xref: /freebsd/usr.sbin/bhyve/pci_emul.c (revision 3a92d97ff0f22d21608e1c19b83104c4937523b6)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/linker_set.h>
34 #include <sys/errno.h>
35 
36 #include <ctype.h>
37 #include <pthread.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <strings.h>
42 #include <assert.h>
43 #include <stdbool.h>
44 
45 #include <machine/vmm.h>
46 #include <vmmapi.h>
47 
48 #include "acpi.h"
49 #include "bhyverun.h"
50 #include "inout.h"
51 #include "ioapic.h"
52 #include "mem.h"
53 #include "pci_emul.h"
54 #include "pci_lpc.h"
55 
56 #define CONF1_ADDR_PORT    0x0cf8
57 #define CONF1_DATA_PORT    0x0cfc
58 
59 #define CONF1_ENABLE	   0x80000000ul
60 
61 #define	CFGWRITE(pi,off,val,b)						\
62 do {									\
63 	if ((b) == 1) {							\
64 		pci_set_cfgdata8((pi),(off),(val));			\
65 	} else if ((b) == 2) {						\
66 		pci_set_cfgdata16((pi),(off),(val));			\
67 	} else {							\
68 		pci_set_cfgdata32((pi),(off),(val));			\
69 	}								\
70 } while (0)
71 
72 #define	MAXBUSES	(PCI_BUSMAX + 1)
73 #define MAXSLOTS	(PCI_SLOTMAX + 1)
74 #define	MAXFUNCS	(PCI_FUNCMAX + 1)
75 
76 struct funcinfo {
77 	char	*fi_name;
78 	char	*fi_param;
79 	struct pci_devinst *fi_devi;
80 };
81 
82 struct intxinfo {
83 	int	ii_count;
84 	int	ii_ioapic_irq;
85 };
86 
87 struct slotinfo {
88 	struct intxinfo si_intpins[4];
89 	struct funcinfo si_funcs[MAXFUNCS];
90 };
91 
92 struct businfo {
93 	uint16_t iobase, iolimit;		/* I/O window */
94 	uint32_t membase32, memlimit32;		/* mmio window below 4GB */
95 	uint64_t membase64, memlimit64;		/* mmio window above 4GB */
96 	struct slotinfo slotinfo[MAXSLOTS];
97 };
98 
99 static struct businfo *pci_businfo[MAXBUSES];
100 
101 SET_DECLARE(pci_devemu_set, struct pci_devemu);
102 
103 static uint64_t pci_emul_iobase;
104 static uint64_t pci_emul_membase32;
105 static uint64_t pci_emul_membase64;
106 
107 #define	PCI_EMUL_IOBASE		0x2000
108 #define	PCI_EMUL_IOLIMIT	0x10000
109 
110 #define	PCI_EMUL_MEMLIMIT32	0xE0000000	/* 3.5GB */
111 
112 #define	PCI_EMUL_MEMBASE64	0xD000000000UL
113 #define	PCI_EMUL_MEMLIMIT64	0xFD00000000UL
114 
115 static struct pci_devemu *pci_emul_finddev(char *name);
116 static void	pci_lintr_update(struct pci_devinst *pi);
117 
118 static struct mem_range pci_mem_hole;
119 
120 /*
121  * I/O access
122  */
123 
124 /*
125  * Slot options are in the form:
126  *
127  *  <bus>:<slot>:<func>,<emul>[,<config>]
128  *  <slot>[:<func>],<emul>[,<config>]
129  *
130  *  slot is 0..31
131  *  func is 0..7
132  *  emul is a string describing the type of PCI device e.g. virtio-net
133  *  config is an optional string, depending on the device, that can be
134  *  used for configuration.
135  *   Examples are:
136  *     1,virtio-net,tap0
137  *     3:0,dummy
138  */
139 static void
140 pci_parse_slot_usage(char *aopt)
141 {
142 
143 	fprintf(stderr, "Invalid PCI slot info field \"%s\"\n", aopt);
144 }
145 
146 int
147 pci_parse_slot(char *opt)
148 {
149 	struct businfo *bi;
150 	struct slotinfo *si;
151 	char *emul, *config, *str, *cp;
152 	int error, bnum, snum, fnum;
153 
154 	error = -1;
155 	str = strdup(opt);
156 
157 	emul = config = NULL;
158 	if ((cp = strchr(str, ',')) != NULL) {
159 		*cp = '\0';
160 		emul = cp + 1;
161 		if ((cp = strchr(emul, ',')) != NULL) {
162 			*cp = '\0';
163 			config = cp + 1;
164 		}
165 	} else {
166 		pci_parse_slot_usage(opt);
167 		goto done;
168 	}
169 
170 	/* <bus>:<slot>:<func> */
171 	if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
172 		bnum = 0;
173 		/* <slot>:<func> */
174 		if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
175 			fnum = 0;
176 			/* <slot> */
177 			if (sscanf(str, "%d", &snum) != 1) {
178 				snum = -1;
179 			}
180 		}
181 	}
182 
183 	if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
184 	    fnum < 0 || fnum >= MAXFUNCS) {
185 		pci_parse_slot_usage(opt);
186 		goto done;
187 	}
188 
189 	if (pci_businfo[bnum] == NULL)
190 		pci_businfo[bnum] = calloc(1, sizeof(struct businfo));
191 
192 	bi = pci_businfo[bnum];
193 	si = &bi->slotinfo[snum];
194 
195 	if (si->si_funcs[fnum].fi_name != NULL) {
196 		fprintf(stderr, "pci slot %d:%d already occupied!\n",
197 			snum, fnum);
198 		goto done;
199 	}
200 
201 	if (pci_emul_finddev(emul) == NULL) {
202 		fprintf(stderr, "pci slot %d:%d: unknown device \"%s\"\n",
203 			snum, fnum, emul);
204 		goto done;
205 	}
206 
207 	error = 0;
208 	si->si_funcs[fnum].fi_name = emul;
209 	si->si_funcs[fnum].fi_param = config;
210 
211 done:
212 	if (error)
213 		free(str);
214 
215 	return (error);
216 }
217 
218 static int
219 pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
220 {
221 
222 	if (offset < pi->pi_msix.pba_offset)
223 		return (0);
224 
225 	if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
226 		return (0);
227 	}
228 
229 	return (1);
230 }
231 
232 int
233 pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
234 		     uint64_t value)
235 {
236 	int msix_entry_offset;
237 	int tab_index;
238 	char *dest;
239 
240 	/* support only 4 or 8 byte writes */
241 	if (size != 4 && size != 8)
242 		return (-1);
243 
244 	/*
245 	 * Return if table index is beyond what device supports
246 	 */
247 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
248 	if (tab_index >= pi->pi_msix.table_count)
249 		return (-1);
250 
251 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
252 
253 	/* support only aligned writes */
254 	if ((msix_entry_offset % size) != 0)
255 		return (-1);
256 
257 	dest = (char *)(pi->pi_msix.table + tab_index);
258 	dest += msix_entry_offset;
259 
260 	if (size == 4)
261 		*((uint32_t *)dest) = value;
262 	else
263 		*((uint64_t *)dest) = value;
264 
265 	return (0);
266 }
267 
268 uint64_t
269 pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
270 {
271 	char *dest;
272 	int msix_entry_offset;
273 	int tab_index;
274 	uint64_t retval = ~0;
275 
276 	/*
277 	 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X
278 	 * table but we also allow 1 byte access to accomodate reads from
279 	 * ddb.
280 	 */
281 	if (size != 1 && size != 4 && size != 8)
282 		return (retval);
283 
284 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
285 
286 	/* support only aligned reads */
287 	if ((msix_entry_offset % size) != 0) {
288 		return (retval);
289 	}
290 
291 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
292 
293 	if (tab_index < pi->pi_msix.table_count) {
294 		/* valid MSI-X Table access */
295 		dest = (char *)(pi->pi_msix.table + tab_index);
296 		dest += msix_entry_offset;
297 
298 		if (size == 1)
299 			retval = *((uint8_t *)dest);
300 		else if (size == 4)
301 			retval = *((uint32_t *)dest);
302 		else
303 			retval = *((uint64_t *)dest);
304 	} else if (pci_valid_pba_offset(pi, offset)) {
305 		/* return 0 for PBA access */
306 		retval = 0;
307 	}
308 
309 	return (retval);
310 }
311 
312 int
313 pci_msix_table_bar(struct pci_devinst *pi)
314 {
315 
316 	if (pi->pi_msix.table != NULL)
317 		return (pi->pi_msix.table_bar);
318 	else
319 		return (-1);
320 }
321 
322 int
323 pci_msix_pba_bar(struct pci_devinst *pi)
324 {
325 
326 	if (pi->pi_msix.table != NULL)
327 		return (pi->pi_msix.pba_bar);
328 	else
329 		return (-1);
330 }
331 
332 static int
333 pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
334 		    uint32_t *eax, void *arg)
335 {
336 	struct pci_devinst *pdi = arg;
337 	struct pci_devemu *pe = pdi->pi_d;
338 	uint64_t offset;
339 	int i;
340 
341 	for (i = 0; i <= PCI_BARMAX; i++) {
342 		if (pdi->pi_bar[i].type == PCIBAR_IO &&
343 		    port >= pdi->pi_bar[i].addr &&
344 		    port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
345 			offset = port - pdi->pi_bar[i].addr;
346 			if (in)
347 				*eax = (*pe->pe_barread)(ctx, vcpu, pdi, i,
348 							 offset, bytes);
349 			else
350 				(*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset,
351 						   bytes, *eax);
352 			return (0);
353 		}
354 	}
355 	return (-1);
356 }
357 
358 static int
359 pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
360 		     int size, uint64_t *val, void *arg1, long arg2)
361 {
362 	struct pci_devinst *pdi = arg1;
363 	struct pci_devemu *pe = pdi->pi_d;
364 	uint64_t offset;
365 	int bidx = (int) arg2;
366 
367 	assert(bidx <= PCI_BARMAX);
368 	assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
369 	       pdi->pi_bar[bidx].type == PCIBAR_MEM64);
370 	assert(addr >= pdi->pi_bar[bidx].addr &&
371 	       addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
372 
373 	offset = addr - pdi->pi_bar[bidx].addr;
374 
375 	if (dir == MEM_F_WRITE)
376 		(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset, size, *val);
377 	else
378 		*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx, offset, size);
379 
380 	return (0);
381 }
382 
383 
384 static int
385 pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
386 			uint64_t *addr)
387 {
388 	uint64_t base;
389 
390 	assert((size & (size - 1)) == 0);	/* must be a power of 2 */
391 
392 	base = roundup2(*baseptr, size);
393 
394 	if (base + size <= limit) {
395 		*addr = base;
396 		*baseptr = base + size;
397 		return (0);
398 	} else
399 		return (-1);
400 }
401 
402 int
403 pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
404 		   uint64_t size)
405 {
406 
407 	return (pci_emul_alloc_pbar(pdi, idx, 0, type, size));
408 }
409 
410 /*
411  * Register (or unregister) the MMIO or I/O region associated with the BAR
412  * register 'idx' of an emulated pci device.
413  */
414 static void
415 modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
416 {
417 	int error;
418 	struct inout_port iop;
419 	struct mem_range mr;
420 
421 	switch (pi->pi_bar[idx].type) {
422 	case PCIBAR_IO:
423 		bzero(&iop, sizeof(struct inout_port));
424 		iop.name = pi->pi_name;
425 		iop.port = pi->pi_bar[idx].addr;
426 		iop.size = pi->pi_bar[idx].size;
427 		if (registration) {
428 			iop.flags = IOPORT_F_INOUT;
429 			iop.handler = pci_emul_io_handler;
430 			iop.arg = pi;
431 			error = register_inout(&iop);
432 		} else
433 			error = unregister_inout(&iop);
434 		break;
435 	case PCIBAR_MEM32:
436 	case PCIBAR_MEM64:
437 		bzero(&mr, sizeof(struct mem_range));
438 		mr.name = pi->pi_name;
439 		mr.base = pi->pi_bar[idx].addr;
440 		mr.size = pi->pi_bar[idx].size;
441 		if (registration) {
442 			mr.flags = MEM_F_RW;
443 			mr.handler = pci_emul_mem_handler;
444 			mr.arg1 = pi;
445 			mr.arg2 = idx;
446 			error = register_mem(&mr);
447 		} else
448 			error = unregister_mem(&mr);
449 		break;
450 	default:
451 		error = EINVAL;
452 		break;
453 	}
454 	assert(error == 0);
455 }
456 
457 static void
458 unregister_bar(struct pci_devinst *pi, int idx)
459 {
460 
461 	modify_bar_registration(pi, idx, 0);
462 }
463 
464 static void
465 register_bar(struct pci_devinst *pi, int idx)
466 {
467 
468 	modify_bar_registration(pi, idx, 1);
469 }
470 
471 /* Are we decoding i/o port accesses for the emulated pci device? */
472 static int
473 porten(struct pci_devinst *pi)
474 {
475 	uint16_t cmd;
476 
477 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
478 
479 	return (cmd & PCIM_CMD_PORTEN);
480 }
481 
482 /* Are we decoding memory accesses for the emulated pci device? */
483 static int
484 memen(struct pci_devinst *pi)
485 {
486 	uint16_t cmd;
487 
488 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
489 
490 	return (cmd & PCIM_CMD_MEMEN);
491 }
492 
493 /*
494  * Update the MMIO or I/O address that is decoded by the BAR register.
495  *
496  * If the pci device has enabled the address space decoding then intercept
497  * the address range decoded by the BAR register.
498  */
499 static void
500 update_bar_address(struct  pci_devinst *pi, uint64_t addr, int idx, int type)
501 {
502 	int decode;
503 
504 	if (pi->pi_bar[idx].type == PCIBAR_IO)
505 		decode = porten(pi);
506 	else
507 		decode = memen(pi);
508 
509 	if (decode)
510 		unregister_bar(pi, idx);
511 
512 	switch (type) {
513 	case PCIBAR_IO:
514 	case PCIBAR_MEM32:
515 		pi->pi_bar[idx].addr = addr;
516 		break;
517 	case PCIBAR_MEM64:
518 		pi->pi_bar[idx].addr &= ~0xffffffffUL;
519 		pi->pi_bar[idx].addr |= addr;
520 		break;
521 	case PCIBAR_MEMHI64:
522 		pi->pi_bar[idx].addr &= 0xffffffff;
523 		pi->pi_bar[idx].addr |= addr;
524 		break;
525 	default:
526 		assert(0);
527 	}
528 
529 	if (decode)
530 		register_bar(pi, idx);
531 }
532 
533 int
534 pci_emul_alloc_pbar(struct pci_devinst *pdi, int idx, uint64_t hostbase,
535 		    enum pcibar_type type, uint64_t size)
536 {
537 	int error;
538 	uint64_t *baseptr, limit, addr, mask, lobits, bar;
539 
540 	assert(idx >= 0 && idx <= PCI_BARMAX);
541 
542 	if ((size & (size - 1)) != 0)
543 		size = 1UL << flsl(size);	/* round up to a power of 2 */
544 
545 	/* Enforce minimum BAR sizes required by the PCI standard */
546 	if (type == PCIBAR_IO) {
547 		if (size < 4)
548 			size = 4;
549 	} else {
550 		if (size < 16)
551 			size = 16;
552 	}
553 
554 	switch (type) {
555 	case PCIBAR_NONE:
556 		baseptr = NULL;
557 		addr = mask = lobits = 0;
558 		break;
559 	case PCIBAR_IO:
560 		baseptr = &pci_emul_iobase;
561 		limit = PCI_EMUL_IOLIMIT;
562 		mask = PCIM_BAR_IO_BASE;
563 		lobits = PCIM_BAR_IO_SPACE;
564 		break;
565 	case PCIBAR_MEM64:
566 		/*
567 		 * XXX
568 		 * Some drivers do not work well if the 64-bit BAR is allocated
569 		 * above 4GB. Allow for this by allocating small requests under
570 		 * 4GB unless then allocation size is larger than some arbitrary
571 		 * number (32MB currently).
572 		 */
573 		if (size > 32 * 1024 * 1024) {
574 			/*
575 			 * XXX special case for device requiring peer-peer DMA
576 			 */
577 			if (size == 0x100000000UL)
578 				baseptr = &hostbase;
579 			else
580 				baseptr = &pci_emul_membase64;
581 			limit = PCI_EMUL_MEMLIMIT64;
582 			mask = PCIM_BAR_MEM_BASE;
583 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
584 				 PCIM_BAR_MEM_PREFETCH;
585 			break;
586 		} else {
587 			baseptr = &pci_emul_membase32;
588 			limit = PCI_EMUL_MEMLIMIT32;
589 			mask = PCIM_BAR_MEM_BASE;
590 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
591 		}
592 		break;
593 	case PCIBAR_MEM32:
594 		baseptr = &pci_emul_membase32;
595 		limit = PCI_EMUL_MEMLIMIT32;
596 		mask = PCIM_BAR_MEM_BASE;
597 		lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
598 		break;
599 	default:
600 		printf("pci_emul_alloc_base: invalid bar type %d\n", type);
601 		assert(0);
602 	}
603 
604 	if (baseptr != NULL) {
605 		error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
606 		if (error != 0)
607 			return (error);
608 	}
609 
610 	pdi->pi_bar[idx].type = type;
611 	pdi->pi_bar[idx].addr = addr;
612 	pdi->pi_bar[idx].size = size;
613 
614 	/* Initialize the BAR register in config space */
615 	bar = (addr & mask) | lobits;
616 	pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
617 
618 	if (type == PCIBAR_MEM64) {
619 		assert(idx + 1 <= PCI_BARMAX);
620 		pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
621 		pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
622 	}
623 
624 	register_bar(pdi, idx);
625 
626 	return (0);
627 }
628 
629 #define	CAP_START_OFFSET	0x40
630 static int
631 pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
632 {
633 	int i, capoff, reallen;
634 	uint16_t sts;
635 
636 	assert(caplen > 0);
637 
638 	reallen = roundup2(caplen, 4);		/* dword aligned */
639 
640 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
641 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
642 		capoff = CAP_START_OFFSET;
643 	else
644 		capoff = pi->pi_capend + 1;
645 
646 	/* Check if we have enough space */
647 	if (capoff + reallen > PCI_REGMAX + 1)
648 		return (-1);
649 
650 	/* Set the previous capability pointer */
651 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
652 		pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
653 		pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
654 	} else
655 		pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
656 
657 	/* Copy the capability */
658 	for (i = 0; i < caplen; i++)
659 		pci_set_cfgdata8(pi, capoff + i, capdata[i]);
660 
661 	/* Set the next capability pointer */
662 	pci_set_cfgdata8(pi, capoff + 1, 0);
663 
664 	pi->pi_prevcap = capoff;
665 	pi->pi_capend = capoff + reallen - 1;
666 	return (0);
667 }
668 
669 static struct pci_devemu *
670 pci_emul_finddev(char *name)
671 {
672 	struct pci_devemu **pdpp, *pdp;
673 
674 	SET_FOREACH(pdpp, pci_devemu_set) {
675 		pdp = *pdpp;
676 		if (!strcmp(pdp->pe_emu, name)) {
677 			return (pdp);
678 		}
679 	}
680 
681 	return (NULL);
682 }
683 
684 static int
685 pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
686     int func, struct funcinfo *fi)
687 {
688 	struct pci_devinst *pdi;
689 	int err;
690 
691 	pdi = malloc(sizeof(struct pci_devinst));
692 	bzero(pdi, sizeof(*pdi));
693 
694 	pdi->pi_vmctx = ctx;
695 	pdi->pi_bus = bus;
696 	pdi->pi_slot = slot;
697 	pdi->pi_func = func;
698 	pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
699 	pdi->pi_lintr.pin = 0;
700 	pdi->pi_lintr.state = IDLE;
701 	pdi->pi_lintr.ioapic_irq = 0;
702 	pdi->pi_d = pde;
703 	snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot);
704 
705 	/* Disable legacy interrupts */
706 	pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
707 	pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
708 
709 	pci_set_cfgdata8(pdi, PCIR_COMMAND,
710 		    PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
711 
712 	err = (*pde->pe_init)(ctx, pdi, fi->fi_param);
713 	if (err == 0)
714 		fi->fi_devi = pdi;
715 	else
716 		free(pdi);
717 
718 	return (err);
719 }
720 
721 void
722 pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
723 {
724 	int mmc;
725 
726 	CTASSERT(sizeof(struct msicap) == 14);
727 
728 	/* Number of msi messages must be a power of 2 between 1 and 32 */
729 	assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
730 	mmc = ffs(msgnum) - 1;
731 
732 	bzero(msicap, sizeof(struct msicap));
733 	msicap->capid = PCIY_MSI;
734 	msicap->nextptr = nextptr;
735 	msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
736 }
737 
738 int
739 pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
740 {
741 	struct msicap msicap;
742 
743 	pci_populate_msicap(&msicap, msgnum, 0);
744 
745 	return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
746 }
747 
748 static void
749 pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
750 		     uint32_t msix_tab_size)
751 {
752 	CTASSERT(sizeof(struct msixcap) == 12);
753 
754 	assert(msix_tab_size % 4096 == 0);
755 
756 	bzero(msixcap, sizeof(struct msixcap));
757 	msixcap->capid = PCIY_MSIX;
758 
759 	/*
760 	 * Message Control Register, all fields set to
761 	 * zero except for the Table Size.
762 	 * Note: Table size N is encoded as N-1
763 	 */
764 	msixcap->msgctrl = msgnum - 1;
765 
766 	/*
767 	 * MSI-X BAR setup:
768 	 * - MSI-X table start at offset 0
769 	 * - PBA table starts at a 4K aligned offset after the MSI-X table
770 	 */
771 	msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
772 	msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
773 }
774 
775 static void
776 pci_msix_table_init(struct pci_devinst *pi, int table_entries)
777 {
778 	int i, table_size;
779 
780 	assert(table_entries > 0);
781 	assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
782 
783 	table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
784 	pi->pi_msix.table = malloc(table_size);
785 	bzero(pi->pi_msix.table, table_size);
786 
787 	/* set mask bit of vector control register */
788 	for (i = 0; i < table_entries; i++)
789 		pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
790 }
791 
792 int
793 pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
794 {
795 	uint32_t tab_size;
796 	struct msixcap msixcap;
797 
798 	assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
799 	assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
800 
801 	tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
802 
803 	/* Align table size to nearest 4K */
804 	tab_size = roundup2(tab_size, 4096);
805 
806 	pi->pi_msix.table_bar = barnum;
807 	pi->pi_msix.pba_bar   = barnum;
808 	pi->pi_msix.table_offset = 0;
809 	pi->pi_msix.table_count = msgnum;
810 	pi->pi_msix.pba_offset = tab_size;
811 	pi->pi_msix.pba_size = PBA_SIZE(msgnum);
812 
813 	pci_msix_table_init(pi, msgnum);
814 
815 	pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
816 
817 	/* allocate memory for MSI-X Table and PBA */
818 	pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
819 				tab_size + pi->pi_msix.pba_size);
820 
821 	return (pci_emul_add_capability(pi, (u_char *)&msixcap,
822 					sizeof(msixcap)));
823 }
824 
825 void
826 msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
827 		 int bytes, uint32_t val)
828 {
829 	uint16_t msgctrl, rwmask;
830 	int off, table_bar;
831 
832 	off = offset - capoff;
833 	table_bar = pi->pi_msix.table_bar;
834 	/* Message Control Register */
835 	if (off == 2 && bytes == 2) {
836 		rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
837 		msgctrl = pci_get_cfgdata16(pi, offset);
838 		msgctrl &= ~rwmask;
839 		msgctrl |= val & rwmask;
840 		val = msgctrl;
841 
842 		pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
843 		pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
844 		pci_lintr_update(pi);
845 	}
846 
847 	CFGWRITE(pi, offset, val, bytes);
848 }
849 
850 void
851 msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
852 		int bytes, uint32_t val)
853 {
854 	uint16_t msgctrl, rwmask, msgdata, mme;
855 	uint32_t addrlo;
856 
857 	/*
858 	 * If guest is writing to the message control register make sure
859 	 * we do not overwrite read-only fields.
860 	 */
861 	if ((offset - capoff) == 2 && bytes == 2) {
862 		rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
863 		msgctrl = pci_get_cfgdata16(pi, offset);
864 		msgctrl &= ~rwmask;
865 		msgctrl |= val & rwmask;
866 		val = msgctrl;
867 
868 		addrlo = pci_get_cfgdata32(pi, capoff + 4);
869 		if (msgctrl & PCIM_MSICTRL_64BIT)
870 			msgdata = pci_get_cfgdata16(pi, capoff + 12);
871 		else
872 			msgdata = pci_get_cfgdata16(pi, capoff + 8);
873 
874 		mme = msgctrl & PCIM_MSICTRL_MME_MASK;
875 		pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
876 		if (pi->pi_msi.enabled) {
877 			pi->pi_msi.addr = addrlo;
878 			pi->pi_msi.msg_data = msgdata;
879 			pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
880 		} else {
881 			pi->pi_msi.maxmsgnum = 0;
882 		}
883 		pci_lintr_update(pi);
884 	}
885 
886 	CFGWRITE(pi, offset, val, bytes);
887 }
888 
889 void
890 pciecap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
891 		 int bytes, uint32_t val)
892 {
893 
894 	/* XXX don't write to the readonly parts */
895 	CFGWRITE(pi, offset, val, bytes);
896 }
897 
898 #define	PCIECAP_VERSION	0x2
899 int
900 pci_emul_add_pciecap(struct pci_devinst *pi, int type)
901 {
902 	int err;
903 	struct pciecap pciecap;
904 
905 	CTASSERT(sizeof(struct pciecap) == 60);
906 
907 	if (type != PCIEM_TYPE_ROOT_PORT)
908 		return (-1);
909 
910 	bzero(&pciecap, sizeof(pciecap));
911 
912 	pciecap.capid = PCIY_EXPRESS;
913 	pciecap.pcie_capabilities = PCIECAP_VERSION | PCIEM_TYPE_ROOT_PORT;
914 	pciecap.link_capabilities = 0x411;	/* gen1, x1 */
915 	pciecap.link_status = 0x11;		/* gen1, x1 */
916 
917 	err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
918 	return (err);
919 }
920 
921 /*
922  * This function assumes that 'coff' is in the capabilities region of the
923  * config space.
924  */
925 static void
926 pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val)
927 {
928 	int capid;
929 	uint8_t capoff, nextoff;
930 
931 	/* Do not allow un-aligned writes */
932 	if ((offset & (bytes - 1)) != 0)
933 		return;
934 
935 	/* Find the capability that we want to update */
936 	capoff = CAP_START_OFFSET;
937 	while (1) {
938 		nextoff = pci_get_cfgdata8(pi, capoff + 1);
939 		if (nextoff == 0)
940 			break;
941 		if (offset >= capoff && offset < nextoff)
942 			break;
943 
944 		capoff = nextoff;
945 	}
946 	assert(offset >= capoff);
947 
948 	/*
949 	 * Capability ID and Next Capability Pointer are readonly.
950 	 * However, some o/s's do 4-byte writes that include these.
951 	 * For this case, trim the write back to 2 bytes and adjust
952 	 * the data.
953 	 */
954 	if (offset == capoff || offset == capoff + 1) {
955 		if (offset == capoff && bytes == 4) {
956 			bytes = 2;
957 			offset += 2;
958 			val >>= 16;
959 		} else
960 			return;
961 	}
962 
963 	capid = pci_get_cfgdata8(pi, capoff);
964 	switch (capid) {
965 	case PCIY_MSI:
966 		msicap_cfgwrite(pi, capoff, offset, bytes, val);
967 		break;
968 	case PCIY_MSIX:
969 		msixcap_cfgwrite(pi, capoff, offset, bytes, val);
970 		break;
971 	case PCIY_EXPRESS:
972 		pciecap_cfgwrite(pi, capoff, offset, bytes, val);
973 		break;
974 	default:
975 		break;
976 	}
977 }
978 
979 static int
980 pci_emul_iscap(struct pci_devinst *pi, int offset)
981 {
982 	uint16_t sts;
983 
984 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
985 	if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
986 		if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
987 			return (1);
988 	}
989 	return (0);
990 }
991 
992 static int
993 pci_emul_fallback_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
994 			  int size, uint64_t *val, void *arg1, long arg2)
995 {
996 	/*
997 	 * Ignore writes; return 0xff's for reads. The mem read code
998 	 * will take care of truncating to the correct size.
999 	 */
1000 	if (dir == MEM_F_READ) {
1001 		*val = 0xffffffffffffffff;
1002 	}
1003 
1004 	return (0);
1005 }
1006 
1007 #define	BUSIO_ROUNDUP		32
1008 #define	BUSMEM_ROUNDUP		(1024 * 1024)
1009 
1010 int
1011 init_pci(struct vmctx *ctx)
1012 {
1013 	struct pci_devemu *pde;
1014 	struct businfo *bi;
1015 	struct slotinfo *si;
1016 	struct funcinfo *fi;
1017 	size_t lowmem;
1018 	int bus, slot, func;
1019 	int error;
1020 
1021 	pci_emul_iobase = PCI_EMUL_IOBASE;
1022 	pci_emul_membase32 = vm_get_lowmem_limit(ctx);
1023 	pci_emul_membase64 = PCI_EMUL_MEMBASE64;
1024 
1025 	for (bus = 0; bus < MAXBUSES; bus++) {
1026 		if ((bi = pci_businfo[bus]) == NULL)
1027 			continue;
1028 		/*
1029 		 * Keep track of the i/o and memory resources allocated to
1030 		 * this bus.
1031 		 */
1032 		bi->iobase = pci_emul_iobase;
1033 		bi->membase32 = pci_emul_membase32;
1034 		bi->membase64 = pci_emul_membase64;
1035 
1036 		for (slot = 0; slot < MAXSLOTS; slot++) {
1037 			si = &bi->slotinfo[slot];
1038 			for (func = 0; func < MAXFUNCS; func++) {
1039 				fi = &si->si_funcs[func];
1040 				if (fi->fi_name == NULL)
1041 					continue;
1042 				pde = pci_emul_finddev(fi->fi_name);
1043 				assert(pde != NULL);
1044 				error = pci_emul_init(ctx, pde, bus, slot,
1045 				    func, fi);
1046 				if (error)
1047 					return (error);
1048 			}
1049 		}
1050 
1051 		/*
1052 		 * Add some slop to the I/O and memory resources decoded by
1053 		 * this bus to give a guest some flexibility if it wants to
1054 		 * reprogram the BARs.
1055 		 */
1056 		pci_emul_iobase += BUSIO_ROUNDUP;
1057 		pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
1058 		bi->iolimit = pci_emul_iobase;
1059 
1060 		pci_emul_membase32 += BUSMEM_ROUNDUP;
1061 		pci_emul_membase32 = roundup2(pci_emul_membase32,
1062 		    BUSMEM_ROUNDUP);
1063 		bi->memlimit32 = pci_emul_membase32;
1064 
1065 		pci_emul_membase64 += BUSMEM_ROUNDUP;
1066 		pci_emul_membase64 = roundup2(pci_emul_membase64,
1067 		    BUSMEM_ROUNDUP);
1068 		bi->memlimit64 = pci_emul_membase64;
1069 	}
1070 
1071 	/*
1072 	 * The guest physical memory map looks like the following:
1073 	 * [0,		    lowmem)		guest system memory
1074 	 * [lowmem,	    lowmem_limit)	memory hole (may be absent)
1075 	 * [lowmem_limit,   4GB)		PCI hole (32-bit BAR allocation)
1076 	 * [4GB,	    4GB + highmem)
1077 	 *
1078 	 * Accesses to memory addresses that are not allocated to system
1079 	 * memory or PCI devices return 0xff's.
1080 	 */
1081 	error = vm_get_memory_seg(ctx, 0, &lowmem, NULL);
1082 	assert(error == 0);
1083 
1084 	memset(&pci_mem_hole, 0, sizeof(struct mem_range));
1085 	pci_mem_hole.name = "PCI hole";
1086 	pci_mem_hole.flags = MEM_F_RW;
1087 	pci_mem_hole.base = lowmem;
1088 	pci_mem_hole.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
1089 	pci_mem_hole.handler = pci_emul_fallback_handler;
1090 
1091 	error = register_mem_fallback(&pci_mem_hole);
1092 	assert(error == 0);
1093 
1094 	return (0);
1095 }
1096 
1097 static void
1098 pci_prt_entry(int bus, int slot, int pin, int ioapic_irq, void *arg)
1099 {
1100 	int *count;
1101 
1102 	count = arg;
1103 	dsdt_line("  Package (0x04)");
1104 	dsdt_line("  {");
1105 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1106 	dsdt_line("    0x%02X,", pin - 1);
1107 	dsdt_line("    Zero,");
1108 	dsdt_line("    0x%X", ioapic_irq);
1109 	dsdt_line("  }%s", *count == 1 ? "" : ",");
1110 	(*count)--;
1111 }
1112 
1113 /*
1114  * A bhyve virtual machine has a flat PCI hierarchy with a root port
1115  * corresponding to each PCI bus.
1116  */
1117 static void
1118 pci_bus_write_dsdt(int bus)
1119 {
1120 	struct businfo *bi;
1121 	struct slotinfo *si;
1122 	struct pci_devinst *pi;
1123 	int count, slot, func;
1124 
1125 	/*
1126 	 * If there are no devices on this 'bus' then just return.
1127 	 */
1128 	if ((bi = pci_businfo[bus]) == NULL) {
1129 		/*
1130 		 * Bus 0 is special because it decodes the I/O ports used
1131 		 * for PCI config space access even if there are no devices
1132 		 * on it.
1133 		 */
1134 		if (bus != 0)
1135 			return;
1136 	}
1137 
1138 	dsdt_indent(1);
1139 	dsdt_line("Scope (_SB)");
1140 	dsdt_line("{");
1141 	dsdt_line("  Device (PC%02X)", bus);
1142 	dsdt_line("  {");
1143 	dsdt_line("    Name (_HID, EisaId (\"PNP0A03\"))");
1144 	dsdt_line("    Name (_ADR, Zero)");
1145 
1146 	dsdt_line("    Method (_BBN, 0, NotSerialized)");
1147 	dsdt_line("    {");
1148 	dsdt_line("        Return (0x%08X)", bus);
1149 	dsdt_line("    }");
1150 	dsdt_line("    Name (_CRS, ResourceTemplate ()");
1151 	dsdt_line("    {");
1152 	dsdt_line("      WordBusNumber (ResourceProducer, MinFixed, "
1153 	    "MaxFixed, PosDecode,");
1154 	dsdt_line("        0x0000,             // Granularity");
1155 	dsdt_line("        0x%04X,             // Range Minimum", bus);
1156 	dsdt_line("        0x%04X,             // Range Maximum", bus);
1157 	dsdt_line("        0x0000,             // Translation Offset");
1158 	dsdt_line("        0x0001,             // Length");
1159 	dsdt_line("        ,, )");
1160 
1161 	if (bus == 0) {
1162 		dsdt_indent(3);
1163 		dsdt_fixed_ioport(0xCF8, 8);
1164 		dsdt_unindent(3);
1165 
1166 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1167 		    "PosDecode, EntireRange,");
1168 		dsdt_line("        0x0000,             // Granularity");
1169 		dsdt_line("        0x0000,             // Range Minimum");
1170 		dsdt_line("        0x0CF7,             // Range Maximum");
1171 		dsdt_line("        0x0000,             // Translation Offset");
1172 		dsdt_line("        0x0CF8,             // Length");
1173 		dsdt_line("        ,, , TypeStatic)");
1174 
1175 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1176 		    "PosDecode, EntireRange,");
1177 		dsdt_line("        0x0000,             // Granularity");
1178 		dsdt_line("        0x0D00,             // Range Minimum");
1179 		dsdt_line("        0x%04X,             // Range Maximum",
1180 		    PCI_EMUL_IOBASE - 1);
1181 		dsdt_line("        0x0000,             // Translation Offset");
1182 		dsdt_line("        0x%04X,             // Length",
1183 		    PCI_EMUL_IOBASE - 0x0D00);
1184 		dsdt_line("        ,, , TypeStatic)");
1185 
1186 		if (bi == NULL) {
1187 			dsdt_line("    })");
1188 			goto done;
1189 		}
1190 	}
1191 	assert(bi != NULL);
1192 
1193 	/* i/o window */
1194 	dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1195 	    "PosDecode, EntireRange,");
1196 	dsdt_line("        0x0000,             // Granularity");
1197 	dsdt_line("        0x%04X,             // Range Minimum", bi->iobase);
1198 	dsdt_line("        0x%04X,             // Range Maximum",
1199 	    bi->iolimit - 1);
1200 	dsdt_line("        0x0000,             // Translation Offset");
1201 	dsdt_line("        0x%04X,             // Length",
1202 	    bi->iolimit - bi->iobase);
1203 	dsdt_line("        ,, , TypeStatic)");
1204 
1205 	/* mmio window (32-bit) */
1206 	dsdt_line("      DWordMemory (ResourceProducer, PosDecode, "
1207 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1208 	dsdt_line("        0x00000000,         // Granularity");
1209 	dsdt_line("        0x%08X,         // Range Minimum\n", bi->membase32);
1210 	dsdt_line("        0x%08X,         // Range Maximum\n",
1211 	    bi->memlimit32 - 1);
1212 	dsdt_line("        0x00000000,         // Translation Offset");
1213 	dsdt_line("        0x%08X,         // Length\n",
1214 	    bi->memlimit32 - bi->membase32);
1215 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1216 
1217 	/* mmio window (64-bit) */
1218 	dsdt_line("      QWordMemory (ResourceProducer, PosDecode, "
1219 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1220 	dsdt_line("        0x0000000000000000, // Granularity");
1221 	dsdt_line("        0x%016lX, // Range Minimum\n", bi->membase64);
1222 	dsdt_line("        0x%016lX, // Range Maximum\n",
1223 	    bi->memlimit64 - 1);
1224 	dsdt_line("        0x0000000000000000, // Translation Offset");
1225 	dsdt_line("        0x%016lX, // Length\n",
1226 	    bi->memlimit64 - bi->membase64);
1227 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1228 	dsdt_line("    })");
1229 
1230 	count = pci_count_lintr(bus);
1231 	if (count != 0) {
1232 		dsdt_indent(2);
1233 		dsdt_line("Name (_PRT, Package (0x%02X)", count);
1234 		dsdt_line("{");
1235 		pci_walk_lintr(bus, pci_prt_entry, &count);
1236 		dsdt_line("})");
1237 		dsdt_unindent(2);
1238 	}
1239 
1240 	dsdt_indent(2);
1241 	for (slot = 0; slot < MAXSLOTS; slot++) {
1242 		si = &bi->slotinfo[slot];
1243 		for (func = 0; func < MAXFUNCS; func++) {
1244 			pi = si->si_funcs[func].fi_devi;
1245 			if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
1246 				pi->pi_d->pe_write_dsdt(pi);
1247 		}
1248 	}
1249 	dsdt_unindent(2);
1250 done:
1251 	dsdt_line("  }");
1252 	dsdt_line("}");
1253 	dsdt_unindent(1);
1254 }
1255 
1256 void
1257 pci_write_dsdt(void)
1258 {
1259 	int bus;
1260 
1261 	for (bus = 0; bus < MAXBUSES; bus++)
1262 		pci_bus_write_dsdt(bus);
1263 }
1264 
1265 int
1266 pci_msi_enabled(struct pci_devinst *pi)
1267 {
1268 	return (pi->pi_msi.enabled);
1269 }
1270 
1271 int
1272 pci_msi_maxmsgnum(struct pci_devinst *pi)
1273 {
1274 	if (pi->pi_msi.enabled)
1275 		return (pi->pi_msi.maxmsgnum);
1276 	else
1277 		return (0);
1278 }
1279 
1280 int
1281 pci_msix_enabled(struct pci_devinst *pi)
1282 {
1283 
1284 	return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
1285 }
1286 
1287 void
1288 pci_generate_msix(struct pci_devinst *pi, int index)
1289 {
1290 	struct msix_table_entry *mte;
1291 
1292 	if (!pci_msix_enabled(pi))
1293 		return;
1294 
1295 	if (pi->pi_msix.function_mask)
1296 		return;
1297 
1298 	if (index >= pi->pi_msix.table_count)
1299 		return;
1300 
1301 	mte = &pi->pi_msix.table[index];
1302 	if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
1303 		/* XXX Set PBA bit if interrupt is disabled */
1304 		vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data);
1305 	}
1306 }
1307 
1308 void
1309 pci_generate_msi(struct pci_devinst *pi, int index)
1310 {
1311 
1312 	if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
1313 		vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr,
1314 			     pi->pi_msi.msg_data + index);
1315 	}
1316 }
1317 
1318 static bool
1319 pci_lintr_permitted(struct pci_devinst *pi)
1320 {
1321 	uint16_t cmd;
1322 
1323 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
1324 	return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
1325 		(cmd & PCIM_CMD_INTxDIS)));
1326 }
1327 
1328 int
1329 pci_lintr_request(struct pci_devinst *pi)
1330 {
1331 	struct businfo *bi;
1332 	struct slotinfo *si;
1333 	int bestpin, bestcount, irq, pin;
1334 
1335 	bi = pci_businfo[pi->pi_bus];
1336 	assert(bi != NULL);
1337 
1338 	/*
1339 	 * First, allocate a pin from our slot.
1340 	 */
1341 	si = &bi->slotinfo[pi->pi_slot];
1342 	bestpin = 0;
1343 	bestcount = si->si_intpins[0].ii_count;
1344 	for (pin = 1; pin < 4; pin++) {
1345 		if (si->si_intpins[pin].ii_count < bestcount) {
1346 			bestpin = pin;
1347 			bestcount = si->si_intpins[pin].ii_count;
1348 		}
1349 	}
1350 
1351 	/*
1352 	 * Attempt to allocate an I/O APIC pin for this intpin.  If
1353 	 * 8259A support is added we will need a separate field to
1354 	 * assign the intpin to an input pin on the PCI interrupt
1355 	 * router.
1356 	 */
1357 	if (si->si_intpins[bestpin].ii_count == 0) {
1358 		irq = ioapic_pci_alloc_irq();
1359 		if (irq < 0)
1360 			return (-1);
1361 		si->si_intpins[bestpin].ii_ioapic_irq = irq;
1362 	} else
1363 		irq = si->si_intpins[bestpin].ii_ioapic_irq;
1364 	si->si_intpins[bestpin].ii_count++;
1365 
1366 	pi->pi_lintr.pin = bestpin + 1;
1367 	pi->pi_lintr.ioapic_irq = irq;
1368 	pci_set_cfgdata8(pi, PCIR_INTLINE, irq);
1369 	pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
1370 	return (0);
1371 }
1372 
1373 void
1374 pci_lintr_assert(struct pci_devinst *pi)
1375 {
1376 
1377 	assert(pi->pi_lintr.pin > 0);
1378 
1379 	pthread_mutex_lock(&pi->pi_lintr.lock);
1380 	if (pi->pi_lintr.state == IDLE) {
1381 		if (pci_lintr_permitted(pi)) {
1382 			pi->pi_lintr.state = ASSERTED;
1383 			vm_ioapic_assert_irq(pi->pi_vmctx,
1384 			    pi->pi_lintr.ioapic_irq);
1385 		} else
1386 			pi->pi_lintr.state = PENDING;
1387 	}
1388 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1389 }
1390 
1391 void
1392 pci_lintr_deassert(struct pci_devinst *pi)
1393 {
1394 
1395 	assert(pi->pi_lintr.pin > 0);
1396 
1397 	pthread_mutex_lock(&pi->pi_lintr.lock);
1398 	if (pi->pi_lintr.state == ASSERTED) {
1399 		pi->pi_lintr.state = IDLE;
1400 		vm_ioapic_deassert_irq(pi->pi_vmctx, pi->pi_lintr.ioapic_irq);
1401 	} else if (pi->pi_lintr.state == PENDING)
1402 		pi->pi_lintr.state = IDLE;
1403 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1404 }
1405 
1406 static void
1407 pci_lintr_update(struct pci_devinst *pi)
1408 {
1409 
1410 	pthread_mutex_lock(&pi->pi_lintr.lock);
1411 	if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
1412 		vm_ioapic_deassert_irq(pi->pi_vmctx, pi->pi_lintr.ioapic_irq);
1413 		pi->pi_lintr.state = PENDING;
1414 	} else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
1415 		pi->pi_lintr.state = ASSERTED;
1416 		vm_ioapic_assert_irq(pi->pi_vmctx, pi->pi_lintr.ioapic_irq);
1417 	}
1418 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1419 }
1420 
1421 int
1422 pci_count_lintr(int bus)
1423 {
1424 	int count, slot, pin;
1425 	struct slotinfo *slotinfo;
1426 
1427 	count = 0;
1428 	if (pci_businfo[bus] != NULL) {
1429 		for (slot = 0; slot < MAXSLOTS; slot++) {
1430 			slotinfo = &pci_businfo[bus]->slotinfo[slot];
1431 			for (pin = 0; pin < 4; pin++) {
1432 				if (slotinfo->si_intpins[pin].ii_count != 0)
1433 					count++;
1434 			}
1435 		}
1436 	}
1437 	return (count);
1438 }
1439 
1440 void
1441 pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
1442 {
1443 	struct businfo *bi;
1444 	struct slotinfo *si;
1445 	struct intxinfo *ii;
1446 	int slot, pin;
1447 
1448 	if ((bi = pci_businfo[bus]) == NULL)
1449 		return;
1450 
1451 	for (slot = 0; slot < MAXSLOTS; slot++) {
1452 		si = &bi->slotinfo[slot];
1453 		for (pin = 0; pin < 4; pin++) {
1454 			ii = &si->si_intpins[pin];
1455 			if (ii->ii_count != 0)
1456 				cb(bus, slot, pin + 1, ii->ii_ioapic_irq, arg);
1457 		}
1458 	}
1459 }
1460 
1461 /*
1462  * Return 1 if the emulated device in 'slot' is a multi-function device.
1463  * Return 0 otherwise.
1464  */
1465 static int
1466 pci_emul_is_mfdev(int bus, int slot)
1467 {
1468 	struct businfo *bi;
1469 	struct slotinfo *si;
1470 	int f, numfuncs;
1471 
1472 	numfuncs = 0;
1473 	if ((bi = pci_businfo[bus]) != NULL) {
1474 		si = &bi->slotinfo[slot];
1475 		for (f = 0; f < MAXFUNCS; f++) {
1476 			if (si->si_funcs[f].fi_devi != NULL) {
1477 				numfuncs++;
1478 			}
1479 		}
1480 	}
1481 	return (numfuncs > 1);
1482 }
1483 
1484 /*
1485  * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
1486  * whether or not is a multi-function being emulated in the pci 'slot'.
1487  */
1488 static void
1489 pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
1490 {
1491 	int mfdev;
1492 
1493 	if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
1494 		mfdev = pci_emul_is_mfdev(bus, slot);
1495 		switch (bytes) {
1496 		case 1:
1497 		case 2:
1498 			*rv &= ~PCIM_MFDEV;
1499 			if (mfdev) {
1500 				*rv |= PCIM_MFDEV;
1501 			}
1502 			break;
1503 		case 4:
1504 			*rv &= ~(PCIM_MFDEV << 16);
1505 			if (mfdev) {
1506 				*rv |= (PCIM_MFDEV << 16);
1507 			}
1508 			break;
1509 		}
1510 	}
1511 }
1512 
1513 static int cfgbus, cfgslot, cfgfunc, cfgoff;
1514 
1515 static int
1516 pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
1517 		 uint32_t *eax, void *arg)
1518 {
1519 	uint32_t x;
1520 
1521 	if (bytes != 4) {
1522 		if (in)
1523 			*eax = (bytes == 2) ? 0xffff : 0xff;
1524 		return (0);
1525 	}
1526 
1527 	if (in) {
1528 		x = (cfgbus << 16) |
1529 		    (cfgslot << 11) |
1530 		    (cfgfunc << 8) |
1531 		    cfgoff;
1532 		*eax = x | CONF1_ENABLE;
1533 	} else {
1534 		x = *eax;
1535 		cfgoff = x & PCI_REGMAX;
1536 		cfgfunc = (x >> 8) & PCI_FUNCMAX;
1537 		cfgslot = (x >> 11) & PCI_SLOTMAX;
1538 		cfgbus = (x >> 16) & PCI_BUSMAX;
1539 	}
1540 
1541 	return (0);
1542 }
1543 INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
1544 
1545 static uint32_t
1546 bits_changed(uint32_t old, uint32_t new, uint32_t mask)
1547 {
1548 
1549 	return ((old ^ new) & mask);
1550 }
1551 
1552 static void
1553 pci_emul_cmdwrite(struct pci_devinst *pi, uint32_t new, int bytes)
1554 {
1555 	int i;
1556 	uint16_t old;
1557 
1558 	/*
1559 	 * The command register is at an offset of 4 bytes and thus the
1560 	 * guest could write 1, 2 or 4 bytes starting at this offset.
1561 	 */
1562 
1563 	old = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* stash old value */
1564 	CFGWRITE(pi, PCIR_COMMAND, new, bytes);		/* update config */
1565 	new = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* get updated value */
1566 
1567 	/*
1568 	 * If the MMIO or I/O address space decoding has changed then
1569 	 * register/unregister all BARs that decode that address space.
1570 	 */
1571 	for (i = 0; i <= PCI_BARMAX; i++) {
1572 		switch (pi->pi_bar[i].type) {
1573 			case PCIBAR_NONE:
1574 			case PCIBAR_MEMHI64:
1575 				break;
1576 			case PCIBAR_IO:
1577 				/* I/O address space decoding changed? */
1578 				if (bits_changed(old, new, PCIM_CMD_PORTEN)) {
1579 					if (porten(pi))
1580 						register_bar(pi, i);
1581 					else
1582 						unregister_bar(pi, i);
1583 				}
1584 				break;
1585 			case PCIBAR_MEM32:
1586 			case PCIBAR_MEM64:
1587 				/* MMIO address space decoding changed? */
1588 				if (bits_changed(old, new, PCIM_CMD_MEMEN)) {
1589 					if (memen(pi))
1590 						register_bar(pi, i);
1591 					else
1592 						unregister_bar(pi, i);
1593 				}
1594 				break;
1595 			default:
1596 				assert(0);
1597 		}
1598 	}
1599 
1600 	/*
1601 	 * If INTx has been unmasked and is pending, assert the
1602 	 * interrupt.
1603 	 */
1604 	pci_lintr_update(pi);
1605 }
1606 
1607 static int
1608 pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
1609 		 uint32_t *eax, void *arg)
1610 {
1611 	struct businfo *bi;
1612 	struct slotinfo *si;
1613 	struct pci_devinst *pi;
1614 	struct pci_devemu *pe;
1615 	int coff, idx, needcfg;
1616 	uint64_t addr, bar, mask;
1617 
1618 	assert(bytes == 1 || bytes == 2 || bytes == 4);
1619 
1620 	if ((bi = pci_businfo[cfgbus]) != NULL) {
1621 		si = &bi->slotinfo[cfgslot];
1622 		pi = si->si_funcs[cfgfunc].fi_devi;
1623 	} else
1624 		pi = NULL;
1625 
1626 	coff = cfgoff + (port - CONF1_DATA_PORT);
1627 
1628 #if 0
1629 	printf("pcicfg-%s from 0x%0x of %d bytes (%d/%d/%d)\n\r",
1630 		in ? "read" : "write", coff, bytes, cfgbus, cfgslot, cfgfunc);
1631 #endif
1632 
1633 	/*
1634 	 * Just return if there is no device at this cfgslot:cfgfunc or
1635 	 * if the guest is doing an un-aligned access
1636 	 */
1637 	if (pi == NULL || (coff & (bytes - 1)) != 0) {
1638 		if (in)
1639 			*eax = 0xffffffff;
1640 		return (0);
1641 	}
1642 
1643 	pe = pi->pi_d;
1644 
1645 	/*
1646 	 * Config read
1647 	 */
1648 	if (in) {
1649 		/* Let the device emulation override the default handler */
1650 		if (pe->pe_cfgread != NULL) {
1651 			needcfg = pe->pe_cfgread(ctx, vcpu, pi,
1652 						    coff, bytes, eax);
1653 		} else {
1654 			needcfg = 1;
1655 		}
1656 
1657 		if (needcfg) {
1658 			if (bytes == 1)
1659 				*eax = pci_get_cfgdata8(pi, coff);
1660 			else if (bytes == 2)
1661 				*eax = pci_get_cfgdata16(pi, coff);
1662 			else
1663 				*eax = pci_get_cfgdata32(pi, coff);
1664 		}
1665 
1666 		pci_emul_hdrtype_fixup(cfgbus, cfgslot, coff, bytes, eax);
1667 	} else {
1668 		/* Let the device emulation override the default handler */
1669 		if (pe->pe_cfgwrite != NULL &&
1670 		    (*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0)
1671 			return (0);
1672 
1673 		/*
1674 		 * Special handling for write to BAR registers
1675 		 */
1676 		if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) {
1677 			/*
1678 			 * Ignore writes to BAR registers that are not
1679 			 * 4-byte aligned.
1680 			 */
1681 			if (bytes != 4 || (coff & 0x3) != 0)
1682 				return (0);
1683 			idx = (coff - PCIR_BAR(0)) / 4;
1684 			mask = ~(pi->pi_bar[idx].size - 1);
1685 			switch (pi->pi_bar[idx].type) {
1686 			case PCIBAR_NONE:
1687 				pi->pi_bar[idx].addr = bar = 0;
1688 				break;
1689 			case PCIBAR_IO:
1690 				addr = *eax & mask;
1691 				addr &= 0xffff;
1692 				bar = addr | PCIM_BAR_IO_SPACE;
1693 				/*
1694 				 * Register the new BAR value for interception
1695 				 */
1696 				if (addr != pi->pi_bar[idx].addr) {
1697 					update_bar_address(pi, addr, idx,
1698 							   PCIBAR_IO);
1699 				}
1700 				break;
1701 			case PCIBAR_MEM32:
1702 				addr = bar = *eax & mask;
1703 				bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
1704 				if (addr != pi->pi_bar[idx].addr) {
1705 					update_bar_address(pi, addr, idx,
1706 							   PCIBAR_MEM32);
1707 				}
1708 				break;
1709 			case PCIBAR_MEM64:
1710 				addr = bar = *eax & mask;
1711 				bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
1712 				       PCIM_BAR_MEM_PREFETCH;
1713 				if (addr != (uint32_t)pi->pi_bar[idx].addr) {
1714 					update_bar_address(pi, addr, idx,
1715 							   PCIBAR_MEM64);
1716 				}
1717 				break;
1718 			case PCIBAR_MEMHI64:
1719 				mask = ~(pi->pi_bar[idx - 1].size - 1);
1720 				addr = ((uint64_t)*eax << 32) & mask;
1721 				bar = addr >> 32;
1722 				if (bar != pi->pi_bar[idx - 1].addr >> 32) {
1723 					update_bar_address(pi, addr, idx - 1,
1724 							   PCIBAR_MEMHI64);
1725 				}
1726 				break;
1727 			default:
1728 				assert(0);
1729 			}
1730 			pci_set_cfgdata32(pi, coff, bar);
1731 
1732 		} else if (pci_emul_iscap(pi, coff)) {
1733 			pci_emul_capwrite(pi, coff, bytes, *eax);
1734 		} else if (coff == PCIR_COMMAND) {
1735 			pci_emul_cmdwrite(pi, *eax, bytes);
1736 		} else {
1737 			CFGWRITE(pi, coff, *eax, bytes);
1738 		}
1739 	}
1740 
1741 	return (0);
1742 }
1743 
1744 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
1745 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
1746 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
1747 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
1748 
1749 /*
1750  * I/O ports to configure PCI IRQ routing. We ignore all writes to it.
1751  */
1752 static int
1753 pci_irq_port_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
1754 		     uint32_t *eax, void *arg)
1755 {
1756 	assert(in == 0);
1757 	return (0);
1758 }
1759 INOUT_PORT(pci_irq, 0xC00, IOPORT_F_OUT, pci_irq_port_handler);
1760 INOUT_PORT(pci_irq, 0xC01, IOPORT_F_OUT, pci_irq_port_handler);
1761 SYSRES_IO(0xC00, 2);
1762 
1763 #define PCI_EMUL_TEST
1764 #ifdef PCI_EMUL_TEST
1765 /*
1766  * Define a dummy test device
1767  */
1768 #define DIOSZ	8
1769 #define DMEMSZ	4096
1770 struct pci_emul_dsoftc {
1771 	uint8_t   ioregs[DIOSZ];
1772 	uint8_t	  memregs[DMEMSZ];
1773 };
1774 
1775 #define	PCI_EMUL_MSI_MSGS	 4
1776 #define	PCI_EMUL_MSIX_MSGS	16
1777 
1778 static int
1779 pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
1780 {
1781 	int error;
1782 	struct pci_emul_dsoftc *sc;
1783 
1784 	sc = malloc(sizeof(struct pci_emul_dsoftc));
1785 	memset(sc, 0, sizeof(struct pci_emul_dsoftc));
1786 
1787 	pi->pi_arg = sc;
1788 
1789 	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
1790 	pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
1791 	pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
1792 
1793 	error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
1794 	assert(error == 0);
1795 
1796 	error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
1797 	assert(error == 0);
1798 
1799 	error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
1800 	assert(error == 0);
1801 
1802 	return (0);
1803 }
1804 
1805 static void
1806 pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
1807 	      uint64_t offset, int size, uint64_t value)
1808 {
1809 	int i;
1810 	struct pci_emul_dsoftc *sc = pi->pi_arg;
1811 
1812 	if (baridx == 0) {
1813 		if (offset + size > DIOSZ) {
1814 			printf("diow: iow too large, offset %ld size %d\n",
1815 			       offset, size);
1816 			return;
1817 		}
1818 
1819 		if (size == 1) {
1820 			sc->ioregs[offset] = value & 0xff;
1821 		} else if (size == 2) {
1822 			*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
1823 		} else if (size == 4) {
1824 			*(uint32_t *)&sc->ioregs[offset] = value;
1825 		} else {
1826 			printf("diow: iow unknown size %d\n", size);
1827 		}
1828 
1829 		/*
1830 		 * Special magic value to generate an interrupt
1831 		 */
1832 		if (offset == 4 && size == 4 && pci_msi_enabled(pi))
1833 			pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
1834 
1835 		if (value == 0xabcdef) {
1836 			for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
1837 				pci_generate_msi(pi, i);
1838 		}
1839 	}
1840 
1841 	if (baridx == 1) {
1842 		if (offset + size > DMEMSZ) {
1843 			printf("diow: memw too large, offset %ld size %d\n",
1844 			       offset, size);
1845 			return;
1846 		}
1847 
1848 		if (size == 1) {
1849 			sc->memregs[offset] = value;
1850 		} else if (size == 2) {
1851 			*(uint16_t *)&sc->memregs[offset] = value;
1852 		} else if (size == 4) {
1853 			*(uint32_t *)&sc->memregs[offset] = value;
1854 		} else if (size == 8) {
1855 			*(uint64_t *)&sc->memregs[offset] = value;
1856 		} else {
1857 			printf("diow: memw unknown size %d\n", size);
1858 		}
1859 
1860 		/*
1861 		 * magic interrupt ??
1862 		 */
1863 	}
1864 
1865 	if (baridx > 1) {
1866 		printf("diow: unknown bar idx %d\n", baridx);
1867 	}
1868 }
1869 
1870 static uint64_t
1871 pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
1872 	      uint64_t offset, int size)
1873 {
1874 	struct pci_emul_dsoftc *sc = pi->pi_arg;
1875 	uint32_t value;
1876 
1877 	if (baridx == 0) {
1878 		if (offset + size > DIOSZ) {
1879 			printf("dior: ior too large, offset %ld size %d\n",
1880 			       offset, size);
1881 			return (0);
1882 		}
1883 
1884 		if (size == 1) {
1885 			value = sc->ioregs[offset];
1886 		} else if (size == 2) {
1887 			value = *(uint16_t *) &sc->ioregs[offset];
1888 		} else if (size == 4) {
1889 			value = *(uint32_t *) &sc->ioregs[offset];
1890 		} else {
1891 			printf("dior: ior unknown size %d\n", size);
1892 		}
1893 	}
1894 
1895 	if (baridx == 1) {
1896 		if (offset + size > DMEMSZ) {
1897 			printf("dior: memr too large, offset %ld size %d\n",
1898 			       offset, size);
1899 			return (0);
1900 		}
1901 
1902 		if (size == 1) {
1903 			value = sc->memregs[offset];
1904 		} else if (size == 2) {
1905 			value = *(uint16_t *) &sc->memregs[offset];
1906 		} else if (size == 4) {
1907 			value = *(uint32_t *) &sc->memregs[offset];
1908 		} else if (size == 8) {
1909 			value = *(uint64_t *) &sc->memregs[offset];
1910 		} else {
1911 			printf("dior: ior unknown size %d\n", size);
1912 		}
1913 	}
1914 
1915 
1916 	if (baridx > 1) {
1917 		printf("dior: unknown bar idx %d\n", baridx);
1918 		return (0);
1919 	}
1920 
1921 	return (value);
1922 }
1923 
1924 struct pci_devemu pci_dummy = {
1925 	.pe_emu = "dummy",
1926 	.pe_init = pci_emul_dinit,
1927 	.pe_barwrite = pci_emul_diow,
1928 	.pe_barread = pci_emul_dior
1929 };
1930 PCI_EMUL_SET(pci_dummy);
1931 
1932 #endif /* PCI_EMUL_TEST */
1933