xref: /freebsd/usr.sbin/bhyve/pci_emul.c (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/linker_set.h>
36 #include <sys/mman.h>
37 
38 #include <ctype.h>
39 #include <err.h>
40 #include <errno.h>
41 #include <pthread.h>
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <strings.h>
46 #include <assert.h>
47 #include <stdbool.h>
48 #include <sysexits.h>
49 
50 #include <machine/vmm.h>
51 #include <machine/vmm_snapshot.h>
52 #include <vmmapi.h>
53 
54 #include "acpi.h"
55 #include "bhyverun.h"
56 #include "config.h"
57 #include "debug.h"
58 #include "inout.h"
59 #include "ioapic.h"
60 #include "mem.h"
61 #include "pci_emul.h"
62 #include "pci_irq.h"
63 #include "pci_lpc.h"
64 
65 #define CONF1_ADDR_PORT	   0x0cf8
66 #define CONF1_DATA_PORT	   0x0cfc
67 
68 #define CONF1_ENABLE	   0x80000000ul
69 
70 #define	MAXBUSES	(PCI_BUSMAX + 1)
71 #define MAXSLOTS	(PCI_SLOTMAX + 1)
72 #define	MAXFUNCS	(PCI_FUNCMAX + 1)
73 
74 #define GB		(1024 * 1024 * 1024UL)
75 
76 struct funcinfo {
77 	nvlist_t *fi_config;
78 	struct pci_devemu *fi_pde;
79 	struct pci_devinst *fi_devi;
80 };
81 
82 struct intxinfo {
83 	int	ii_count;
84 	int	ii_pirq_pin;
85 	int	ii_ioapic_irq;
86 };
87 
88 struct slotinfo {
89 	struct intxinfo si_intpins[4];
90 	struct funcinfo si_funcs[MAXFUNCS];
91 };
92 
93 struct businfo {
94 	uint16_t iobase, iolimit;		/* I/O window */
95 	uint32_t membase32, memlimit32;		/* mmio window below 4GB */
96 	uint64_t membase64, memlimit64;		/* mmio window above 4GB */
97 	struct slotinfo slotinfo[MAXSLOTS];
98 };
99 
100 static struct businfo *pci_businfo[MAXBUSES];
101 
102 SET_DECLARE(pci_devemu_set, struct pci_devemu);
103 
104 static uint64_t pci_emul_iobase;
105 static uint8_t *pci_emul_rombase;
106 static uint64_t pci_emul_romoffset;
107 static uint8_t *pci_emul_romlim;
108 static uint64_t pci_emul_membase32;
109 static uint64_t pci_emul_membase64;
110 static uint64_t pci_emul_memlim64;
111 
112 struct pci_bar_allocation {
113 	TAILQ_ENTRY(pci_bar_allocation) chain;
114 	struct pci_devinst *pdi;
115 	int idx;
116 	enum pcibar_type type;
117 	uint64_t size;
118 };
119 
120 static TAILQ_HEAD(pci_bar_list, pci_bar_allocation) pci_bars =
121     TAILQ_HEAD_INITIALIZER(pci_bars);
122 
123 #define	PCI_EMUL_IOBASE		0x2000
124 #define	PCI_EMUL_IOLIMIT	0x10000
125 
126 #define PCI_EMUL_ROMSIZE 0x10000000
127 
128 #define	PCI_EMUL_ECFG_BASE	0xE0000000		    /* 3.5GB */
129 #define	PCI_EMUL_ECFG_SIZE	(MAXBUSES * 1024 * 1024)    /* 1MB per bus */
130 SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
131 
132 /*
133  * OVMF always uses 0xC0000000 as base address for 32 bit PCI MMIO. Don't
134  * change this address without changing it in OVMF.
135  */
136 #define PCI_EMUL_MEMBASE32 0xC0000000
137 #define	PCI_EMUL_MEMLIMIT32	PCI_EMUL_ECFG_BASE
138 #define PCI_EMUL_MEMSIZE64	(32*GB)
139 
140 static struct pci_devemu *pci_emul_finddev(const char *name);
141 static void pci_lintr_route(struct pci_devinst *pi);
142 static void pci_lintr_update(struct pci_devinst *pi);
143 static void pci_cfgrw(int in, int bus, int slot, int func, int coff,
144     int bytes, uint32_t *val);
145 
146 static __inline void
147 CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes)
148 {
149 
150 	if (bytes == 1)
151 		pci_set_cfgdata8(pi, coff, val);
152 	else if (bytes == 2)
153 		pci_set_cfgdata16(pi, coff, val);
154 	else
155 		pci_set_cfgdata32(pi, coff, val);
156 }
157 
158 static __inline uint32_t
159 CFGREAD(struct pci_devinst *pi, int coff, int bytes)
160 {
161 
162 	if (bytes == 1)
163 		return (pci_get_cfgdata8(pi, coff));
164 	else if (bytes == 2)
165 		return (pci_get_cfgdata16(pi, coff));
166 	else
167 		return (pci_get_cfgdata32(pi, coff));
168 }
169 
170 static int
171 is_pcir_bar(int coff)
172 {
173 	return (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1));
174 }
175 
176 static int
177 is_pcir_bios(int coff)
178 {
179 	return (coff >= PCIR_BIOS && coff < PCIR_BIOS + 4);
180 }
181 
182 /*
183  * I/O access
184  */
185 
186 /*
187  * Slot options are in the form:
188  *
189  *  <bus>:<slot>:<func>,<emul>[,<config>]
190  *  <slot>[:<func>],<emul>[,<config>]
191  *
192  *  slot is 0..31
193  *  func is 0..7
194  *  emul is a string describing the type of PCI device e.g. virtio-net
195  *  config is an optional string, depending on the device, that can be
196  *  used for configuration.
197  *   Examples are:
198  *     1,virtio-net,tap0
199  *     3:0,dummy
200  */
201 static void
202 pci_parse_slot_usage(char *aopt)
203 {
204 
205 	EPRINTLN("Invalid PCI slot info field \"%s\"", aopt);
206 }
207 
208 /*
209  * Helper function to parse a list of comma-separated options where
210  * each option is formatted as "name[=value]".  If no value is
211  * provided, the option is treated as a boolean and is given a value
212  * of true.
213  */
214 int
215 pci_parse_legacy_config(nvlist_t *nvl, const char *opt)
216 {
217 	char *config, *name, *tofree, *value;
218 
219 	if (opt == NULL)
220 		return (0);
221 
222 	config = tofree = strdup(opt);
223 	while ((name = strsep(&config, ",")) != NULL) {
224 		value = strchr(name, '=');
225 		if (value != NULL) {
226 			*value = '\0';
227 			value++;
228 			set_config_value_node(nvl, name, value);
229 		} else
230 			set_config_bool_node(nvl, name, true);
231 	}
232 	free(tofree);
233 	return (0);
234 }
235 
236 /*
237  * PCI device configuration is stored in MIBs that encode the device's
238  * location:
239  *
240  * pci.<bus>.<slot>.<func>
241  *
242  * Where "bus", "slot", and "func" are all decimal values without
243  * leading zeroes.  Each valid device must have a "device" node which
244  * identifies the driver model of the device.
245  *
246  * Device backends can provide a parser for the "config" string.  If
247  * a custom parser is not provided, pci_parse_legacy_config() is used
248  * to parse the string.
249  */
250 int
251 pci_parse_slot(char *opt)
252 {
253 	char node_name[sizeof("pci.XXX.XX.X")];
254 	struct pci_devemu *pde;
255 	char *emul, *config, *str, *cp;
256 	int error, bnum, snum, fnum;
257 	nvlist_t *nvl;
258 
259 	error = -1;
260 	str = strdup(opt);
261 
262 	emul = config = NULL;
263 	if ((cp = strchr(str, ',')) != NULL) {
264 		*cp = '\0';
265 		emul = cp + 1;
266 		if ((cp = strchr(emul, ',')) != NULL) {
267 			*cp = '\0';
268 			config = cp + 1;
269 		}
270 	} else {
271 		pci_parse_slot_usage(opt);
272 		goto done;
273 	}
274 
275 	/* <bus>:<slot>:<func> */
276 	if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
277 		bnum = 0;
278 		/* <slot>:<func> */
279 		if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
280 			fnum = 0;
281 			/* <slot> */
282 			if (sscanf(str, "%d", &snum) != 1) {
283 				snum = -1;
284 			}
285 		}
286 	}
287 
288 	if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
289 	    fnum < 0 || fnum >= MAXFUNCS) {
290 		pci_parse_slot_usage(opt);
291 		goto done;
292 	}
293 
294 	pde = pci_emul_finddev(emul);
295 	if (pde == NULL) {
296 		EPRINTLN("pci slot %d:%d:%d: unknown device \"%s\"", bnum, snum,
297 		    fnum, emul);
298 		goto done;
299 	}
300 
301 	snprintf(node_name, sizeof(node_name), "pci.%d.%d.%d", bnum, snum,
302 	    fnum);
303 	nvl = find_config_node(node_name);
304 	if (nvl != NULL) {
305 		EPRINTLN("pci slot %d:%d:%d already occupied!", bnum, snum,
306 		    fnum);
307 		goto done;
308 	}
309 	nvl = create_config_node(node_name);
310 	if (pde->pe_alias != NULL)
311 		set_config_value_node(nvl, "device", pde->pe_alias);
312 	else
313 		set_config_value_node(nvl, "device", pde->pe_emu);
314 
315 	if (pde->pe_legacy_config != NULL)
316 		error = pde->pe_legacy_config(nvl, config);
317 	else
318 		error = pci_parse_legacy_config(nvl, config);
319 done:
320 	free(str);
321 	return (error);
322 }
323 
324 void
325 pci_print_supported_devices(void)
326 {
327 	struct pci_devemu **pdpp, *pdp;
328 
329 	SET_FOREACH(pdpp, pci_devemu_set) {
330 		pdp = *pdpp;
331 		printf("%s\n", pdp->pe_emu);
332 	}
333 }
334 
335 static int
336 pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
337 {
338 
339 	if (offset < pi->pi_msix.pba_offset)
340 		return (0);
341 
342 	if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
343 		return (0);
344 	}
345 
346 	return (1);
347 }
348 
349 int
350 pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
351 		     uint64_t value)
352 {
353 	int msix_entry_offset;
354 	int tab_index;
355 	char *dest;
356 
357 	/* support only 4 or 8 byte writes */
358 	if (size != 4 && size != 8)
359 		return (-1);
360 
361 	/*
362 	 * Return if table index is beyond what device supports
363 	 */
364 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
365 	if (tab_index >= pi->pi_msix.table_count)
366 		return (-1);
367 
368 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
369 
370 	/* support only aligned writes */
371 	if ((msix_entry_offset % size) != 0)
372 		return (-1);
373 
374 	dest = (char *)(pi->pi_msix.table + tab_index);
375 	dest += msix_entry_offset;
376 
377 	if (size == 4)
378 		*((uint32_t *)dest) = value;
379 	else
380 		*((uint64_t *)dest) = value;
381 
382 	return (0);
383 }
384 
385 uint64_t
386 pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
387 {
388 	char *dest;
389 	int msix_entry_offset;
390 	int tab_index;
391 	uint64_t retval = ~0;
392 
393 	/*
394 	 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X
395 	 * table but we also allow 1 byte access to accommodate reads from
396 	 * ddb.
397 	 */
398 	if (size != 1 && size != 4 && size != 8)
399 		return (retval);
400 
401 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
402 
403 	/* support only aligned reads */
404 	if ((msix_entry_offset % size) != 0) {
405 		return (retval);
406 	}
407 
408 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
409 
410 	if (tab_index < pi->pi_msix.table_count) {
411 		/* valid MSI-X Table access */
412 		dest = (char *)(pi->pi_msix.table + tab_index);
413 		dest += msix_entry_offset;
414 
415 		if (size == 1)
416 			retval = *((uint8_t *)dest);
417 		else if (size == 4)
418 			retval = *((uint32_t *)dest);
419 		else
420 			retval = *((uint64_t *)dest);
421 	} else if (pci_valid_pba_offset(pi, offset)) {
422 		/* return 0 for PBA access */
423 		retval = 0;
424 	}
425 
426 	return (retval);
427 }
428 
429 int
430 pci_msix_table_bar(struct pci_devinst *pi)
431 {
432 
433 	if (pi->pi_msix.table != NULL)
434 		return (pi->pi_msix.table_bar);
435 	else
436 		return (-1);
437 }
438 
439 int
440 pci_msix_pba_bar(struct pci_devinst *pi)
441 {
442 
443 	if (pi->pi_msix.table != NULL)
444 		return (pi->pi_msix.pba_bar);
445 	else
446 		return (-1);
447 }
448 
449 static int
450 pci_emul_io_handler(struct vmctx *ctx __unused, int in, int port,
451     int bytes, uint32_t *eax, void *arg)
452 {
453 	struct pci_devinst *pdi = arg;
454 	struct pci_devemu *pe = pdi->pi_d;
455 	uint64_t offset;
456 	int i;
457 
458 	assert(port >= 0);
459 
460 	for (i = 0; i <= PCI_BARMAX; i++) {
461 		if (pdi->pi_bar[i].type == PCIBAR_IO &&
462 		    (uint64_t)port >= pdi->pi_bar[i].addr &&
463 		    (uint64_t)port + bytes <=
464 		    pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
465 			offset = port - pdi->pi_bar[i].addr;
466 			if (in)
467 				*eax = (*pe->pe_barread)(pdi, i,
468 							 offset, bytes);
469 			else
470 				(*pe->pe_barwrite)(pdi, i, offset,
471 						   bytes, *eax);
472 			return (0);
473 		}
474 	}
475 	return (-1);
476 }
477 
478 static int
479 pci_emul_mem_handler(struct vmctx *ctx __unused, int vcpu __unused, int dir,
480     uint64_t addr, int size, uint64_t *val, void *arg1, long arg2)
481 {
482 	struct pci_devinst *pdi = arg1;
483 	struct pci_devemu *pe = pdi->pi_d;
484 	uint64_t offset;
485 	int bidx = (int) arg2;
486 
487 	assert(bidx <= PCI_BARMAX);
488 	assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
489 	       pdi->pi_bar[bidx].type == PCIBAR_MEM64);
490 	assert(addr >= pdi->pi_bar[bidx].addr &&
491 	       addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
492 
493 	offset = addr - pdi->pi_bar[bidx].addr;
494 
495 	if (dir == MEM_F_WRITE) {
496 		if (size == 8) {
497 			(*pe->pe_barwrite)(pdi, bidx, offset,
498 					   4, *val & 0xffffffff);
499 			(*pe->pe_barwrite)(pdi, bidx, offset + 4,
500 					   4, *val >> 32);
501 		} else {
502 			(*pe->pe_barwrite)(pdi, bidx, offset,
503 					   size, *val);
504 		}
505 	} else {
506 		if (size == 8) {
507 			*val = (*pe->pe_barread)(pdi, bidx,
508 						 offset, 4);
509 			*val |= (*pe->pe_barread)(pdi, bidx,
510 						  offset + 4, 4) << 32;
511 		} else {
512 			*val = (*pe->pe_barread)(pdi, bidx,
513 						 offset, size);
514 		}
515 	}
516 
517 	return (0);
518 }
519 
520 
521 static int
522 pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
523 			uint64_t *addr)
524 {
525 	uint64_t base;
526 
527 	assert((size & (size - 1)) == 0);	/* must be a power of 2 */
528 
529 	base = roundup2(*baseptr, size);
530 
531 	if (base + size <= limit) {
532 		*addr = base;
533 		*baseptr = base + size;
534 		return (0);
535 	} else
536 		return (-1);
537 }
538 
539 /*
540  * Register (or unregister) the MMIO or I/O region associated with the BAR
541  * register 'idx' of an emulated pci device.
542  */
543 static void
544 modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
545 {
546 	struct pci_devemu *pe;
547 	int error;
548 	struct inout_port iop;
549 	struct mem_range mr;
550 
551 	pe = pi->pi_d;
552 	switch (pi->pi_bar[idx].type) {
553 	case PCIBAR_IO:
554 		bzero(&iop, sizeof(struct inout_port));
555 		iop.name = pi->pi_name;
556 		iop.port = pi->pi_bar[idx].addr;
557 		iop.size = pi->pi_bar[idx].size;
558 		if (registration) {
559 			iop.flags = IOPORT_F_INOUT;
560 			iop.handler = pci_emul_io_handler;
561 			iop.arg = pi;
562 			error = register_inout(&iop);
563 		} else
564 			error = unregister_inout(&iop);
565 		if (pe->pe_baraddr != NULL)
566 			(*pe->pe_baraddr)(pi, idx, registration,
567 					  pi->pi_bar[idx].addr);
568 		break;
569 	case PCIBAR_MEM32:
570 	case PCIBAR_MEM64:
571 		bzero(&mr, sizeof(struct mem_range));
572 		mr.name = pi->pi_name;
573 		mr.base = pi->pi_bar[idx].addr;
574 		mr.size = pi->pi_bar[idx].size;
575 		if (registration) {
576 			mr.flags = MEM_F_RW;
577 			mr.handler = pci_emul_mem_handler;
578 			mr.arg1 = pi;
579 			mr.arg2 = idx;
580 			error = register_mem(&mr);
581 		} else
582 			error = unregister_mem(&mr);
583 		if (pe->pe_baraddr != NULL)
584 			(*pe->pe_baraddr)(pi, idx, registration,
585 					  pi->pi_bar[idx].addr);
586 		break;
587 	case PCIBAR_ROM:
588 		error = 0;
589 		if (pe->pe_baraddr != NULL)
590 			(*pe->pe_baraddr)(pi, idx, registration,
591 			    pi->pi_bar[idx].addr);
592 		break;
593 	default:
594 		error = EINVAL;
595 		break;
596 	}
597 	assert(error == 0);
598 }
599 
600 static void
601 unregister_bar(struct pci_devinst *pi, int idx)
602 {
603 
604 	modify_bar_registration(pi, idx, 0);
605 }
606 
607 static void
608 register_bar(struct pci_devinst *pi, int idx)
609 {
610 
611 	modify_bar_registration(pi, idx, 1);
612 }
613 
614 /* Is the ROM enabled for the emulated pci device? */
615 static int
616 romen(struct pci_devinst *pi)
617 {
618 	return (pi->pi_bar[PCI_ROM_IDX].lobits & PCIM_BIOS_ENABLE) ==
619 	    PCIM_BIOS_ENABLE;
620 }
621 
622 /* Are we decoding i/o port accesses for the emulated pci device? */
623 static int
624 porten(struct pci_devinst *pi)
625 {
626 	uint16_t cmd;
627 
628 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
629 
630 	return (cmd & PCIM_CMD_PORTEN);
631 }
632 
633 /* Are we decoding memory accesses for the emulated pci device? */
634 static int
635 memen(struct pci_devinst *pi)
636 {
637 	uint16_t cmd;
638 
639 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
640 
641 	return (cmd & PCIM_CMD_MEMEN);
642 }
643 
644 /*
645  * Update the MMIO or I/O address that is decoded by the BAR register.
646  *
647  * If the pci device has enabled the address space decoding then intercept
648  * the address range decoded by the BAR register.
649  */
650 static void
651 update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type)
652 {
653 	int decode;
654 
655 	if (pi->pi_bar[idx].type == PCIBAR_IO)
656 		decode = porten(pi);
657 	else
658 		decode = memen(pi);
659 
660 	if (decode)
661 		unregister_bar(pi, idx);
662 
663 	switch (type) {
664 	case PCIBAR_IO:
665 	case PCIBAR_MEM32:
666 		pi->pi_bar[idx].addr = addr;
667 		break;
668 	case PCIBAR_MEM64:
669 		pi->pi_bar[idx].addr &= ~0xffffffffUL;
670 		pi->pi_bar[idx].addr |= addr;
671 		break;
672 	case PCIBAR_MEMHI64:
673 		pi->pi_bar[idx].addr &= 0xffffffff;
674 		pi->pi_bar[idx].addr |= addr;
675 		break;
676 	default:
677 		assert(0);
678 	}
679 
680 	if (decode)
681 		register_bar(pi, idx);
682 }
683 
684 int
685 pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
686     uint64_t size)
687 {
688 	assert((type == PCIBAR_ROM) || (idx >= 0 && idx <= PCI_BARMAX));
689 	assert((type != PCIBAR_ROM) || (idx == PCI_ROM_IDX));
690 
691 	if ((size & (size - 1)) != 0)
692 		size = 1UL << flsl(size);	/* round up to a power of 2 */
693 
694 	/* Enforce minimum BAR sizes required by the PCI standard */
695 	if (type == PCIBAR_IO) {
696 		if (size < 4)
697 			size = 4;
698 	} else if (type == PCIBAR_ROM) {
699 		if (size < ~PCIM_BIOS_ADDR_MASK + 1)
700 			size = ~PCIM_BIOS_ADDR_MASK + 1;
701 	} else {
702 		if (size < 16)
703 			size = 16;
704 	}
705 
706 	/*
707 	 * To reduce fragmentation of the MMIO space, we allocate the BARs by
708 	 * size. Therefore, don't allocate the BAR yet. We create a list of all
709 	 * BAR allocation which is sorted by BAR size. When all PCI devices are
710 	 * initialized, we will assign an address to the BARs.
711 	 */
712 
713 	/* create a new list entry */
714 	struct pci_bar_allocation *const new_bar = malloc(sizeof(*new_bar));
715 	memset(new_bar, 0, sizeof(*new_bar));
716 	new_bar->pdi = pdi;
717 	new_bar->idx = idx;
718 	new_bar->type = type;
719 	new_bar->size = size;
720 
721 	/*
722 	 * Search for a BAR which size is lower than the size of our newly
723 	 * allocated BAR.
724 	 */
725 	struct pci_bar_allocation *bar = NULL;
726 	TAILQ_FOREACH(bar, &pci_bars, chain) {
727 		if (bar->size < size) {
728 			break;
729 		}
730 	}
731 
732 	if (bar == NULL) {
733 		/*
734 		 * Either the list is empty or new BAR is the smallest BAR of
735 		 * the list. Append it to the end of our list.
736 		 */
737 		TAILQ_INSERT_TAIL(&pci_bars, new_bar, chain);
738 	} else {
739 		/*
740 		 * The found BAR is smaller than our new BAR. For that reason,
741 		 * insert our new BAR before the found BAR.
742 		 */
743 		TAILQ_INSERT_BEFORE(bar, new_bar, chain);
744 	}
745 
746 	/*
747 	 * pci_passthru devices synchronize their physical and virtual command
748 	 * register on init. For that reason, the virtual cmd reg should be
749 	 * updated as early as possible.
750 	 */
751 	uint16_t enbit = 0;
752 	switch (type) {
753 	case PCIBAR_IO:
754 		enbit = PCIM_CMD_PORTEN;
755 		break;
756 	case PCIBAR_MEM64:
757 	case PCIBAR_MEM32:
758 		enbit = PCIM_CMD_MEMEN;
759 		break;
760 	default:
761 		enbit = 0;
762 		break;
763 	}
764 
765 	const uint16_t cmd = pci_get_cfgdata16(pdi, PCIR_COMMAND);
766 	pci_set_cfgdata16(pdi, PCIR_COMMAND, cmd | enbit);
767 
768 	return (0);
769 }
770 
771 static int
772 pci_emul_assign_bar(struct pci_devinst *const pdi, const int idx,
773     const enum pcibar_type type, const uint64_t size)
774 {
775 	int error;
776 	uint64_t *baseptr, limit, addr, mask, lobits, bar;
777 
778 	switch (type) {
779 	case PCIBAR_NONE:
780 		baseptr = NULL;
781 		addr = mask = lobits = 0;
782 		break;
783 	case PCIBAR_IO:
784 		baseptr = &pci_emul_iobase;
785 		limit = PCI_EMUL_IOLIMIT;
786 		mask = PCIM_BAR_IO_BASE;
787 		lobits = PCIM_BAR_IO_SPACE;
788 		break;
789 	case PCIBAR_MEM64:
790 		/*
791 		 * XXX
792 		 * Some drivers do not work well if the 64-bit BAR is allocated
793 		 * above 4GB. Allow for this by allocating small requests under
794 		 * 4GB unless then allocation size is larger than some arbitrary
795 		 * number (128MB currently).
796 		 */
797 		if (size > 128 * 1024 * 1024) {
798 			baseptr = &pci_emul_membase64;
799 			limit = pci_emul_memlim64;
800 			mask = PCIM_BAR_MEM_BASE;
801 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
802 				 PCIM_BAR_MEM_PREFETCH;
803 		} else {
804 			baseptr = &pci_emul_membase32;
805 			limit = PCI_EMUL_MEMLIMIT32;
806 			mask = PCIM_BAR_MEM_BASE;
807 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
808 		}
809 		break;
810 	case PCIBAR_MEM32:
811 		baseptr = &pci_emul_membase32;
812 		limit = PCI_EMUL_MEMLIMIT32;
813 		mask = PCIM_BAR_MEM_BASE;
814 		lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
815 		break;
816 	case PCIBAR_ROM:
817 		/* do not claim memory for ROM. OVMF will do it for us. */
818 		baseptr = NULL;
819 		limit = 0;
820 		mask = PCIM_BIOS_ADDR_MASK;
821 		lobits = 0;
822 		break;
823 	default:
824 		printf("pci_emul_alloc_base: invalid bar type %d\n", type);
825 		assert(0);
826 	}
827 
828 	if (baseptr != NULL) {
829 		error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
830 		if (error != 0)
831 			return (error);
832 	} else {
833 		addr = 0;
834 	}
835 
836 	pdi->pi_bar[idx].type = type;
837 	pdi->pi_bar[idx].addr = addr;
838 	pdi->pi_bar[idx].size = size;
839 	/*
840 	 * passthru devices are using same lobits as physical device they set
841 	 * this property
842 	 */
843 	if (pdi->pi_bar[idx].lobits != 0) {
844 		lobits = pdi->pi_bar[idx].lobits;
845 	} else {
846 		pdi->pi_bar[idx].lobits = lobits;
847 	}
848 
849 	/* Initialize the BAR register in config space */
850 	bar = (addr & mask) | lobits;
851 	pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
852 
853 	if (type == PCIBAR_MEM64) {
854 		assert(idx + 1 <= PCI_BARMAX);
855 		pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
856 		pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
857 	}
858 
859 	if (type != PCIBAR_ROM) {
860 		register_bar(pdi, idx);
861 	}
862 
863 	return (0);
864 }
865 
866 int
867 pci_emul_alloc_rom(struct pci_devinst *const pdi, const uint64_t size,
868     void **const addr)
869 {
870 	/* allocate ROM space once on first call */
871 	if (pci_emul_rombase == 0) {
872 		pci_emul_rombase = vm_create_devmem(pdi->pi_vmctx, VM_PCIROM,
873 		    "pcirom", PCI_EMUL_ROMSIZE);
874 		if (pci_emul_rombase == MAP_FAILED) {
875 			warnx("%s: failed to create rom segment", __func__);
876 			return (-1);
877 		}
878 		pci_emul_romlim = pci_emul_rombase + PCI_EMUL_ROMSIZE;
879 		pci_emul_romoffset = 0;
880 	}
881 
882 	/* ROM size should be a power of 2 and greater than 2 KB */
883 	const uint64_t rom_size = MAX(1UL << flsl(size),
884 	    ~PCIM_BIOS_ADDR_MASK + 1);
885 
886 	/* check if ROM fits into ROM space */
887 	if (pci_emul_romoffset + rom_size > PCI_EMUL_ROMSIZE) {
888 		warnx("%s: no space left in rom segment:", __func__);
889 		warnx("%16lu bytes left",
890 		    PCI_EMUL_ROMSIZE - pci_emul_romoffset);
891 		warnx("%16lu bytes required by %d/%d/%d", rom_size, pdi->pi_bus,
892 		    pdi->pi_slot, pdi->pi_func);
893 		return (-1);
894 	}
895 
896 	/* allocate ROM BAR */
897 	const int error = pci_emul_alloc_bar(pdi, PCI_ROM_IDX, PCIBAR_ROM,
898 	    rom_size);
899 	if (error)
900 		return error;
901 
902 	/* return address */
903 	*addr = pci_emul_rombase + pci_emul_romoffset;
904 
905 	/* save offset into ROM Space */
906 	pdi->pi_romoffset = pci_emul_romoffset;
907 
908 	/* increase offset for next ROM */
909 	pci_emul_romoffset += rom_size;
910 
911 	return (0);
912 }
913 
914 #define	CAP_START_OFFSET	0x40
915 static int
916 pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
917 {
918 	int i, capoff, reallen;
919 	uint16_t sts;
920 
921 	assert(caplen > 0);
922 
923 	reallen = roundup2(caplen, 4);		/* dword aligned */
924 
925 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
926 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
927 		capoff = CAP_START_OFFSET;
928 	else
929 		capoff = pi->pi_capend + 1;
930 
931 	/* Check if we have enough space */
932 	if (capoff + reallen > PCI_REGMAX + 1)
933 		return (-1);
934 
935 	/* Set the previous capability pointer */
936 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
937 		pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
938 		pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
939 	} else
940 		pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
941 
942 	/* Copy the capability */
943 	for (i = 0; i < caplen; i++)
944 		pci_set_cfgdata8(pi, capoff + i, capdata[i]);
945 
946 	/* Set the next capability pointer */
947 	pci_set_cfgdata8(pi, capoff + 1, 0);
948 
949 	pi->pi_prevcap = capoff;
950 	pi->pi_capend = capoff + reallen - 1;
951 	return (0);
952 }
953 
954 static struct pci_devemu *
955 pci_emul_finddev(const char *name)
956 {
957 	struct pci_devemu **pdpp, *pdp;
958 
959 	SET_FOREACH(pdpp, pci_devemu_set) {
960 		pdp = *pdpp;
961 		if (!strcmp(pdp->pe_emu, name)) {
962 			return (pdp);
963 		}
964 	}
965 
966 	return (NULL);
967 }
968 
969 static int
970 pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
971     int func, struct funcinfo *fi)
972 {
973 	struct pci_devinst *pdi;
974 	int err;
975 
976 	pdi = calloc(1, sizeof(struct pci_devinst));
977 
978 	pdi->pi_vmctx = ctx;
979 	pdi->pi_bus = bus;
980 	pdi->pi_slot = slot;
981 	pdi->pi_func = func;
982 	pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
983 	pdi->pi_lintr.pin = 0;
984 	pdi->pi_lintr.state = IDLE;
985 	pdi->pi_lintr.pirq_pin = 0;
986 	pdi->pi_lintr.ioapic_irq = 0;
987 	pdi->pi_d = pde;
988 	snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot);
989 
990 	/* Disable legacy interrupts */
991 	pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
992 	pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
993 
994 	pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_BUSMASTEREN);
995 
996 	err = (*pde->pe_init)(pdi, fi->fi_config);
997 	if (err == 0)
998 		fi->fi_devi = pdi;
999 	else
1000 		free(pdi);
1001 
1002 	return (err);
1003 }
1004 
1005 void
1006 pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
1007 {
1008 	int mmc;
1009 
1010 	/* Number of msi messages must be a power of 2 between 1 and 32 */
1011 	assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
1012 	mmc = ffs(msgnum) - 1;
1013 
1014 	bzero(msicap, sizeof(struct msicap));
1015 	msicap->capid = PCIY_MSI;
1016 	msicap->nextptr = nextptr;
1017 	msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
1018 }
1019 
1020 int
1021 pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
1022 {
1023 	struct msicap msicap;
1024 
1025 	pci_populate_msicap(&msicap, msgnum, 0);
1026 
1027 	return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
1028 }
1029 
1030 static void
1031 pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
1032 		     uint32_t msix_tab_size)
1033 {
1034 
1035 	assert(msix_tab_size % 4096 == 0);
1036 
1037 	bzero(msixcap, sizeof(struct msixcap));
1038 	msixcap->capid = PCIY_MSIX;
1039 
1040 	/*
1041 	 * Message Control Register, all fields set to
1042 	 * zero except for the Table Size.
1043 	 * Note: Table size N is encoded as N-1
1044 	 */
1045 	msixcap->msgctrl = msgnum - 1;
1046 
1047 	/*
1048 	 * MSI-X BAR setup:
1049 	 * - MSI-X table start at offset 0
1050 	 * - PBA table starts at a 4K aligned offset after the MSI-X table
1051 	 */
1052 	msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
1053 	msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
1054 }
1055 
1056 static void
1057 pci_msix_table_init(struct pci_devinst *pi, int table_entries)
1058 {
1059 	int i, table_size;
1060 
1061 	assert(table_entries > 0);
1062 	assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
1063 
1064 	table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
1065 	pi->pi_msix.table = calloc(1, table_size);
1066 
1067 	/* set mask bit of vector control register */
1068 	for (i = 0; i < table_entries; i++)
1069 		pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
1070 }
1071 
1072 int
1073 pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
1074 {
1075 	uint32_t tab_size;
1076 	struct msixcap msixcap;
1077 
1078 	assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
1079 	assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
1080 
1081 	tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
1082 
1083 	/* Align table size to nearest 4K */
1084 	tab_size = roundup2(tab_size, 4096);
1085 
1086 	pi->pi_msix.table_bar = barnum;
1087 	pi->pi_msix.pba_bar   = barnum;
1088 	pi->pi_msix.table_offset = 0;
1089 	pi->pi_msix.table_count = msgnum;
1090 	pi->pi_msix.pba_offset = tab_size;
1091 	pi->pi_msix.pba_size = PBA_SIZE(msgnum);
1092 
1093 	pci_msix_table_init(pi, msgnum);
1094 
1095 	pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
1096 
1097 	/* allocate memory for MSI-X Table and PBA */
1098 	pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
1099 				tab_size + pi->pi_msix.pba_size);
1100 
1101 	return (pci_emul_add_capability(pi, (u_char *)&msixcap,
1102 					sizeof(msixcap)));
1103 }
1104 
1105 static void
1106 msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1107 		 int bytes, uint32_t val)
1108 {
1109 	uint16_t msgctrl, rwmask;
1110 	int off;
1111 
1112 	off = offset - capoff;
1113 	/* Message Control Register */
1114 	if (off == 2 && bytes == 2) {
1115 		rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
1116 		msgctrl = pci_get_cfgdata16(pi, offset);
1117 		msgctrl &= ~rwmask;
1118 		msgctrl |= val & rwmask;
1119 		val = msgctrl;
1120 
1121 		pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
1122 		pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
1123 		pci_lintr_update(pi);
1124 	}
1125 
1126 	CFGWRITE(pi, offset, val, bytes);
1127 }
1128 
1129 static void
1130 msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1131 		int bytes, uint32_t val)
1132 {
1133 	uint16_t msgctrl, rwmask, msgdata, mme;
1134 	uint32_t addrlo;
1135 
1136 	/*
1137 	 * If guest is writing to the message control register make sure
1138 	 * we do not overwrite read-only fields.
1139 	 */
1140 	if ((offset - capoff) == 2 && bytes == 2) {
1141 		rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
1142 		msgctrl = pci_get_cfgdata16(pi, offset);
1143 		msgctrl &= ~rwmask;
1144 		msgctrl |= val & rwmask;
1145 		val = msgctrl;
1146 	}
1147 	CFGWRITE(pi, offset, val, bytes);
1148 
1149 	msgctrl = pci_get_cfgdata16(pi, capoff + 2);
1150 	addrlo = pci_get_cfgdata32(pi, capoff + 4);
1151 	if (msgctrl & PCIM_MSICTRL_64BIT)
1152 		msgdata = pci_get_cfgdata16(pi, capoff + 12);
1153 	else
1154 		msgdata = pci_get_cfgdata16(pi, capoff + 8);
1155 
1156 	mme = msgctrl & PCIM_MSICTRL_MME_MASK;
1157 	pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
1158 	if (pi->pi_msi.enabled) {
1159 		pi->pi_msi.addr = addrlo;
1160 		pi->pi_msi.msg_data = msgdata;
1161 		pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
1162 	} else {
1163 		pi->pi_msi.maxmsgnum = 0;
1164 	}
1165 	pci_lintr_update(pi);
1166 }
1167 
1168 static void
1169 pciecap_cfgwrite(struct pci_devinst *pi, int capoff __unused, int offset,
1170     int bytes, uint32_t val)
1171 {
1172 
1173 	/* XXX don't write to the readonly parts */
1174 	CFGWRITE(pi, offset, val, bytes);
1175 }
1176 
1177 #define	PCIECAP_VERSION	0x2
1178 int
1179 pci_emul_add_pciecap(struct pci_devinst *pi, int type)
1180 {
1181 	int err;
1182 	struct pciecap pciecap;
1183 
1184 	bzero(&pciecap, sizeof(pciecap));
1185 
1186 	/*
1187 	 * Use the integrated endpoint type for endpoints on a root complex bus.
1188 	 *
1189 	 * NB: bhyve currently only supports a single PCI bus that is the root
1190 	 * complex bus, so all endpoints are integrated.
1191 	 */
1192 	if ((type == PCIEM_TYPE_ENDPOINT) && (pi->pi_bus == 0))
1193 		type = PCIEM_TYPE_ROOT_INT_EP;
1194 
1195 	pciecap.capid = PCIY_EXPRESS;
1196 	pciecap.pcie_capabilities = PCIECAP_VERSION | type;
1197 	if (type != PCIEM_TYPE_ROOT_INT_EP) {
1198 		pciecap.link_capabilities = 0x411;	/* gen1, x1 */
1199 		pciecap.link_status = 0x11;		/* gen1, x1 */
1200 	}
1201 
1202 	err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
1203 	return (err);
1204 }
1205 
1206 /*
1207  * This function assumes that 'coff' is in the capabilities region of the
1208  * config space. A capoff parameter of zero will force a search for the
1209  * offset and type.
1210  */
1211 void
1212 pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val,
1213     uint8_t capoff, int capid)
1214 {
1215 	uint8_t nextoff;
1216 
1217 	/* Do not allow un-aligned writes */
1218 	if ((offset & (bytes - 1)) != 0)
1219 		return;
1220 
1221 	if (capoff == 0) {
1222 		/* Find the capability that we want to update */
1223 		capoff = CAP_START_OFFSET;
1224 		while (1) {
1225 			nextoff = pci_get_cfgdata8(pi, capoff + 1);
1226 			if (nextoff == 0)
1227 				break;
1228 			if (offset >= capoff && offset < nextoff)
1229 				break;
1230 
1231 			capoff = nextoff;
1232 		}
1233 		assert(offset >= capoff);
1234 		capid = pci_get_cfgdata8(pi, capoff);
1235 	}
1236 
1237 	/*
1238 	 * Capability ID and Next Capability Pointer are readonly.
1239 	 * However, some o/s's do 4-byte writes that include these.
1240 	 * For this case, trim the write back to 2 bytes and adjust
1241 	 * the data.
1242 	 */
1243 	if (offset == capoff || offset == capoff + 1) {
1244 		if (offset == capoff && bytes == 4) {
1245 			bytes = 2;
1246 			offset += 2;
1247 			val >>= 16;
1248 		} else
1249 			return;
1250 	}
1251 
1252 	switch (capid) {
1253 	case PCIY_MSI:
1254 		msicap_cfgwrite(pi, capoff, offset, bytes, val);
1255 		break;
1256 	case PCIY_MSIX:
1257 		msixcap_cfgwrite(pi, capoff, offset, bytes, val);
1258 		break;
1259 	case PCIY_EXPRESS:
1260 		pciecap_cfgwrite(pi, capoff, offset, bytes, val);
1261 		break;
1262 	default:
1263 		break;
1264 	}
1265 }
1266 
1267 static int
1268 pci_emul_iscap(struct pci_devinst *pi, int offset)
1269 {
1270 	uint16_t sts;
1271 
1272 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1273 	if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
1274 		if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
1275 			return (1);
1276 	}
1277 	return (0);
1278 }
1279 
1280 static int
1281 pci_emul_fallback_handler(struct vmctx *ctx __unused, int vcpu __unused,
1282     int dir, uint64_t addr __unused, int size __unused, uint64_t *val,
1283     void *arg1 __unused, long arg2 __unused)
1284 {
1285 	/*
1286 	 * Ignore writes; return 0xff's for reads. The mem read code
1287 	 * will take care of truncating to the correct size.
1288 	 */
1289 	if (dir == MEM_F_READ) {
1290 		*val = 0xffffffffffffffff;
1291 	}
1292 
1293 	return (0);
1294 }
1295 
1296 static int
1297 pci_emul_ecfg_handler(struct vmctx *ctx __unused, int vcpu __unused, int dir,
1298     uint64_t addr, int bytes, uint64_t *val, void *arg1 __unused,
1299     long arg2 __unused)
1300 {
1301 	int bus, slot, func, coff, in;
1302 
1303 	coff = addr & 0xfff;
1304 	func = (addr >> 12) & 0x7;
1305 	slot = (addr >> 15) & 0x1f;
1306 	bus = (addr >> 20) & 0xff;
1307 	in = (dir == MEM_F_READ);
1308 	if (in)
1309 		*val = ~0UL;
1310 	pci_cfgrw(in, bus, slot, func, coff, bytes, (uint32_t *)val);
1311 	return (0);
1312 }
1313 
1314 uint64_t
1315 pci_ecfg_base(void)
1316 {
1317 
1318 	return (PCI_EMUL_ECFG_BASE);
1319 }
1320 
1321 #define	BUSIO_ROUNDUP		32
1322 #define	BUSMEM32_ROUNDUP	(1024 * 1024)
1323 #define	BUSMEM64_ROUNDUP	(512 * 1024 * 1024)
1324 
1325 int
1326 init_pci(struct vmctx *ctx)
1327 {
1328 	char node_name[sizeof("pci.XXX.XX.X")];
1329 	struct mem_range mr;
1330 	struct pci_devemu *pde;
1331 	struct businfo *bi;
1332 	struct slotinfo *si;
1333 	struct funcinfo *fi;
1334 	nvlist_t *nvl;
1335 	const char *emul;
1336 	size_t lowmem;
1337 	int bus, slot, func;
1338 	int error;
1339 
1340 	if (vm_get_lowmem_limit(ctx) > PCI_EMUL_MEMBASE32)
1341 		errx(EX_OSERR, "Invalid lowmem limit");
1342 
1343 	pci_emul_iobase = PCI_EMUL_IOBASE;
1344 	pci_emul_membase32 = PCI_EMUL_MEMBASE32;
1345 
1346 	pci_emul_membase64 = 4*GB + vm_get_highmem_size(ctx);
1347 	pci_emul_membase64 = roundup2(pci_emul_membase64, PCI_EMUL_MEMSIZE64);
1348 	pci_emul_memlim64 = pci_emul_membase64 + PCI_EMUL_MEMSIZE64;
1349 
1350 	for (bus = 0; bus < MAXBUSES; bus++) {
1351 		snprintf(node_name, sizeof(node_name), "pci.%d", bus);
1352 		nvl = find_config_node(node_name);
1353 		if (nvl == NULL)
1354 			continue;
1355 		pci_businfo[bus] = calloc(1, sizeof(struct businfo));
1356 		bi = pci_businfo[bus];
1357 
1358 		/*
1359 		 * Keep track of the i/o and memory resources allocated to
1360 		 * this bus.
1361 		 */
1362 		bi->iobase = pci_emul_iobase;
1363 		bi->membase32 = pci_emul_membase32;
1364 		bi->membase64 = pci_emul_membase64;
1365 
1366 		/* first run: init devices */
1367 		for (slot = 0; slot < MAXSLOTS; slot++) {
1368 			si = &bi->slotinfo[slot];
1369 			for (func = 0; func < MAXFUNCS; func++) {
1370 				fi = &si->si_funcs[func];
1371 				snprintf(node_name, sizeof(node_name),
1372 				    "pci.%d.%d.%d", bus, slot, func);
1373 				nvl = find_config_node(node_name);
1374 				if (nvl == NULL)
1375 					continue;
1376 
1377 				fi->fi_config = nvl;
1378 				emul = get_config_value_node(nvl, "device");
1379 				if (emul == NULL) {
1380 					EPRINTLN("pci slot %d:%d:%d: missing "
1381 					    "\"device\" value", bus, slot, func);
1382 					return (EINVAL);
1383 				}
1384 				pde = pci_emul_finddev(emul);
1385 				if (pde == NULL) {
1386 					EPRINTLN("pci slot %d:%d:%d: unknown "
1387 					    "device \"%s\"", bus, slot, func,
1388 					    emul);
1389 					return (EINVAL);
1390 				}
1391 				if (pde->pe_alias != NULL) {
1392 					EPRINTLN("pci slot %d:%d:%d: legacy "
1393 					    "device \"%s\", use \"%s\" instead",
1394 					    bus, slot, func, emul,
1395 					    pde->pe_alias);
1396 					return (EINVAL);
1397 				}
1398 				fi->fi_pde = pde;
1399 				error = pci_emul_init(ctx, pde, bus, slot,
1400 				    func, fi);
1401 				if (error)
1402 					return (error);
1403 			}
1404 		}
1405 
1406 		/* second run: assign BARs and free list */
1407 		struct pci_bar_allocation *bar;
1408 		struct pci_bar_allocation *bar_tmp;
1409 		TAILQ_FOREACH_SAFE(bar, &pci_bars, chain, bar_tmp) {
1410 			pci_emul_assign_bar(bar->pdi, bar->idx, bar->type,
1411 			    bar->size);
1412 			free(bar);
1413 		}
1414 		TAILQ_INIT(&pci_bars);
1415 
1416 		/*
1417 		 * Add some slop to the I/O and memory resources decoded by
1418 		 * this bus to give a guest some flexibility if it wants to
1419 		 * reprogram the BARs.
1420 		 */
1421 		pci_emul_iobase += BUSIO_ROUNDUP;
1422 		pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
1423 		bi->iolimit = pci_emul_iobase;
1424 
1425 		pci_emul_membase32 += BUSMEM32_ROUNDUP;
1426 		pci_emul_membase32 = roundup2(pci_emul_membase32,
1427 		    BUSMEM32_ROUNDUP);
1428 		bi->memlimit32 = pci_emul_membase32;
1429 
1430 		pci_emul_membase64 += BUSMEM64_ROUNDUP;
1431 		pci_emul_membase64 = roundup2(pci_emul_membase64,
1432 		    BUSMEM64_ROUNDUP);
1433 		bi->memlimit64 = pci_emul_membase64;
1434 	}
1435 
1436 	/*
1437 	 * PCI backends are initialized before routing INTx interrupts
1438 	 * so that LPC devices are able to reserve ISA IRQs before
1439 	 * routing PIRQ pins.
1440 	 */
1441 	for (bus = 0; bus < MAXBUSES; bus++) {
1442 		if ((bi = pci_businfo[bus]) == NULL)
1443 			continue;
1444 
1445 		for (slot = 0; slot < MAXSLOTS; slot++) {
1446 			si = &bi->slotinfo[slot];
1447 			for (func = 0; func < MAXFUNCS; func++) {
1448 				fi = &si->si_funcs[func];
1449 				if (fi->fi_devi == NULL)
1450 					continue;
1451 				pci_lintr_route(fi->fi_devi);
1452 			}
1453 		}
1454 	}
1455 	lpc_pirq_routed();
1456 
1457 	/*
1458 	 * The guest physical memory map looks like the following:
1459 	 * [0,		    lowmem)		guest system memory
1460 	 * [lowmem,	    0xC0000000)		memory hole (may be absent)
1461 	 * [0xC0000000,     0xE0000000)		PCI hole (32-bit BAR allocation)
1462 	 * [0xE0000000,	    0xF0000000)		PCI extended config window
1463 	 * [0xF0000000,	    4GB)		LAPIC, IOAPIC, HPET, firmware
1464 	 * [4GB,	    4GB + highmem)
1465 	 */
1466 
1467 	/*
1468 	 * Accesses to memory addresses that are not allocated to system
1469 	 * memory or PCI devices return 0xff's.
1470 	 */
1471 	lowmem = vm_get_lowmem_size(ctx);
1472 	bzero(&mr, sizeof(struct mem_range));
1473 	mr.name = "PCI hole";
1474 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1475 	mr.base = lowmem;
1476 	mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
1477 	mr.handler = pci_emul_fallback_handler;
1478 	error = register_mem_fallback(&mr);
1479 	assert(error == 0);
1480 
1481 	/* PCI extended config space */
1482 	bzero(&mr, sizeof(struct mem_range));
1483 	mr.name = "PCI ECFG";
1484 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1485 	mr.base = PCI_EMUL_ECFG_BASE;
1486 	mr.size = PCI_EMUL_ECFG_SIZE;
1487 	mr.handler = pci_emul_ecfg_handler;
1488 	error = register_mem(&mr);
1489 	assert(error == 0);
1490 
1491 	return (0);
1492 }
1493 
1494 static void
1495 pci_apic_prt_entry(int bus __unused, int slot, int pin, int pirq_pin __unused,
1496     int ioapic_irq, void *arg __unused)
1497 {
1498 
1499 	dsdt_line("  Package ()");
1500 	dsdt_line("  {");
1501 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1502 	dsdt_line("    0x%02X,", pin - 1);
1503 	dsdt_line("    Zero,");
1504 	dsdt_line("    0x%X", ioapic_irq);
1505 	dsdt_line("  },");
1506 }
1507 
1508 static void
1509 pci_pirq_prt_entry(int bus __unused, int slot, int pin, int pirq_pin,
1510     int ioapic_irq __unused, void *arg __unused)
1511 {
1512 	char *name;
1513 
1514 	name = lpc_pirq_name(pirq_pin);
1515 	if (name == NULL)
1516 		return;
1517 	dsdt_line("  Package ()");
1518 	dsdt_line("  {");
1519 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1520 	dsdt_line("    0x%02X,", pin - 1);
1521 	dsdt_line("    %s,", name);
1522 	dsdt_line("    0x00");
1523 	dsdt_line("  },");
1524 	free(name);
1525 }
1526 
1527 /*
1528  * A bhyve virtual machine has a flat PCI hierarchy with a root port
1529  * corresponding to each PCI bus.
1530  */
1531 static void
1532 pci_bus_write_dsdt(int bus)
1533 {
1534 	struct businfo *bi;
1535 	struct slotinfo *si;
1536 	struct pci_devinst *pi;
1537 	int count, func, slot;
1538 
1539 	/*
1540 	 * If there are no devices on this 'bus' then just return.
1541 	 */
1542 	if ((bi = pci_businfo[bus]) == NULL) {
1543 		/*
1544 		 * Bus 0 is special because it decodes the I/O ports used
1545 		 * for PCI config space access even if there are no devices
1546 		 * on it.
1547 		 */
1548 		if (bus != 0)
1549 			return;
1550 	}
1551 
1552 	dsdt_line("  Device (PC%02X)", bus);
1553 	dsdt_line("  {");
1554 	dsdt_line("    Name (_HID, EisaId (\"PNP0A03\"))");
1555 
1556 	dsdt_line("    Method (_BBN, 0, NotSerialized)");
1557 	dsdt_line("    {");
1558 	dsdt_line("        Return (0x%08X)", bus);
1559 	dsdt_line("    }");
1560 	dsdt_line("    Name (_CRS, ResourceTemplate ()");
1561 	dsdt_line("    {");
1562 	dsdt_line("      WordBusNumber (ResourceProducer, MinFixed, "
1563 	    "MaxFixed, PosDecode,");
1564 	dsdt_line("        0x0000,             // Granularity");
1565 	dsdt_line("        0x%04X,             // Range Minimum", bus);
1566 	dsdt_line("        0x%04X,             // Range Maximum", bus);
1567 	dsdt_line("        0x0000,             // Translation Offset");
1568 	dsdt_line("        0x0001,             // Length");
1569 	dsdt_line("        ,, )");
1570 
1571 	if (bus == 0) {
1572 		dsdt_indent(3);
1573 		dsdt_fixed_ioport(0xCF8, 8);
1574 		dsdt_unindent(3);
1575 
1576 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1577 		    "PosDecode, EntireRange,");
1578 		dsdt_line("        0x0000,             // Granularity");
1579 		dsdt_line("        0x0000,             // Range Minimum");
1580 		dsdt_line("        0x0CF7,             // Range Maximum");
1581 		dsdt_line("        0x0000,             // Translation Offset");
1582 		dsdt_line("        0x0CF8,             // Length");
1583 		dsdt_line("        ,, , TypeStatic)");
1584 
1585 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1586 		    "PosDecode, EntireRange,");
1587 		dsdt_line("        0x0000,             // Granularity");
1588 		dsdt_line("        0x0D00,             // Range Minimum");
1589 		dsdt_line("        0x%04X,             // Range Maximum",
1590 		    PCI_EMUL_IOBASE - 1);
1591 		dsdt_line("        0x0000,             // Translation Offset");
1592 		dsdt_line("        0x%04X,             // Length",
1593 		    PCI_EMUL_IOBASE - 0x0D00);
1594 		dsdt_line("        ,, , TypeStatic)");
1595 
1596 		if (bi == NULL) {
1597 			dsdt_line("    })");
1598 			goto done;
1599 		}
1600 	}
1601 	assert(bi != NULL);
1602 
1603 	/* i/o window */
1604 	dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1605 	    "PosDecode, EntireRange,");
1606 	dsdt_line("        0x0000,             // Granularity");
1607 	dsdt_line("        0x%04X,             // Range Minimum", bi->iobase);
1608 	dsdt_line("        0x%04X,             // Range Maximum",
1609 	    bi->iolimit - 1);
1610 	dsdt_line("        0x0000,             // Translation Offset");
1611 	dsdt_line("        0x%04X,             // Length",
1612 	    bi->iolimit - bi->iobase);
1613 	dsdt_line("        ,, , TypeStatic)");
1614 
1615 	/* mmio window (32-bit) */
1616 	dsdt_line("      DWordMemory (ResourceProducer, PosDecode, "
1617 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1618 	dsdt_line("        0x00000000,         // Granularity");
1619 	dsdt_line("        0x%08X,         // Range Minimum\n", bi->membase32);
1620 	dsdt_line("        0x%08X,         // Range Maximum\n",
1621 	    bi->memlimit32 - 1);
1622 	dsdt_line("        0x00000000,         // Translation Offset");
1623 	dsdt_line("        0x%08X,         // Length\n",
1624 	    bi->memlimit32 - bi->membase32);
1625 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1626 
1627 	/* mmio window (64-bit) */
1628 	dsdt_line("      QWordMemory (ResourceProducer, PosDecode, "
1629 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1630 	dsdt_line("        0x0000000000000000, // Granularity");
1631 	dsdt_line("        0x%016lX, // Range Minimum\n", bi->membase64);
1632 	dsdt_line("        0x%016lX, // Range Maximum\n",
1633 	    bi->memlimit64 - 1);
1634 	dsdt_line("        0x0000000000000000, // Translation Offset");
1635 	dsdt_line("        0x%016lX, // Length\n",
1636 	    bi->memlimit64 - bi->membase64);
1637 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1638 	dsdt_line("    })");
1639 
1640 	count = pci_count_lintr(bus);
1641 	if (count != 0) {
1642 		dsdt_indent(2);
1643 		dsdt_line("Name (PPRT, Package ()");
1644 		dsdt_line("{");
1645 		pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
1646 		dsdt_line("})");
1647 		dsdt_line("Name (APRT, Package ()");
1648 		dsdt_line("{");
1649 		pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
1650 		dsdt_line("})");
1651 		dsdt_line("Method (_PRT, 0, NotSerialized)");
1652 		dsdt_line("{");
1653 		dsdt_line("  If (PICM)");
1654 		dsdt_line("  {");
1655 		dsdt_line("    Return (APRT)");
1656 		dsdt_line("  }");
1657 		dsdt_line("  Else");
1658 		dsdt_line("  {");
1659 		dsdt_line("    Return (PPRT)");
1660 		dsdt_line("  }");
1661 		dsdt_line("}");
1662 		dsdt_unindent(2);
1663 	}
1664 
1665 	dsdt_indent(2);
1666 	for (slot = 0; slot < MAXSLOTS; slot++) {
1667 		si = &bi->slotinfo[slot];
1668 		for (func = 0; func < MAXFUNCS; func++) {
1669 			pi = si->si_funcs[func].fi_devi;
1670 			if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
1671 				pi->pi_d->pe_write_dsdt(pi);
1672 		}
1673 	}
1674 	dsdt_unindent(2);
1675 done:
1676 	dsdt_line("  }");
1677 }
1678 
1679 void
1680 pci_write_dsdt(void)
1681 {
1682 	int bus;
1683 
1684 	dsdt_indent(1);
1685 	dsdt_line("Name (PICM, 0x00)");
1686 	dsdt_line("Method (_PIC, 1, NotSerialized)");
1687 	dsdt_line("{");
1688 	dsdt_line("  Store (Arg0, PICM)");
1689 	dsdt_line("}");
1690 	dsdt_line("");
1691 	dsdt_line("Scope (_SB)");
1692 	dsdt_line("{");
1693 	for (bus = 0; bus < MAXBUSES; bus++)
1694 		pci_bus_write_dsdt(bus);
1695 	dsdt_line("}");
1696 	dsdt_unindent(1);
1697 }
1698 
1699 int
1700 pci_bus_configured(int bus)
1701 {
1702 	assert(bus >= 0 && bus < MAXBUSES);
1703 	return (pci_businfo[bus] != NULL);
1704 }
1705 
1706 int
1707 pci_msi_enabled(struct pci_devinst *pi)
1708 {
1709 	return (pi->pi_msi.enabled);
1710 }
1711 
1712 int
1713 pci_msi_maxmsgnum(struct pci_devinst *pi)
1714 {
1715 	if (pi->pi_msi.enabled)
1716 		return (pi->pi_msi.maxmsgnum);
1717 	else
1718 		return (0);
1719 }
1720 
1721 int
1722 pci_msix_enabled(struct pci_devinst *pi)
1723 {
1724 
1725 	return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
1726 }
1727 
1728 void
1729 pci_generate_msix(struct pci_devinst *pi, int index)
1730 {
1731 	struct msix_table_entry *mte;
1732 
1733 	if (!pci_msix_enabled(pi))
1734 		return;
1735 
1736 	if (pi->pi_msix.function_mask)
1737 		return;
1738 
1739 	if (index >= pi->pi_msix.table_count)
1740 		return;
1741 
1742 	mte = &pi->pi_msix.table[index];
1743 	if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
1744 		/* XXX Set PBA bit if interrupt is disabled */
1745 		vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data);
1746 	}
1747 }
1748 
1749 void
1750 pci_generate_msi(struct pci_devinst *pi, int index)
1751 {
1752 
1753 	if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
1754 		vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr,
1755 			     pi->pi_msi.msg_data + index);
1756 	}
1757 }
1758 
1759 static bool
1760 pci_lintr_permitted(struct pci_devinst *pi)
1761 {
1762 	uint16_t cmd;
1763 
1764 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
1765 	return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
1766 		(cmd & PCIM_CMD_INTxDIS)));
1767 }
1768 
1769 void
1770 pci_lintr_request(struct pci_devinst *pi)
1771 {
1772 	struct businfo *bi;
1773 	struct slotinfo *si;
1774 	int bestpin, bestcount, pin;
1775 
1776 	bi = pci_businfo[pi->pi_bus];
1777 	assert(bi != NULL);
1778 
1779 	/*
1780 	 * Just allocate a pin from our slot.  The pin will be
1781 	 * assigned IRQs later when interrupts are routed.
1782 	 */
1783 	si = &bi->slotinfo[pi->pi_slot];
1784 	bestpin = 0;
1785 	bestcount = si->si_intpins[0].ii_count;
1786 	for (pin = 1; pin < 4; pin++) {
1787 		if (si->si_intpins[pin].ii_count < bestcount) {
1788 			bestpin = pin;
1789 			bestcount = si->si_intpins[pin].ii_count;
1790 		}
1791 	}
1792 
1793 	si->si_intpins[bestpin].ii_count++;
1794 	pi->pi_lintr.pin = bestpin + 1;
1795 	pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
1796 }
1797 
1798 static void
1799 pci_lintr_route(struct pci_devinst *pi)
1800 {
1801 	struct businfo *bi;
1802 	struct intxinfo *ii;
1803 
1804 	if (pi->pi_lintr.pin == 0)
1805 		return;
1806 
1807 	bi = pci_businfo[pi->pi_bus];
1808 	assert(bi != NULL);
1809 	ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
1810 
1811 	/*
1812 	 * Attempt to allocate an I/O APIC pin for this intpin if one
1813 	 * is not yet assigned.
1814 	 */
1815 	if (ii->ii_ioapic_irq == 0)
1816 		ii->ii_ioapic_irq = ioapic_pci_alloc_irq(pi);
1817 	assert(ii->ii_ioapic_irq > 0);
1818 
1819 	/*
1820 	 * Attempt to allocate a PIRQ pin for this intpin if one is
1821 	 * not yet assigned.
1822 	 */
1823 	if (ii->ii_pirq_pin == 0)
1824 		ii->ii_pirq_pin = pirq_alloc_pin(pi);
1825 	assert(ii->ii_pirq_pin > 0);
1826 
1827 	pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq;
1828 	pi->pi_lintr.pirq_pin = ii->ii_pirq_pin;
1829 	pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin));
1830 }
1831 
1832 void
1833 pci_lintr_assert(struct pci_devinst *pi)
1834 {
1835 
1836 	assert(pi->pi_lintr.pin > 0);
1837 
1838 	pthread_mutex_lock(&pi->pi_lintr.lock);
1839 	if (pi->pi_lintr.state == IDLE) {
1840 		if (pci_lintr_permitted(pi)) {
1841 			pi->pi_lintr.state = ASSERTED;
1842 			pci_irq_assert(pi);
1843 		} else
1844 			pi->pi_lintr.state = PENDING;
1845 	}
1846 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1847 }
1848 
1849 void
1850 pci_lintr_deassert(struct pci_devinst *pi)
1851 {
1852 
1853 	assert(pi->pi_lintr.pin > 0);
1854 
1855 	pthread_mutex_lock(&pi->pi_lintr.lock);
1856 	if (pi->pi_lintr.state == ASSERTED) {
1857 		pi->pi_lintr.state = IDLE;
1858 		pci_irq_deassert(pi);
1859 	} else if (pi->pi_lintr.state == PENDING)
1860 		pi->pi_lintr.state = IDLE;
1861 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1862 }
1863 
1864 static void
1865 pci_lintr_update(struct pci_devinst *pi)
1866 {
1867 
1868 	pthread_mutex_lock(&pi->pi_lintr.lock);
1869 	if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
1870 		pci_irq_deassert(pi);
1871 		pi->pi_lintr.state = PENDING;
1872 	} else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
1873 		pi->pi_lintr.state = ASSERTED;
1874 		pci_irq_assert(pi);
1875 	}
1876 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1877 }
1878 
1879 int
1880 pci_count_lintr(int bus)
1881 {
1882 	int count, slot, pin;
1883 	struct slotinfo *slotinfo;
1884 
1885 	count = 0;
1886 	if (pci_businfo[bus] != NULL) {
1887 		for (slot = 0; slot < MAXSLOTS; slot++) {
1888 			slotinfo = &pci_businfo[bus]->slotinfo[slot];
1889 			for (pin = 0; pin < 4; pin++) {
1890 				if (slotinfo->si_intpins[pin].ii_count != 0)
1891 					count++;
1892 			}
1893 		}
1894 	}
1895 	return (count);
1896 }
1897 
1898 void
1899 pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
1900 {
1901 	struct businfo *bi;
1902 	struct slotinfo *si;
1903 	struct intxinfo *ii;
1904 	int slot, pin;
1905 
1906 	if ((bi = pci_businfo[bus]) == NULL)
1907 		return;
1908 
1909 	for (slot = 0; slot < MAXSLOTS; slot++) {
1910 		si = &bi->slotinfo[slot];
1911 		for (pin = 0; pin < 4; pin++) {
1912 			ii = &si->si_intpins[pin];
1913 			if (ii->ii_count != 0)
1914 				cb(bus, slot, pin + 1, ii->ii_pirq_pin,
1915 				    ii->ii_ioapic_irq, arg);
1916 		}
1917 	}
1918 }
1919 
1920 /*
1921  * Return 1 if the emulated device in 'slot' is a multi-function device.
1922  * Return 0 otherwise.
1923  */
1924 static int
1925 pci_emul_is_mfdev(int bus, int slot)
1926 {
1927 	struct businfo *bi;
1928 	struct slotinfo *si;
1929 	int f, numfuncs;
1930 
1931 	numfuncs = 0;
1932 	if ((bi = pci_businfo[bus]) != NULL) {
1933 		si = &bi->slotinfo[slot];
1934 		for (f = 0; f < MAXFUNCS; f++) {
1935 			if (si->si_funcs[f].fi_devi != NULL) {
1936 				numfuncs++;
1937 			}
1938 		}
1939 	}
1940 	return (numfuncs > 1);
1941 }
1942 
1943 /*
1944  * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
1945  * whether or not is a multi-function being emulated in the pci 'slot'.
1946  */
1947 static void
1948 pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
1949 {
1950 	int mfdev;
1951 
1952 	if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
1953 		mfdev = pci_emul_is_mfdev(bus, slot);
1954 		switch (bytes) {
1955 		case 1:
1956 		case 2:
1957 			*rv &= ~PCIM_MFDEV;
1958 			if (mfdev) {
1959 				*rv |= PCIM_MFDEV;
1960 			}
1961 			break;
1962 		case 4:
1963 			*rv &= ~(PCIM_MFDEV << 16);
1964 			if (mfdev) {
1965 				*rv |= (PCIM_MFDEV << 16);
1966 			}
1967 			break;
1968 		}
1969 	}
1970 }
1971 
1972 /*
1973  * Update device state in response to changes to the PCI command
1974  * register.
1975  */
1976 void
1977 pci_emul_cmd_changed(struct pci_devinst *pi, uint16_t old)
1978 {
1979 	int i;
1980 	uint16_t changed, new;
1981 
1982 	new = pci_get_cfgdata16(pi, PCIR_COMMAND);
1983 	changed = old ^ new;
1984 
1985 	/*
1986 	 * If the MMIO or I/O address space decoding has changed then
1987 	 * register/unregister all BARs that decode that address space.
1988 	 */
1989 	for (i = 0; i <= PCI_BARMAX_WITH_ROM; i++) {
1990 		switch (pi->pi_bar[i].type) {
1991 			case PCIBAR_NONE:
1992 			case PCIBAR_MEMHI64:
1993 				break;
1994 			case PCIBAR_IO:
1995 				/* I/O address space decoding changed? */
1996 				if (changed & PCIM_CMD_PORTEN) {
1997 					if (new & PCIM_CMD_PORTEN)
1998 						register_bar(pi, i);
1999 					else
2000 						unregister_bar(pi, i);
2001 				}
2002 				break;
2003 			case PCIBAR_ROM:
2004 				/* skip (un-)register of ROM if it disabled */
2005 				if (!romen(pi))
2006 					break;
2007 				/* fallthrough */
2008 			case PCIBAR_MEM32:
2009 			case PCIBAR_MEM64:
2010 				/* MMIO address space decoding changed? */
2011 				if (changed & PCIM_CMD_MEMEN) {
2012 					if (new & PCIM_CMD_MEMEN)
2013 						register_bar(pi, i);
2014 					else
2015 						unregister_bar(pi, i);
2016 				}
2017 				break;
2018 			default:
2019 				assert(0);
2020 		}
2021 	}
2022 
2023 	/*
2024 	 * If INTx has been unmasked and is pending, assert the
2025 	 * interrupt.
2026 	 */
2027 	pci_lintr_update(pi);
2028 }
2029 
2030 static void
2031 pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes)
2032 {
2033 	int rshift;
2034 	uint32_t cmd, old, readonly;
2035 
2036 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* stash old value */
2037 
2038 	/*
2039 	 * From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3.
2040 	 *
2041 	 * XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are
2042 	 * 'write 1 to clear'. However these bits are not set to '1' by
2043 	 * any device emulation so it is simpler to treat them as readonly.
2044 	 */
2045 	rshift = (coff & 0x3) * 8;
2046 	readonly = 0xFFFFF880 >> rshift;
2047 
2048 	old = CFGREAD(pi, coff, bytes);
2049 	new &= ~readonly;
2050 	new |= (old & readonly);
2051 	CFGWRITE(pi, coff, new, bytes);			/* update config */
2052 
2053 	pci_emul_cmd_changed(pi, cmd);
2054 }
2055 
2056 static void
2057 pci_cfgrw(int in, int bus, int slot, int func, int coff, int bytes,
2058     uint32_t *eax)
2059 {
2060 	struct businfo *bi;
2061 	struct slotinfo *si;
2062 	struct pci_devinst *pi;
2063 	struct pci_devemu *pe;
2064 	int idx, needcfg;
2065 	uint64_t addr, bar, mask;
2066 
2067 	if ((bi = pci_businfo[bus]) != NULL) {
2068 		si = &bi->slotinfo[slot];
2069 		pi = si->si_funcs[func].fi_devi;
2070 	} else
2071 		pi = NULL;
2072 
2073 	/*
2074 	 * Just return if there is no device at this slot:func or if the
2075 	 * the guest is doing an un-aligned access.
2076 	 */
2077 	if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
2078 	    (coff & (bytes - 1)) != 0) {
2079 		if (in)
2080 			*eax = 0xffffffff;
2081 		return;
2082 	}
2083 
2084 	/*
2085 	 * Ignore all writes beyond the standard config space and return all
2086 	 * ones on reads.
2087 	 */
2088 	if (coff >= PCI_REGMAX + 1) {
2089 		if (in) {
2090 			*eax = 0xffffffff;
2091 			/*
2092 			 * Extended capabilities begin at offset 256 in config
2093 			 * space. Absence of extended capabilities is signaled
2094 			 * with all 0s in the extended capability header at
2095 			 * offset 256.
2096 			 */
2097 			if (coff <= PCI_REGMAX + 4)
2098 				*eax = 0x00000000;
2099 		}
2100 		return;
2101 	}
2102 
2103 	pe = pi->pi_d;
2104 
2105 	/*
2106 	 * Config read
2107 	 */
2108 	if (in) {
2109 		/* Let the device emulation override the default handler */
2110 		if (pe->pe_cfgread != NULL) {
2111 			needcfg = pe->pe_cfgread(pi, coff, bytes, eax);
2112 		} else {
2113 			needcfg = 1;
2114 		}
2115 
2116 		if (needcfg)
2117 			*eax = CFGREAD(pi, coff, bytes);
2118 
2119 		pci_emul_hdrtype_fixup(bus, slot, coff, bytes, eax);
2120 	} else {
2121 		/* Let the device emulation override the default handler */
2122 		if (pe->pe_cfgwrite != NULL &&
2123 		    (*pe->pe_cfgwrite)(pi, coff, bytes, *eax) == 0)
2124 			return;
2125 
2126 		/*
2127 		 * Special handling for write to BAR and ROM registers
2128 		 */
2129 		if (is_pcir_bar(coff) || is_pcir_bios(coff)) {
2130 			/*
2131 			 * Ignore writes to BAR registers that are not
2132 			 * 4-byte aligned.
2133 			 */
2134 			if (bytes != 4 || (coff & 0x3) != 0)
2135 				return;
2136 
2137 			if (is_pcir_bar(coff)) {
2138 				idx = (coff - PCIR_BAR(0)) / 4;
2139 			} else if (is_pcir_bios(coff)) {
2140 				idx = PCI_ROM_IDX;
2141 			} else {
2142 				errx(4, "%s: invalid BAR offset %d", __func__,
2143 				    coff);
2144 			}
2145 
2146 			mask = ~(pi->pi_bar[idx].size - 1);
2147 			switch (pi->pi_bar[idx].type) {
2148 			case PCIBAR_NONE:
2149 				pi->pi_bar[idx].addr = bar = 0;
2150 				break;
2151 			case PCIBAR_IO:
2152 				addr = *eax & mask;
2153 				addr &= 0xffff;
2154 				bar = addr | pi->pi_bar[idx].lobits;
2155 				/*
2156 				 * Register the new BAR value for interception
2157 				 */
2158 				if (addr != pi->pi_bar[idx].addr) {
2159 					update_bar_address(pi, addr, idx,
2160 							   PCIBAR_IO);
2161 				}
2162 				break;
2163 			case PCIBAR_MEM32:
2164 				addr = bar = *eax & mask;
2165 				bar |= pi->pi_bar[idx].lobits;
2166 				if (addr != pi->pi_bar[idx].addr) {
2167 					update_bar_address(pi, addr, idx,
2168 							   PCIBAR_MEM32);
2169 				}
2170 				break;
2171 			case PCIBAR_MEM64:
2172 				addr = bar = *eax & mask;
2173 				bar |= pi->pi_bar[idx].lobits;
2174 				if (addr != (uint32_t)pi->pi_bar[idx].addr) {
2175 					update_bar_address(pi, addr, idx,
2176 							   PCIBAR_MEM64);
2177 				}
2178 				break;
2179 			case PCIBAR_MEMHI64:
2180 				mask = ~(pi->pi_bar[idx - 1].size - 1);
2181 				addr = ((uint64_t)*eax << 32) & mask;
2182 				bar = addr >> 32;
2183 				if (bar != pi->pi_bar[idx - 1].addr >> 32) {
2184 					update_bar_address(pi, addr, idx - 1,
2185 							   PCIBAR_MEMHI64);
2186 				}
2187 				break;
2188 			case PCIBAR_ROM:
2189 				addr = bar = *eax & mask;
2190 				if (memen(pi) && romen(pi)) {
2191 					unregister_bar(pi, idx);
2192 				}
2193 				pi->pi_bar[idx].addr = addr;
2194 				pi->pi_bar[idx].lobits = *eax &
2195 				    PCIM_BIOS_ENABLE;
2196 				/* romen could have changed it value */
2197 				if (memen(pi) && romen(pi)) {
2198 					register_bar(pi, idx);
2199 				}
2200 				bar |= pi->pi_bar[idx].lobits;
2201 				break;
2202 			default:
2203 				assert(0);
2204 			}
2205 			pci_set_cfgdata32(pi, coff, bar);
2206 
2207 		} else if (pci_emul_iscap(pi, coff)) {
2208 			pci_emul_capwrite(pi, coff, bytes, *eax, 0, 0);
2209 		} else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) {
2210 			pci_emul_cmdsts_write(pi, coff, *eax, bytes);
2211 		} else {
2212 			CFGWRITE(pi, coff, *eax, bytes);
2213 		}
2214 	}
2215 }
2216 
2217 static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
2218 
2219 static int
2220 pci_emul_cfgaddr(struct vmctx *ctx __unused, int in,
2221     int port __unused, int bytes, uint32_t *eax, void *arg __unused)
2222 {
2223 	uint32_t x;
2224 
2225 	if (bytes != 4) {
2226 		if (in)
2227 			*eax = (bytes == 2) ? 0xffff : 0xff;
2228 		return (0);
2229 	}
2230 
2231 	if (in) {
2232 		x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff;
2233 		if (cfgenable)
2234 			x |= CONF1_ENABLE;
2235 		*eax = x;
2236 	} else {
2237 		x = *eax;
2238 		cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
2239 		cfgoff = (x & PCI_REGMAX) & ~0x03;
2240 		cfgfunc = (x >> 8) & PCI_FUNCMAX;
2241 		cfgslot = (x >> 11) & PCI_SLOTMAX;
2242 		cfgbus = (x >> 16) & PCI_BUSMAX;
2243 	}
2244 
2245 	return (0);
2246 }
2247 INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
2248 
2249 static int
2250 pci_emul_cfgdata(struct vmctx *ctx __unused, int in, int port,
2251     int bytes, uint32_t *eax, void *arg __unused)
2252 {
2253 	int coff;
2254 
2255 	assert(bytes == 1 || bytes == 2 || bytes == 4);
2256 
2257 	coff = cfgoff + (port - CONF1_DATA_PORT);
2258 	if (cfgenable) {
2259 		pci_cfgrw(in, cfgbus, cfgslot, cfgfunc, coff, bytes, eax);
2260 	} else {
2261 		/* Ignore accesses to cfgdata if not enabled by cfgaddr */
2262 		if (in)
2263 			*eax = 0xffffffff;
2264 	}
2265 	return (0);
2266 }
2267 
2268 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
2269 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
2270 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
2271 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
2272 
2273 #ifdef BHYVE_SNAPSHOT
2274 /*
2275  * Saves/restores PCI device emulated state. Returns 0 on success.
2276  */
2277 static int
2278 pci_snapshot_pci_dev(struct vm_snapshot_meta *meta)
2279 {
2280 	struct pci_devinst *pi;
2281 	int i;
2282 	int ret;
2283 
2284 	pi = meta->dev_data;
2285 
2286 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.enabled, meta, ret, done);
2287 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.addr, meta, ret, done);
2288 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.msg_data, meta, ret, done);
2289 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.maxmsgnum, meta, ret, done);
2290 
2291 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.enabled, meta, ret, done);
2292 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_bar, meta, ret, done);
2293 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_bar, meta, ret, done);
2294 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_offset, meta, ret, done);
2295 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_count, meta, ret, done);
2296 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_offset, meta, ret, done);
2297 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_size, meta, ret, done);
2298 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.function_mask, meta, ret, done);
2299 
2300 	SNAPSHOT_BUF_OR_LEAVE(pi->pi_cfgdata, sizeof(pi->pi_cfgdata),
2301 			      meta, ret, done);
2302 
2303 	for (i = 0; i < (int)nitems(pi->pi_bar); i++) {
2304 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].type, meta, ret, done);
2305 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].size, meta, ret, done);
2306 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].addr, meta, ret, done);
2307 	}
2308 
2309 	/* Restore MSI-X table. */
2310 	for (i = 0; i < pi->pi_msix.table_count; i++) {
2311 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].addr,
2312 				      meta, ret, done);
2313 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].msg_data,
2314 				      meta, ret, done);
2315 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].vector_control,
2316 				      meta, ret, done);
2317 	}
2318 
2319 done:
2320 	return (ret);
2321 }
2322 
2323 static int
2324 pci_find_slotted_dev(const char *dev_name, struct pci_devemu **pde,
2325 		     struct pci_devinst **pdi)
2326 {
2327 	struct businfo *bi;
2328 	struct slotinfo *si;
2329 	struct funcinfo *fi;
2330 	int bus, slot, func;
2331 
2332 	assert(dev_name != NULL);
2333 	assert(pde != NULL);
2334 	assert(pdi != NULL);
2335 
2336 	for (bus = 0; bus < MAXBUSES; bus++) {
2337 		if ((bi = pci_businfo[bus]) == NULL)
2338 			continue;
2339 
2340 		for (slot = 0; slot < MAXSLOTS; slot++) {
2341 			si = &bi->slotinfo[slot];
2342 			for (func = 0; func < MAXFUNCS; func++) {
2343 				fi = &si->si_funcs[func];
2344 				if (fi->fi_pde == NULL)
2345 					continue;
2346 				if (strcmp(dev_name, fi->fi_pde->pe_emu) != 0)
2347 					continue;
2348 
2349 				*pde = fi->fi_pde;
2350 				*pdi = fi->fi_devi;
2351 				return (0);
2352 			}
2353 		}
2354 	}
2355 
2356 	return (EINVAL);
2357 }
2358 
2359 int
2360 pci_snapshot(struct vm_snapshot_meta *meta)
2361 {
2362 	struct pci_devemu *pde;
2363 	struct pci_devinst *pdi;
2364 	int ret;
2365 
2366 	assert(meta->dev_name != NULL);
2367 
2368 	ret = pci_find_slotted_dev(meta->dev_name, &pde, &pdi);
2369 	if (ret != 0) {
2370 		fprintf(stderr, "%s: no such name: %s\r\n",
2371 			__func__, meta->dev_name);
2372 		memset(meta->buffer.buf_start, 0, meta->buffer.buf_size);
2373 		return (0);
2374 	}
2375 
2376 	meta->dev_data = pdi;
2377 
2378 	if (pde->pe_snapshot == NULL) {
2379 		fprintf(stderr, "%s: not implemented yet for: %s\r\n",
2380 			__func__, meta->dev_name);
2381 		return (-1);
2382 	}
2383 
2384 	ret = pci_snapshot_pci_dev(meta);
2385 	if (ret != 0) {
2386 		fprintf(stderr, "%s: failed to snapshot pci dev\r\n",
2387 			__func__);
2388 		return (-1);
2389 	}
2390 
2391 	ret = (*pde->pe_snapshot)(meta);
2392 
2393 	return (ret);
2394 }
2395 
2396 int
2397 pci_pause(const char *dev_name)
2398 {
2399 	struct pci_devemu *pde;
2400 	struct pci_devinst *pdi;
2401 	int ret;
2402 
2403 	assert(dev_name != NULL);
2404 
2405 	ret = pci_find_slotted_dev(dev_name, &pde, &pdi);
2406 	if (ret != 0) {
2407 		/*
2408 		 * It is possible to call this function without
2409 		 * checking that the device is inserted first.
2410 		 */
2411 		fprintf(stderr, "%s: no such name: %s\n", __func__, dev_name);
2412 		return (0);
2413 	}
2414 
2415 	if (pde->pe_pause == NULL) {
2416 		/* The pause/resume functionality is optional. */
2417 		fprintf(stderr, "%s: not implemented for: %s\n",
2418 			__func__, dev_name);
2419 		return (0);
2420 	}
2421 
2422 	return (*pde->pe_pause)(pdi);
2423 }
2424 
2425 int
2426 pci_resume(const char *dev_name)
2427 {
2428 	struct pci_devemu *pde;
2429 	struct pci_devinst *pdi;
2430 	int ret;
2431 
2432 	assert(dev_name != NULL);
2433 
2434 	ret = pci_find_slotted_dev(dev_name, &pde, &pdi);
2435 	if (ret != 0) {
2436 		/*
2437 		 * It is possible to call this function without
2438 		 * checking that the device is inserted first.
2439 		 */
2440 		fprintf(stderr, "%s: no such name: %s\n", __func__, dev_name);
2441 		return (0);
2442 	}
2443 
2444 	if (pde->pe_resume == NULL) {
2445 		/* The pause/resume functionality is optional. */
2446 		fprintf(stderr, "%s: not implemented for: %s\n",
2447 			__func__, dev_name);
2448 		return (0);
2449 	}
2450 
2451 	return (*pde->pe_resume)(pdi);
2452 }
2453 #endif
2454 
2455 #define PCI_EMUL_TEST
2456 #ifdef PCI_EMUL_TEST
2457 /*
2458  * Define a dummy test device
2459  */
2460 #define DIOSZ	8
2461 #define DMEMSZ	4096
2462 struct pci_emul_dsoftc {
2463 	uint8_t   ioregs[DIOSZ];
2464 	uint8_t	  memregs[2][DMEMSZ];
2465 };
2466 
2467 #define	PCI_EMUL_MSI_MSGS	 4
2468 #define	PCI_EMUL_MSIX_MSGS	16
2469 
2470 static int
2471 pci_emul_dinit(struct pci_devinst *pi, nvlist_t *nvl __unused)
2472 {
2473 	int error;
2474 	struct pci_emul_dsoftc *sc;
2475 
2476 	sc = calloc(1, sizeof(struct pci_emul_dsoftc));
2477 
2478 	pi->pi_arg = sc;
2479 
2480 	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
2481 	pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
2482 	pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
2483 
2484 	error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
2485 	assert(error == 0);
2486 
2487 	error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
2488 	assert(error == 0);
2489 
2490 	error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
2491 	assert(error == 0);
2492 
2493 	error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ);
2494 	assert(error == 0);
2495 
2496 	return (0);
2497 }
2498 
2499 static void
2500 pci_emul_diow(struct pci_devinst *pi, int baridx, uint64_t offset, int size,
2501     uint64_t value)
2502 {
2503 	int i;
2504 	struct pci_emul_dsoftc *sc = pi->pi_arg;
2505 
2506 	if (baridx == 0) {
2507 		if (offset + size > DIOSZ) {
2508 			printf("diow: iow too large, offset %ld size %d\n",
2509 			       offset, size);
2510 			return;
2511 		}
2512 
2513 		if (size == 1) {
2514 			sc->ioregs[offset] = value & 0xff;
2515 		} else if (size == 2) {
2516 			*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
2517 		} else if (size == 4) {
2518 			*(uint32_t *)&sc->ioregs[offset] = value;
2519 		} else {
2520 			printf("diow: iow unknown size %d\n", size);
2521 		}
2522 
2523 		/*
2524 		 * Special magic value to generate an interrupt
2525 		 */
2526 		if (offset == 4 && size == 4 && pci_msi_enabled(pi))
2527 			pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
2528 
2529 		if (value == 0xabcdef) {
2530 			for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
2531 				pci_generate_msi(pi, i);
2532 		}
2533 	}
2534 
2535 	if (baridx == 1 || baridx == 2) {
2536 		if (offset + size > DMEMSZ) {
2537 			printf("diow: memw too large, offset %ld size %d\n",
2538 			       offset, size);
2539 			return;
2540 		}
2541 
2542 		i = baridx - 1;		/* 'memregs' index */
2543 
2544 		if (size == 1) {
2545 			sc->memregs[i][offset] = value;
2546 		} else if (size == 2) {
2547 			*(uint16_t *)&sc->memregs[i][offset] = value;
2548 		} else if (size == 4) {
2549 			*(uint32_t *)&sc->memregs[i][offset] = value;
2550 		} else if (size == 8) {
2551 			*(uint64_t *)&sc->memregs[i][offset] = value;
2552 		} else {
2553 			printf("diow: memw unknown size %d\n", size);
2554 		}
2555 
2556 		/*
2557 		 * magic interrupt ??
2558 		 */
2559 	}
2560 
2561 	if (baridx > 2 || baridx < 0) {
2562 		printf("diow: unknown bar idx %d\n", baridx);
2563 	}
2564 }
2565 
2566 static uint64_t
2567 pci_emul_dior(struct pci_devinst *pi, int baridx, uint64_t offset, int size)
2568 {
2569 	struct pci_emul_dsoftc *sc = pi->pi_arg;
2570 	uint32_t value;
2571 	int i;
2572 
2573 	if (baridx == 0) {
2574 		if (offset + size > DIOSZ) {
2575 			printf("dior: ior too large, offset %ld size %d\n",
2576 			       offset, size);
2577 			return (0);
2578 		}
2579 
2580 		value = 0;
2581 		if (size == 1) {
2582 			value = sc->ioregs[offset];
2583 		} else if (size == 2) {
2584 			value = *(uint16_t *) &sc->ioregs[offset];
2585 		} else if (size == 4) {
2586 			value = *(uint32_t *) &sc->ioregs[offset];
2587 		} else {
2588 			printf("dior: ior unknown size %d\n", size);
2589 		}
2590 	}
2591 
2592 	if (baridx == 1 || baridx == 2) {
2593 		if (offset + size > DMEMSZ) {
2594 			printf("dior: memr too large, offset %ld size %d\n",
2595 			       offset, size);
2596 			return (0);
2597 		}
2598 
2599 		i = baridx - 1;		/* 'memregs' index */
2600 
2601 		if (size == 1) {
2602 			value = sc->memregs[i][offset];
2603 		} else if (size == 2) {
2604 			value = *(uint16_t *) &sc->memregs[i][offset];
2605 		} else if (size == 4) {
2606 			value = *(uint32_t *) &sc->memregs[i][offset];
2607 		} else if (size == 8) {
2608 			value = *(uint64_t *) &sc->memregs[i][offset];
2609 		} else {
2610 			printf("dior: ior unknown size %d\n", size);
2611 		}
2612 	}
2613 
2614 
2615 	if (baridx > 2 || baridx < 0) {
2616 		printf("dior: unknown bar idx %d\n", baridx);
2617 		return (0);
2618 	}
2619 
2620 	return (value);
2621 }
2622 
2623 #ifdef BHYVE_SNAPSHOT
2624 static int
2625 pci_emul_snapshot(struct vm_snapshot_meta *meta __unused)
2626 {
2627 	return (0);
2628 }
2629 #endif
2630 
2631 static const struct pci_devemu pci_dummy = {
2632 	.pe_emu = "dummy",
2633 	.pe_init = pci_emul_dinit,
2634 	.pe_barwrite = pci_emul_diow,
2635 	.pe_barread = pci_emul_dior,
2636 #ifdef BHYVE_SNAPSHOT
2637 	.pe_snapshot = pci_emul_snapshot,
2638 #endif
2639 };
2640 PCI_EMUL_SET(pci_dummy);
2641 
2642 #endif /* PCI_EMUL_TEST */
2643