xref: /freebsd/usr.sbin/bhyve/pci_emul.c (revision 22d7dd834bc5cd189810e414701e3ad1e98102e4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/linker_set.h>
32 #include <sys/mman.h>
33 
34 #include <ctype.h>
35 #include <err.h>
36 #include <errno.h>
37 #include <pthread.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <strings.h>
42 #include <assert.h>
43 #include <stdbool.h>
44 #include <sysexits.h>
45 
46 #include <machine/vmm.h>
47 #include <machine/vmm_snapshot.h>
48 #include <vmmapi.h>
49 
50 #include "acpi.h"
51 #include "bhyverun.h"
52 #include "config.h"
53 #include "debug.h"
54 #include "inout.h"
55 #include "ioapic.h"
56 #include "mem.h"
57 #include "pci_emul.h"
58 #include "pci_irq.h"
59 #include "pci_lpc.h"
60 #include "pci_passthru.h"
61 #include "qemu_fwcfg.h"
62 
63 #define CONF1_ADDR_PORT	   0x0cf8
64 #define CONF1_DATA_PORT	   0x0cfc
65 
66 #define CONF1_ENABLE	   0x80000000ul
67 
68 #define	MAXBUSES	(PCI_BUSMAX + 1)
69 #define MAXSLOTS	(PCI_SLOTMAX + 1)
70 #define	MAXFUNCS	(PCI_FUNCMAX + 1)
71 
72 #define GB		(1024 * 1024 * 1024UL)
73 
74 struct funcinfo {
75 	nvlist_t *fi_config;
76 	struct pci_devemu *fi_pde;
77 	struct pci_devinst *fi_devi;
78 };
79 
80 struct intxinfo {
81 	int	ii_count;
82 	int	ii_pirq_pin;
83 	int	ii_ioapic_irq;
84 };
85 
86 struct slotinfo {
87 	struct intxinfo si_intpins[4];
88 	struct funcinfo si_funcs[MAXFUNCS];
89 };
90 
91 struct businfo {
92 	uint16_t iobase, iolimit;		/* I/O window */
93 	uint32_t membase32, memlimit32;		/* mmio window below 4GB */
94 	uint64_t membase64, memlimit64;		/* mmio window above 4GB */
95 	struct slotinfo slotinfo[MAXSLOTS];
96 };
97 
98 static struct businfo *pci_businfo[MAXBUSES];
99 
100 SET_DECLARE(pci_devemu_set, struct pci_devemu);
101 
102 static uint64_t pci_emul_iobase;
103 static uint8_t *pci_emul_rombase;
104 static uint64_t pci_emul_romoffset;
105 static uint8_t *pci_emul_romlim;
106 static uint64_t pci_emul_membase32;
107 static uint64_t pci_emul_membase64;
108 static uint64_t pci_emul_memlim64;
109 
110 struct pci_bar_allocation {
111 	TAILQ_ENTRY(pci_bar_allocation) chain;
112 	struct pci_devinst *pdi;
113 	int idx;
114 	enum pcibar_type type;
115 	uint64_t size;
116 };
117 
118 static TAILQ_HEAD(pci_bar_list, pci_bar_allocation) pci_bars =
119     TAILQ_HEAD_INITIALIZER(pci_bars);
120 
121 struct boot_device {
122 	TAILQ_ENTRY(boot_device) boot_device_chain;
123 	struct pci_devinst *pdi;
124 	int bootindex;
125 };
126 static TAILQ_HEAD(boot_list, boot_device) boot_devices = TAILQ_HEAD_INITIALIZER(
127     boot_devices);
128 
129 #define	PCI_EMUL_IOBASE		0x2000
130 #define	PCI_EMUL_IOLIMIT	0x10000
131 
132 #define PCI_EMUL_ROMSIZE 0x10000000
133 
134 #define	PCI_EMUL_ECFG_BASE	0xE0000000		    /* 3.5GB */
135 #define	PCI_EMUL_ECFG_SIZE	(MAXBUSES * 1024 * 1024)    /* 1MB per bus */
136 SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
137 
138 /*
139  * OVMF always uses 0xC0000000 as base address for 32 bit PCI MMIO. Don't
140  * change this address without changing it in OVMF.
141  */
142 #define PCI_EMUL_MEMBASE32 0xC0000000
143 #define	PCI_EMUL_MEMLIMIT32	PCI_EMUL_ECFG_BASE
144 #define PCI_EMUL_MEMSIZE64	(32*GB)
145 
146 static struct pci_devemu *pci_emul_finddev(const char *name);
147 static void pci_lintr_route(struct pci_devinst *pi);
148 static void pci_lintr_update(struct pci_devinst *pi);
149 static void pci_cfgrw(int in, int bus, int slot, int func, int coff,
150     int bytes, uint32_t *val);
151 
152 static __inline void
153 CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes)
154 {
155 
156 	if (bytes == 1)
157 		pci_set_cfgdata8(pi, coff, val);
158 	else if (bytes == 2)
159 		pci_set_cfgdata16(pi, coff, val);
160 	else
161 		pci_set_cfgdata32(pi, coff, val);
162 }
163 
164 static __inline uint32_t
165 CFGREAD(struct pci_devinst *pi, int coff, int bytes)
166 {
167 
168 	if (bytes == 1)
169 		return (pci_get_cfgdata8(pi, coff));
170 	else if (bytes == 2)
171 		return (pci_get_cfgdata16(pi, coff));
172 	else
173 		return (pci_get_cfgdata32(pi, coff));
174 }
175 
176 static int
177 is_pcir_bar(int coff)
178 {
179 	return (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1));
180 }
181 
182 static int
183 is_pcir_bios(int coff)
184 {
185 	return (coff >= PCIR_BIOS && coff < PCIR_BIOS + 4);
186 }
187 
188 /*
189  * I/O access
190  */
191 
192 /*
193  * Slot options are in the form:
194  *
195  *  <bus>:<slot>:<func>,<emul>[,<config>]
196  *  <slot>[:<func>],<emul>[,<config>]
197  *
198  *  slot is 0..31
199  *  func is 0..7
200  *  emul is a string describing the type of PCI device e.g. virtio-net
201  *  config is an optional string, depending on the device, that can be
202  *  used for configuration.
203  *   Examples are:
204  *     1,virtio-net,tap0
205  *     3:0,dummy
206  */
207 static void
208 pci_parse_slot_usage(char *aopt)
209 {
210 
211 	EPRINTLN("Invalid PCI slot info field \"%s\"", aopt);
212 }
213 
214 /*
215  * Helper function to parse a list of comma-separated options where
216  * each option is formatted as "name[=value]".  If no value is
217  * provided, the option is treated as a boolean and is given a value
218  * of true.
219  */
220 int
221 pci_parse_legacy_config(nvlist_t *nvl, const char *opt)
222 {
223 	char *config, *name, *tofree, *value;
224 
225 	if (opt == NULL)
226 		return (0);
227 
228 	config = tofree = strdup(opt);
229 	while ((name = strsep(&config, ",")) != NULL) {
230 		value = strchr(name, '=');
231 		if (value != NULL) {
232 			*value = '\0';
233 			value++;
234 			set_config_value_node(nvl, name, value);
235 		} else
236 			set_config_bool_node(nvl, name, true);
237 	}
238 	free(tofree);
239 	return (0);
240 }
241 
242 /*
243  * PCI device configuration is stored in MIBs that encode the device's
244  * location:
245  *
246  * pci.<bus>.<slot>.<func>
247  *
248  * Where "bus", "slot", and "func" are all decimal values without
249  * leading zeroes.  Each valid device must have a "device" node which
250  * identifies the driver model of the device.
251  *
252  * Device backends can provide a parser for the "config" string.  If
253  * a custom parser is not provided, pci_parse_legacy_config() is used
254  * to parse the string.
255  */
256 int
257 pci_parse_slot(char *opt)
258 {
259 	char node_name[sizeof("pci.XXX.XX.X")];
260 	struct pci_devemu *pde;
261 	char *emul, *config, *str, *cp;
262 	int error, bnum, snum, fnum;
263 	nvlist_t *nvl;
264 
265 	error = -1;
266 	str = strdup(opt);
267 
268 	emul = config = NULL;
269 	if ((cp = strchr(str, ',')) != NULL) {
270 		*cp = '\0';
271 		emul = cp + 1;
272 		if ((cp = strchr(emul, ',')) != NULL) {
273 			*cp = '\0';
274 			config = cp + 1;
275 		}
276 	} else {
277 		pci_parse_slot_usage(opt);
278 		goto done;
279 	}
280 
281 	/* <bus>:<slot>:<func> */
282 	if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
283 		bnum = 0;
284 		/* <slot>:<func> */
285 		if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
286 			fnum = 0;
287 			/* <slot> */
288 			if (sscanf(str, "%d", &snum) != 1) {
289 				snum = -1;
290 			}
291 		}
292 	}
293 
294 	if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
295 	    fnum < 0 || fnum >= MAXFUNCS) {
296 		pci_parse_slot_usage(opt);
297 		goto done;
298 	}
299 
300 	pde = pci_emul_finddev(emul);
301 	if (pde == NULL) {
302 		EPRINTLN("pci slot %d:%d:%d: unknown device \"%s\"", bnum, snum,
303 		    fnum, emul);
304 		goto done;
305 	}
306 
307 	snprintf(node_name, sizeof(node_name), "pci.%d.%d.%d", bnum, snum,
308 	    fnum);
309 	nvl = find_config_node(node_name);
310 	if (nvl != NULL) {
311 		EPRINTLN("pci slot %d:%d:%d already occupied!", bnum, snum,
312 		    fnum);
313 		goto done;
314 	}
315 	nvl = create_config_node(node_name);
316 	if (pde->pe_alias != NULL)
317 		set_config_value_node(nvl, "device", pde->pe_alias);
318 	else
319 		set_config_value_node(nvl, "device", pde->pe_emu);
320 
321 	if (pde->pe_legacy_config != NULL)
322 		error = pde->pe_legacy_config(nvl, config);
323 	else
324 		error = pci_parse_legacy_config(nvl, config);
325 done:
326 	free(str);
327 	return (error);
328 }
329 
330 void
331 pci_print_supported_devices(void)
332 {
333 	struct pci_devemu **pdpp, *pdp;
334 
335 	SET_FOREACH(pdpp, pci_devemu_set) {
336 		pdp = *pdpp;
337 		printf("%s\n", pdp->pe_emu);
338 	}
339 }
340 
341 uint32_t
342 pci_config_read_reg(const struct pcisel *const host_sel, nvlist_t *nvl,
343     const uint32_t reg, const uint8_t size, const uint32_t def)
344 {
345 	const char *config;
346 	const nvlist_t *pci_regs;
347 
348 	assert(size == 1 || size == 2 || size == 4);
349 
350 	pci_regs = find_relative_config_node(nvl, "pcireg");
351 	if (pci_regs == NULL) {
352 		return def;
353 	}
354 
355 	switch (reg) {
356 	case PCIR_DEVICE:
357 		config = get_config_value_node(pci_regs, "device");
358 		break;
359 	case PCIR_VENDOR:
360 		config = get_config_value_node(pci_regs, "vendor");
361 		break;
362 	case PCIR_REVID:
363 		config = get_config_value_node(pci_regs, "revid");
364 		break;
365 	case PCIR_SUBVEND_0:
366 		config = get_config_value_node(pci_regs, "subvendor");
367 		break;
368 	case PCIR_SUBDEV_0:
369 		config = get_config_value_node(pci_regs, "subdevice");
370 		break;
371 	default:
372 		return (-1);
373 	}
374 
375 	if (config == NULL) {
376 		return def;
377 	} else if (host_sel != NULL && strcmp(config, "host") == 0) {
378 		return read_config(host_sel, reg, size);
379 	} else {
380 		return strtol(config, NULL, 16);
381 	}
382 }
383 
384 static int
385 pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
386 {
387 
388 	if (offset < pi->pi_msix.pba_offset)
389 		return (0);
390 
391 	if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
392 		return (0);
393 	}
394 
395 	return (1);
396 }
397 
398 int
399 pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
400 		     uint64_t value)
401 {
402 	int msix_entry_offset;
403 	int tab_index;
404 	char *dest;
405 
406 	/* support only 4 or 8 byte writes */
407 	if (size != 4 && size != 8)
408 		return (-1);
409 
410 	/*
411 	 * Return if table index is beyond what device supports
412 	 */
413 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
414 	if (tab_index >= pi->pi_msix.table_count)
415 		return (-1);
416 
417 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
418 
419 	/* support only aligned writes */
420 	if ((msix_entry_offset % size) != 0)
421 		return (-1);
422 
423 	dest = (char *)(pi->pi_msix.table + tab_index);
424 	dest += msix_entry_offset;
425 
426 	if (size == 4)
427 		*((uint32_t *)dest) = value;
428 	else
429 		*((uint64_t *)dest) = value;
430 
431 	return (0);
432 }
433 
434 uint64_t
435 pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
436 {
437 	char *dest;
438 	int msix_entry_offset;
439 	int tab_index;
440 	uint64_t retval = ~0;
441 
442 	/*
443 	 * The PCI standard only allows 4 and 8 byte accesses to the MSI-X
444 	 * table but we also allow 1 byte access to accommodate reads from
445 	 * ddb.
446 	 */
447 	if (size != 1 && size != 4 && size != 8)
448 		return (retval);
449 
450 	msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
451 
452 	/* support only aligned reads */
453 	if ((msix_entry_offset % size) != 0) {
454 		return (retval);
455 	}
456 
457 	tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
458 
459 	if (tab_index < pi->pi_msix.table_count) {
460 		/* valid MSI-X Table access */
461 		dest = (char *)(pi->pi_msix.table + tab_index);
462 		dest += msix_entry_offset;
463 
464 		if (size == 1)
465 			retval = *((uint8_t *)dest);
466 		else if (size == 4)
467 			retval = *((uint32_t *)dest);
468 		else
469 			retval = *((uint64_t *)dest);
470 	} else if (pci_valid_pba_offset(pi, offset)) {
471 		/* return 0 for PBA access */
472 		retval = 0;
473 	}
474 
475 	return (retval);
476 }
477 
478 int
479 pci_msix_table_bar(struct pci_devinst *pi)
480 {
481 
482 	if (pi->pi_msix.table != NULL)
483 		return (pi->pi_msix.table_bar);
484 	else
485 		return (-1);
486 }
487 
488 int
489 pci_msix_pba_bar(struct pci_devinst *pi)
490 {
491 
492 	if (pi->pi_msix.table != NULL)
493 		return (pi->pi_msix.pba_bar);
494 	else
495 		return (-1);
496 }
497 
498 static int
499 pci_emul_io_handler(struct vmctx *ctx __unused, int in, int port,
500     int bytes, uint32_t *eax, void *arg)
501 {
502 	struct pci_devinst *pdi = arg;
503 	struct pci_devemu *pe = pdi->pi_d;
504 	uint64_t offset;
505 	int i;
506 
507 	assert(port >= 0);
508 
509 	for (i = 0; i <= PCI_BARMAX; i++) {
510 		if (pdi->pi_bar[i].type == PCIBAR_IO &&
511 		    (uint64_t)port >= pdi->pi_bar[i].addr &&
512 		    (uint64_t)port + bytes <=
513 		    pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
514 			offset = port - pdi->pi_bar[i].addr;
515 			if (in)
516 				*eax = (*pe->pe_barread)(pdi, i,
517 							 offset, bytes);
518 			else
519 				(*pe->pe_barwrite)(pdi, i, offset,
520 						   bytes, *eax);
521 			return (0);
522 		}
523 	}
524 	return (-1);
525 }
526 
527 static int
528 pci_emul_mem_handler(struct vcpu *vcpu __unused, int dir,
529     uint64_t addr, int size, uint64_t *val, void *arg1, long arg2)
530 {
531 	struct pci_devinst *pdi = arg1;
532 	struct pci_devemu *pe = pdi->pi_d;
533 	uint64_t offset;
534 	int bidx = (int) arg2;
535 
536 	assert(bidx <= PCI_BARMAX);
537 	assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
538 	       pdi->pi_bar[bidx].type == PCIBAR_MEM64);
539 	assert(addr >= pdi->pi_bar[bidx].addr &&
540 	       addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
541 
542 	offset = addr - pdi->pi_bar[bidx].addr;
543 
544 	if (dir == MEM_F_WRITE) {
545 		if (size == 8) {
546 			(*pe->pe_barwrite)(pdi, bidx, offset,
547 					   4, *val & 0xffffffff);
548 			(*pe->pe_barwrite)(pdi, bidx, offset + 4,
549 					   4, *val >> 32);
550 		} else {
551 			(*pe->pe_barwrite)(pdi, bidx, offset,
552 					   size, *val);
553 		}
554 	} else {
555 		if (size == 8) {
556 			*val = (*pe->pe_barread)(pdi, bidx,
557 						 offset, 4);
558 			*val |= (*pe->pe_barread)(pdi, bidx,
559 						  offset + 4, 4) << 32;
560 		} else {
561 			*val = (*pe->pe_barread)(pdi, bidx,
562 						 offset, size);
563 		}
564 	}
565 
566 	return (0);
567 }
568 
569 
570 static int
571 pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
572 			uint64_t *addr)
573 {
574 	uint64_t base;
575 
576 	assert((size & (size - 1)) == 0);	/* must be a power of 2 */
577 
578 	base = roundup2(*baseptr, size);
579 
580 	if (base + size <= limit) {
581 		*addr = base;
582 		*baseptr = base + size;
583 		return (0);
584 	} else
585 		return (-1);
586 }
587 
588 /*
589  * Register (or unregister) the MMIO or I/O region associated with the BAR
590  * register 'idx' of an emulated pci device.
591  */
592 static void
593 modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
594 {
595 	struct pci_devemu *pe;
596 	int error;
597 	struct inout_port iop;
598 	struct mem_range mr;
599 
600 	pe = pi->pi_d;
601 	switch (pi->pi_bar[idx].type) {
602 	case PCIBAR_IO:
603 		bzero(&iop, sizeof(struct inout_port));
604 		iop.name = pi->pi_name;
605 		iop.port = pi->pi_bar[idx].addr;
606 		iop.size = pi->pi_bar[idx].size;
607 		if (registration) {
608 			iop.flags = IOPORT_F_INOUT;
609 			iop.handler = pci_emul_io_handler;
610 			iop.arg = pi;
611 			error = register_inout(&iop);
612 		} else
613 			error = unregister_inout(&iop);
614 		break;
615 	case PCIBAR_MEM32:
616 	case PCIBAR_MEM64:
617 		bzero(&mr, sizeof(struct mem_range));
618 		mr.name = pi->pi_name;
619 		mr.base = pi->pi_bar[idx].addr;
620 		mr.size = pi->pi_bar[idx].size;
621 		if (registration) {
622 			mr.flags = MEM_F_RW;
623 			mr.handler = pci_emul_mem_handler;
624 			mr.arg1 = pi;
625 			mr.arg2 = idx;
626 			error = register_mem(&mr);
627 		} else
628 			error = unregister_mem(&mr);
629 		break;
630 	case PCIBAR_ROM:
631 		error = 0;
632 		break;
633 	default:
634 		error = EINVAL;
635 		break;
636 	}
637 	assert(error == 0);
638 
639 	if (pe->pe_baraddr != NULL)
640 		(*pe->pe_baraddr)(pi, idx, registration, pi->pi_bar[idx].addr);
641 }
642 
643 static void
644 unregister_bar(struct pci_devinst *pi, int idx)
645 {
646 
647 	modify_bar_registration(pi, idx, 0);
648 }
649 
650 static void
651 register_bar(struct pci_devinst *pi, int idx)
652 {
653 
654 	modify_bar_registration(pi, idx, 1);
655 }
656 
657 /* Is the ROM enabled for the emulated pci device? */
658 static int
659 romen(struct pci_devinst *pi)
660 {
661 	return (pi->pi_bar[PCI_ROM_IDX].lobits & PCIM_BIOS_ENABLE) ==
662 	    PCIM_BIOS_ENABLE;
663 }
664 
665 /* Are we decoding i/o port accesses for the emulated pci device? */
666 static int
667 porten(struct pci_devinst *pi)
668 {
669 	uint16_t cmd;
670 
671 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
672 
673 	return (cmd & PCIM_CMD_PORTEN);
674 }
675 
676 /* Are we decoding memory accesses for the emulated pci device? */
677 static int
678 memen(struct pci_devinst *pi)
679 {
680 	uint16_t cmd;
681 
682 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
683 
684 	return (cmd & PCIM_CMD_MEMEN);
685 }
686 
687 /*
688  * Update the MMIO or I/O address that is decoded by the BAR register.
689  *
690  * If the pci device has enabled the address space decoding then intercept
691  * the address range decoded by the BAR register.
692  */
693 static void
694 update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type)
695 {
696 	int decode;
697 
698 	if (pi->pi_bar[idx].type == PCIBAR_IO)
699 		decode = porten(pi);
700 	else
701 		decode = memen(pi);
702 
703 	if (decode)
704 		unregister_bar(pi, idx);
705 
706 	switch (type) {
707 	case PCIBAR_IO:
708 	case PCIBAR_MEM32:
709 		pi->pi_bar[idx].addr = addr;
710 		break;
711 	case PCIBAR_MEM64:
712 		pi->pi_bar[idx].addr &= ~0xffffffffUL;
713 		pi->pi_bar[idx].addr |= addr;
714 		break;
715 	case PCIBAR_MEMHI64:
716 		pi->pi_bar[idx].addr &= 0xffffffff;
717 		pi->pi_bar[idx].addr |= addr;
718 		break;
719 	default:
720 		assert(0);
721 	}
722 
723 	if (decode)
724 		register_bar(pi, idx);
725 }
726 
727 int
728 pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
729     uint64_t size)
730 {
731 	assert((type == PCIBAR_ROM) || (idx >= 0 && idx <= PCI_BARMAX));
732 	assert((type != PCIBAR_ROM) || (idx == PCI_ROM_IDX));
733 
734 	if ((size & (size - 1)) != 0)
735 		size = 1UL << flsl(size);	/* round up to a power of 2 */
736 
737 	/* Enforce minimum BAR sizes required by the PCI standard */
738 	if (type == PCIBAR_IO) {
739 		if (size < 4)
740 			size = 4;
741 	} else if (type == PCIBAR_ROM) {
742 		if (size < ~PCIM_BIOS_ADDR_MASK + 1)
743 			size = ~PCIM_BIOS_ADDR_MASK + 1;
744 	} else {
745 		if (size < 16)
746 			size = 16;
747 	}
748 
749 	/*
750 	 * To reduce fragmentation of the MMIO space, we allocate the BARs by
751 	 * size. Therefore, don't allocate the BAR yet. We create a list of all
752 	 * BAR allocation which is sorted by BAR size. When all PCI devices are
753 	 * initialized, we will assign an address to the BARs.
754 	 */
755 
756 	/* create a new list entry */
757 	struct pci_bar_allocation *const new_bar = malloc(sizeof(*new_bar));
758 	memset(new_bar, 0, sizeof(*new_bar));
759 	new_bar->pdi = pdi;
760 	new_bar->idx = idx;
761 	new_bar->type = type;
762 	new_bar->size = size;
763 
764 	/*
765 	 * Search for a BAR which size is lower than the size of our newly
766 	 * allocated BAR.
767 	 */
768 	struct pci_bar_allocation *bar = NULL;
769 	TAILQ_FOREACH(bar, &pci_bars, chain) {
770 		if (bar->size < size) {
771 			break;
772 		}
773 	}
774 
775 	if (bar == NULL) {
776 		/*
777 		 * Either the list is empty or new BAR is the smallest BAR of
778 		 * the list. Append it to the end of our list.
779 		 */
780 		TAILQ_INSERT_TAIL(&pci_bars, new_bar, chain);
781 	} else {
782 		/*
783 		 * The found BAR is smaller than our new BAR. For that reason,
784 		 * insert our new BAR before the found BAR.
785 		 */
786 		TAILQ_INSERT_BEFORE(bar, new_bar, chain);
787 	}
788 
789 	/*
790 	 * pci_passthru devices synchronize their physical and virtual command
791 	 * register on init. For that reason, the virtual cmd reg should be
792 	 * updated as early as possible.
793 	 */
794 	uint16_t enbit = 0;
795 	switch (type) {
796 	case PCIBAR_IO:
797 		enbit = PCIM_CMD_PORTEN;
798 		break;
799 	case PCIBAR_MEM64:
800 	case PCIBAR_MEM32:
801 		enbit = PCIM_CMD_MEMEN;
802 		break;
803 	default:
804 		enbit = 0;
805 		break;
806 	}
807 
808 	const uint16_t cmd = pci_get_cfgdata16(pdi, PCIR_COMMAND);
809 	pci_set_cfgdata16(pdi, PCIR_COMMAND, cmd | enbit);
810 
811 	return (0);
812 }
813 
814 static int
815 pci_emul_assign_bar(struct pci_devinst *const pdi, const int idx,
816     const enum pcibar_type type, const uint64_t size)
817 {
818 	int error;
819 	uint64_t *baseptr, limit, addr, mask, lobits, bar;
820 
821 	switch (type) {
822 	case PCIBAR_NONE:
823 		baseptr = NULL;
824 		addr = mask = lobits = 0;
825 		break;
826 	case PCIBAR_IO:
827 		baseptr = &pci_emul_iobase;
828 		limit = PCI_EMUL_IOLIMIT;
829 		mask = PCIM_BAR_IO_BASE;
830 		lobits = PCIM_BAR_IO_SPACE;
831 		break;
832 	case PCIBAR_MEM64:
833 		/*
834 		 * XXX
835 		 * Some drivers do not work well if the 64-bit BAR is allocated
836 		 * above 4GB. Allow for this by allocating small requests under
837 		 * 4GB unless then allocation size is larger than some arbitrary
838 		 * number (128MB currently).
839 		 */
840 		if (size > 128 * 1024 * 1024) {
841 			baseptr = &pci_emul_membase64;
842 			limit = pci_emul_memlim64;
843 			mask = PCIM_BAR_MEM_BASE;
844 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
845 				 PCIM_BAR_MEM_PREFETCH;
846 		} else {
847 			baseptr = &pci_emul_membase32;
848 			limit = PCI_EMUL_MEMLIMIT32;
849 			mask = PCIM_BAR_MEM_BASE;
850 			lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
851 		}
852 		break;
853 	case PCIBAR_MEM32:
854 		baseptr = &pci_emul_membase32;
855 		limit = PCI_EMUL_MEMLIMIT32;
856 		mask = PCIM_BAR_MEM_BASE;
857 		lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
858 		break;
859 	case PCIBAR_ROM:
860 		/* do not claim memory for ROM. OVMF will do it for us. */
861 		baseptr = NULL;
862 		limit = 0;
863 		mask = PCIM_BIOS_ADDR_MASK;
864 		lobits = 0;
865 		break;
866 	default:
867 		printf("pci_emul_alloc_base: invalid bar type %d\n", type);
868 		assert(0);
869 	}
870 
871 	if (baseptr != NULL) {
872 		error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
873 		if (error != 0)
874 			return (error);
875 	} else {
876 		addr = 0;
877 	}
878 
879 	pdi->pi_bar[idx].type = type;
880 	pdi->pi_bar[idx].addr = addr;
881 	pdi->pi_bar[idx].size = size;
882 	/*
883 	 * passthru devices are using same lobits as physical device they set
884 	 * this property
885 	 */
886 	if (pdi->pi_bar[idx].lobits != 0) {
887 		lobits = pdi->pi_bar[idx].lobits;
888 	} else {
889 		pdi->pi_bar[idx].lobits = lobits;
890 	}
891 
892 	/* Initialize the BAR register in config space */
893 	bar = (addr & mask) | lobits;
894 	pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
895 
896 	if (type == PCIBAR_MEM64) {
897 		assert(idx + 1 <= PCI_BARMAX);
898 		pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
899 		pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
900 	}
901 
902 	if (type != PCIBAR_ROM) {
903 		register_bar(pdi, idx);
904 	}
905 
906 	return (0);
907 }
908 
909 int
910 pci_emul_alloc_rom(struct pci_devinst *const pdi, const uint64_t size,
911     void **const addr)
912 {
913 	/* allocate ROM space once on first call */
914 	if (pci_emul_rombase == 0) {
915 		pci_emul_rombase = vm_create_devmem(pdi->pi_vmctx, VM_PCIROM,
916 		    "pcirom", PCI_EMUL_ROMSIZE);
917 		if (pci_emul_rombase == MAP_FAILED) {
918 			warnx("%s: failed to create rom segment", __func__);
919 			return (-1);
920 		}
921 		pci_emul_romlim = pci_emul_rombase + PCI_EMUL_ROMSIZE;
922 		pci_emul_romoffset = 0;
923 	}
924 
925 	/* ROM size should be a power of 2 and greater than 2 KB */
926 	const uint64_t rom_size = MAX(1UL << flsl(size),
927 	    ~PCIM_BIOS_ADDR_MASK + 1);
928 
929 	/* check if ROM fits into ROM space */
930 	if (pci_emul_romoffset + rom_size > PCI_EMUL_ROMSIZE) {
931 		warnx("%s: no space left in rom segment:", __func__);
932 		warnx("%16lu bytes left",
933 		    PCI_EMUL_ROMSIZE - pci_emul_romoffset);
934 		warnx("%16lu bytes required by %d/%d/%d", rom_size, pdi->pi_bus,
935 		    pdi->pi_slot, pdi->pi_func);
936 		return (-1);
937 	}
938 
939 	/* allocate ROM BAR */
940 	const int error = pci_emul_alloc_bar(pdi, PCI_ROM_IDX, PCIBAR_ROM,
941 	    rom_size);
942 	if (error)
943 		return error;
944 
945 	/* return address */
946 	*addr = pci_emul_rombase + pci_emul_romoffset;
947 
948 	/* save offset into ROM Space */
949 	pdi->pi_romoffset = pci_emul_romoffset;
950 
951 	/* increase offset for next ROM */
952 	pci_emul_romoffset += rom_size;
953 
954 	return (0);
955 }
956 
957 int
958 pci_emul_add_boot_device(struct pci_devinst *pi, int bootindex)
959 {
960 	struct boot_device *new_device, *device;
961 
962 	/* don't permit a negative bootindex */
963 	if (bootindex < 0) {
964 		errx(4, "Invalid bootindex %d for %s", bootindex, pi->pi_name);
965 	}
966 
967 	/* alloc new boot device */
968 	new_device = calloc(1, sizeof(struct boot_device));
969 	if (new_device == NULL) {
970 		return (ENOMEM);
971 	}
972 	new_device->pdi = pi;
973 	new_device->bootindex = bootindex;
974 
975 	/* search for boot device with higher boot index */
976 	TAILQ_FOREACH(device, &boot_devices, boot_device_chain) {
977 		if (device->bootindex == bootindex) {
978 			errx(4,
979 			    "Could not set bootindex %d for %s. Bootindex already occupied by %s",
980 			    bootindex, pi->pi_name, device->pdi->pi_name);
981 		} else if (device->bootindex > bootindex) {
982 			break;
983 		}
984 	}
985 
986 	/* add boot device to queue */
987 	if (device == NULL) {
988 		TAILQ_INSERT_TAIL(&boot_devices, new_device, boot_device_chain);
989 	} else {
990 		TAILQ_INSERT_BEFORE(device, new_device, boot_device_chain);
991 	}
992 
993 	return (0);
994 }
995 
996 #define	CAP_START_OFFSET	0x40
997 static int
998 pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
999 {
1000 	int i, capoff, reallen;
1001 	uint16_t sts;
1002 
1003 	assert(caplen > 0);
1004 
1005 	reallen = roundup2(caplen, 4);		/* dword aligned */
1006 
1007 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1008 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
1009 		capoff = CAP_START_OFFSET;
1010 	else
1011 		capoff = pi->pi_capend + 1;
1012 
1013 	/* Check if we have enough space */
1014 	if (capoff + reallen > PCI_REGMAX + 1)
1015 		return (-1);
1016 
1017 	/* Set the previous capability pointer */
1018 	if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
1019 		pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
1020 		pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
1021 	} else
1022 		pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
1023 
1024 	/* Copy the capability */
1025 	for (i = 0; i < caplen; i++)
1026 		pci_set_cfgdata8(pi, capoff + i, capdata[i]);
1027 
1028 	/* Set the next capability pointer */
1029 	pci_set_cfgdata8(pi, capoff + 1, 0);
1030 
1031 	pi->pi_prevcap = capoff;
1032 	pi->pi_capend = capoff + reallen - 1;
1033 	return (0);
1034 }
1035 
1036 static struct pci_devemu *
1037 pci_emul_finddev(const char *name)
1038 {
1039 	struct pci_devemu **pdpp, *pdp;
1040 
1041 	SET_FOREACH(pdpp, pci_devemu_set) {
1042 		pdp = *pdpp;
1043 		if (!strcmp(pdp->pe_emu, name)) {
1044 			return (pdp);
1045 		}
1046 	}
1047 
1048 	return (NULL);
1049 }
1050 
1051 static int
1052 pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
1053     int func, struct funcinfo *fi)
1054 {
1055 	struct pci_devinst *pdi;
1056 	int err;
1057 
1058 	pdi = calloc(1, sizeof(struct pci_devinst));
1059 
1060 	pdi->pi_vmctx = ctx;
1061 	pdi->pi_bus = bus;
1062 	pdi->pi_slot = slot;
1063 	pdi->pi_func = func;
1064 	pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
1065 	pdi->pi_lintr.pin = 0;
1066 	pdi->pi_lintr.state = IDLE;
1067 	pdi->pi_lintr.pirq_pin = 0;
1068 	pdi->pi_lintr.ioapic_irq = 0;
1069 	pdi->pi_d = pde;
1070 	snprintf(pdi->pi_name, PI_NAMESZ, "%s@pci.%d.%d.%d", pde->pe_emu, bus,
1071 	    slot, func);
1072 
1073 	/* Disable legacy interrupts */
1074 	pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
1075 	pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
1076 
1077 	pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_BUSMASTEREN);
1078 
1079 	err = (*pde->pe_init)(pdi, fi->fi_config);
1080 	if (err == 0)
1081 		fi->fi_devi = pdi;
1082 	else
1083 		free(pdi);
1084 
1085 	return (err);
1086 }
1087 
1088 void
1089 pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
1090 {
1091 	int mmc;
1092 
1093 	/* Number of msi messages must be a power of 2 between 1 and 32 */
1094 	assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
1095 	mmc = ffs(msgnum) - 1;
1096 
1097 	bzero(msicap, sizeof(struct msicap));
1098 	msicap->capid = PCIY_MSI;
1099 	msicap->nextptr = nextptr;
1100 	msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
1101 }
1102 
1103 int
1104 pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
1105 {
1106 	struct msicap msicap;
1107 
1108 	pci_populate_msicap(&msicap, msgnum, 0);
1109 
1110 	return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
1111 }
1112 
1113 static void
1114 pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
1115 		     uint32_t msix_tab_size)
1116 {
1117 
1118 	assert(msix_tab_size % 4096 == 0);
1119 
1120 	bzero(msixcap, sizeof(struct msixcap));
1121 	msixcap->capid = PCIY_MSIX;
1122 
1123 	/*
1124 	 * Message Control Register, all fields set to
1125 	 * zero except for the Table Size.
1126 	 * Note: Table size N is encoded as N-1
1127 	 */
1128 	msixcap->msgctrl = msgnum - 1;
1129 
1130 	/*
1131 	 * MSI-X BAR setup:
1132 	 * - MSI-X table start at offset 0
1133 	 * - PBA table starts at a 4K aligned offset after the MSI-X table
1134 	 */
1135 	msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
1136 	msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
1137 }
1138 
1139 static void
1140 pci_msix_table_init(struct pci_devinst *pi, int table_entries)
1141 {
1142 	int i, table_size;
1143 
1144 	assert(table_entries > 0);
1145 	assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
1146 
1147 	table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
1148 	pi->pi_msix.table = calloc(1, table_size);
1149 
1150 	/* set mask bit of vector control register */
1151 	for (i = 0; i < table_entries; i++)
1152 		pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
1153 }
1154 
1155 int
1156 pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
1157 {
1158 	uint32_t tab_size;
1159 	struct msixcap msixcap;
1160 
1161 	assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
1162 	assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
1163 
1164 	tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
1165 
1166 	/* Align table size to nearest 4K */
1167 	tab_size = roundup2(tab_size, 4096);
1168 
1169 	pi->pi_msix.table_bar = barnum;
1170 	pi->pi_msix.pba_bar   = barnum;
1171 	pi->pi_msix.table_offset = 0;
1172 	pi->pi_msix.table_count = msgnum;
1173 	pi->pi_msix.pba_offset = tab_size;
1174 	pi->pi_msix.pba_size = PBA_SIZE(msgnum);
1175 
1176 	pci_msix_table_init(pi, msgnum);
1177 
1178 	pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
1179 
1180 	/* allocate memory for MSI-X Table and PBA */
1181 	pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
1182 				tab_size + pi->pi_msix.pba_size);
1183 
1184 	return (pci_emul_add_capability(pi, (u_char *)&msixcap,
1185 					sizeof(msixcap)));
1186 }
1187 
1188 static void
1189 msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1190 		 int bytes, uint32_t val)
1191 {
1192 	uint16_t msgctrl, rwmask;
1193 	int off;
1194 
1195 	off = offset - capoff;
1196 	/* Message Control Register */
1197 	if (off == 2 && bytes == 2) {
1198 		rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
1199 		msgctrl = pci_get_cfgdata16(pi, offset);
1200 		msgctrl &= ~rwmask;
1201 		msgctrl |= val & rwmask;
1202 		val = msgctrl;
1203 
1204 		pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
1205 		pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
1206 		pci_lintr_update(pi);
1207 	}
1208 
1209 	CFGWRITE(pi, offset, val, bytes);
1210 }
1211 
1212 static void
1213 msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
1214 		int bytes, uint32_t val)
1215 {
1216 	uint16_t msgctrl, rwmask, msgdata, mme;
1217 	uint32_t addrlo;
1218 
1219 	/*
1220 	 * If guest is writing to the message control register make sure
1221 	 * we do not overwrite read-only fields.
1222 	 */
1223 	if ((offset - capoff) == 2 && bytes == 2) {
1224 		rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
1225 		msgctrl = pci_get_cfgdata16(pi, offset);
1226 		msgctrl &= ~rwmask;
1227 		msgctrl |= val & rwmask;
1228 		val = msgctrl;
1229 	}
1230 	CFGWRITE(pi, offset, val, bytes);
1231 
1232 	msgctrl = pci_get_cfgdata16(pi, capoff + 2);
1233 	addrlo = pci_get_cfgdata32(pi, capoff + 4);
1234 	if (msgctrl & PCIM_MSICTRL_64BIT)
1235 		msgdata = pci_get_cfgdata16(pi, capoff + 12);
1236 	else
1237 		msgdata = pci_get_cfgdata16(pi, capoff + 8);
1238 
1239 	mme = msgctrl & PCIM_MSICTRL_MME_MASK;
1240 	pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
1241 	if (pi->pi_msi.enabled) {
1242 		pi->pi_msi.addr = addrlo;
1243 		pi->pi_msi.msg_data = msgdata;
1244 		pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
1245 	} else {
1246 		pi->pi_msi.maxmsgnum = 0;
1247 	}
1248 	pci_lintr_update(pi);
1249 }
1250 
1251 static void
1252 pciecap_cfgwrite(struct pci_devinst *pi, int capoff __unused, int offset,
1253     int bytes, uint32_t val)
1254 {
1255 
1256 	/* XXX don't write to the readonly parts */
1257 	CFGWRITE(pi, offset, val, bytes);
1258 }
1259 
1260 #define	PCIECAP_VERSION	0x2
1261 int
1262 pci_emul_add_pciecap(struct pci_devinst *pi, int type)
1263 {
1264 	int err;
1265 	struct pciecap pciecap;
1266 
1267 	bzero(&pciecap, sizeof(pciecap));
1268 
1269 	/*
1270 	 * Use the integrated endpoint type for endpoints on a root complex bus.
1271 	 *
1272 	 * NB: bhyve currently only supports a single PCI bus that is the root
1273 	 * complex bus, so all endpoints are integrated.
1274 	 */
1275 	if ((type == PCIEM_TYPE_ENDPOINT) && (pi->pi_bus == 0))
1276 		type = PCIEM_TYPE_ROOT_INT_EP;
1277 
1278 	pciecap.capid = PCIY_EXPRESS;
1279 	pciecap.pcie_capabilities = PCIECAP_VERSION | type;
1280 	if (type != PCIEM_TYPE_ROOT_INT_EP) {
1281 		pciecap.link_capabilities = 0x411;	/* gen1, x1 */
1282 		pciecap.link_status = 0x11;		/* gen1, x1 */
1283 	}
1284 
1285 	err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
1286 	return (err);
1287 }
1288 
1289 /*
1290  * This function assumes that 'coff' is in the capabilities region of the
1291  * config space. A capoff parameter of zero will force a search for the
1292  * offset and type.
1293  */
1294 void
1295 pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val,
1296     uint8_t capoff, int capid)
1297 {
1298 	uint8_t nextoff;
1299 
1300 	/* Do not allow un-aligned writes */
1301 	if ((offset & (bytes - 1)) != 0)
1302 		return;
1303 
1304 	if (capoff == 0) {
1305 		/* Find the capability that we want to update */
1306 		capoff = CAP_START_OFFSET;
1307 		while (1) {
1308 			nextoff = pci_get_cfgdata8(pi, capoff + 1);
1309 			if (nextoff == 0)
1310 				break;
1311 			if (offset >= capoff && offset < nextoff)
1312 				break;
1313 
1314 			capoff = nextoff;
1315 		}
1316 		assert(offset >= capoff);
1317 		capid = pci_get_cfgdata8(pi, capoff);
1318 	}
1319 
1320 	/*
1321 	 * Capability ID and Next Capability Pointer are readonly.
1322 	 * However, some o/s's do 4-byte writes that include these.
1323 	 * For this case, trim the write back to 2 bytes and adjust
1324 	 * the data.
1325 	 */
1326 	if (offset == capoff || offset == capoff + 1) {
1327 		if (offset == capoff && bytes == 4) {
1328 			bytes = 2;
1329 			offset += 2;
1330 			val >>= 16;
1331 		} else
1332 			return;
1333 	}
1334 
1335 	switch (capid) {
1336 	case PCIY_MSI:
1337 		msicap_cfgwrite(pi, capoff, offset, bytes, val);
1338 		break;
1339 	case PCIY_MSIX:
1340 		msixcap_cfgwrite(pi, capoff, offset, bytes, val);
1341 		break;
1342 	case PCIY_EXPRESS:
1343 		pciecap_cfgwrite(pi, capoff, offset, bytes, val);
1344 		break;
1345 	default:
1346 		break;
1347 	}
1348 }
1349 
1350 static int
1351 pci_emul_iscap(struct pci_devinst *pi, int offset)
1352 {
1353 	uint16_t sts;
1354 
1355 	sts = pci_get_cfgdata16(pi, PCIR_STATUS);
1356 	if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
1357 		if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
1358 			return (1);
1359 	}
1360 	return (0);
1361 }
1362 
1363 static int
1364 pci_emul_fallback_handler(struct vcpu *vcpu __unused, int dir,
1365     uint64_t addr __unused, int size __unused, uint64_t *val,
1366     void *arg1 __unused, long arg2 __unused)
1367 {
1368 	/*
1369 	 * Ignore writes; return 0xff's for reads. The mem read code
1370 	 * will take care of truncating to the correct size.
1371 	 */
1372 	if (dir == MEM_F_READ) {
1373 		*val = 0xffffffffffffffff;
1374 	}
1375 
1376 	return (0);
1377 }
1378 
1379 static int
1380 pci_emul_ecfg_handler(struct vcpu *vcpu __unused, int dir, uint64_t addr,
1381     int bytes, uint64_t *val, void *arg1 __unused, long arg2 __unused)
1382 {
1383 	int bus, slot, func, coff, in;
1384 
1385 	coff = addr & 0xfff;
1386 	func = (addr >> 12) & 0x7;
1387 	slot = (addr >> 15) & 0x1f;
1388 	bus = (addr >> 20) & 0xff;
1389 	in = (dir == MEM_F_READ);
1390 	if (in)
1391 		*val = ~0UL;
1392 	pci_cfgrw(in, bus, slot, func, coff, bytes, (uint32_t *)val);
1393 	return (0);
1394 }
1395 
1396 uint64_t
1397 pci_ecfg_base(void)
1398 {
1399 
1400 	return (PCI_EMUL_ECFG_BASE);
1401 }
1402 
1403 static int
1404 init_bootorder(void)
1405 {
1406 	struct boot_device *device;
1407 	FILE *fp;
1408 	char *bootorder;
1409 	size_t bootorder_len;
1410 
1411 	if (TAILQ_EMPTY(&boot_devices))
1412 		return (0);
1413 
1414 	fp = open_memstream(&bootorder, &bootorder_len);
1415 	TAILQ_FOREACH(device, &boot_devices, boot_device_chain) {
1416 		fprintf(fp, "/pci@i0cf8/pci@%d,%d\n",
1417 		    device->pdi->pi_slot, device->pdi->pi_func);
1418 	}
1419 	fclose(fp);
1420 
1421 	return (qemu_fwcfg_add_file("bootorder", bootorder_len, bootorder));
1422 }
1423 
1424 #define	BUSIO_ROUNDUP		32
1425 #define	BUSMEM32_ROUNDUP	(1024 * 1024)
1426 #define	BUSMEM64_ROUNDUP	(512 * 1024 * 1024)
1427 
1428 int
1429 init_pci(struct vmctx *ctx)
1430 {
1431 	char node_name[sizeof("pci.XXX.XX.X")];
1432 	struct mem_range mr;
1433 	struct pci_devemu *pde;
1434 	struct businfo *bi;
1435 	struct slotinfo *si;
1436 	struct funcinfo *fi;
1437 	nvlist_t *nvl;
1438 	const char *emul;
1439 	size_t lowmem;
1440 	int bus, slot, func;
1441 	int error;
1442 
1443 	if (vm_get_lowmem_limit(ctx) > PCI_EMUL_MEMBASE32)
1444 		errx(EX_OSERR, "Invalid lowmem limit");
1445 
1446 	pci_emul_iobase = PCI_EMUL_IOBASE;
1447 	pci_emul_membase32 = PCI_EMUL_MEMBASE32;
1448 
1449 	pci_emul_membase64 = 4*GB + vm_get_highmem_size(ctx);
1450 	pci_emul_membase64 = roundup2(pci_emul_membase64, PCI_EMUL_MEMSIZE64);
1451 	pci_emul_memlim64 = pci_emul_membase64 + PCI_EMUL_MEMSIZE64;
1452 
1453 	TAILQ_INIT(&boot_devices);
1454 
1455 	for (bus = 0; bus < MAXBUSES; bus++) {
1456 		snprintf(node_name, sizeof(node_name), "pci.%d", bus);
1457 		nvl = find_config_node(node_name);
1458 		if (nvl == NULL)
1459 			continue;
1460 		pci_businfo[bus] = calloc(1, sizeof(struct businfo));
1461 		bi = pci_businfo[bus];
1462 
1463 		/*
1464 		 * Keep track of the i/o and memory resources allocated to
1465 		 * this bus.
1466 		 */
1467 		bi->iobase = pci_emul_iobase;
1468 		bi->membase32 = pci_emul_membase32;
1469 		bi->membase64 = pci_emul_membase64;
1470 
1471 		/* first run: init devices */
1472 		for (slot = 0; slot < MAXSLOTS; slot++) {
1473 			si = &bi->slotinfo[slot];
1474 			for (func = 0; func < MAXFUNCS; func++) {
1475 				fi = &si->si_funcs[func];
1476 				snprintf(node_name, sizeof(node_name),
1477 				    "pci.%d.%d.%d", bus, slot, func);
1478 				nvl = find_config_node(node_name);
1479 				if (nvl == NULL)
1480 					continue;
1481 
1482 				fi->fi_config = nvl;
1483 				emul = get_config_value_node(nvl, "device");
1484 				if (emul == NULL) {
1485 					EPRINTLN("pci slot %d:%d:%d: missing "
1486 					    "\"device\" value", bus, slot, func);
1487 					return (EINVAL);
1488 				}
1489 				pde = pci_emul_finddev(emul);
1490 				if (pde == NULL) {
1491 					EPRINTLN("pci slot %d:%d:%d: unknown "
1492 					    "device \"%s\"", bus, slot, func,
1493 					    emul);
1494 					return (EINVAL);
1495 				}
1496 				if (pde->pe_alias != NULL) {
1497 					EPRINTLN("pci slot %d:%d:%d: legacy "
1498 					    "device \"%s\", use \"%s\" instead",
1499 					    bus, slot, func, emul,
1500 					    pde->pe_alias);
1501 					return (EINVAL);
1502 				}
1503 				fi->fi_pde = pde;
1504 				error = pci_emul_init(ctx, pde, bus, slot,
1505 				    func, fi);
1506 				if (error)
1507 					return (error);
1508 			}
1509 		}
1510 
1511 		/* second run: assign BARs and free list */
1512 		struct pci_bar_allocation *bar;
1513 		struct pci_bar_allocation *bar_tmp;
1514 		TAILQ_FOREACH_SAFE(bar, &pci_bars, chain, bar_tmp) {
1515 			pci_emul_assign_bar(bar->pdi, bar->idx, bar->type,
1516 			    bar->size);
1517 			free(bar);
1518 		}
1519 		TAILQ_INIT(&pci_bars);
1520 
1521 		/*
1522 		 * Add some slop to the I/O and memory resources decoded by
1523 		 * this bus to give a guest some flexibility if it wants to
1524 		 * reprogram the BARs.
1525 		 */
1526 		pci_emul_iobase += BUSIO_ROUNDUP;
1527 		pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
1528 		bi->iolimit = pci_emul_iobase;
1529 
1530 		pci_emul_membase32 += BUSMEM32_ROUNDUP;
1531 		pci_emul_membase32 = roundup2(pci_emul_membase32,
1532 		    BUSMEM32_ROUNDUP);
1533 		bi->memlimit32 = pci_emul_membase32;
1534 
1535 		pci_emul_membase64 += BUSMEM64_ROUNDUP;
1536 		pci_emul_membase64 = roundup2(pci_emul_membase64,
1537 		    BUSMEM64_ROUNDUP);
1538 		bi->memlimit64 = pci_emul_membase64;
1539 	}
1540 
1541 	/*
1542 	 * PCI backends are initialized before routing INTx interrupts
1543 	 * so that LPC devices are able to reserve ISA IRQs before
1544 	 * routing PIRQ pins.
1545 	 */
1546 	for (bus = 0; bus < MAXBUSES; bus++) {
1547 		if ((bi = pci_businfo[bus]) == NULL)
1548 			continue;
1549 
1550 		for (slot = 0; slot < MAXSLOTS; slot++) {
1551 			si = &bi->slotinfo[slot];
1552 			for (func = 0; func < MAXFUNCS; func++) {
1553 				fi = &si->si_funcs[func];
1554 				if (fi->fi_devi == NULL)
1555 					continue;
1556 				pci_lintr_route(fi->fi_devi);
1557 			}
1558 		}
1559 	}
1560 	lpc_pirq_routed();
1561 
1562 	if ((error = init_bootorder()) != 0) {
1563 		warnx("%s: Unable to init bootorder", __func__);
1564 		return (error);
1565 	}
1566 
1567 	/*
1568 	 * The guest physical memory map looks like the following:
1569 	 * [0,		    lowmem)		guest system memory
1570 	 * [lowmem,	    0xC0000000)		memory hole (may be absent)
1571 	 * [0xC0000000,     0xE0000000)		PCI hole (32-bit BAR allocation)
1572 	 * [0xE0000000,	    0xF0000000)		PCI extended config window
1573 	 * [0xF0000000,	    4GB)		LAPIC, IOAPIC, HPET, firmware
1574 	 * [4GB,	    4GB + highmem)
1575 	 */
1576 
1577 	/*
1578 	 * Accesses to memory addresses that are not allocated to system
1579 	 * memory or PCI devices return 0xff's.
1580 	 */
1581 	lowmem = vm_get_lowmem_size(ctx);
1582 	bzero(&mr, sizeof(struct mem_range));
1583 	mr.name = "PCI hole";
1584 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1585 	mr.base = lowmem;
1586 	mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
1587 	mr.handler = pci_emul_fallback_handler;
1588 	error = register_mem_fallback(&mr);
1589 	assert(error == 0);
1590 
1591 	/* PCI extended config space */
1592 	bzero(&mr, sizeof(struct mem_range));
1593 	mr.name = "PCI ECFG";
1594 	mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
1595 	mr.base = PCI_EMUL_ECFG_BASE;
1596 	mr.size = PCI_EMUL_ECFG_SIZE;
1597 	mr.handler = pci_emul_ecfg_handler;
1598 	error = register_mem(&mr);
1599 	assert(error == 0);
1600 
1601 	return (0);
1602 }
1603 
1604 static void
1605 pci_apic_prt_entry(int bus __unused, int slot, int pin, int pirq_pin __unused,
1606     int ioapic_irq, void *arg __unused)
1607 {
1608 
1609 	dsdt_line("  Package ()");
1610 	dsdt_line("  {");
1611 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1612 	dsdt_line("    0x%02X,", pin - 1);
1613 	dsdt_line("    Zero,");
1614 	dsdt_line("    0x%X", ioapic_irq);
1615 	dsdt_line("  },");
1616 }
1617 
1618 static void
1619 pci_pirq_prt_entry(int bus __unused, int slot, int pin, int pirq_pin,
1620     int ioapic_irq __unused, void *arg __unused)
1621 {
1622 	char *name;
1623 
1624 	name = lpc_pirq_name(pirq_pin);
1625 	if (name == NULL)
1626 		return;
1627 	dsdt_line("  Package ()");
1628 	dsdt_line("  {");
1629 	dsdt_line("    0x%X,", slot << 16 | 0xffff);
1630 	dsdt_line("    0x%02X,", pin - 1);
1631 	dsdt_line("    %s,", name);
1632 	dsdt_line("    0x00");
1633 	dsdt_line("  },");
1634 	free(name);
1635 }
1636 
1637 /*
1638  * A bhyve virtual machine has a flat PCI hierarchy with a root port
1639  * corresponding to each PCI bus.
1640  */
1641 static void
1642 pci_bus_write_dsdt(int bus)
1643 {
1644 	struct businfo *bi;
1645 	struct slotinfo *si;
1646 	struct pci_devinst *pi;
1647 	int count, func, slot;
1648 
1649 	/*
1650 	 * If there are no devices on this 'bus' then just return.
1651 	 */
1652 	if ((bi = pci_businfo[bus]) == NULL) {
1653 		/*
1654 		 * Bus 0 is special because it decodes the I/O ports used
1655 		 * for PCI config space access even if there are no devices
1656 		 * on it.
1657 		 */
1658 		if (bus != 0)
1659 			return;
1660 	}
1661 
1662 	dsdt_line("  Device (PC%02X)", bus);
1663 	dsdt_line("  {");
1664 	dsdt_line("    Name (_HID, EisaId (\"PNP0A03\"))");
1665 
1666 	dsdt_line("    Method (_BBN, 0, NotSerialized)");
1667 	dsdt_line("    {");
1668 	dsdt_line("        Return (0x%08X)", bus);
1669 	dsdt_line("    }");
1670 	dsdt_line("    Name (_CRS, ResourceTemplate ()");
1671 	dsdt_line("    {");
1672 	dsdt_line("      WordBusNumber (ResourceProducer, MinFixed, "
1673 	    "MaxFixed, PosDecode,");
1674 	dsdt_line("        0x0000,             // Granularity");
1675 	dsdt_line("        0x%04X,             // Range Minimum", bus);
1676 	dsdt_line("        0x%04X,             // Range Maximum", bus);
1677 	dsdt_line("        0x0000,             // Translation Offset");
1678 	dsdt_line("        0x0001,             // Length");
1679 	dsdt_line("        ,, )");
1680 
1681 	if (bus == 0) {
1682 		dsdt_indent(3);
1683 		dsdt_fixed_ioport(0xCF8, 8);
1684 		dsdt_unindent(3);
1685 
1686 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1687 		    "PosDecode, EntireRange,");
1688 		dsdt_line("        0x0000,             // Granularity");
1689 		dsdt_line("        0x0000,             // Range Minimum");
1690 		dsdt_line("        0x0CF7,             // Range Maximum");
1691 		dsdt_line("        0x0000,             // Translation Offset");
1692 		dsdt_line("        0x0CF8,             // Length");
1693 		dsdt_line("        ,, , TypeStatic)");
1694 
1695 		dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1696 		    "PosDecode, EntireRange,");
1697 		dsdt_line("        0x0000,             // Granularity");
1698 		dsdt_line("        0x0D00,             // Range Minimum");
1699 		dsdt_line("        0x%04X,             // Range Maximum",
1700 		    PCI_EMUL_IOBASE - 1);
1701 		dsdt_line("        0x0000,             // Translation Offset");
1702 		dsdt_line("        0x%04X,             // Length",
1703 		    PCI_EMUL_IOBASE - 0x0D00);
1704 		dsdt_line("        ,, , TypeStatic)");
1705 
1706 		if (bi == NULL) {
1707 			dsdt_line("    })");
1708 			goto done;
1709 		}
1710 	}
1711 	assert(bi != NULL);
1712 
1713 	/* i/o window */
1714 	dsdt_line("      WordIO (ResourceProducer, MinFixed, MaxFixed, "
1715 	    "PosDecode, EntireRange,");
1716 	dsdt_line("        0x0000,             // Granularity");
1717 	dsdt_line("        0x%04X,             // Range Minimum", bi->iobase);
1718 	dsdt_line("        0x%04X,             // Range Maximum",
1719 	    bi->iolimit - 1);
1720 	dsdt_line("        0x0000,             // Translation Offset");
1721 	dsdt_line("        0x%04X,             // Length",
1722 	    bi->iolimit - bi->iobase);
1723 	dsdt_line("        ,, , TypeStatic)");
1724 
1725 	/* mmio window (32-bit) */
1726 	dsdt_line("      DWordMemory (ResourceProducer, PosDecode, "
1727 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1728 	dsdt_line("        0x00000000,         // Granularity");
1729 	dsdt_line("        0x%08X,         // Range Minimum\n", bi->membase32);
1730 	dsdt_line("        0x%08X,         // Range Maximum\n",
1731 	    bi->memlimit32 - 1);
1732 	dsdt_line("        0x00000000,         // Translation Offset");
1733 	dsdt_line("        0x%08X,         // Length\n",
1734 	    bi->memlimit32 - bi->membase32);
1735 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1736 
1737 	/* mmio window (64-bit) */
1738 	dsdt_line("      QWordMemory (ResourceProducer, PosDecode, "
1739 	    "MinFixed, MaxFixed, NonCacheable, ReadWrite,");
1740 	dsdt_line("        0x0000000000000000, // Granularity");
1741 	dsdt_line("        0x%016lX, // Range Minimum\n", bi->membase64);
1742 	dsdt_line("        0x%016lX, // Range Maximum\n",
1743 	    bi->memlimit64 - 1);
1744 	dsdt_line("        0x0000000000000000, // Translation Offset");
1745 	dsdt_line("        0x%016lX, // Length\n",
1746 	    bi->memlimit64 - bi->membase64);
1747 	dsdt_line("        ,, , AddressRangeMemory, TypeStatic)");
1748 	dsdt_line("    })");
1749 
1750 	count = pci_count_lintr(bus);
1751 	if (count != 0) {
1752 		dsdt_indent(2);
1753 		dsdt_line("Name (PPRT, Package ()");
1754 		dsdt_line("{");
1755 		pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
1756 		dsdt_line("})");
1757 		dsdt_line("Name (APRT, Package ()");
1758 		dsdt_line("{");
1759 		pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
1760 		dsdt_line("})");
1761 		dsdt_line("Method (_PRT, 0, NotSerialized)");
1762 		dsdt_line("{");
1763 		dsdt_line("  If (PICM)");
1764 		dsdt_line("  {");
1765 		dsdt_line("    Return (APRT)");
1766 		dsdt_line("  }");
1767 		dsdt_line("  Else");
1768 		dsdt_line("  {");
1769 		dsdt_line("    Return (PPRT)");
1770 		dsdt_line("  }");
1771 		dsdt_line("}");
1772 		dsdt_unindent(2);
1773 	}
1774 
1775 	dsdt_indent(2);
1776 	for (slot = 0; slot < MAXSLOTS; slot++) {
1777 		si = &bi->slotinfo[slot];
1778 		for (func = 0; func < MAXFUNCS; func++) {
1779 			pi = si->si_funcs[func].fi_devi;
1780 			if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
1781 				pi->pi_d->pe_write_dsdt(pi);
1782 		}
1783 	}
1784 	dsdt_unindent(2);
1785 done:
1786 	dsdt_line("  }");
1787 }
1788 
1789 void
1790 pci_write_dsdt(void)
1791 {
1792 	int bus;
1793 
1794 	dsdt_indent(1);
1795 	dsdt_line("Name (PICM, 0x00)");
1796 	dsdt_line("Method (_PIC, 1, NotSerialized)");
1797 	dsdt_line("{");
1798 	dsdt_line("  Store (Arg0, PICM)");
1799 	dsdt_line("}");
1800 	dsdt_line("");
1801 	dsdt_line("Scope (_SB)");
1802 	dsdt_line("{");
1803 	for (bus = 0; bus < MAXBUSES; bus++)
1804 		pci_bus_write_dsdt(bus);
1805 	dsdt_line("}");
1806 	dsdt_unindent(1);
1807 }
1808 
1809 int
1810 pci_bus_configured(int bus)
1811 {
1812 	assert(bus >= 0 && bus < MAXBUSES);
1813 	return (pci_businfo[bus] != NULL);
1814 }
1815 
1816 int
1817 pci_msi_enabled(struct pci_devinst *pi)
1818 {
1819 	return (pi->pi_msi.enabled);
1820 }
1821 
1822 int
1823 pci_msi_maxmsgnum(struct pci_devinst *pi)
1824 {
1825 	if (pi->pi_msi.enabled)
1826 		return (pi->pi_msi.maxmsgnum);
1827 	else
1828 		return (0);
1829 }
1830 
1831 int
1832 pci_msix_enabled(struct pci_devinst *pi)
1833 {
1834 
1835 	return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
1836 }
1837 
1838 void
1839 pci_generate_msix(struct pci_devinst *pi, int index)
1840 {
1841 	struct msix_table_entry *mte;
1842 
1843 	if (!pci_msix_enabled(pi))
1844 		return;
1845 
1846 	if (pi->pi_msix.function_mask)
1847 		return;
1848 
1849 	if (index >= pi->pi_msix.table_count)
1850 		return;
1851 
1852 	mte = &pi->pi_msix.table[index];
1853 	if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
1854 		/* XXX Set PBA bit if interrupt is disabled */
1855 		vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data);
1856 	}
1857 }
1858 
1859 void
1860 pci_generate_msi(struct pci_devinst *pi, int index)
1861 {
1862 
1863 	if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
1864 		vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr,
1865 			     pi->pi_msi.msg_data + index);
1866 	}
1867 }
1868 
1869 static bool
1870 pci_lintr_permitted(struct pci_devinst *pi)
1871 {
1872 	uint16_t cmd;
1873 
1874 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
1875 	return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
1876 		(cmd & PCIM_CMD_INTxDIS)));
1877 }
1878 
1879 void
1880 pci_lintr_request(struct pci_devinst *pi)
1881 {
1882 	struct businfo *bi;
1883 	struct slotinfo *si;
1884 	int bestpin, bestcount, pin;
1885 
1886 	bi = pci_businfo[pi->pi_bus];
1887 	assert(bi != NULL);
1888 
1889 	/*
1890 	 * Just allocate a pin from our slot.  The pin will be
1891 	 * assigned IRQs later when interrupts are routed.
1892 	 */
1893 	si = &bi->slotinfo[pi->pi_slot];
1894 	bestpin = 0;
1895 	bestcount = si->si_intpins[0].ii_count;
1896 	for (pin = 1; pin < 4; pin++) {
1897 		if (si->si_intpins[pin].ii_count < bestcount) {
1898 			bestpin = pin;
1899 			bestcount = si->si_intpins[pin].ii_count;
1900 		}
1901 	}
1902 
1903 	si->si_intpins[bestpin].ii_count++;
1904 	pi->pi_lintr.pin = bestpin + 1;
1905 	pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
1906 }
1907 
1908 static void
1909 pci_lintr_route(struct pci_devinst *pi)
1910 {
1911 	struct businfo *bi;
1912 	struct intxinfo *ii;
1913 
1914 	if (pi->pi_lintr.pin == 0)
1915 		return;
1916 
1917 	bi = pci_businfo[pi->pi_bus];
1918 	assert(bi != NULL);
1919 	ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
1920 
1921 	/*
1922 	 * Attempt to allocate an I/O APIC pin for this intpin if one
1923 	 * is not yet assigned.
1924 	 */
1925 	if (ii->ii_ioapic_irq == 0)
1926 		ii->ii_ioapic_irq = ioapic_pci_alloc_irq(pi);
1927 	assert(ii->ii_ioapic_irq > 0);
1928 
1929 	/*
1930 	 * Attempt to allocate a PIRQ pin for this intpin if one is
1931 	 * not yet assigned.
1932 	 */
1933 	if (ii->ii_pirq_pin == 0)
1934 		ii->ii_pirq_pin = pirq_alloc_pin(pi);
1935 	assert(ii->ii_pirq_pin > 0);
1936 
1937 	pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq;
1938 	pi->pi_lintr.pirq_pin = ii->ii_pirq_pin;
1939 	pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin));
1940 }
1941 
1942 void
1943 pci_lintr_assert(struct pci_devinst *pi)
1944 {
1945 
1946 	assert(pi->pi_lintr.pin > 0);
1947 
1948 	pthread_mutex_lock(&pi->pi_lintr.lock);
1949 	if (pi->pi_lintr.state == IDLE) {
1950 		if (pci_lintr_permitted(pi)) {
1951 			pi->pi_lintr.state = ASSERTED;
1952 			pci_irq_assert(pi);
1953 		} else
1954 			pi->pi_lintr.state = PENDING;
1955 	}
1956 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1957 }
1958 
1959 void
1960 pci_lintr_deassert(struct pci_devinst *pi)
1961 {
1962 
1963 	assert(pi->pi_lintr.pin > 0);
1964 
1965 	pthread_mutex_lock(&pi->pi_lintr.lock);
1966 	if (pi->pi_lintr.state == ASSERTED) {
1967 		pi->pi_lintr.state = IDLE;
1968 		pci_irq_deassert(pi);
1969 	} else if (pi->pi_lintr.state == PENDING)
1970 		pi->pi_lintr.state = IDLE;
1971 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1972 }
1973 
1974 static void
1975 pci_lintr_update(struct pci_devinst *pi)
1976 {
1977 
1978 	pthread_mutex_lock(&pi->pi_lintr.lock);
1979 	if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
1980 		pci_irq_deassert(pi);
1981 		pi->pi_lintr.state = PENDING;
1982 	} else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
1983 		pi->pi_lintr.state = ASSERTED;
1984 		pci_irq_assert(pi);
1985 	}
1986 	pthread_mutex_unlock(&pi->pi_lintr.lock);
1987 }
1988 
1989 int
1990 pci_count_lintr(int bus)
1991 {
1992 	int count, slot, pin;
1993 	struct slotinfo *slotinfo;
1994 
1995 	count = 0;
1996 	if (pci_businfo[bus] != NULL) {
1997 		for (slot = 0; slot < MAXSLOTS; slot++) {
1998 			slotinfo = &pci_businfo[bus]->slotinfo[slot];
1999 			for (pin = 0; pin < 4; pin++) {
2000 				if (slotinfo->si_intpins[pin].ii_count != 0)
2001 					count++;
2002 			}
2003 		}
2004 	}
2005 	return (count);
2006 }
2007 
2008 void
2009 pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
2010 {
2011 	struct businfo *bi;
2012 	struct slotinfo *si;
2013 	struct intxinfo *ii;
2014 	int slot, pin;
2015 
2016 	if ((bi = pci_businfo[bus]) == NULL)
2017 		return;
2018 
2019 	for (slot = 0; slot < MAXSLOTS; slot++) {
2020 		si = &bi->slotinfo[slot];
2021 		for (pin = 0; pin < 4; pin++) {
2022 			ii = &si->si_intpins[pin];
2023 			if (ii->ii_count != 0)
2024 				cb(bus, slot, pin + 1, ii->ii_pirq_pin,
2025 				    ii->ii_ioapic_irq, arg);
2026 		}
2027 	}
2028 }
2029 
2030 /*
2031  * Return 1 if the emulated device in 'slot' is a multi-function device.
2032  * Return 0 otherwise.
2033  */
2034 static int
2035 pci_emul_is_mfdev(int bus, int slot)
2036 {
2037 	struct businfo *bi;
2038 	struct slotinfo *si;
2039 	int f, numfuncs;
2040 
2041 	numfuncs = 0;
2042 	if ((bi = pci_businfo[bus]) != NULL) {
2043 		si = &bi->slotinfo[slot];
2044 		for (f = 0; f < MAXFUNCS; f++) {
2045 			if (si->si_funcs[f].fi_devi != NULL) {
2046 				numfuncs++;
2047 			}
2048 		}
2049 	}
2050 	return (numfuncs > 1);
2051 }
2052 
2053 /*
2054  * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
2055  * whether or not is a multi-function being emulated in the pci 'slot'.
2056  */
2057 static void
2058 pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
2059 {
2060 	int mfdev;
2061 
2062 	if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
2063 		mfdev = pci_emul_is_mfdev(bus, slot);
2064 		switch (bytes) {
2065 		case 1:
2066 		case 2:
2067 			*rv &= ~PCIM_MFDEV;
2068 			if (mfdev) {
2069 				*rv |= PCIM_MFDEV;
2070 			}
2071 			break;
2072 		case 4:
2073 			*rv &= ~(PCIM_MFDEV << 16);
2074 			if (mfdev) {
2075 				*rv |= (PCIM_MFDEV << 16);
2076 			}
2077 			break;
2078 		}
2079 	}
2080 }
2081 
2082 /*
2083  * Update device state in response to changes to the PCI command
2084  * register.
2085  */
2086 void
2087 pci_emul_cmd_changed(struct pci_devinst *pi, uint16_t old)
2088 {
2089 	int i;
2090 	uint16_t changed, new;
2091 
2092 	new = pci_get_cfgdata16(pi, PCIR_COMMAND);
2093 	changed = old ^ new;
2094 
2095 	/*
2096 	 * If the MMIO or I/O address space decoding has changed then
2097 	 * register/unregister all BARs that decode that address space.
2098 	 */
2099 	for (i = 0; i <= PCI_BARMAX_WITH_ROM; i++) {
2100 		switch (pi->pi_bar[i].type) {
2101 			case PCIBAR_NONE:
2102 			case PCIBAR_MEMHI64:
2103 				break;
2104 			case PCIBAR_IO:
2105 				/* I/O address space decoding changed? */
2106 				if (changed & PCIM_CMD_PORTEN) {
2107 					if (new & PCIM_CMD_PORTEN)
2108 						register_bar(pi, i);
2109 					else
2110 						unregister_bar(pi, i);
2111 				}
2112 				break;
2113 			case PCIBAR_ROM:
2114 				/* skip (un-)register of ROM if it disabled */
2115 				if (!romen(pi))
2116 					break;
2117 				/* fallthrough */
2118 			case PCIBAR_MEM32:
2119 			case PCIBAR_MEM64:
2120 				/* MMIO address space decoding changed? */
2121 				if (changed & PCIM_CMD_MEMEN) {
2122 					if (new & PCIM_CMD_MEMEN)
2123 						register_bar(pi, i);
2124 					else
2125 						unregister_bar(pi, i);
2126 				}
2127 				break;
2128 			default:
2129 				assert(0);
2130 		}
2131 	}
2132 
2133 	/*
2134 	 * If INTx has been unmasked and is pending, assert the
2135 	 * interrupt.
2136 	 */
2137 	pci_lintr_update(pi);
2138 }
2139 
2140 static void
2141 pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes)
2142 {
2143 	int rshift;
2144 	uint32_t cmd, old, readonly;
2145 
2146 	cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);	/* stash old value */
2147 
2148 	/*
2149 	 * From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3.
2150 	 *
2151 	 * XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are
2152 	 * 'write 1 to clear'. However these bits are not set to '1' by
2153 	 * any device emulation so it is simpler to treat them as readonly.
2154 	 */
2155 	rshift = (coff & 0x3) * 8;
2156 	readonly = 0xFFFFF880 >> rshift;
2157 
2158 	old = CFGREAD(pi, coff, bytes);
2159 	new &= ~readonly;
2160 	new |= (old & readonly);
2161 	CFGWRITE(pi, coff, new, bytes);			/* update config */
2162 
2163 	pci_emul_cmd_changed(pi, cmd);
2164 }
2165 
2166 static void
2167 pci_cfgrw(int in, int bus, int slot, int func, int coff, int bytes,
2168     uint32_t *valp)
2169 {
2170 	struct businfo *bi;
2171 	struct slotinfo *si;
2172 	struct pci_devinst *pi;
2173 	struct pci_devemu *pe;
2174 	int idx, needcfg;
2175 	uint64_t addr, bar, mask;
2176 
2177 	if ((bi = pci_businfo[bus]) != NULL) {
2178 		si = &bi->slotinfo[slot];
2179 		pi = si->si_funcs[func].fi_devi;
2180 	} else
2181 		pi = NULL;
2182 
2183 	/*
2184 	 * Just return if there is no device at this slot:func or if the
2185 	 * the guest is doing an un-aligned access.
2186 	 */
2187 	if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
2188 	    (coff & (bytes - 1)) != 0) {
2189 		if (in)
2190 			*valp = 0xffffffff;
2191 		return;
2192 	}
2193 
2194 	/*
2195 	 * Ignore all writes beyond the standard config space and return all
2196 	 * ones on reads.
2197 	 */
2198 	if (coff >= PCI_REGMAX + 1) {
2199 		if (in) {
2200 			*valp = 0xffffffff;
2201 			/*
2202 			 * Extended capabilities begin at offset 256 in config
2203 			 * space. Absence of extended capabilities is signaled
2204 			 * with all 0s in the extended capability header at
2205 			 * offset 256.
2206 			 */
2207 			if (coff <= PCI_REGMAX + 4)
2208 				*valp = 0x00000000;
2209 		}
2210 		return;
2211 	}
2212 
2213 	pe = pi->pi_d;
2214 
2215 	/*
2216 	 * Config read
2217 	 */
2218 	if (in) {
2219 		/* Let the device emulation override the default handler */
2220 		if (pe->pe_cfgread != NULL) {
2221 			needcfg = pe->pe_cfgread(pi, coff, bytes, valp);
2222 		} else {
2223 			needcfg = 1;
2224 		}
2225 
2226 		if (needcfg)
2227 			*valp = CFGREAD(pi, coff, bytes);
2228 
2229 		pci_emul_hdrtype_fixup(bus, slot, coff, bytes, valp);
2230 	} else {
2231 		/* Let the device emulation override the default handler */
2232 		if (pe->pe_cfgwrite != NULL &&
2233 		    (*pe->pe_cfgwrite)(pi, coff, bytes, *valp) == 0)
2234 			return;
2235 
2236 		/*
2237 		 * Special handling for write to BAR and ROM registers
2238 		 */
2239 		if (is_pcir_bar(coff) || is_pcir_bios(coff)) {
2240 			/*
2241 			 * Ignore writes to BAR registers that are not
2242 			 * 4-byte aligned.
2243 			 */
2244 			if (bytes != 4 || (coff & 0x3) != 0)
2245 				return;
2246 
2247 			if (is_pcir_bar(coff)) {
2248 				idx = (coff - PCIR_BAR(0)) / 4;
2249 			} else if (is_pcir_bios(coff)) {
2250 				idx = PCI_ROM_IDX;
2251 			} else {
2252 				errx(4, "%s: invalid BAR offset %d", __func__,
2253 				    coff);
2254 			}
2255 
2256 			mask = ~(pi->pi_bar[idx].size - 1);
2257 			switch (pi->pi_bar[idx].type) {
2258 			case PCIBAR_NONE:
2259 				pi->pi_bar[idx].addr = bar = 0;
2260 				break;
2261 			case PCIBAR_IO:
2262 				addr = *valp & mask;
2263 				addr &= 0xffff;
2264 				bar = addr | pi->pi_bar[idx].lobits;
2265 				/*
2266 				 * Register the new BAR value for interception
2267 				 */
2268 				if (addr != pi->pi_bar[idx].addr) {
2269 					update_bar_address(pi, addr, idx,
2270 							   PCIBAR_IO);
2271 				}
2272 				break;
2273 			case PCIBAR_MEM32:
2274 				addr = bar = *valp & mask;
2275 				bar |= pi->pi_bar[idx].lobits;
2276 				if (addr != pi->pi_bar[idx].addr) {
2277 					update_bar_address(pi, addr, idx,
2278 							   PCIBAR_MEM32);
2279 				}
2280 				break;
2281 			case PCIBAR_MEM64:
2282 				addr = bar = *valp & mask;
2283 				bar |= pi->pi_bar[idx].lobits;
2284 				if (addr != (uint32_t)pi->pi_bar[idx].addr) {
2285 					update_bar_address(pi, addr, idx,
2286 							   PCIBAR_MEM64);
2287 				}
2288 				break;
2289 			case PCIBAR_MEMHI64:
2290 				mask = ~(pi->pi_bar[idx - 1].size - 1);
2291 				addr = ((uint64_t)*valp << 32) & mask;
2292 				bar = addr >> 32;
2293 				if (bar != pi->pi_bar[idx - 1].addr >> 32) {
2294 					update_bar_address(pi, addr, idx - 1,
2295 							   PCIBAR_MEMHI64);
2296 				}
2297 				break;
2298 			case PCIBAR_ROM:
2299 				addr = bar = *valp & mask;
2300 				if (memen(pi) && romen(pi)) {
2301 					unregister_bar(pi, idx);
2302 				}
2303 				pi->pi_bar[idx].addr = addr;
2304 				pi->pi_bar[idx].lobits = *valp &
2305 				    PCIM_BIOS_ENABLE;
2306 				/* romen could have changed it value */
2307 				if (memen(pi) && romen(pi)) {
2308 					register_bar(pi, idx);
2309 				}
2310 				bar |= pi->pi_bar[idx].lobits;
2311 				break;
2312 			default:
2313 				assert(0);
2314 			}
2315 			pci_set_cfgdata32(pi, coff, bar);
2316 
2317 		} else if (pci_emul_iscap(pi, coff)) {
2318 			pci_emul_capwrite(pi, coff, bytes, *valp, 0, 0);
2319 		} else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) {
2320 			pci_emul_cmdsts_write(pi, coff, *valp, bytes);
2321 		} else {
2322 			CFGWRITE(pi, coff, *valp, bytes);
2323 		}
2324 	}
2325 }
2326 
2327 static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
2328 
2329 static int
2330 pci_emul_cfgaddr(struct vmctx *ctx __unused, int in,
2331     int port __unused, int bytes, uint32_t *eax, void *arg __unused)
2332 {
2333 	uint32_t x;
2334 
2335 	if (bytes != 4) {
2336 		if (in)
2337 			*eax = (bytes == 2) ? 0xffff : 0xff;
2338 		return (0);
2339 	}
2340 
2341 	if (in) {
2342 		x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff;
2343 		if (cfgenable)
2344 			x |= CONF1_ENABLE;
2345 		*eax = x;
2346 	} else {
2347 		x = *eax;
2348 		cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
2349 		cfgoff = (x & PCI_REGMAX) & ~0x03;
2350 		cfgfunc = (x >> 8) & PCI_FUNCMAX;
2351 		cfgslot = (x >> 11) & PCI_SLOTMAX;
2352 		cfgbus = (x >> 16) & PCI_BUSMAX;
2353 	}
2354 
2355 	return (0);
2356 }
2357 INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
2358 
2359 static int
2360 pci_emul_cfgdata(struct vmctx *ctx __unused, int in, int port,
2361     int bytes, uint32_t *eax, void *arg __unused)
2362 {
2363 	int coff;
2364 
2365 	assert(bytes == 1 || bytes == 2 || bytes == 4);
2366 
2367 	coff = cfgoff + (port - CONF1_DATA_PORT);
2368 	if (cfgenable) {
2369 		pci_cfgrw(in, cfgbus, cfgslot, cfgfunc, coff, bytes, eax);
2370 	} else {
2371 		/* Ignore accesses to cfgdata if not enabled by cfgaddr */
2372 		if (in)
2373 			*eax = 0xffffffff;
2374 	}
2375 	return (0);
2376 }
2377 
2378 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
2379 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
2380 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
2381 INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
2382 
2383 #ifdef BHYVE_SNAPSHOT
2384 /*
2385  * Saves/restores PCI device emulated state. Returns 0 on success.
2386  */
2387 static int
2388 pci_snapshot_pci_dev(struct vm_snapshot_meta *meta)
2389 {
2390 	struct pci_devinst *pi;
2391 	int i;
2392 	int ret;
2393 
2394 	pi = meta->dev_data;
2395 
2396 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.enabled, meta, ret, done);
2397 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.addr, meta, ret, done);
2398 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.msg_data, meta, ret, done);
2399 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.maxmsgnum, meta, ret, done);
2400 
2401 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.enabled, meta, ret, done);
2402 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_bar, meta, ret, done);
2403 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_bar, meta, ret, done);
2404 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_offset, meta, ret, done);
2405 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_count, meta, ret, done);
2406 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_offset, meta, ret, done);
2407 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_size, meta, ret, done);
2408 	SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.function_mask, meta, ret, done);
2409 
2410 	SNAPSHOT_BUF_OR_LEAVE(pi->pi_cfgdata, sizeof(pi->pi_cfgdata),
2411 			      meta, ret, done);
2412 
2413 	for (i = 0; i < (int)nitems(pi->pi_bar); i++) {
2414 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].type, meta, ret, done);
2415 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].size, meta, ret, done);
2416 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].addr, meta, ret, done);
2417 	}
2418 
2419 	/* Restore MSI-X table. */
2420 	for (i = 0; i < pi->pi_msix.table_count; i++) {
2421 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].addr,
2422 				      meta, ret, done);
2423 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].msg_data,
2424 				      meta, ret, done);
2425 		SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].vector_control,
2426 				      meta, ret, done);
2427 	}
2428 
2429 done:
2430 	return (ret);
2431 }
2432 
2433 int
2434 pci_snapshot(struct vm_snapshot_meta *meta)
2435 {
2436 	struct pci_devemu *pde;
2437 	struct pci_devinst *pdi;
2438 	int ret;
2439 
2440 	assert(meta->dev_name != NULL);
2441 
2442 	pdi = meta->dev_data;
2443 	pde = pdi->pi_d;
2444 
2445 	if (pde->pe_snapshot == NULL)
2446 		return (ENOTSUP);
2447 
2448 	ret = pci_snapshot_pci_dev(meta);
2449 	if (ret == 0)
2450 		ret = (*pde->pe_snapshot)(meta);
2451 
2452 	return (ret);
2453 }
2454 
2455 int
2456 pci_pause(struct pci_devinst *pdi)
2457 {
2458 	struct pci_devemu *pde = pdi->pi_d;
2459 
2460 	if (pde->pe_pause == NULL) {
2461 		/* The pause/resume functionality is optional. */
2462 		return (0);
2463 	}
2464 
2465 	return (*pde->pe_pause)(pdi);
2466 }
2467 
2468 int
2469 pci_resume(struct pci_devinst *pdi)
2470 {
2471 	struct pci_devemu *pde = pdi->pi_d;
2472 
2473 	if (pde->pe_resume == NULL) {
2474 		/* The pause/resume functionality is optional. */
2475 		return (0);
2476 	}
2477 
2478 	return (*pde->pe_resume)(pdi);
2479 }
2480 #endif
2481 
2482 #define PCI_EMUL_TEST
2483 #ifdef PCI_EMUL_TEST
2484 /*
2485  * Define a dummy test device
2486  */
2487 #define DIOSZ	8
2488 #define DMEMSZ	4096
2489 struct pci_emul_dsoftc {
2490 	uint8_t   ioregs[DIOSZ];
2491 	uint8_t	  memregs[2][DMEMSZ];
2492 };
2493 
2494 #define	PCI_EMUL_MSI_MSGS	 4
2495 #define	PCI_EMUL_MSIX_MSGS	16
2496 
2497 static int
2498 pci_emul_dinit(struct pci_devinst *pi, nvlist_t *nvl __unused)
2499 {
2500 	int error;
2501 	struct pci_emul_dsoftc *sc;
2502 
2503 	sc = calloc(1, sizeof(struct pci_emul_dsoftc));
2504 
2505 	pi->pi_arg = sc;
2506 
2507 	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
2508 	pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
2509 	pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
2510 
2511 	error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
2512 	assert(error == 0);
2513 
2514 	error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
2515 	assert(error == 0);
2516 
2517 	error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
2518 	assert(error == 0);
2519 
2520 	error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ);
2521 	assert(error == 0);
2522 
2523 	return (0);
2524 }
2525 
2526 static void
2527 pci_emul_diow(struct pci_devinst *pi, int baridx, uint64_t offset, int size,
2528     uint64_t value)
2529 {
2530 	int i;
2531 	struct pci_emul_dsoftc *sc = pi->pi_arg;
2532 
2533 	if (baridx == 0) {
2534 		if (offset + size > DIOSZ) {
2535 			printf("diow: iow too large, offset %ld size %d\n",
2536 			       offset, size);
2537 			return;
2538 		}
2539 
2540 		if (size == 1) {
2541 			sc->ioregs[offset] = value & 0xff;
2542 		} else if (size == 2) {
2543 			*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
2544 		} else if (size == 4) {
2545 			*(uint32_t *)&sc->ioregs[offset] = value;
2546 		} else {
2547 			printf("diow: iow unknown size %d\n", size);
2548 		}
2549 
2550 		/*
2551 		 * Special magic value to generate an interrupt
2552 		 */
2553 		if (offset == 4 && size == 4 && pci_msi_enabled(pi))
2554 			pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
2555 
2556 		if (value == 0xabcdef) {
2557 			for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
2558 				pci_generate_msi(pi, i);
2559 		}
2560 	}
2561 
2562 	if (baridx == 1 || baridx == 2) {
2563 		if (offset + size > DMEMSZ) {
2564 			printf("diow: memw too large, offset %ld size %d\n",
2565 			       offset, size);
2566 			return;
2567 		}
2568 
2569 		i = baridx - 1;		/* 'memregs' index */
2570 
2571 		if (size == 1) {
2572 			sc->memregs[i][offset] = value;
2573 		} else if (size == 2) {
2574 			*(uint16_t *)&sc->memregs[i][offset] = value;
2575 		} else if (size == 4) {
2576 			*(uint32_t *)&sc->memregs[i][offset] = value;
2577 		} else if (size == 8) {
2578 			*(uint64_t *)&sc->memregs[i][offset] = value;
2579 		} else {
2580 			printf("diow: memw unknown size %d\n", size);
2581 		}
2582 
2583 		/*
2584 		 * magic interrupt ??
2585 		 */
2586 	}
2587 
2588 	if (baridx > 2 || baridx < 0) {
2589 		printf("diow: unknown bar idx %d\n", baridx);
2590 	}
2591 }
2592 
2593 static uint64_t
2594 pci_emul_dior(struct pci_devinst *pi, int baridx, uint64_t offset, int size)
2595 {
2596 	struct pci_emul_dsoftc *sc = pi->pi_arg;
2597 	uint32_t value;
2598 	int i;
2599 
2600 	if (baridx == 0) {
2601 		if (offset + size > DIOSZ) {
2602 			printf("dior: ior too large, offset %ld size %d\n",
2603 			       offset, size);
2604 			return (0);
2605 		}
2606 
2607 		value = 0;
2608 		if (size == 1) {
2609 			value = sc->ioregs[offset];
2610 		} else if (size == 2) {
2611 			value = *(uint16_t *) &sc->ioregs[offset];
2612 		} else if (size == 4) {
2613 			value = *(uint32_t *) &sc->ioregs[offset];
2614 		} else {
2615 			printf("dior: ior unknown size %d\n", size);
2616 		}
2617 	}
2618 
2619 	if (baridx == 1 || baridx == 2) {
2620 		if (offset + size > DMEMSZ) {
2621 			printf("dior: memr too large, offset %ld size %d\n",
2622 			       offset, size);
2623 			return (0);
2624 		}
2625 
2626 		i = baridx - 1;		/* 'memregs' index */
2627 
2628 		if (size == 1) {
2629 			value = sc->memregs[i][offset];
2630 		} else if (size == 2) {
2631 			value = *(uint16_t *) &sc->memregs[i][offset];
2632 		} else if (size == 4) {
2633 			value = *(uint32_t *) &sc->memregs[i][offset];
2634 		} else if (size == 8) {
2635 			value = *(uint64_t *) &sc->memregs[i][offset];
2636 		} else {
2637 			printf("dior: ior unknown size %d\n", size);
2638 		}
2639 	}
2640 
2641 
2642 	if (baridx > 2 || baridx < 0) {
2643 		printf("dior: unknown bar idx %d\n", baridx);
2644 		return (0);
2645 	}
2646 
2647 	return (value);
2648 }
2649 
2650 #ifdef BHYVE_SNAPSHOT
2651 struct pci_devinst *
2652 pci_next(const struct pci_devinst *cursor)
2653 {
2654 	unsigned bus = 0, slot = 0, func = 0;
2655 	struct businfo *bi;
2656 	struct slotinfo *si;
2657 	struct funcinfo *fi;
2658 
2659 	bus = cursor ? cursor->pi_bus : 0;
2660 	slot = cursor ? cursor->pi_slot : 0;
2661 	func = cursor ? (cursor->pi_func + 1) : 0;
2662 
2663 	for (; bus < MAXBUSES; bus++) {
2664 		if ((bi = pci_businfo[bus]) == NULL)
2665 			continue;
2666 
2667 		if (slot >= MAXSLOTS)
2668 			slot = 0;
2669 
2670 		for (; slot < MAXSLOTS; slot++) {
2671 			si = &bi->slotinfo[slot];
2672 			if (func >= MAXFUNCS)
2673 				func = 0;
2674 			for (; func < MAXFUNCS; func++) {
2675 				fi = &si->si_funcs[func];
2676 				if (fi->fi_devi == NULL)
2677 					continue;
2678 
2679 				return (fi->fi_devi);
2680 			}
2681 		}
2682 	}
2683 
2684 	return (NULL);
2685 }
2686 
2687 static int
2688 pci_emul_snapshot(struct vm_snapshot_meta *meta __unused)
2689 {
2690 	return (0);
2691 }
2692 #endif
2693 
2694 static const struct pci_devemu pci_dummy = {
2695 	.pe_emu = "dummy",
2696 	.pe_init = pci_emul_dinit,
2697 	.pe_barwrite = pci_emul_diow,
2698 	.pe_barread = pci_emul_dior,
2699 #ifdef BHYVE_SNAPSHOT
2700 	.pe_snapshot = pci_emul_snapshot,
2701 #endif
2702 };
2703 PCI_EMUL_SET(pci_dummy);
2704 
2705 #endif /* PCI_EMUL_TEST */
2706