimum");
1223 		dsdt_line("        0x0CF7,             // Range Maximum");
1224 		dsdt_line("        0x0000,             // Translation Offset");
1225 		dsdt_line("        0x0CF8,             // Length");
1226 		dsdt_line("        ,, , TypeStatic)");
1227 
1228 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1229 		    "PosDecode, EntireRange,");
1230 		dsdt_line("        0x0000,             // Granularity");
1231 		dsdt_line("        0x0D00,             // Range Minimum");
1232 		dsdt_line("        0x%04X,             // Range Maximum",
1233 		    PCI_EMUL_IOBASE - 1);
1234 		dsdt_line("        0x0000,             // Translation Offset");
1235 		dsdt_line("        0x%04X,             // Length",
1236 		    PCI_EMUL_IOBASE - 0x0D00);
1237 		dsdt_line("        ,, , TypeStatic)");
1238 
1239 		if (bi == NULL) {
1240 			dsdt_line("    })");
1241 			goto done;
1242 		}
1243 	}
1244 	assert(bi != NULL);
1245 
1246 	/* i/o window */
1247 	dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1248 	    "PosDecode, EntireRange,");
1249 	dsdt_line("        0x0000,             // Granularity");
1250 	dsdt_line("        0x%04X,             // Range Minimum", bi->iobase);
1251 	dsdt_line("        0x%04X,             // Range Maximum",
1252 	    bi->iolimit - 1);
1253 	dsdt_line("        0x0000,             // Translation Offset");
1254 	dsdt_line("        0x%04X,             // Length",
1255 	    bi->iolimit - bi->iobase);
1256 	dsdt_line("        ,, , TypeStatic)");
1257 
1258 	/* mmio window (32-bit) */
1259 	dsdt_line("      DWordMemory (ResourceProducer, PosDecode, "
1260 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1261 	dsdt_line("        0x00000000,         // Granularity");
1262 	dsdt_line("        0x%08X,         // Range Minimum\n", bi->membase32);
1263 	dsdt_line("        0x%08X,         // Range Maximum\n",
1264 	    bi->memlimit32 - 1);
1265 	dsdt_line("        0x00000000,         // Translation Offset");
1266 	dsdt_line("        0x%08X,         // Length\n",
1267 	    bi->memlimit32 - bi->membase32);
1268 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1269 
1270 	/* mmio window (64-bit) */
1271 	dsdt_line("      QWordMemory (ResourceProducer, PosDecode, "
1272 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1273 	dsdt_line("        0x0000000000000000, // Granularity");
1274 	dsdt_line("        0x%016lX, // Range Minimum\n", bi->membase64);
1275 	dsdt_line("        0x%016lX, // Range Maximum\n",
1276 	    bi->memlimit64 - 1);
1277 	dsdt_line("        0x0000000000000000, // Translation Offset");
1278 	dsdt_line("        0x%016lX, // Length\n",
1279 	    bi->memlimit64 - bi->membase64);
1280 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1281 	dsdt_line("    })");
1282 
1283 	count = pci_count_lintr(bus);
1284 	if (count != 0) {
1285 		dsdt_indent(2);
1286 		dsdt_line("Name (PPRT, Package ()");
1287 		dsdt_line("{");
1288 		pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
1289  		dsdt_line("})");
1290 		dsdt_line("Name (APRT, Package ()");
1291 		dsdt_line("{");
1292 		pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
1293  		dsdt_line("})");
1294 		dsdt_line("Method (_PRT, 0, NotSerialized)");
1295 		dsdt_line("{");
1296 		dsdt_line("  If (PICM)");
1297 		dsdt_line("  {");
1298 		dsdt_line("    Return (APRT)");
1299 		dsdt_line("  }");
1300 		dsdt_line("  Else");
1301 		dsdt_line("  {");
1302 		dsdt_line("    Return (PPRT)");
1303 		dsdt_line("  }");
1304 		dsdt_line("}");
1305 		dsdt_unindent(2);
1306 	}
1307 
1308 	dsdt_indent(2);
1309 	for (slot = 0; slot < MAXSLOTS; slot++) {
1310 		si = &bi->slotinfo[slot];
1311 		for (func = 0; func < MAXFUNCS; func++) {
1312 			pi = si->si_funcs[func].fi_devi;
1313 			if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
1314 				pi->pi_d->pe_write_dsdt(pi);
1315 		}
1316 	}
1317 	dsdt_unindent(2);
1318 done:
1319 	dsdt_line("  }");
1320 }
1321 
1322 void
1323 pci_write_dsdt(void)
1324 {
1325 	int bus;
1326 
1327 	dsdt_indent(1);
1328 	dsdt_line("Name (PICM, 0x00)");
1329 	dsdt_line("Method (_PIC, 1, NotSerialized)");
1330 	dsdt_line("{");
1331 	dsdt_line("  Store (Arg0, PICM)");
1332 	dsdt_line("}");
1333 	dsdt_line("");
1334 	dsdt_line("Scope (_SB)");
1335 	dsdt_line("{");
1336 	for (bus = 0; bus < MAXBUSES; bus++)
1337 		pci_bus_write_dsdt(bus);
1338 	dsdt_line("}");
1339 	dsdt_unindent(1);
1340 }
1341 
1342 int
1343 pci_bus_configured(int bus)
1344 {
1345 	assert(bus >= 0 && bus < MAXBUSES);
1346 	return (pci_businfo[bus] != NULL);
1347 }
1348 
1349 int
1350 pci_msi_enabled(struct pci_devinst *pi)
1351 {
1352 	return (pi->pi_msi.enabled);
1353 }
1354 
1355 int
1356 pci_msi_maxmsgnum(struct pci_devinst *pi)
1357 {
1358 	if (pi->pi_msi.enabled)
1359 		return (pi->pi_msi.maxmsgnum);
1360 	else
1361 		return (0);
1362 }
1363 
1364 int
1365 pci_msix_enabled(struct pci_devinst *pi)
1366 {
1367 
1368 	return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
1369 }
1370 
1371 void
1372 pci_generate_msix(struct pci_devinst *pi, int index)
1373 {
1374 	struct msix_table_entry *mte;
1375 
1376 	if (!pci_msix_enabled(pi))
1377 		return;
1378 
1379 	if (pi->pi_msix.function_mask)
1380 		return;
1381 
1382 	if (index >= pi->pi_msix.table_count)
1383 		return;
1384 
1385 	mte = &pi->pi_msix.table[index];
1386 	if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
1387 		/* XXX Set PBA bit if interrupt is disabled */
1388 		vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data);
1389 	}
1390 }
1391 
1392 void
1393 pci_generate_msi(struct pci_devinst *pi, int index)
1394 {
1395 
1396 	if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
1397 		vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr,
1398 			     pi->pi_msi.msg_data + index);
1399 	}
1400 }
1401 
1402 static bool
1403 pci_lintr_permitted(struct pci_devinst *pi)
1404 {
1405 	uint16_t cmd;
1406 
1407 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
1408 	return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
1409 		(cmd & PCIM_CMD_INTxDIS)));
1410 }
1411 
1412 void
1413 pci_lintr_request(struct pci_devinst *pi)
1414 {
1415 	struct businfo *bi;
1416 	struct slotinfo *si;
1417 	int bestpin, bestcount, pin;
1418 
1419 	bi = pci_businfo[pi->pi_bus];
1420 	assert(bi != NULL);
1421 
1422 	/*
1423 	 * Just allocate a pin from our slot.  The pin will be
1424 	 * assigned IRQs later when interrupts are routed.
1425 	 */
1426 	si = &bi->slotinfo[pi->pi_slot];
1427 	bestpin = 0;
1428 	bestcount = si->si_intpins[0].ii_count;
1429 	for (pin = 1; pin < 4; pin++) {
1430 		if (si->si_intpins[pin].ii_count < bestcount) {
1431 			bestpin = pin;
1432 			bestcount = si->si_intpins[pin].ii_count;
1433 		}
1434 	}
1435 
1436 	si->si_intpins[bestpin].ii_count++;
1437 	pi->pi_lintr.pin = bestpin + 1;
1438 	pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
1439 }
1440 
1441 static void
1442 pci_lintr_route(struct pci_devinst *pi)
1443 {
1444 	struct businfo *bi;
1445 	struct intxinfo *ii;
1446 
1447 	if (pi->pi_lintr.pin == 0)
1448 		return;
1449 
1450 	bi = pci_businfo[pi->pi_bus];
1451 	assert(bi != NULL);
1452 	ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
1453 
1454 	/*
1455 	 * Attempt to allocate an I/O APIC pin for this intpin if one
1456 	 * is not yet assigned.
1457 	 */
1458 	if (ii->ii_ioapic_irq == 0)
1459 		ii->ii_ioapic_irq = ioapic_pci_alloc_irq();
1460 	assert(ii->ii_ioapic_irq > 0);
1461 
1462 	/*
1463 	 * Attempt to allocate a PIRQ pin for this intpin if one is
1464 	 * not yet assigned.
1465 	 */
1466 	if (ii->ii_pirq_pin == 0)
1467 		ii->ii_pirq_pin = pirq_alloc_pin(pi->pi_vmctx);
1468 	assert(ii->ii_pirq_pin > 0);
1469 
1470 	pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq;
1471 	pi->pi_lintr.pirq_pin = ii->ii_pirq_pin;
1472 	pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin));
1473 }
1474 
1475 void
1476 pci_lintr_assert(struct pci_devinst *pi)
1477 {
1478 
1479 	assert(pi->pi_lintr.pin > 0);
1480 
1481 	pthread_mutex_lock(&pi->pi_lintr.lock);
1482 	if (pi->pi_lintr.state == IDLE) {
1483 		if (pci_lintr_permitted(pi)) {
1484 			pi->pi_lintr.state = ASSERTED;
1485 			pci_irq_assert(pi);
1486 		} else
1487 			pi->pi_lintr.state = PENDING;
1488 	}
1489 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1490 }
1491 
1492 void
1493 pci_lintr_deassert(struct pci_devinst *pi)
1494 {
1495 
1496 	assert(pi->pi_lintr.pin > 0);
1497 
1498 	pthread_mutex_lock(&pi->pi_lintr.lock);
1499 	if (pi->pi_lintr.state == ASSERTED) {
1500 		pi->pi_lintr.state = IDLE;
1501 		pci_irq_deassert(pi);
1502 	} else if (pi->pi_lintr.state == PENDING)
1503 		pi->pi_lintr.state = IDLE;
1504 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1505 }
1506 
1507 static void
1508 pci_lintr_update(struct pci_devinst *pi)
1509 {
1510 
1511 	pthread_mutex_lock(&pi->pi_lintr.lock);
1512 	if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
1513 		pci_irq_deassert(pi);
1514 		pi->pi_lintr.state = PENDING;
1515 	} else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
1516 		pi->pi_lintr.state = ASSERTED;
1517 		pci_irq_assert(pi);
1518 	}
1519 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1520 }
1521 
1522 int
1523 pci_count_lintr(int bus)
1524 {
1525 	int count, slot, pin;
1526 	struct slotinfo *slotinfo;
1527 
1528 	count = 0;
1529 	if (pci_businfo[bus] != NULL) {
1530 		for (slot = 0; slot < MAXSLOTS; slot++) {
1531 			slotinfo = &pci_businfo[bus]->slotinfo[slot];
1532 			for (pin = 0; pin < 4; pin++) {
1533 				if (slotinfo->si_intpins[pin].ii_count != 0)
1534 					count++;
1535 			}
1536 		}
1537 	}
1538 	return (count);
1539 }
1540 
1541 void
1542 pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
1543 {
1544 	struct businfo *bi;
1545 	struct slotinfo *si;
1546 	struct intxinfo *ii;
1547 	int slot, pin;
1548 
1549 	if ((bi = pci_businfo[bus]) == NULL)
1550 		return;
1551 
1552 	for (slot = 0; slot < MAXSLOTS; slot++) {
1553 		si = &bi->slotinfo[slot];
1554 		for (pin = 0; pin < 4; pin++) {
1555 			ii = &si->si_intpins[pin];
1556 			if (ii->ii_count != 0)
1557 				cb(bus, slot, pin + 1, ii->ii_pirq_pin,
1558 				    ii->ii_ioapic_irq, arg);
1559 		}
1560 	}
1561 }
1562 
1563 /*
1564  * Return 1 if the emulated device in 'slot' is a multi-function device.
1565  * Return 0 otherwise.
1566  */
1567 static int
1568 pci_emul_is_mfdev(int bus, int slot)
1569 {
1570 	struct businfo *bi;
1571 	struct slotinfo *si;
1572 	int f, numfuncs;
1573 
1574 	numfuncs = 0;
1575 	if ((bi = pci_businfo[bus]) != NULL) {
1576 		si = &bi->slotinfo[slot];
1577 		for (f = 0; f < MAXFUNCS; f++) {
1578 			if (si->si_funcs[f].fi_devi != NULL) {
1579 				numfuncs++;
1580 			}
1581 		}
1582 	}
1583 	return (numfuncs > 1);
1584 }
1585 
1586 /*
1587  * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
1588  * whether or not is a multi-function being emulated in the pci 'slot'.
1589  */
1590 static void
1591 pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
1592 {
1593 	int mfdev;
1594 
1595 	if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
1596 		mfdev = pci_emul_is_mfdev(bus, slot);
1597 		switch (bytes) {
1598 		case 1:
1599 		case 2:
1600 			*rv &= ~PCIM_MFDEV;
1601 			if (mfdev) {
1602 				*rv |= PCIM_MFDEV;
1603 			}
1604 			break;
1605 		case 4:
1606 			*rv &= ~(PCIM_MFDEV << 16);
1607 			if (mfdev) {
1608 				*rv |= (PCIM_MFDEV << 16);
1609 			}
1610 			break;
1611 		}
1612 	}
1613 }
1614 
1615 static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
1616 
1617 static int
1618 pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
1619 		 uint32_t *eax, void *arg)
1620 {
1621 	uint32_t x;
1622 
1623 	if (bytes != 4) {
1624 		if (in)
1625 			*eax = (bytes == 2) ? 0xffff : 0xff;
1626 		return (0);
1627 	}
1628 
1629 	if (in) {
1630 		x = (cfgbus << 16) |
1631 		    (cfgslot << 11) |
1632 		    (cfgfunc << 8) |
1633 		    cfgoff;
1634                 if (cfgenable)
1635 			x |= CONF1_ENABLE;
1636 		*eax = x;
1637 	} else {
1638 		x = *eax;
1639 		cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
1640 		cfgoff = x & PCI_REGMAX;
1641 		cfgfunc = (x >> 8) & PCI_FUNCMAX;
1642 		cfgslot = (x >> 11) & PCI_SLOTMAX;
1643 		cfgbus = (x >> 16) & PCI_BUSMAX;
1644 	}
1645 
1646 	return (0);
1647 }
1648 INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
1649 
1650 static uint32_t
1651 bits_changed(uint32_t old, uint32_t new, uint32_t mask)
1652 {
1653 
1654 	return ((old ^ new) & mask);
1655 }
1656 
1657 static void
1658 pci_emul_cmdwrite(struct pci_devinst *pi, uint32_t new, int bytes)
1659 {
1660 	int i;
1661 	uint16_t old;
1662 
1663 	/*
1664 	 * The command register is at an offset of 4 bytes and thus the
1665 	 * guest could write 1, 2 or 4 bytes starting at this offset.
1666 	 */
1667 
1668 	old = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* stash old value */
1669 	CFGWRITE(pi, PCIR_COMMAND, new, bytes);		/* update config */
1670 	new = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* get updated value */
1671 
1672 	/*
1673 	 * If the MMIO or I/O address space decoding has changed then
1674 	 * register/unregister all BARs that decode that address space.
1675 	 */
1676 	for (i = 0; i <= PCI_BARMAX; i++) {
1677 		switch (pi->pi_bar[i].type) {
1678 			case PCIBAR_NONE:
1679 			case PCIBAR_MEMHI64:
1680 				break;
1681 			case PCIBAR_IO:
1682 				/* I/O address space decoding changed? */
1683 				if (bits_changed(old, new, PCIM_CMD_PORTEN)) {
1684 					if (porten(pi))
1685 						register_bar(pi, i);
1686 					else
1687 						unregister_bar(pi, i);
1688 				}
1689 				break;
1690 			case PCIBAR_MEM32:
1691 			case PCIBAR_MEM64:
1692 				/* MMIO address space decoding changed? */
1693 				if (bits_changed(old, new, PCIM_CMD_MEMEN)) {
1694 					if (memen(pi))
1695 						register_bar(pi, i);
1696 					else
1697 						unregister_bar(pi, i);
1698 				}
1699 				break;
1700 			default:
1701 				assert(0);
1702 		}
1703 	}
1704 
1705 	/*
1706 	 * If INTx has been unmasked and is pending, assert the
1707 	 * interrupt.
1708 	 */
1709 	pci_lintr_update(pi);
1710 }
1711 
1712 static int
1713 pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
1714 		 uint32_t *eax, void *arg)
1715 {
1716 	struct businfo *bi;
1717 	struct slotinfo *si;
1718 	struct pci_devinst *pi;
1719 	struct pci_devemu *pe;
1720 	int coff, idx, needcfg;
1721 	uint64_t addr, bar, mask;
1722 
1723 	assert(bytes == 1 || bytes == 2 || bytes == 4);
1724 
1725 	if ((bi = pci_businfo[cfgbus]) != NULL) {
1726 		si = &bi->slotinfo[cfgslot];
1727 		pi = si->si_funcs[cfgfunc].fi_devi;
1728 	} else
1729 		pi = NULL;
1730 
1731 	coff = cfgoff + (port - CONF1_DATA_PORT);
1732 
1733 #if 0
1734 	printf("pcicfg-%s from 0x%0x of %d bytes (%d/%d/%d)\n\r",
1735 		in ? "read" : "write", coff, bytes, cfgbus, cfgslot, cfgfunc);
1736 #endif
1737 
1738 	/*
1739 	 * Just return if there is no device at this cfgslot:cfgfunc,
1740 	 * if the guest is doing an un-aligned access, or if the config
1741 	 * address word isn't enabled.
1742 	 */
1743 	if (!cfgenable || pi == NULL || (coff & (bytes - 1)) != 0) {
1744 		if (in)
1745 			*eax = 0xffffffff;
1746 		return (0);
1747 	}
1748 
1749 	pe = pi->pi_d;
1750 
1751 	/*
1752 	 * Config read
1753 	 */
1754 	if (in) {
1755 		/* Let the device emulation override the default handler */
1756 		if (pe->pe_cfgread != NULL) {
1757 			needcfg = pe->pe_cfgread(ctx, vcpu, pi,
1758 						    coff, bytes, eax);
1759 		} else {
1760 			needcfg = 1;
1761 		}
1762 
1763 		if (needcfg) {
1764 			if (bytes == 1)
1765 				*eax = pci_get_cfgdata8(pi, coff);
1766 			else if (bytes == 2)
1767 				*eax = pci_get_cfgdata16(pi, coff);
1768 			else
1769 				*eax = pci_get_cfgdata32(pi, coff);
1770 		}
1771 
1772 		pci_emul_hdrtype_fixup(cfgbus, cfgslot, coff, bytes, eax);
1773 	} else {
1774 		/* Let the device emulation override the default handler */
1775 		if (pe->pe_cfgwrite != NULL &&
1776 		    (*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0)
1777 			return (0);
1778 
1779 		/*
1780 		 * Special handling for write to BAR registers
1781 		 */
1782 		if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) {
1783 			/*
1784 			 * Ignore writes to BAR registers that are not
1785 			 * 4-byte aligned.
1786 			 */
1787 			if (bytes != 4 || (coff & 0x3) != 0)
1788 				return (0);
1789 			idx = (coff - PCIR_BAR(0)) / 4;
1790 			mask = ~(pi->pi_bar[idx].size - 1);
1791 			switch (pi->pi_bar[idx].type) {
1792 			case PCIBAR_NONE:
1793 				pi->pi_bar[idx].addr = bar = 0;
1794 				break;
1795 			case PCIBAR_IO:
1796 				addr = *eax & mask;
1797 				addr &= 0xffff;
1798 				bar = addr | PCIM_BAR_IO_SPACE;
1799 				/*
1800 				 * Register the new BAR value for interception
1801 				 */
1802 				if (addr != pi->pi_bar[idx].addr) {
1803 					update_bar_address(pi, addr, idx,
1804 							   PCIBAR_IO);
1805 				}
1806 				break;
1807 			case PCIBAR_MEM32:
1808 				addr = bar = *eax & mask;
1809 				bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
1810 				if (addr != pi->pi_bar[idx].addr) {
1811 					update_bar_address(pi, addr, idx,
1812 							   PCIBAR_MEM32);
1813 				}
1814 				break;
1815 			case PCIBAR_MEM64:
1816 				addr = bar = *eax & mask;
1817 				bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
1818 				       PCIM_BAR_MEM_PREFETCH;
1819 				if (addr != (uint32_t)pi->pi_bar[idx].addr) {
1820 					update_bar_address(pi, addr, idx,
1821 							   PCIBAR_MEM64);
1822 				}
1823 				break;
1824 			case PCIBAR_MEMHI64:
1825 				mask = ~(pi->pi_bar[idx - 1].size - 1);
1826 				addr = ((uint64_t)*eax << 32) & mask;
1827 				bar = addr >> 32;
1828 				if (bar != pi->pi_bar[idx - 1].addr >> 32) {
1829 					update_bar_address(pi, addr, idx - 1,
1830 							   PCIBAR_MEMHI64);
1831 				}
1832 				break;
1833 			default:
1834 				assert(0);
1835 			}
1836 			pci_set_cfgdata32(pi, coff, bar);
1837 
1838 		} else if (pci_emul_iscap(pi, coff)) {
1839 			pci_emul_capwrite(pi, coff, bytes, *eax);
1840 		} else if (coff == PCIR_COMMAND) {
1841 			pci_emul_cmdwrite(pi, *eax, bytes);
1842 		} else {
1843 			CFGWRITE(pi, coff, *eax, bytes);
1844 		}
1845 	}
1846 
1847 	return (0);
1848 }
1849 
1850 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
1851 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
1852 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
1853 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
1854 
1855 #define PCI_EMUL_TEST
1856 #ifdef PCI_EMUL_TEST
1857 /*
1858  * Define a dummy test device
1859  */
1860 #define DIOSZ	8
1861 #define DMEMSZ	4096
1862 struct pci_emul_dsoftc {
1863 	uint8_t   ioregs[DIOSZ];
1864 	uint8_t	  memregs[DMEMSZ];
1865 };
1866 
1867 #define	PCI_EMUL_MSI_MSGS	 4
1868 #define	PCI_EMUL_MSIX_MSGS	16
1869 
1870 static int
1871 pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
1872 {
1873 	int error;
1874 	struct pci_emul_dsoftc *sc;
1875 
1876 	sc = calloc(1, sizeof(struct pci_emul_dsoftc));
1877 
1878 	pi->pi_arg = sc;
1879 
1880 	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
1881 	pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
1882 	pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
1883 
1884 	error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
1885 	assert(error == 0);
1886 
1887 	error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
1888 	assert(error == 0);
1889 
1890 	error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
1891 	assert(error == 0);
1892 
1893 	return (0);
1894 }
1895 
1896 static void
1897 pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
1898 	      uint64_t offset, int size, uint64_t value)
1899 {
1900 	int i;
1901 	struct pci_emul_dsoftc *sc = pi->pi_arg;
1902 
1903 	if (baridx == 0) {
1904 		if (offset + size > DIOSZ) {
1905 			printf("diow: iow too large, offset %ld size %d\n",
1906 			       offset, size);
1907 			return;
1908 		}
1909 
1910 		if (size == 1) {
1911 			sc->ioregs[offset] = value & 0xff;
1912 		} else if (size == 2) {
1913 			*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
1914 		} else if (size == 4) {
1915 			*(uint32_t *)&sc->ioregs[offset] = value;
1916 		} else {
1917 			printf("diow: iow unknown size %d\n", size);
1918 		}
1919 
1920 		/*
1921 		 * Special magic value to generate an interrupt
1922 		 */
1923 		if (offset == 4 && size == 4 && pci_msi_enabled(pi))
1924 			pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
1925 
1926 		if (value == 0xabcdef) {
1927 			for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
1928 				pci_generate_msi(pi, i);
1929 		}
1930 	}
1931 
1932 	if (baridx == 1) {
1933 		if (offset + size > DMEMSZ) {
1934 			printf("diow: memw too large, offset %ld size %d\n",
1935 			       offset, size);
1936 			return;
1937 		}
1938 
1939 		if (size == 1) {
1940 			sc->memregs[offset] = value;
1941 		} else if (size == 2) {
1942 			*(uint16_t *)&sc->memregs[offset] = value;
1943 		} else if (size == 4) {
1944 			*(uint32_t *)&sc->memregs[offset] = value;
1945 		} else if (size == 8) {
1946 			*(uint64_t *)&sc->memregs[offset] = value;
1947 		} else {
1948 			printf("diow: memw unknown size %d\n", size);
1949 		}
1950 
1951 		/*
1952 		 * magic interrupt ??
1953 		 */
1954 	}
1955 
1956 	if (baridx > 1) {
1957 		printf("diow: unknown bar idx %d\n", baridx);
1958 	}
1959 }
1960 
1961 static uint64_t
1962 pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
1963 	      uint64_t offset, int size)
1964 {
1965 	struct pci_emul_dsoftc *sc = pi->pi_arg;
1966 	uint32_t value;
1967 
1968 	if (baridx == 0) {
1969 		if (offset + size > DIOSZ) {
1970 			printf("dior: ior too large, offset %ld size %d\n",
1971 			       offset, size);
1972 			return (0);
1973 		}
1974 
1975 		if (size == 1) {
1976 			value = sc->ioregs[offset];
1977 		} else if (size == 2) {
1978 			value = *(uint16_t *) &sc->ioregs[offset];
1979 		} else if (size == 4) {
1980 			value = *(uint32_t *) &sc->ioregs[offset];
1981 		} else {
1982 			printf("dior: ior unknown size %d\n", size);
1983 		}
1984 	}
1985 
1986 	if (baridx == 1) {
1987 		if (offset + size > DMEMSZ) {
1988 			printf("dior: memr too large, offset %ld size %d\n",
1989 			       offset, size);
1990 			return (0);
1991 		}
1992 
1993 		if (size == 1) {
1994 			value = sc->memregs[offset];
1995 		} else if (size == 2) {
1996 			value = *(uint16_t *) &sc->memregs[offset];
1997 		} else if (size == 4) {
1998 			value = *(uint32_t *) &sc->memregs[offset];
1999 		} else if (size == 8) {
2000 			value = *(uint64_t *) &sc->memregs[offset];
2001 		} else {
2002 			printf("dior: ior unknown size %d\n", size);
2003 		}
2004 	}
2005 
2006 
2007 	if (baridx > 1) {
2008 		printf("dior: unknown bar idx %d\n", baridx);
2009 		return (0);
2010 	}
2011 
2012 	return (value);
2013 }
2014 
2015 struct pci_devemu pci_dummy = {
2016 	.pe_emu = "dummy",
2017 	.pe_init = pci_emul_dinit,
2018 	.pe_barwrite = pci_emul_diow,
2019 	.pe_barread = pci_emul_dior
2020 };
2021 PCI_EMUL_SET(pci_dummy);
2022 
2023 #endif /* PCI_EMUL_TEST */
2024