1 /* 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2016 Alexander Motin <mav@FreeBSD.org> 5 * Copyright (c) 2015 Peter Grehan <grehan@freebsd.org> 6 * Copyright (c) 2013 Jeremiah Lott, Avere Systems 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer 14 * in this position and unchanged. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/types.h> 36 #ifndef WITHOUT_CAPSICUM 37 #include <sys/capsicum.h> 38 #endif 39 #include <sys/limits.h> 40 #include <sys/ioctl.h> 41 #include <sys/uio.h> 42 #include <net/ethernet.h> 43 #include <netinet/in.h> 44 #include <netinet/tcp.h> 45 46 #ifndef WITHOUT_CAPSICUM 47 #include <capsicum_helpers.h> 48 #endif 49 #include <machine/vmm_snapshot.h> 50 51 #include <err.h> 52 #include <errno.h> 53 #include <fcntl.h> 54 #include <md5.h> 55 #include <stdio.h> 56 #include <stdlib.h> 57 #include <string.h> 58 #include <sysexits.h> 59 #include <unistd.h> 60 #include <pthread.h> 61 #include <pthread_np.h> 62 63 #include "e1000_regs.h" 64 #include "e1000_defines.h" 65 #include "mii.h" 66 67 #include "bhyverun.h" 68 #include "config.h" 69 #include "debug.h" 70 #include "pci_emul.h" 71 #include "mevent.h" 72 #include "net_utils.h" 73 #include "net_backends.h" 74 75 /* Hardware/register definitions XXX: move some to common code. */ 76 #define E82545_VENDOR_ID_INTEL 0x8086 77 #define E82545_DEV_ID_82545EM_COPPER 0x100F 78 #define E82545_SUBDEV_ID 0x1008 79 80 #define E82545_REVISION_4 4 81 82 #define E82545_MDIC_DATA_MASK 0x0000FFFF 83 #define E82545_MDIC_OP_MASK 0x0c000000 84 #define E82545_MDIC_IE 0x20000000 85 86 #define E82545_EECD_FWE_DIS 0x00000010 /* Flash writes disabled */ 87 #define E82545_EECD_FWE_EN 0x00000020 /* Flash writes enabled */ 88 #define E82545_EECD_FWE_MASK 0x00000030 /* Flash writes mask */ 89 90 #define E82545_BAR_REGISTER 0 91 #define E82545_BAR_REGISTER_LEN (128*1024) 92 #define E82545_BAR_FLASH 1 93 #define E82545_BAR_FLASH_LEN (64*1024) 94 #define E82545_BAR_IO 2 95 #define E82545_BAR_IO_LEN 8 96 97 #define E82545_IOADDR 0x00000000 98 #define E82545_IODATA 0x00000004 99 #define E82545_IO_REGISTER_MAX 0x0001FFFF 100 #define E82545_IO_FLASH_BASE 0x00080000 101 #define E82545_IO_FLASH_MAX 0x000FFFFF 102 103 #define E82545_ARRAY_ENTRY(reg, offset) (reg + (offset<<2)) 104 #define E82545_RAR_MAX 15 105 #define E82545_MTA_MAX 127 106 #define E82545_VFTA_MAX 127 107 108 /* Slightly modified from the driver versions, hardcoded for 3 opcode bits, 109 * followed by 6 address bits. 110 * TODO: make opcode bits and addr bits configurable? 111 * NVM Commands - Microwire */ 112 #define E82545_NVM_OPCODE_BITS 3 113 #define E82545_NVM_ADDR_BITS 6 114 #define E82545_NVM_DATA_BITS 16 115 #define E82545_NVM_OPADDR_BITS (E82545_NVM_OPCODE_BITS + E82545_NVM_ADDR_BITS) 116 #define E82545_NVM_ADDR_MASK ((1 << E82545_NVM_ADDR_BITS)-1) 117 #define E82545_NVM_OPCODE_MASK \ 118 (((1 << E82545_NVM_OPCODE_BITS) - 1) << E82545_NVM_ADDR_BITS) 119 #define E82545_NVM_OPCODE_READ (0x6 << E82545_NVM_ADDR_BITS) /* read */ 120 #define E82545_NVM_OPCODE_WRITE (0x5 << E82545_NVM_ADDR_BITS) /* write */ 121 #define E82545_NVM_OPCODE_ERASE (0x7 << E82545_NVM_ADDR_BITS) /* erase */ 122 #define E82545_NVM_OPCODE_EWEN (0x4 << E82545_NVM_ADDR_BITS) /* wr-enable */ 123 124 #define E82545_NVM_EEPROM_SIZE 64 /* 64 * 16-bit values == 128K */ 125 126 #define E1000_ICR_SRPD 0x00010000 127 128 /* This is an arbitrary number. There is no hard limit on the chip. */ 129 #define I82545_MAX_TXSEGS 64 130 131 /* Legacy receive descriptor */ 132 struct e1000_rx_desc { 133 uint64_t buffer_addr; /* Address of the descriptor's data buffer */ 134 uint16_t length; /* Length of data DMAed into data buffer */ 135 uint16_t csum; /* Packet checksum */ 136 uint8_t status; /* Descriptor status */ 137 uint8_t errors; /* Descriptor Errors */ 138 uint16_t special; 139 }; 140 141 /* Transmit descriptor types */ 142 #define E1000_TXD_MASK (E1000_TXD_CMD_DEXT | 0x00F00000) 143 #define E1000_TXD_TYP_L (0) 144 #define E1000_TXD_TYP_C (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C) 145 #define E1000_TXD_TYP_D (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D) 146 147 /* Legacy transmit descriptor */ 148 struct e1000_tx_desc { 149 uint64_t buffer_addr; /* Address of the descriptor's data buffer */ 150 union { 151 uint32_t data; 152 struct { 153 uint16_t length; /* Data buffer length */ 154 uint8_t cso; /* Checksum offset */ 155 uint8_t cmd; /* Descriptor control */ 156 } flags; 157 } lower; 158 union { 159 uint32_t data; 160 struct { 161 uint8_t status; /* Descriptor status */ 162 uint8_t css; /* Checksum start */ 163 uint16_t special; 164 } fields; 165 } upper; 166 }; 167 168 /* Context descriptor */ 169 struct e1000_context_desc { 170 union { 171 uint32_t ip_config; 172 struct { 173 uint8_t ipcss; /* IP checksum start */ 174 uint8_t ipcso; /* IP checksum offset */ 175 uint16_t ipcse; /* IP checksum end */ 176 } ip_fields; 177 } lower_setup; 178 union { 179 uint32_t tcp_config; 180 struct { 181 uint8_t tucss; /* TCP checksum start */ 182 uint8_t tucso; /* TCP checksum offset */ 183 uint16_t tucse; /* TCP checksum end */ 184 } tcp_fields; 185 } upper_setup; 186 uint32_t cmd_and_length; 187 union { 188 uint32_t data; 189 struct { 190 uint8_t status; /* Descriptor status */ 191 uint8_t hdr_len; /* Header length */ 192 uint16_t mss; /* Maximum segment size */ 193 } fields; 194 } tcp_seg_setup; 195 }; 196 197 /* Data descriptor */ 198 struct e1000_data_desc { 199 uint64_t buffer_addr; /* Address of the descriptor's buffer address */ 200 union { 201 uint32_t data; 202 struct { 203 uint16_t length; /* Data buffer length */ 204 uint8_t typ_len_ext; 205 uint8_t cmd; 206 } flags; 207 } lower; 208 union { 209 uint32_t data; 210 struct { 211 uint8_t status; /* Descriptor status */ 212 uint8_t popts; /* Packet Options */ 213 uint16_t special; 214 } fields; 215 } upper; 216 }; 217 218 union e1000_tx_udesc { 219 struct e1000_tx_desc td; 220 struct e1000_context_desc cd; 221 struct e1000_data_desc dd; 222 }; 223 224 /* Tx checksum info for a packet. */ 225 struct ck_info { 226 int ck_valid; /* ck_info is valid */ 227 uint8_t ck_start; /* start byte of cksum calcuation */ 228 uint8_t ck_off; /* offset of cksum insertion */ 229 uint16_t ck_len; /* length of cksum calc: 0 is to packet-end */ 230 }; 231 232 /* 233 * Debug printf 234 */ 235 static int e82545_debug = 0; 236 #define WPRINTF(msg,params...) PRINTLN("e82545: " msg, ##params) 237 #define DPRINTF(msg,params...) if (e82545_debug) WPRINTF(msg, params) 238 239 #define MIN(a,b) (((a)<(b))?(a):(b)) 240 #define MAX(a,b) (((a)>(b))?(a):(b)) 241 242 /* s/w representation of the RAL/RAH regs */ 243 struct eth_uni { 244 int eu_valid; 245 int eu_addrsel; 246 struct ether_addr eu_eth; 247 }; 248 249 250 struct e82545_softc { 251 struct pci_devinst *esc_pi; 252 struct vmctx *esc_ctx; 253 struct mevent *esc_mevpitr; 254 pthread_mutex_t esc_mtx; 255 struct ether_addr esc_mac; 256 net_backend_t *esc_be; 257 258 /* General */ 259 uint32_t esc_CTRL; /* x0000 device ctl */ 260 uint32_t esc_FCAL; /* x0028 flow ctl addr lo */ 261 uint32_t esc_FCAH; /* x002C flow ctl addr hi */ 262 uint32_t esc_FCT; /* x0030 flow ctl type */ 263 uint32_t esc_VET; /* x0038 VLAN eth type */ 264 uint32_t esc_FCTTV; /* x0170 flow ctl tx timer */ 265 uint32_t esc_LEDCTL; /* x0E00 LED control */ 266 uint32_t esc_PBA; /* x1000 pkt buffer allocation */ 267 268 /* Interrupt control */ 269 int esc_irq_asserted; 270 uint32_t esc_ICR; /* x00C0 cause read/clear */ 271 uint32_t esc_ITR; /* x00C4 intr throttling */ 272 uint32_t esc_ICS; /* x00C8 cause set */ 273 uint32_t esc_IMS; /* x00D0 mask set/read */ 274 uint32_t esc_IMC; /* x00D8 mask clear */ 275 276 /* Transmit */ 277 union e1000_tx_udesc *esc_txdesc; 278 struct e1000_context_desc esc_txctx; 279 pthread_t esc_tx_tid; 280 pthread_cond_t esc_tx_cond; 281 int esc_tx_enabled; 282 int esc_tx_active; 283 uint32_t esc_TXCW; /* x0178 transmit config */ 284 uint32_t esc_TCTL; /* x0400 transmit ctl */ 285 uint32_t esc_TIPG; /* x0410 inter-packet gap */ 286 uint16_t esc_AIT; /* x0458 Adaptive Interframe Throttle */ 287 uint64_t esc_tdba; /* verified 64-bit desc table addr */ 288 uint32_t esc_TDBAL; /* x3800 desc table addr, low bits */ 289 uint32_t esc_TDBAH; /* x3804 desc table addr, hi 32-bits */ 290 uint32_t esc_TDLEN; /* x3808 # descriptors in bytes */ 291 uint16_t esc_TDH; /* x3810 desc table head idx */ 292 uint16_t esc_TDHr; /* internal read version of TDH */ 293 uint16_t esc_TDT; /* x3818 desc table tail idx */ 294 uint32_t esc_TIDV; /* x3820 intr delay */ 295 uint32_t esc_TXDCTL; /* x3828 desc control */ 296 uint32_t esc_TADV; /* x382C intr absolute delay */ 297 298 /* L2 frame acceptance */ 299 struct eth_uni esc_uni[16]; /* 16 x unicast MAC addresses */ 300 uint32_t esc_fmcast[128]; /* Multicast filter bit-match */ 301 uint32_t esc_fvlan[128]; /* VLAN 4096-bit filter */ 302 303 /* Receive */ 304 struct e1000_rx_desc *esc_rxdesc; 305 pthread_cond_t esc_rx_cond; 306 int esc_rx_enabled; 307 int esc_rx_active; 308 int esc_rx_loopback; 309 uint32_t esc_RCTL; /* x0100 receive ctl */ 310 uint32_t esc_FCRTL; /* x2160 flow cntl thresh, low */ 311 uint32_t esc_FCRTH; /* x2168 flow cntl thresh, hi */ 312 uint64_t esc_rdba; /* verified 64-bit desc table addr */ 313 uint32_t esc_RDBAL; /* x2800 desc table addr, low bits */ 314 uint32_t esc_RDBAH; /* x2804 desc table addr, hi 32-bits*/ 315 uint32_t esc_RDLEN; /* x2808 #descriptors */ 316 uint16_t esc_RDH; /* x2810 desc table head idx */ 317 uint16_t esc_RDT; /* x2818 desc table tail idx */ 318 uint32_t esc_RDTR; /* x2820 intr delay */ 319 uint32_t esc_RXDCTL; /* x2828 desc control */ 320 uint32_t esc_RADV; /* x282C intr absolute delay */ 321 uint32_t esc_RSRPD; /* x2C00 recv small packet detect */ 322 uint32_t esc_RXCSUM; /* x5000 receive cksum ctl */ 323 324 /* IO Port register access */ 325 uint32_t io_addr; 326 327 /* Shadow copy of MDIC */ 328 uint32_t mdi_control; 329 /* Shadow copy of EECD */ 330 uint32_t eeprom_control; 331 /* Latest NVM in/out */ 332 uint16_t nvm_data; 333 uint16_t nvm_opaddr; 334 /* stats */ 335 uint32_t missed_pkt_count; /* dropped for no room in rx queue */ 336 uint32_t pkt_rx_by_size[6]; 337 uint32_t pkt_tx_by_size[6]; 338 uint32_t good_pkt_rx_count; 339 uint32_t bcast_pkt_rx_count; 340 uint32_t mcast_pkt_rx_count; 341 uint32_t good_pkt_tx_count; 342 uint32_t bcast_pkt_tx_count; 343 uint32_t mcast_pkt_tx_count; 344 uint32_t oversize_rx_count; 345 uint32_t tso_tx_count; 346 uint64_t good_octets_rx; 347 uint64_t good_octets_tx; 348 uint64_t missed_octets; /* counts missed and oversized */ 349 350 uint8_t nvm_bits:6; /* number of bits remaining in/out */ 351 uint8_t nvm_mode:2; 352 #define E82545_NVM_MODE_OPADDR 0x0 353 #define E82545_NVM_MODE_DATAIN 0x1 354 #define E82545_NVM_MODE_DATAOUT 0x2 355 /* EEPROM data */ 356 uint16_t eeprom_data[E82545_NVM_EEPROM_SIZE]; 357 }; 358 359 static void e82545_reset(struct e82545_softc *sc, int dev); 360 static void e82545_rx_enable(struct e82545_softc *sc); 361 static void e82545_rx_disable(struct e82545_softc *sc); 362 static void e82545_rx_callback(int fd, enum ev_type type, void *param); 363 static void e82545_tx_start(struct e82545_softc *sc); 364 static void e82545_tx_enable(struct e82545_softc *sc); 365 static void e82545_tx_disable(struct e82545_softc *sc); 366 367 static inline int 368 e82545_size_stat_index(uint32_t size) 369 { 370 if (size <= 64) { 371 return 0; 372 } else if (size >= 1024) { 373 return 5; 374 } else { 375 /* should be 1-4 */ 376 return (ffs(size) - 6); 377 } 378 } 379 380 static void 381 e82545_init_eeprom(struct e82545_softc *sc) 382 { 383 uint16_t checksum, i; 384 385 /* mac addr */ 386 sc->eeprom_data[NVM_MAC_ADDR] = ((uint16_t)sc->esc_mac.octet[0]) | 387 (((uint16_t)sc->esc_mac.octet[1]) << 8); 388 sc->eeprom_data[NVM_MAC_ADDR+1] = ((uint16_t)sc->esc_mac.octet[2]) | 389 (((uint16_t)sc->esc_mac.octet[3]) << 8); 390 sc->eeprom_data[NVM_MAC_ADDR+2] = ((uint16_t)sc->esc_mac.octet[4]) | 391 (((uint16_t)sc->esc_mac.octet[5]) << 8); 392 393 /* pci ids */ 394 sc->eeprom_data[NVM_SUB_DEV_ID] = E82545_SUBDEV_ID; 395 sc->eeprom_data[NVM_SUB_VEN_ID] = E82545_VENDOR_ID_INTEL; 396 sc->eeprom_data[NVM_DEV_ID] = E82545_DEV_ID_82545EM_COPPER; 397 sc->eeprom_data[NVM_VEN_ID] = E82545_VENDOR_ID_INTEL; 398 399 /* fill in the checksum */ 400 checksum = 0; 401 for (i = 0; i < NVM_CHECKSUM_REG; i++) { 402 checksum += sc->eeprom_data[i]; 403 } 404 checksum = NVM_SUM - checksum; 405 sc->eeprom_data[NVM_CHECKSUM_REG] = checksum; 406 DPRINTF("eeprom checksum: 0x%x", checksum); 407 } 408 409 static void 410 e82545_write_mdi(struct e82545_softc *sc, uint8_t reg_addr, 411 uint8_t phy_addr, uint32_t data) 412 { 413 DPRINTF("Write mdi reg:0x%x phy:0x%x data: 0x%x", reg_addr, phy_addr, data); 414 } 415 416 static uint32_t 417 e82545_read_mdi(struct e82545_softc *sc, uint8_t reg_addr, 418 uint8_t phy_addr) 419 { 420 //DPRINTF("Read mdi reg:0x%x phy:0x%x", reg_addr, phy_addr); 421 switch (reg_addr) { 422 case PHY_STATUS: 423 return (MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS | 424 MII_SR_AUTONEG_COMPLETE); 425 case PHY_AUTONEG_ADV: 426 return NWAY_AR_SELECTOR_FIELD; 427 case PHY_LP_ABILITY: 428 return 0; 429 case PHY_1000T_STATUS: 430 return (SR_1000T_LP_FD_CAPS | SR_1000T_REMOTE_RX_STATUS | 431 SR_1000T_LOCAL_RX_STATUS); 432 case PHY_ID1: 433 return (M88E1011_I_PHY_ID >> 16) & 0xFFFF; 434 case PHY_ID2: 435 return (M88E1011_I_PHY_ID | E82545_REVISION_4) & 0xFFFF; 436 default: 437 DPRINTF("Unknown mdi read reg:0x%x phy:0x%x", reg_addr, phy_addr); 438 return 0; 439 } 440 /* not reached */ 441 } 442 443 static void 444 e82545_eecd_strobe(struct e82545_softc *sc) 445 { 446 /* Microwire state machine */ 447 /* 448 DPRINTF("eeprom state machine srtobe " 449 "0x%x 0x%x 0x%x 0x%x", 450 sc->nvm_mode, sc->nvm_bits, 451 sc->nvm_opaddr, sc->nvm_data);*/ 452 453 if (sc->nvm_bits == 0) { 454 DPRINTF("eeprom state machine not expecting data! " 455 "0x%x 0x%x 0x%x 0x%x", 456 sc->nvm_mode, sc->nvm_bits, 457 sc->nvm_opaddr, sc->nvm_data); 458 return; 459 } 460 sc->nvm_bits--; 461 if (sc->nvm_mode == E82545_NVM_MODE_DATAOUT) { 462 /* shifting out */ 463 if (sc->nvm_data & 0x8000) { 464 sc->eeprom_control |= E1000_EECD_DO; 465 } else { 466 sc->eeprom_control &= ~E1000_EECD_DO; 467 } 468 sc->nvm_data <<= 1; 469 if (sc->nvm_bits == 0) { 470 /* read done, back to opcode mode. */ 471 sc->nvm_opaddr = 0; 472 sc->nvm_mode = E82545_NVM_MODE_OPADDR; 473 sc->nvm_bits = E82545_NVM_OPADDR_BITS; 474 } 475 } else if (sc->nvm_mode == E82545_NVM_MODE_DATAIN) { 476 /* shifting in */ 477 sc->nvm_data <<= 1; 478 if (sc->eeprom_control & E1000_EECD_DI) { 479 sc->nvm_data |= 1; 480 } 481 if (sc->nvm_bits == 0) { 482 /* eeprom write */ 483 uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK; 484 uint16_t addr = sc->nvm_opaddr & E82545_NVM_ADDR_MASK; 485 if (op != E82545_NVM_OPCODE_WRITE) { 486 DPRINTF("Illegal eeprom write op 0x%x", 487 sc->nvm_opaddr); 488 } else if (addr >= E82545_NVM_EEPROM_SIZE) { 489 DPRINTF("Illegal eeprom write addr 0x%x", 490 sc->nvm_opaddr); 491 } else { 492 DPRINTF("eeprom write eeprom[0x%x] = 0x%x", 493 addr, sc->nvm_data); 494 sc->eeprom_data[addr] = sc->nvm_data; 495 } 496 /* back to opcode mode */ 497 sc->nvm_opaddr = 0; 498 sc->nvm_mode = E82545_NVM_MODE_OPADDR; 499 sc->nvm_bits = E82545_NVM_OPADDR_BITS; 500 } 501 } else if (sc->nvm_mode == E82545_NVM_MODE_OPADDR) { 502 sc->nvm_opaddr <<= 1; 503 if (sc->eeprom_control & E1000_EECD_DI) { 504 sc->nvm_opaddr |= 1; 505 } 506 if (sc->nvm_bits == 0) { 507 uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK; 508 switch (op) { 509 case E82545_NVM_OPCODE_EWEN: 510 DPRINTF("eeprom write enable: 0x%x", 511 sc->nvm_opaddr); 512 /* back to opcode mode */ 513 sc->nvm_opaddr = 0; 514 sc->nvm_mode = E82545_NVM_MODE_OPADDR; 515 sc->nvm_bits = E82545_NVM_OPADDR_BITS; 516 break; 517 case E82545_NVM_OPCODE_READ: 518 { 519 uint16_t addr = sc->nvm_opaddr & 520 E82545_NVM_ADDR_MASK; 521 sc->nvm_mode = E82545_NVM_MODE_DATAOUT; 522 sc->nvm_bits = E82545_NVM_DATA_BITS; 523 if (addr < E82545_NVM_EEPROM_SIZE) { 524 sc->nvm_data = sc->eeprom_data[addr]; 525 DPRINTF("eeprom read: eeprom[0x%x] = 0x%x", 526 addr, sc->nvm_data); 527 } else { 528 DPRINTF("eeprom illegal read: 0x%x", 529 sc->nvm_opaddr); 530 sc->nvm_data = 0; 531 } 532 break; 533 } 534 case E82545_NVM_OPCODE_WRITE: 535 sc->nvm_mode = E82545_NVM_MODE_DATAIN; 536 sc->nvm_bits = E82545_NVM_DATA_BITS; 537 sc->nvm_data = 0; 538 break; 539 default: 540 DPRINTF("eeprom unknown op: 0x%x", 541 sc->nvm_opaddr); 542 /* back to opcode mode */ 543 sc->nvm_opaddr = 0; 544 sc->nvm_mode = E82545_NVM_MODE_OPADDR; 545 sc->nvm_bits = E82545_NVM_OPADDR_BITS; 546 } 547 } 548 } else { 549 DPRINTF("eeprom state machine wrong state! " 550 "0x%x 0x%x 0x%x 0x%x", 551 sc->nvm_mode, sc->nvm_bits, 552 sc->nvm_opaddr, sc->nvm_data); 553 } 554 } 555 556 static void 557 e82545_itr_callback(int fd, enum ev_type type, void *param) 558 { 559 uint32_t new; 560 struct e82545_softc *sc = param; 561 562 pthread_mutex_lock(&sc->esc_mtx); 563 new = sc->esc_ICR & sc->esc_IMS; 564 if (new && !sc->esc_irq_asserted) { 565 DPRINTF("itr callback: lintr assert %x", new); 566 sc->esc_irq_asserted = 1; 567 pci_lintr_assert(sc->esc_pi); 568 } else { 569 mevent_delete(sc->esc_mevpitr); 570 sc->esc_mevpitr = NULL; 571 } 572 pthread_mutex_unlock(&sc->esc_mtx); 573 } 574 575 static void 576 e82545_icr_assert(struct e82545_softc *sc, uint32_t bits) 577 { 578 uint32_t new; 579 580 DPRINTF("icr assert: 0x%x", bits); 581 582 /* 583 * An interrupt is only generated if bits are set that 584 * aren't already in the ICR, these bits are unmasked, 585 * and there isn't an interrupt already pending. 586 */ 587 new = bits & ~sc->esc_ICR & sc->esc_IMS; 588 sc->esc_ICR |= bits; 589 590 if (new == 0) { 591 DPRINTF("icr assert: masked %x, ims %x", new, sc->esc_IMS); 592 } else if (sc->esc_mevpitr != NULL) { 593 DPRINTF("icr assert: throttled %x, ims %x", new, sc->esc_IMS); 594 } else if (!sc->esc_irq_asserted) { 595 DPRINTF("icr assert: lintr assert %x", new); 596 sc->esc_irq_asserted = 1; 597 pci_lintr_assert(sc->esc_pi); 598 if (sc->esc_ITR != 0) { 599 sc->esc_mevpitr = mevent_add( 600 (sc->esc_ITR + 3905) / 3906, /* 256ns -> 1ms */ 601 EVF_TIMER, e82545_itr_callback, sc); 602 } 603 } 604 } 605 606 static void 607 e82545_ims_change(struct e82545_softc *sc, uint32_t bits) 608 { 609 uint32_t new; 610 611 /* 612 * Changing the mask may allow previously asserted 613 * but masked interrupt requests to generate an interrupt. 614 */ 615 new = bits & sc->esc_ICR & ~sc->esc_IMS; 616 sc->esc_IMS |= bits; 617 618 if (new == 0) { 619 DPRINTF("ims change: masked %x, ims %x", new, sc->esc_IMS); 620 } else if (sc->esc_mevpitr != NULL) { 621 DPRINTF("ims change: throttled %x, ims %x", new, sc->esc_IMS); 622 } else if (!sc->esc_irq_asserted) { 623 DPRINTF("ims change: lintr assert %x", new); 624 sc->esc_irq_asserted = 1; 625 pci_lintr_assert(sc->esc_pi); 626 if (sc->esc_ITR != 0) { 627 sc->esc_mevpitr = mevent_add( 628 (sc->esc_ITR + 3905) / 3906, /* 256ns -> 1ms */ 629 EVF_TIMER, e82545_itr_callback, sc); 630 } 631 } 632 } 633 634 static void 635 e82545_icr_deassert(struct e82545_softc *sc, uint32_t bits) 636 { 637 638 DPRINTF("icr deassert: 0x%x", bits); 639 sc->esc_ICR &= ~bits; 640 641 /* 642 * If there are no longer any interrupt sources and there 643 * was an asserted interrupt, clear it 644 */ 645 if (sc->esc_irq_asserted && !(sc->esc_ICR & sc->esc_IMS)) { 646 DPRINTF("icr deassert: lintr deassert %x", bits); 647 pci_lintr_deassert(sc->esc_pi); 648 sc->esc_irq_asserted = 0; 649 } 650 } 651 652 static void 653 e82545_intr_write(struct e82545_softc *sc, uint32_t offset, uint32_t value) 654 { 655 656 DPRINTF("intr_write: off %x, val %x", offset, value); 657 658 switch (offset) { 659 case E1000_ICR: 660 e82545_icr_deassert(sc, value); 661 break; 662 case E1000_ITR: 663 sc->esc_ITR = value; 664 break; 665 case E1000_ICS: 666 sc->esc_ICS = value; /* not used: store for debug */ 667 e82545_icr_assert(sc, value); 668 break; 669 case E1000_IMS: 670 e82545_ims_change(sc, value); 671 break; 672 case E1000_IMC: 673 sc->esc_IMC = value; /* for debug */ 674 sc->esc_IMS &= ~value; 675 // XXX clear interrupts if all ICR bits now masked 676 // and interrupt was pending ? 677 break; 678 default: 679 break; 680 } 681 } 682 683 static uint32_t 684 e82545_intr_read(struct e82545_softc *sc, uint32_t offset) 685 { 686 uint32_t retval; 687 688 retval = 0; 689 690 DPRINTF("intr_read: off %x", offset); 691 692 switch (offset) { 693 case E1000_ICR: 694 retval = sc->esc_ICR; 695 sc->esc_ICR = 0; 696 e82545_icr_deassert(sc, ~0); 697 break; 698 case E1000_ITR: 699 retval = sc->esc_ITR; 700 break; 701 case E1000_ICS: 702 /* write-only register */ 703 break; 704 case E1000_IMS: 705 retval = sc->esc_IMS; 706 break; 707 case E1000_IMC: 708 /* write-only register */ 709 break; 710 default: 711 break; 712 } 713 714 return (retval); 715 } 716 717 static void 718 e82545_devctl(struct e82545_softc *sc, uint32_t val) 719 { 720 721 sc->esc_CTRL = val & ~E1000_CTRL_RST; 722 723 if (val & E1000_CTRL_RST) { 724 DPRINTF("e1k: s/w reset, ctl %x", val); 725 e82545_reset(sc, 1); 726 } 727 /* XXX check for phy reset ? */ 728 } 729 730 static void 731 e82545_rx_update_rdba(struct e82545_softc *sc) 732 { 733 734 /* XXX verify desc base/len within phys mem range */ 735 sc->esc_rdba = (uint64_t)sc->esc_RDBAH << 32 | 736 sc->esc_RDBAL; 737 738 /* Cache host mapping of guest descriptor array */ 739 sc->esc_rxdesc = paddr_guest2host(sc->esc_ctx, 740 sc->esc_rdba, sc->esc_RDLEN); 741 } 742 743 static void 744 e82545_rx_ctl(struct e82545_softc *sc, uint32_t val) 745 { 746 int on; 747 748 on = ((val & E1000_RCTL_EN) == E1000_RCTL_EN); 749 750 /* Save RCTL after stripping reserved bits 31:27,24,21,14,11:10,0 */ 751 sc->esc_RCTL = val & ~0xF9204c01; 752 753 DPRINTF("rx_ctl - %s RCTL %x, val %x", 754 on ? "on" : "off", sc->esc_RCTL, val); 755 756 /* state change requested */ 757 if (on != sc->esc_rx_enabled) { 758 if (on) { 759 /* Catch disallowed/unimplemented settings */ 760 //assert(!(val & E1000_RCTL_LBM_TCVR)); 761 762 if (sc->esc_RCTL & E1000_RCTL_LBM_TCVR) { 763 sc->esc_rx_loopback = 1; 764 } else { 765 sc->esc_rx_loopback = 0; 766 } 767 768 e82545_rx_update_rdba(sc); 769 e82545_rx_enable(sc); 770 } else { 771 e82545_rx_disable(sc); 772 sc->esc_rx_loopback = 0; 773 sc->esc_rdba = 0; 774 sc->esc_rxdesc = NULL; 775 } 776 } 777 } 778 779 static void 780 e82545_tx_update_tdba(struct e82545_softc *sc) 781 { 782 783 /* XXX verify desc base/len within phys mem range */ 784 sc->esc_tdba = (uint64_t)sc->esc_TDBAH << 32 | sc->esc_TDBAL; 785 786 /* Cache host mapping of guest descriptor array */ 787 sc->esc_txdesc = paddr_guest2host(sc->esc_ctx, sc->esc_tdba, 788 sc->esc_TDLEN); 789 } 790 791 static void 792 e82545_tx_ctl(struct e82545_softc *sc, uint32_t val) 793 { 794 int on; 795 796 on = ((val & E1000_TCTL_EN) == E1000_TCTL_EN); 797 798 /* ignore TCTL_EN settings that don't change state */ 799 if (on == sc->esc_tx_enabled) 800 return; 801 802 if (on) { 803 e82545_tx_update_tdba(sc); 804 e82545_tx_enable(sc); 805 } else { 806 e82545_tx_disable(sc); 807 sc->esc_tdba = 0; 808 sc->esc_txdesc = NULL; 809 } 810 811 /* Save TCTL value after stripping reserved bits 31:25,23,2,0 */ 812 sc->esc_TCTL = val & ~0xFE800005; 813 } 814 815 static int 816 e82545_bufsz(uint32_t rctl) 817 { 818 819 switch (rctl & (E1000_RCTL_BSEX | E1000_RCTL_SZ_256)) { 820 case (E1000_RCTL_SZ_2048): return (2048); 821 case (E1000_RCTL_SZ_1024): return (1024); 822 case (E1000_RCTL_SZ_512): return (512); 823 case (E1000_RCTL_SZ_256): return (256); 824 case (E1000_RCTL_BSEX|E1000_RCTL_SZ_16384): return (16384); 825 case (E1000_RCTL_BSEX|E1000_RCTL_SZ_8192): return (8192); 826 case (E1000_RCTL_BSEX|E1000_RCTL_SZ_4096): return (4096); 827 } 828 return (256); /* Forbidden value. */ 829 } 830 831 /* XXX one packet at a time until this is debugged */ 832 static void 833 e82545_rx_callback(int fd, enum ev_type type, void *param) 834 { 835 struct e82545_softc *sc = param; 836 struct e1000_rx_desc *rxd; 837 struct iovec vec[64]; 838 int left, len, lim, maxpktsz, maxpktdesc, bufsz, i, n, size; 839 uint32_t cause = 0; 840 uint16_t *tp, tag, head; 841 842 pthread_mutex_lock(&sc->esc_mtx); 843 DPRINTF("rx_run: head %x, tail %x", sc->esc_RDH, sc->esc_RDT); 844 845 if (!sc->esc_rx_enabled || sc->esc_rx_loopback) { 846 DPRINTF("rx disabled (!%d || %d) -- packet(s) dropped", 847 sc->esc_rx_enabled, sc->esc_rx_loopback); 848 while (netbe_rx_discard(sc->esc_be) > 0) { 849 } 850 goto done1; 851 } 852 bufsz = e82545_bufsz(sc->esc_RCTL); 853 maxpktsz = (sc->esc_RCTL & E1000_RCTL_LPE) ? 16384 : 1522; 854 maxpktdesc = (maxpktsz + bufsz - 1) / bufsz; 855 size = sc->esc_RDLEN / 16; 856 head = sc->esc_RDH; 857 left = (size + sc->esc_RDT - head) % size; 858 if (left < maxpktdesc) { 859 DPRINTF("rx overflow (%d < %d) -- packet(s) dropped", 860 left, maxpktdesc); 861 while (netbe_rx_discard(sc->esc_be) > 0) { 862 } 863 goto done1; 864 } 865 866 sc->esc_rx_active = 1; 867 pthread_mutex_unlock(&sc->esc_mtx); 868 869 for (lim = size / 4; lim > 0 && left >= maxpktdesc; lim -= n) { 870 871 /* Grab rx descriptor pointed to by the head pointer */ 872 for (i = 0; i < maxpktdesc; i++) { 873 rxd = &sc->esc_rxdesc[(head + i) % size]; 874 vec[i].iov_base = paddr_guest2host(sc->esc_ctx, 875 rxd->buffer_addr, bufsz); 876 vec[i].iov_len = bufsz; 877 } 878 len = netbe_recv(sc->esc_be, vec, maxpktdesc); 879 if (len <= 0) { 880 DPRINTF("netbe_recv() returned %d", len); 881 goto done; 882 } 883 884 /* 885 * Adjust the packet length based on whether the CRC needs 886 * to be stripped or if the packet is less than the minimum 887 * eth packet size. 888 */ 889 if (len < ETHER_MIN_LEN - ETHER_CRC_LEN) 890 len = ETHER_MIN_LEN - ETHER_CRC_LEN; 891 if (!(sc->esc_RCTL & E1000_RCTL_SECRC)) 892 len += ETHER_CRC_LEN; 893 n = (len + bufsz - 1) / bufsz; 894 895 DPRINTF("packet read %d bytes, %d segs, head %d", 896 len, n, head); 897 898 /* Apply VLAN filter. */ 899 tp = (uint16_t *)vec[0].iov_base + 6; 900 if ((sc->esc_RCTL & E1000_RCTL_VFE) && 901 (ntohs(tp[0]) == sc->esc_VET)) { 902 tag = ntohs(tp[1]) & 0x0fff; 903 if ((sc->esc_fvlan[tag >> 5] & 904 (1 << (tag & 0x1f))) != 0) { 905 DPRINTF("known VLAN %d", tag); 906 } else { 907 DPRINTF("unknown VLAN %d", tag); 908 n = 0; 909 continue; 910 } 911 } 912 913 /* Update all consumed descriptors. */ 914 for (i = 0; i < n - 1; i++) { 915 rxd = &sc->esc_rxdesc[(head + i) % size]; 916 rxd->length = bufsz; 917 rxd->csum = 0; 918 rxd->errors = 0; 919 rxd->special = 0; 920 rxd->status = E1000_RXD_STAT_DD; 921 } 922 rxd = &sc->esc_rxdesc[(head + i) % size]; 923 rxd->length = len % bufsz; 924 rxd->csum = 0; 925 rxd->errors = 0; 926 rxd->special = 0; 927 /* XXX signal no checksum for now */ 928 rxd->status = E1000_RXD_STAT_PIF | E1000_RXD_STAT_IXSM | 929 E1000_RXD_STAT_EOP | E1000_RXD_STAT_DD; 930 931 /* Schedule receive interrupts. */ 932 if (len <= sc->esc_RSRPD) { 933 cause |= E1000_ICR_SRPD | E1000_ICR_RXT0; 934 } else { 935 /* XXX: RDRT and RADV timers should be here. */ 936 cause |= E1000_ICR_RXT0; 937 } 938 939 head = (head + n) % size; 940 left -= n; 941 } 942 943 done: 944 pthread_mutex_lock(&sc->esc_mtx); 945 sc->esc_rx_active = 0; 946 if (sc->esc_rx_enabled == 0) 947 pthread_cond_signal(&sc->esc_rx_cond); 948 949 sc->esc_RDH = head; 950 /* Respect E1000_RCTL_RDMTS */ 951 left = (size + sc->esc_RDT - head) % size; 952 if (left < (size >> (((sc->esc_RCTL >> 8) & 3) + 1))) 953 cause |= E1000_ICR_RXDMT0; 954 /* Assert all accumulated interrupts. */ 955 if (cause != 0) 956 e82545_icr_assert(sc, cause); 957 done1: 958 DPRINTF("rx_run done: head %x, tail %x", sc->esc_RDH, sc->esc_RDT); 959 pthread_mutex_unlock(&sc->esc_mtx); 960 } 961 962 static uint16_t 963 e82545_carry(uint32_t sum) 964 { 965 966 sum = (sum & 0xFFFF) + (sum >> 16); 967 if (sum > 0xFFFF) 968 sum -= 0xFFFF; 969 return (sum); 970 } 971 972 static uint16_t 973 e82545_buf_checksum(uint8_t *buf, int len) 974 { 975 int i; 976 uint32_t sum = 0; 977 978 /* Checksum all the pairs of bytes first... */ 979 for (i = 0; i < (len & ~1U); i += 2) 980 sum += *((u_int16_t *)(buf + i)); 981 982 /* 983 * If there's a single byte left over, checksum it, too. 984 * Network byte order is big-endian, so the remaining byte is 985 * the high byte. 986 */ 987 if (i < len) 988 sum += htons(buf[i] << 8); 989 990 return (e82545_carry(sum)); 991 } 992 993 static uint16_t 994 e82545_iov_checksum(struct iovec *iov, int iovcnt, int off, int len) 995 { 996 int now, odd; 997 uint32_t sum = 0, s; 998 999 /* Skip completely unneeded vectors. */ 1000 while (iovcnt > 0 && iov->iov_len <= off && off > 0) { 1001 off -= iov->iov_len; 1002 iov++; 1003 iovcnt--; 1004 } 1005 1006 /* Calculate checksum of requested range. */ 1007 odd = 0; 1008 while (len > 0 && iovcnt > 0) { 1009 now = MIN(len, iov->iov_len - off); 1010 s = e82545_buf_checksum(iov->iov_base + off, now); 1011 sum += odd ? (s << 8) : s; 1012 odd ^= (now & 1); 1013 len -= now; 1014 off = 0; 1015 iov++; 1016 iovcnt--; 1017 } 1018 1019 return (e82545_carry(sum)); 1020 } 1021 1022 /* 1023 * Return the transmit descriptor type. 1024 */ 1025 static int 1026 e82545_txdesc_type(uint32_t lower) 1027 { 1028 int type; 1029 1030 type = 0; 1031 1032 if (lower & E1000_TXD_CMD_DEXT) 1033 type = lower & E1000_TXD_MASK; 1034 1035 return (type); 1036 } 1037 1038 static void 1039 e82545_transmit_checksum(struct iovec *iov, int iovcnt, struct ck_info *ck) 1040 { 1041 uint16_t cksum; 1042 int cklen; 1043 1044 DPRINTF("tx cksum: iovcnt/s/off/len %d/%d/%d/%d", 1045 iovcnt, ck->ck_start, ck->ck_off, ck->ck_len); 1046 cklen = ck->ck_len ? ck->ck_len - ck->ck_start + 1 : INT_MAX; 1047 cksum = e82545_iov_checksum(iov, iovcnt, ck->ck_start, cklen); 1048 *(uint16_t *)((uint8_t *)iov[0].iov_base + ck->ck_off) = ~cksum; 1049 } 1050 1051 static void 1052 e82545_transmit_backend(struct e82545_softc *sc, struct iovec *iov, int iovcnt) 1053 { 1054 1055 if (sc->esc_be == NULL) 1056 return; 1057 1058 (void) netbe_send(sc->esc_be, iov, iovcnt); 1059 } 1060 1061 static void 1062 e82545_transmit_done(struct e82545_softc *sc, uint16_t head, uint16_t tail, 1063 uint16_t dsize, int *tdwb) 1064 { 1065 union e1000_tx_udesc *dsc; 1066 1067 for ( ; head != tail; head = (head + 1) % dsize) { 1068 dsc = &sc->esc_txdesc[head]; 1069 if (dsc->td.lower.data & E1000_TXD_CMD_RS) { 1070 dsc->td.upper.data |= E1000_TXD_STAT_DD; 1071 *tdwb = 1; 1072 } 1073 } 1074 } 1075 1076 static int 1077 e82545_transmit(struct e82545_softc *sc, uint16_t head, uint16_t tail, 1078 uint16_t dsize, uint16_t *rhead, int *tdwb) 1079 { 1080 uint8_t *hdr, *hdrp; 1081 struct iovec iovb[I82545_MAX_TXSEGS + 2]; 1082 struct iovec tiov[I82545_MAX_TXSEGS + 2]; 1083 struct e1000_context_desc *cd; 1084 struct ck_info ckinfo[2]; 1085 struct iovec *iov; 1086 union e1000_tx_udesc *dsc; 1087 int desc, dtype, len, ntype, iovcnt, tcp, tso; 1088 int mss, paylen, seg, tiovcnt, left, now, nleft, nnow, pv, pvoff; 1089 unsigned hdrlen, vlen, pktlen; 1090 uint32_t tcpsum, tcpseq; 1091 uint16_t ipcs, tcpcs, ipid, ohead; 1092 bool invalid; 1093 1094 ckinfo[0].ck_valid = ckinfo[1].ck_valid = 0; 1095 iovcnt = 0; 1096 ntype = 0; 1097 tso = 0; 1098 pktlen = 0; 1099 ohead = head; 1100 invalid = false; 1101 1102 /* iovb[0/1] may be used for writable copy of headers. */ 1103 iov = &iovb[2]; 1104 1105 for (desc = 0; ; desc++, head = (head + 1) % dsize) { 1106 if (head == tail) { 1107 *rhead = head; 1108 return (0); 1109 } 1110 dsc = &sc->esc_txdesc[head]; 1111 dtype = e82545_txdesc_type(dsc->td.lower.data); 1112 1113 if (desc == 0) { 1114 switch (dtype) { 1115 case E1000_TXD_TYP_C: 1116 DPRINTF("tx ctxt desc idx %d: %016jx " 1117 "%08x%08x", 1118 head, dsc->td.buffer_addr, 1119 dsc->td.upper.data, dsc->td.lower.data); 1120 /* Save context and return */ 1121 sc->esc_txctx = dsc->cd; 1122 goto done; 1123 case E1000_TXD_TYP_L: 1124 DPRINTF("tx legacy desc idx %d: %08x%08x", 1125 head, dsc->td.upper.data, dsc->td.lower.data); 1126 /* 1127 * legacy cksum start valid in first descriptor 1128 */ 1129 ntype = dtype; 1130 ckinfo[0].ck_start = dsc->td.upper.fields.css; 1131 break; 1132 case E1000_TXD_TYP_D: 1133 DPRINTF("tx data desc idx %d: %08x%08x", 1134 head, dsc->td.upper.data, dsc->td.lower.data); 1135 ntype = dtype; 1136 break; 1137 default: 1138 break; 1139 } 1140 } else { 1141 /* Descriptor type must be consistent */ 1142 assert(dtype == ntype); 1143 DPRINTF("tx next desc idx %d: %08x%08x", 1144 head, dsc->td.upper.data, dsc->td.lower.data); 1145 } 1146 1147 len = (dtype == E1000_TXD_TYP_L) ? dsc->td.lower.flags.length : 1148 dsc->dd.lower.data & 0xFFFFF; 1149 1150 /* Strip checksum supplied by guest. */ 1151 if ((dsc->td.lower.data & E1000_TXD_CMD_EOP) != 0 && 1152 (dsc->td.lower.data & E1000_TXD_CMD_IFCS) == 0) { 1153 if (len <= 2) { 1154 WPRINTF("final descriptor too short (%d) -- dropped", 1155 len); 1156 invalid = true; 1157 } else 1158 len -= 2; 1159 } 1160 1161 if (len > 0 && iovcnt < I82545_MAX_TXSEGS) { 1162 iov[iovcnt].iov_base = paddr_guest2host(sc->esc_ctx, 1163 dsc->td.buffer_addr, len); 1164 iov[iovcnt].iov_len = len; 1165 iovcnt++; 1166 pktlen += len; 1167 } 1168 1169 /* 1170 * Pull out info that is valid in the final descriptor 1171 * and exit descriptor loop. 1172 */ 1173 if (dsc->td.lower.data & E1000_TXD_CMD_EOP) { 1174 if (dtype == E1000_TXD_TYP_L) { 1175 if (dsc->td.lower.data & E1000_TXD_CMD_IC) { 1176 ckinfo[0].ck_valid = 1; 1177 ckinfo[0].ck_off = 1178 dsc->td.lower.flags.cso; 1179 ckinfo[0].ck_len = 0; 1180 } 1181 } else { 1182 cd = &sc->esc_txctx; 1183 if (dsc->dd.lower.data & E1000_TXD_CMD_TSE) 1184 tso = 1; 1185 if (dsc->dd.upper.fields.popts & 1186 E1000_TXD_POPTS_IXSM) 1187 ckinfo[0].ck_valid = 1; 1188 if (dsc->dd.upper.fields.popts & 1189 E1000_TXD_POPTS_IXSM || tso) { 1190 ckinfo[0].ck_start = 1191 cd->lower_setup.ip_fields.ipcss; 1192 ckinfo[0].ck_off = 1193 cd->lower_setup.ip_fields.ipcso; 1194 ckinfo[0].ck_len = 1195 cd->lower_setup.ip_fields.ipcse; 1196 } 1197 if (dsc->dd.upper.fields.popts & 1198 E1000_TXD_POPTS_TXSM) 1199 ckinfo[1].ck_valid = 1; 1200 if (dsc->dd.upper.fields.popts & 1201 E1000_TXD_POPTS_TXSM || tso) { 1202 ckinfo[1].ck_start = 1203 cd->upper_setup.tcp_fields.tucss; 1204 ckinfo[1].ck_off = 1205 cd->upper_setup.tcp_fields.tucso; 1206 ckinfo[1].ck_len = 1207 cd->upper_setup.tcp_fields.tucse; 1208 } 1209 } 1210 break; 1211 } 1212 } 1213 1214 if (invalid) 1215 goto done; 1216 1217 if (iovcnt > I82545_MAX_TXSEGS) { 1218 WPRINTF("tx too many descriptors (%d > %d) -- dropped", 1219 iovcnt, I82545_MAX_TXSEGS); 1220 goto done; 1221 } 1222 1223 hdrlen = vlen = 0; 1224 /* Estimate writable space for VLAN header insertion. */ 1225 if ((sc->esc_CTRL & E1000_CTRL_VME) && 1226 (dsc->td.lower.data & E1000_TXD_CMD_VLE)) { 1227 hdrlen = ETHER_ADDR_LEN*2; 1228 vlen = ETHER_VLAN_ENCAP_LEN; 1229 } 1230 if (!tso) { 1231 /* Estimate required writable space for checksums. */ 1232 if (ckinfo[0].ck_valid) 1233 hdrlen = MAX(hdrlen, ckinfo[0].ck_off + 2); 1234 if (ckinfo[1].ck_valid) 1235 hdrlen = MAX(hdrlen, ckinfo[1].ck_off + 2); 1236 /* Round up writable space to the first vector. */ 1237 if (hdrlen != 0 && iov[0].iov_len > hdrlen && 1238 iov[0].iov_len < hdrlen + 100) 1239 hdrlen = iov[0].iov_len; 1240 } else { 1241 /* In case of TSO header length provided by software. */ 1242 hdrlen = sc->esc_txctx.tcp_seg_setup.fields.hdr_len; 1243 1244 /* 1245 * Cap the header length at 240 based on 7.2.4.5 of 1246 * the Intel 82576EB (Rev 2.63) datasheet. 1247 */ 1248 if (hdrlen > 240) { 1249 WPRINTF("TSO hdrlen too large: %d", hdrlen); 1250 goto done; 1251 } 1252 1253 /* 1254 * If VLAN insertion is requested, ensure the header 1255 * at least holds the amount of data copied during 1256 * VLAN insertion below. 1257 * 1258 * XXX: Realistic packets will include a full Ethernet 1259 * header before the IP header at ckinfo[0].ck_start, 1260 * but this check is sufficient to prevent 1261 * out-of-bounds access below. 1262 */ 1263 if (vlen != 0 && hdrlen < ETHER_ADDR_LEN*2) { 1264 WPRINTF("TSO hdrlen too small for vlan insertion " 1265 "(%d vs %d) -- dropped", hdrlen, 1266 ETHER_ADDR_LEN*2); 1267 goto done; 1268 } 1269 1270 /* 1271 * Ensure that the header length covers the used fields 1272 * in the IP and TCP headers as well as the IP and TCP 1273 * checksums. The following fields are accessed below: 1274 * 1275 * Header | Field | Offset | Length 1276 * -------+-------+--------+------- 1277 * IPv4 | len | 2 | 2 1278 * IPv4 | ID | 4 | 2 1279 * IPv6 | len | 4 | 2 1280 * TCP | seq # | 4 | 4 1281 * TCP | flags | 13 | 1 1282 * UDP | len | 4 | 4 1283 */ 1284 if (hdrlen < ckinfo[0].ck_start + 6 || 1285 hdrlen < ckinfo[0].ck_off + 2) { 1286 WPRINTF("TSO hdrlen too small for IP fields (%d) " 1287 "-- dropped", hdrlen); 1288 goto done; 1289 } 1290 if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) { 1291 if (hdrlen < ckinfo[1].ck_start + 14) { 1292 WPRINTF("TSO hdrlen too small for TCP fields " 1293 "(%d) -- dropped", hdrlen); 1294 goto done; 1295 } 1296 } else { 1297 if (hdrlen < ckinfo[1].ck_start + 8) { 1298 WPRINTF("TSO hdrlen too small for UDP fields " 1299 "(%d) -- dropped", hdrlen); 1300 goto done; 1301 } 1302 } 1303 if (ckinfo[1].ck_valid && hdrlen < ckinfo[1].ck_off + 2) { 1304 WPRINTF("TSO hdrlen too small for TCP/UDP fields " 1305 "(%d) -- dropped", hdrlen); 1306 goto done; 1307 } 1308 } 1309 1310 if (pktlen < hdrlen + vlen) { 1311 WPRINTF("packet too small for writable header"); 1312 goto done; 1313 } 1314 1315 /* Allocate, fill and prepend writable header vector. */ 1316 if (hdrlen + vlen != 0) { 1317 hdr = __builtin_alloca(hdrlen + vlen); 1318 hdr += vlen; 1319 for (left = hdrlen, hdrp = hdr; left > 0; 1320 left -= now, hdrp += now) { 1321 now = MIN(left, iov->iov_len); 1322 memcpy(hdrp, iov->iov_base, now); 1323 iov->iov_base += now; 1324 iov->iov_len -= now; 1325 if (iov->iov_len == 0) { 1326 iov++; 1327 iovcnt--; 1328 } 1329 } 1330 iov--; 1331 iovcnt++; 1332 iov->iov_base = hdr; 1333 iov->iov_len = hdrlen; 1334 } else 1335 hdr = NULL; 1336 1337 /* Insert VLAN tag. */ 1338 if (vlen != 0) { 1339 hdr -= ETHER_VLAN_ENCAP_LEN; 1340 memmove(hdr, hdr + ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN*2); 1341 hdrlen += ETHER_VLAN_ENCAP_LEN; 1342 hdr[ETHER_ADDR_LEN*2 + 0] = sc->esc_VET >> 8; 1343 hdr[ETHER_ADDR_LEN*2 + 1] = sc->esc_VET & 0xff; 1344 hdr[ETHER_ADDR_LEN*2 + 2] = dsc->td.upper.fields.special >> 8; 1345 hdr[ETHER_ADDR_LEN*2 + 3] = dsc->td.upper.fields.special & 0xff; 1346 iov->iov_base = hdr; 1347 iov->iov_len += ETHER_VLAN_ENCAP_LEN; 1348 /* Correct checksum offsets after VLAN tag insertion. */ 1349 ckinfo[0].ck_start += ETHER_VLAN_ENCAP_LEN; 1350 ckinfo[0].ck_off += ETHER_VLAN_ENCAP_LEN; 1351 if (ckinfo[0].ck_len != 0) 1352 ckinfo[0].ck_len += ETHER_VLAN_ENCAP_LEN; 1353 ckinfo[1].ck_start += ETHER_VLAN_ENCAP_LEN; 1354 ckinfo[1].ck_off += ETHER_VLAN_ENCAP_LEN; 1355 if (ckinfo[1].ck_len != 0) 1356 ckinfo[1].ck_len += ETHER_VLAN_ENCAP_LEN; 1357 } 1358 1359 /* Simple non-TSO case. */ 1360 if (!tso) { 1361 /* Calculate checksums and transmit. */ 1362 if (ckinfo[0].ck_valid) 1363 e82545_transmit_checksum(iov, iovcnt, &ckinfo[0]); 1364 if (ckinfo[1].ck_valid) 1365 e82545_transmit_checksum(iov, iovcnt, &ckinfo[1]); 1366 e82545_transmit_backend(sc, iov, iovcnt); 1367 goto done; 1368 } 1369 1370 /* Doing TSO. */ 1371 tcp = (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) != 0; 1372 mss = sc->esc_txctx.tcp_seg_setup.fields.mss; 1373 paylen = (sc->esc_txctx.cmd_and_length & 0x000fffff); 1374 DPRINTF("tx %s segmentation offload %d+%d/%d bytes %d iovs", 1375 tcp ? "TCP" : "UDP", hdrlen, paylen, mss, iovcnt); 1376 ipid = ntohs(*(uint16_t *)&hdr[ckinfo[0].ck_start + 4]); 1377 tcpseq = 0; 1378 if (tcp) 1379 tcpseq = ntohl(*(uint32_t *)&hdr[ckinfo[1].ck_start + 4]); 1380 ipcs = *(uint16_t *)&hdr[ckinfo[0].ck_off]; 1381 tcpcs = 0; 1382 if (ckinfo[1].ck_valid) /* Save partial pseudo-header checksum. */ 1383 tcpcs = *(uint16_t *)&hdr[ckinfo[1].ck_off]; 1384 pv = 1; 1385 pvoff = 0; 1386 for (seg = 0, left = paylen; left > 0; seg++, left -= now) { 1387 now = MIN(left, mss); 1388 1389 /* Construct IOVs for the segment. */ 1390 /* Include whole original header. */ 1391 tiov[0].iov_base = hdr; 1392 tiov[0].iov_len = hdrlen; 1393 tiovcnt = 1; 1394 /* Include respective part of payload IOV. */ 1395 for (nleft = now; pv < iovcnt && nleft > 0; nleft -= nnow) { 1396 nnow = MIN(nleft, iov[pv].iov_len - pvoff); 1397 tiov[tiovcnt].iov_base = iov[pv].iov_base + pvoff; 1398 tiov[tiovcnt++].iov_len = nnow; 1399 if (pvoff + nnow == iov[pv].iov_len) { 1400 pv++; 1401 pvoff = 0; 1402 } else 1403 pvoff += nnow; 1404 } 1405 DPRINTF("tx segment %d %d+%d bytes %d iovs", 1406 seg, hdrlen, now, tiovcnt); 1407 1408 /* Update IP header. */ 1409 if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_IP) { 1410 /* IPv4 -- set length and ID */ 1411 *(uint16_t *)&hdr[ckinfo[0].ck_start + 2] = 1412 htons(hdrlen - ckinfo[0].ck_start + now); 1413 *(uint16_t *)&hdr[ckinfo[0].ck_start + 4] = 1414 htons(ipid + seg); 1415 } else { 1416 /* IPv6 -- set length */ 1417 *(uint16_t *)&hdr[ckinfo[0].ck_start + 4] = 1418 htons(hdrlen - ckinfo[0].ck_start - 40 + 1419 now); 1420 } 1421 1422 /* Update pseudo-header checksum. */ 1423 tcpsum = tcpcs; 1424 tcpsum += htons(hdrlen - ckinfo[1].ck_start + now); 1425 1426 /* Update TCP/UDP headers. */ 1427 if (tcp) { 1428 /* Update sequence number and FIN/PUSH flags. */ 1429 *(uint32_t *)&hdr[ckinfo[1].ck_start + 4] = 1430 htonl(tcpseq + paylen - left); 1431 if (now < left) { 1432 hdr[ckinfo[1].ck_start + 13] &= 1433 ~(TH_FIN | TH_PUSH); 1434 } 1435 } else { 1436 /* Update payload length. */ 1437 *(uint32_t *)&hdr[ckinfo[1].ck_start + 4] = 1438 hdrlen - ckinfo[1].ck_start + now; 1439 } 1440 1441 /* Calculate checksums and transmit. */ 1442 if (ckinfo[0].ck_valid) { 1443 *(uint16_t *)&hdr[ckinfo[0].ck_off] = ipcs; 1444 e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[0]); 1445 } 1446 if (ckinfo[1].ck_valid) { 1447 *(uint16_t *)&hdr[ckinfo[1].ck_off] = 1448 e82545_carry(tcpsum); 1449 e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[1]); 1450 } 1451 e82545_transmit_backend(sc, tiov, tiovcnt); 1452 } 1453 1454 done: 1455 head = (head + 1) % dsize; 1456 e82545_transmit_done(sc, ohead, head, dsize, tdwb); 1457 1458 *rhead = head; 1459 return (desc + 1); 1460 } 1461 1462 static void 1463 e82545_tx_run(struct e82545_softc *sc) 1464 { 1465 uint32_t cause; 1466 uint16_t head, rhead, tail, size; 1467 int lim, tdwb, sent; 1468 1469 size = sc->esc_TDLEN / 16; 1470 if (size == 0) 1471 return; 1472 1473 head = sc->esc_TDH % size; 1474 tail = sc->esc_TDT % size; 1475 DPRINTF("tx_run: head %x, rhead %x, tail %x", 1476 sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT); 1477 1478 pthread_mutex_unlock(&sc->esc_mtx); 1479 rhead = head; 1480 tdwb = 0; 1481 for (lim = size / 4; sc->esc_tx_enabled && lim > 0; lim -= sent) { 1482 sent = e82545_transmit(sc, head, tail, size, &rhead, &tdwb); 1483 if (sent == 0) 1484 break; 1485 head = rhead; 1486 } 1487 pthread_mutex_lock(&sc->esc_mtx); 1488 1489 sc->esc_TDH = head; 1490 sc->esc_TDHr = rhead; 1491 cause = 0; 1492 if (tdwb) 1493 cause |= E1000_ICR_TXDW; 1494 if (lim != size / 4 && sc->esc_TDH == sc->esc_TDT) 1495 cause |= E1000_ICR_TXQE; 1496 if (cause) 1497 e82545_icr_assert(sc, cause); 1498 1499 DPRINTF("tx_run done: head %x, rhead %x, tail %x", 1500 sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT); 1501 } 1502 1503 static _Noreturn void * 1504 e82545_tx_thread(void *param) 1505 { 1506 struct e82545_softc *sc = param; 1507 1508 pthread_mutex_lock(&sc->esc_mtx); 1509 for (;;) { 1510 while (!sc->esc_tx_enabled || sc->esc_TDHr == sc->esc_TDT) { 1511 if (sc->esc_tx_enabled && sc->esc_TDHr != sc->esc_TDT) 1512 break; 1513 sc->esc_tx_active = 0; 1514 if (sc->esc_tx_enabled == 0) 1515 pthread_cond_signal(&sc->esc_tx_cond); 1516 pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx); 1517 } 1518 sc->esc_tx_active = 1; 1519 1520 /* Process some tx descriptors. Lock dropped inside. */ 1521 e82545_tx_run(sc); 1522 } 1523 } 1524 1525 static void 1526 e82545_tx_start(struct e82545_softc *sc) 1527 { 1528 1529 if (sc->esc_tx_active == 0) 1530 pthread_cond_signal(&sc->esc_tx_cond); 1531 } 1532 1533 static void 1534 e82545_tx_enable(struct e82545_softc *sc) 1535 { 1536 1537 sc->esc_tx_enabled = 1; 1538 } 1539 1540 static void 1541 e82545_tx_disable(struct e82545_softc *sc) 1542 { 1543 1544 sc->esc_tx_enabled = 0; 1545 while (sc->esc_tx_active) 1546 pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx); 1547 } 1548 1549 static void 1550 e82545_rx_enable(struct e82545_softc *sc) 1551 { 1552 1553 sc->esc_rx_enabled = 1; 1554 } 1555 1556 static void 1557 e82545_rx_disable(struct e82545_softc *sc) 1558 { 1559 1560 sc->esc_rx_enabled = 0; 1561 while (sc->esc_rx_active) 1562 pthread_cond_wait(&sc->esc_rx_cond, &sc->esc_mtx); 1563 } 1564 1565 static void 1566 e82545_write_ra(struct e82545_softc *sc, int reg, uint32_t wval) 1567 { 1568 struct eth_uni *eu; 1569 int idx; 1570 1571 idx = reg >> 1; 1572 assert(idx < 15); 1573 1574 eu = &sc->esc_uni[idx]; 1575 1576 if (reg & 0x1) { 1577 /* RAH */ 1578 eu->eu_valid = ((wval & E1000_RAH_AV) == E1000_RAH_AV); 1579 eu->eu_addrsel = (wval >> 16) & 0x3; 1580 eu->eu_eth.octet[5] = wval >> 8; 1581 eu->eu_eth.octet[4] = wval; 1582 } else { 1583 /* RAL */ 1584 eu->eu_eth.octet[3] = wval >> 24; 1585 eu->eu_eth.octet[2] = wval >> 16; 1586 eu->eu_eth.octet[1] = wval >> 8; 1587 eu->eu_eth.octet[0] = wval; 1588 } 1589 } 1590 1591 static uint32_t 1592 e82545_read_ra(struct e82545_softc *sc, int reg) 1593 { 1594 struct eth_uni *eu; 1595 uint32_t retval; 1596 int idx; 1597 1598 idx = reg >> 1; 1599 assert(idx < 15); 1600 1601 eu = &sc->esc_uni[idx]; 1602 1603 if (reg & 0x1) { 1604 /* RAH */ 1605 retval = (eu->eu_valid << 31) | 1606 (eu->eu_addrsel << 16) | 1607 (eu->eu_eth.octet[5] << 8) | 1608 eu->eu_eth.octet[4]; 1609 } else { 1610 /* RAL */ 1611 retval = (eu->eu_eth.octet[3] << 24) | 1612 (eu->eu_eth.octet[2] << 16) | 1613 (eu->eu_eth.octet[1] << 8) | 1614 eu->eu_eth.octet[0]; 1615 } 1616 1617 return (retval); 1618 } 1619 1620 static void 1621 e82545_write_register(struct e82545_softc *sc, uint32_t offset, uint32_t value) 1622 { 1623 int ridx; 1624 1625 if (offset & 0x3) { 1626 DPRINTF("Unaligned register write offset:0x%x value:0x%x", offset, value); 1627 return; 1628 } 1629 DPRINTF("Register write: 0x%x value: 0x%x", offset, value); 1630 1631 switch (offset) { 1632 case E1000_CTRL: 1633 case E1000_CTRL_DUP: 1634 e82545_devctl(sc, value); 1635 break; 1636 case E1000_FCAL: 1637 sc->esc_FCAL = value; 1638 break; 1639 case E1000_FCAH: 1640 sc->esc_FCAH = value & ~0xFFFF0000; 1641 break; 1642 case E1000_FCT: 1643 sc->esc_FCT = value & ~0xFFFF0000; 1644 break; 1645 case E1000_VET: 1646 sc->esc_VET = value & ~0xFFFF0000; 1647 break; 1648 case E1000_FCTTV: 1649 sc->esc_FCTTV = value & ~0xFFFF0000; 1650 break; 1651 case E1000_LEDCTL: 1652 sc->esc_LEDCTL = value & ~0x30303000; 1653 break; 1654 case E1000_PBA: 1655 sc->esc_PBA = value & 0x0000FF80; 1656 break; 1657 case E1000_ICR: 1658 case E1000_ITR: 1659 case E1000_ICS: 1660 case E1000_IMS: 1661 case E1000_IMC: 1662 e82545_intr_write(sc, offset, value); 1663 break; 1664 case E1000_RCTL: 1665 e82545_rx_ctl(sc, value); 1666 break; 1667 case E1000_FCRTL: 1668 sc->esc_FCRTL = value & ~0xFFFF0007; 1669 break; 1670 case E1000_FCRTH: 1671 sc->esc_FCRTH = value & ~0xFFFF0007; 1672 break; 1673 case E1000_RDBAL(0): 1674 sc->esc_RDBAL = value & ~0xF; 1675 if (sc->esc_rx_enabled) { 1676 /* Apparently legal: update cached address */ 1677 e82545_rx_update_rdba(sc); 1678 } 1679 break; 1680 case E1000_RDBAH(0): 1681 assert(!sc->esc_rx_enabled); 1682 sc->esc_RDBAH = value; 1683 break; 1684 case E1000_RDLEN(0): 1685 assert(!sc->esc_rx_enabled); 1686 sc->esc_RDLEN = value & ~0xFFF0007F; 1687 break; 1688 case E1000_RDH(0): 1689 /* XXX should only ever be zero ? Range check ? */ 1690 sc->esc_RDH = value; 1691 break; 1692 case E1000_RDT(0): 1693 /* XXX if this opens up the rx ring, do something ? */ 1694 sc->esc_RDT = value; 1695 break; 1696 case E1000_RDTR: 1697 /* ignore FPD bit 31 */ 1698 sc->esc_RDTR = value & ~0xFFFF0000; 1699 break; 1700 case E1000_RXDCTL(0): 1701 sc->esc_RXDCTL = value & ~0xFEC0C0C0; 1702 break; 1703 case E1000_RADV: 1704 sc->esc_RADV = value & ~0xFFFF0000; 1705 break; 1706 case E1000_RSRPD: 1707 sc->esc_RSRPD = value & ~0xFFFFF000; 1708 break; 1709 case E1000_RXCSUM: 1710 sc->esc_RXCSUM = value & ~0xFFFFF800; 1711 break; 1712 case E1000_TXCW: 1713 sc->esc_TXCW = value & ~0x3FFF0000; 1714 break; 1715 case E1000_TCTL: 1716 e82545_tx_ctl(sc, value); 1717 break; 1718 case E1000_TIPG: 1719 sc->esc_TIPG = value; 1720 break; 1721 case E1000_AIT: 1722 sc->esc_AIT = value; 1723 break; 1724 case E1000_TDBAL(0): 1725 sc->esc_TDBAL = value & ~0xF; 1726 if (sc->esc_tx_enabled) 1727 e82545_tx_update_tdba(sc); 1728 break; 1729 case E1000_TDBAH(0): 1730 sc->esc_TDBAH = value; 1731 if (sc->esc_tx_enabled) 1732 e82545_tx_update_tdba(sc); 1733 break; 1734 case E1000_TDLEN(0): 1735 sc->esc_TDLEN = value & ~0xFFF0007F; 1736 if (sc->esc_tx_enabled) 1737 e82545_tx_update_tdba(sc); 1738 break; 1739 case E1000_TDH(0): 1740 if (sc->esc_tx_enabled) { 1741 WPRINTF("ignoring write to TDH while transmit enabled"); 1742 break; 1743 } 1744 if (value != 0) { 1745 WPRINTF("ignoring non-zero value written to TDH"); 1746 break; 1747 } 1748 sc->esc_TDHr = sc->esc_TDH = value; 1749 break; 1750 case E1000_TDT(0): 1751 sc->esc_TDT = value; 1752 if (sc->esc_tx_enabled) 1753 e82545_tx_start(sc); 1754 break; 1755 case E1000_TIDV: 1756 sc->esc_TIDV = value & ~0xFFFF0000; 1757 break; 1758 case E1000_TXDCTL(0): 1759 //assert(!sc->esc_tx_enabled); 1760 sc->esc_TXDCTL = value & ~0xC0C0C0; 1761 break; 1762 case E1000_TADV: 1763 sc->esc_TADV = value & ~0xFFFF0000; 1764 break; 1765 case E1000_RAL(0) ... E1000_RAH(15): 1766 /* convert to u32 offset */ 1767 ridx = (offset - E1000_RAL(0)) >> 2; 1768 e82545_write_ra(sc, ridx, value); 1769 break; 1770 case E1000_MTA ... (E1000_MTA + (127*4)): 1771 sc->esc_fmcast[(offset - E1000_MTA) >> 2] = value; 1772 break; 1773 case E1000_VFTA ... (E1000_VFTA + (127*4)): 1774 sc->esc_fvlan[(offset - E1000_VFTA) >> 2] = value; 1775 break; 1776 case E1000_EECD: 1777 { 1778 //DPRINTF("EECD write 0x%x -> 0x%x", sc->eeprom_control, value); 1779 /* edge triggered low->high */ 1780 uint32_t eecd_strobe = ((sc->eeprom_control & E1000_EECD_SK) ? 1781 0 : (value & E1000_EECD_SK)); 1782 uint32_t eecd_mask = (E1000_EECD_SK|E1000_EECD_CS| 1783 E1000_EECD_DI|E1000_EECD_REQ); 1784 sc->eeprom_control &= ~eecd_mask; 1785 sc->eeprom_control |= (value & eecd_mask); 1786 /* grant/revoke immediately */ 1787 if (value & E1000_EECD_REQ) { 1788 sc->eeprom_control |= E1000_EECD_GNT; 1789 } else { 1790 sc->eeprom_control &= ~E1000_EECD_GNT; 1791 } 1792 if (eecd_strobe && (sc->eeprom_control & E1000_EECD_CS)) { 1793 e82545_eecd_strobe(sc); 1794 } 1795 return; 1796 } 1797 case E1000_MDIC: 1798 { 1799 uint8_t reg_addr = (uint8_t)((value & E1000_MDIC_REG_MASK) >> 1800 E1000_MDIC_REG_SHIFT); 1801 uint8_t phy_addr = (uint8_t)((value & E1000_MDIC_PHY_MASK) >> 1802 E1000_MDIC_PHY_SHIFT); 1803 sc->mdi_control = 1804 (value & ~(E1000_MDIC_ERROR|E1000_MDIC_DEST)); 1805 if ((value & E1000_MDIC_READY) != 0) { 1806 DPRINTF("Incorrect MDIC ready bit: 0x%x", value); 1807 return; 1808 } 1809 switch (value & E82545_MDIC_OP_MASK) { 1810 case E1000_MDIC_OP_READ: 1811 sc->mdi_control &= ~E82545_MDIC_DATA_MASK; 1812 sc->mdi_control |= e82545_read_mdi(sc, reg_addr, phy_addr); 1813 break; 1814 case E1000_MDIC_OP_WRITE: 1815 e82545_write_mdi(sc, reg_addr, phy_addr, 1816 value & E82545_MDIC_DATA_MASK); 1817 break; 1818 default: 1819 DPRINTF("Unknown MDIC op: 0x%x", value); 1820 return; 1821 } 1822 /* TODO: barrier? */ 1823 sc->mdi_control |= E1000_MDIC_READY; 1824 if (value & E82545_MDIC_IE) { 1825 // TODO: generate interrupt 1826 } 1827 return; 1828 } 1829 case E1000_MANC: 1830 case E1000_STATUS: 1831 return; 1832 default: 1833 DPRINTF("Unknown write register: 0x%x value:%x", offset, value); 1834 return; 1835 } 1836 } 1837 1838 static uint32_t 1839 e82545_read_register(struct e82545_softc *sc, uint32_t offset) 1840 { 1841 uint32_t retval; 1842 int ridx; 1843 1844 if (offset & 0x3) { 1845 DPRINTF("Unaligned register read offset:0x%x", offset); 1846 return 0; 1847 } 1848 1849 DPRINTF("Register read: 0x%x", offset); 1850 1851 switch (offset) { 1852 case E1000_CTRL: 1853 retval = sc->esc_CTRL; 1854 break; 1855 case E1000_STATUS: 1856 retval = E1000_STATUS_FD | E1000_STATUS_LU | 1857 E1000_STATUS_SPEED_1000; 1858 break; 1859 case E1000_FCAL: 1860 retval = sc->esc_FCAL; 1861 break; 1862 case E1000_FCAH: 1863 retval = sc->esc_FCAH; 1864 break; 1865 case E1000_FCT: 1866 retval = sc->esc_FCT; 1867 break; 1868 case E1000_VET: 1869 retval = sc->esc_VET; 1870 break; 1871 case E1000_FCTTV: 1872 retval = sc->esc_FCTTV; 1873 break; 1874 case E1000_LEDCTL: 1875 retval = sc->esc_LEDCTL; 1876 break; 1877 case E1000_PBA: 1878 retval = sc->esc_PBA; 1879 break; 1880 case E1000_ICR: 1881 case E1000_ITR: 1882 case E1000_ICS: 1883 case E1000_IMS: 1884 case E1000_IMC: 1885 retval = e82545_intr_read(sc, offset); 1886 break; 1887 case E1000_RCTL: 1888 retval = sc->esc_RCTL; 1889 break; 1890 case E1000_FCRTL: 1891 retval = sc->esc_FCRTL; 1892 break; 1893 case E1000_FCRTH: 1894 retval = sc->esc_FCRTH; 1895 break; 1896 case E1000_RDBAL(0): 1897 retval = sc->esc_RDBAL; 1898 break; 1899 case E1000_RDBAH(0): 1900 retval = sc->esc_RDBAH; 1901 break; 1902 case E1000_RDLEN(0): 1903 retval = sc->esc_RDLEN; 1904 break; 1905 case E1000_RDH(0): 1906 retval = sc->esc_RDH; 1907 break; 1908 case E1000_RDT(0): 1909 retval = sc->esc_RDT; 1910 break; 1911 case E1000_RDTR: 1912 retval = sc->esc_RDTR; 1913 break; 1914 case E1000_RXDCTL(0): 1915 retval = sc->esc_RXDCTL; 1916 break; 1917 case E1000_RADV: 1918 retval = sc->esc_RADV; 1919 break; 1920 case E1000_RSRPD: 1921 retval = sc->esc_RSRPD; 1922 break; 1923 case E1000_RXCSUM: 1924 retval = sc->esc_RXCSUM; 1925 break; 1926 case E1000_TXCW: 1927 retval = sc->esc_TXCW; 1928 break; 1929 case E1000_TCTL: 1930 retval = sc->esc_TCTL; 1931 break; 1932 case E1000_TIPG: 1933 retval = sc->esc_TIPG; 1934 break; 1935 case E1000_AIT: 1936 retval = sc->esc_AIT; 1937 break; 1938 case E1000_TDBAL(0): 1939 retval = sc->esc_TDBAL; 1940 break; 1941 case E1000_TDBAH(0): 1942 retval = sc->esc_TDBAH; 1943 break; 1944 case E1000_TDLEN(0): 1945 retval = sc->esc_TDLEN; 1946 break; 1947 case E1000_TDH(0): 1948 retval = sc->esc_TDH; 1949 break; 1950 case E1000_TDT(0): 1951 retval = sc->esc_TDT; 1952 break; 1953 case E1000_TIDV: 1954 retval = sc->esc_TIDV; 1955 break; 1956 case E1000_TXDCTL(0): 1957 retval = sc->esc_TXDCTL; 1958 break; 1959 case E1000_TADV: 1960 retval = sc->esc_TADV; 1961 break; 1962 case E1000_RAL(0) ... E1000_RAH(15): 1963 /* convert to u32 offset */ 1964 ridx = (offset - E1000_RAL(0)) >> 2; 1965 retval = e82545_read_ra(sc, ridx); 1966 break; 1967 case E1000_MTA ... (E1000_MTA + (127*4)): 1968 retval = sc->esc_fmcast[(offset - E1000_MTA) >> 2]; 1969 break; 1970 case E1000_VFTA ... (E1000_VFTA + (127*4)): 1971 retval = sc->esc_fvlan[(offset - E1000_VFTA) >> 2]; 1972 break; 1973 case E1000_EECD: 1974 //DPRINTF("EECD read %x", sc->eeprom_control); 1975 retval = sc->eeprom_control; 1976 break; 1977 case E1000_MDIC: 1978 retval = sc->mdi_control; 1979 break; 1980 case E1000_MANC: 1981 retval = 0; 1982 break; 1983 /* stats that we emulate. */ 1984 case E1000_MPC: 1985 retval = sc->missed_pkt_count; 1986 break; 1987 case E1000_PRC64: 1988 retval = sc->pkt_rx_by_size[0]; 1989 break; 1990 case E1000_PRC127: 1991 retval = sc->pkt_rx_by_size[1]; 1992 break; 1993 case E1000_PRC255: 1994 retval = sc->pkt_rx_by_size[2]; 1995 break; 1996 case E1000_PRC511: 1997 retval = sc->pkt_rx_by_size[3]; 1998 break; 1999 case E1000_PRC1023: 2000 retval = sc->pkt_rx_by_size[4]; 2001 break; 2002 case E1000_PRC1522: 2003 retval = sc->pkt_rx_by_size[5]; 2004 break; 2005 case E1000_GPRC: 2006 retval = sc->good_pkt_rx_count; 2007 break; 2008 case E1000_BPRC: 2009 retval = sc->bcast_pkt_rx_count; 2010 break; 2011 case E1000_MPRC: 2012 retval = sc->mcast_pkt_rx_count; 2013 break; 2014 case E1000_GPTC: 2015 case E1000_TPT: 2016 retval = sc->good_pkt_tx_count; 2017 break; 2018 case E1000_GORCL: 2019 retval = (uint32_t)sc->good_octets_rx; 2020 break; 2021 case E1000_GORCH: 2022 retval = (uint32_t)(sc->good_octets_rx >> 32); 2023 break; 2024 case E1000_TOTL: 2025 case E1000_GOTCL: 2026 retval = (uint32_t)sc->good_octets_tx; 2027 break; 2028 case E1000_TOTH: 2029 case E1000_GOTCH: 2030 retval = (uint32_t)(sc->good_octets_tx >> 32); 2031 break; 2032 case E1000_ROC: 2033 retval = sc->oversize_rx_count; 2034 break; 2035 case E1000_TORL: 2036 retval = (uint32_t)(sc->good_octets_rx + sc->missed_octets); 2037 break; 2038 case E1000_TORH: 2039 retval = (uint32_t)((sc->good_octets_rx + 2040 sc->missed_octets) >> 32); 2041 break; 2042 case E1000_TPR: 2043 retval = sc->good_pkt_rx_count + sc->missed_pkt_count + 2044 sc->oversize_rx_count; 2045 break; 2046 case E1000_PTC64: 2047 retval = sc->pkt_tx_by_size[0]; 2048 break; 2049 case E1000_PTC127: 2050 retval = sc->pkt_tx_by_size[1]; 2051 break; 2052 case E1000_PTC255: 2053 retval = sc->pkt_tx_by_size[2]; 2054 break; 2055 case E1000_PTC511: 2056 retval = sc->pkt_tx_by_size[3]; 2057 break; 2058 case E1000_PTC1023: 2059 retval = sc->pkt_tx_by_size[4]; 2060 break; 2061 case E1000_PTC1522: 2062 retval = sc->pkt_tx_by_size[5]; 2063 break; 2064 case E1000_MPTC: 2065 retval = sc->mcast_pkt_tx_count; 2066 break; 2067 case E1000_BPTC: 2068 retval = sc->bcast_pkt_tx_count; 2069 break; 2070 case E1000_TSCTC: 2071 retval = sc->tso_tx_count; 2072 break; 2073 /* stats that are always 0. */ 2074 case E1000_CRCERRS: 2075 case E1000_ALGNERRC: 2076 case E1000_SYMERRS: 2077 case E1000_RXERRC: 2078 case E1000_SCC: 2079 case E1000_ECOL: 2080 case E1000_MCC: 2081 case E1000_LATECOL: 2082 case E1000_COLC: 2083 case E1000_DC: 2084 case E1000_TNCRS: 2085 case E1000_SEC: 2086 case E1000_CEXTERR: 2087 case E1000_RLEC: 2088 case E1000_XONRXC: 2089 case E1000_XONTXC: 2090 case E1000_XOFFRXC: 2091 case E1000_XOFFTXC: 2092 case E1000_FCRUC: 2093 case E1000_RNBC: 2094 case E1000_RUC: 2095 case E1000_RFC: 2096 case E1000_RJC: 2097 case E1000_MGTPRC: 2098 case E1000_MGTPDC: 2099 case E1000_MGTPTC: 2100 case E1000_TSCTFC: 2101 retval = 0; 2102 break; 2103 default: 2104 DPRINTF("Unknown read register: 0x%x", offset); 2105 retval = 0; 2106 break; 2107 } 2108 2109 return (retval); 2110 } 2111 2112 static void 2113 e82545_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx, 2114 uint64_t offset, int size, uint64_t value) 2115 { 2116 struct e82545_softc *sc; 2117 2118 //DPRINTF("Write bar:%d offset:0x%lx value:0x%lx size:%d", baridx, offset, value, size); 2119 2120 sc = pi->pi_arg; 2121 2122 pthread_mutex_lock(&sc->esc_mtx); 2123 2124 switch (baridx) { 2125 case E82545_BAR_IO: 2126 switch (offset) { 2127 case E82545_IOADDR: 2128 if (size != 4) { 2129 DPRINTF("Wrong io addr write sz:%d value:0x%lx", size, value); 2130 } else 2131 sc->io_addr = (uint32_t)value; 2132 break; 2133 case E82545_IODATA: 2134 if (size != 4) { 2135 DPRINTF("Wrong io data write size:%d value:0x%lx", size, value); 2136 } else if (sc->io_addr > E82545_IO_REGISTER_MAX) { 2137 DPRINTF("Non-register io write addr:0x%x value:0x%lx", sc->io_addr, value); 2138 } else 2139 e82545_write_register(sc, sc->io_addr, 2140 (uint32_t)value); 2141 break; 2142 default: 2143 DPRINTF("Unknown io bar write offset:0x%lx value:0x%lx size:%d", offset, value, size); 2144 break; 2145 } 2146 break; 2147 case E82545_BAR_REGISTER: 2148 if (size != 4) { 2149 DPRINTF("Wrong register write size:%d offset:0x%lx value:0x%lx", size, offset, value); 2150 } else 2151 e82545_write_register(sc, (uint32_t)offset, 2152 (uint32_t)value); 2153 break; 2154 default: 2155 DPRINTF("Unknown write bar:%d off:0x%lx val:0x%lx size:%d", 2156 baridx, offset, value, size); 2157 } 2158 2159 pthread_mutex_unlock(&sc->esc_mtx); 2160 } 2161 2162 static uint64_t 2163 e82545_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx, 2164 uint64_t offset, int size) 2165 { 2166 struct e82545_softc *sc; 2167 uint64_t retval; 2168 2169 //DPRINTF("Read bar:%d offset:0x%lx size:%d", baridx, offset, size); 2170 sc = pi->pi_arg; 2171 retval = 0; 2172 2173 pthread_mutex_lock(&sc->esc_mtx); 2174 2175 switch (baridx) { 2176 case E82545_BAR_IO: 2177 switch (offset) { 2178 case E82545_IOADDR: 2179 if (size != 4) { 2180 DPRINTF("Wrong io addr read sz:%d", size); 2181 } else 2182 retval = sc->io_addr; 2183 break; 2184 case E82545_IODATA: 2185 if (size != 4) { 2186 DPRINTF("Wrong io data read sz:%d", size); 2187 } 2188 if (sc->io_addr > E82545_IO_REGISTER_MAX) { 2189 DPRINTF("Non-register io read addr:0x%x", 2190 sc->io_addr); 2191 } else 2192 retval = e82545_read_register(sc, sc->io_addr); 2193 break; 2194 default: 2195 DPRINTF("Unknown io bar read offset:0x%lx size:%d", 2196 offset, size); 2197 break; 2198 } 2199 break; 2200 case E82545_BAR_REGISTER: 2201 if (size != 4) { 2202 DPRINTF("Wrong register read size:%d offset:0x%lx", 2203 size, offset); 2204 } else 2205 retval = e82545_read_register(sc, (uint32_t)offset); 2206 break; 2207 default: 2208 DPRINTF("Unknown read bar:%d offset:0x%lx size:%d", 2209 baridx, offset, size); 2210 break; 2211 } 2212 2213 pthread_mutex_unlock(&sc->esc_mtx); 2214 2215 return (retval); 2216 } 2217 2218 static void 2219 e82545_reset(struct e82545_softc *sc, int drvr) 2220 { 2221 int i; 2222 2223 e82545_rx_disable(sc); 2224 e82545_tx_disable(sc); 2225 2226 /* clear outstanding interrupts */ 2227 if (sc->esc_irq_asserted) 2228 pci_lintr_deassert(sc->esc_pi); 2229 2230 /* misc */ 2231 if (!drvr) { 2232 sc->esc_FCAL = 0; 2233 sc->esc_FCAH = 0; 2234 sc->esc_FCT = 0; 2235 sc->esc_VET = 0; 2236 sc->esc_FCTTV = 0; 2237 } 2238 sc->esc_LEDCTL = 0x07061302; 2239 sc->esc_PBA = 0x00100030; 2240 2241 /* start nvm in opcode mode. */ 2242 sc->nvm_opaddr = 0; 2243 sc->nvm_mode = E82545_NVM_MODE_OPADDR; 2244 sc->nvm_bits = E82545_NVM_OPADDR_BITS; 2245 sc->eeprom_control = E1000_EECD_PRES | E82545_EECD_FWE_EN; 2246 e82545_init_eeprom(sc); 2247 2248 /* interrupt */ 2249 sc->esc_ICR = 0; 2250 sc->esc_ITR = 250; 2251 sc->esc_ICS = 0; 2252 sc->esc_IMS = 0; 2253 sc->esc_IMC = 0; 2254 2255 /* L2 filters */ 2256 if (!drvr) { 2257 memset(sc->esc_fvlan, 0, sizeof(sc->esc_fvlan)); 2258 memset(sc->esc_fmcast, 0, sizeof(sc->esc_fmcast)); 2259 memset(sc->esc_uni, 0, sizeof(sc->esc_uni)); 2260 2261 /* XXX not necessary on 82545 ?? */ 2262 sc->esc_uni[0].eu_valid = 1; 2263 memcpy(sc->esc_uni[0].eu_eth.octet, sc->esc_mac.octet, 2264 ETHER_ADDR_LEN); 2265 } else { 2266 /* Clear RAH valid bits */ 2267 for (i = 0; i < 16; i++) 2268 sc->esc_uni[i].eu_valid = 0; 2269 } 2270 2271 /* receive */ 2272 if (!drvr) { 2273 sc->esc_RDBAL = 0; 2274 sc->esc_RDBAH = 0; 2275 } 2276 sc->esc_RCTL = 0; 2277 sc->esc_FCRTL = 0; 2278 sc->esc_FCRTH = 0; 2279 sc->esc_RDLEN = 0; 2280 sc->esc_RDH = 0; 2281 sc->esc_RDT = 0; 2282 sc->esc_RDTR = 0; 2283 sc->esc_RXDCTL = (1 << 24) | (1 << 16); /* default GRAN/WTHRESH */ 2284 sc->esc_RADV = 0; 2285 sc->esc_RXCSUM = 0; 2286 2287 /* transmit */ 2288 if (!drvr) { 2289 sc->esc_TDBAL = 0; 2290 sc->esc_TDBAH = 0; 2291 sc->esc_TIPG = 0; 2292 sc->esc_AIT = 0; 2293 sc->esc_TIDV = 0; 2294 sc->esc_TADV = 0; 2295 } 2296 sc->esc_tdba = 0; 2297 sc->esc_txdesc = NULL; 2298 sc->esc_TXCW = 0; 2299 sc->esc_TCTL = 0; 2300 sc->esc_TDLEN = 0; 2301 sc->esc_TDT = 0; 2302 sc->esc_TDHr = sc->esc_TDH = 0; 2303 sc->esc_TXDCTL = 0; 2304 } 2305 2306 static int 2307 e82545_init(struct vmctx *ctx, struct pci_devinst *pi, nvlist_t *nvl) 2308 { 2309 char nstr[80]; 2310 struct e82545_softc *sc; 2311 const char *mac; 2312 int err; 2313 2314 /* Setup our softc */ 2315 sc = calloc(1, sizeof(*sc)); 2316 2317 pi->pi_arg = sc; 2318 sc->esc_pi = pi; 2319 sc->esc_ctx = ctx; 2320 2321 pthread_mutex_init(&sc->esc_mtx, NULL); 2322 pthread_cond_init(&sc->esc_rx_cond, NULL); 2323 pthread_cond_init(&sc->esc_tx_cond, NULL); 2324 pthread_create(&sc->esc_tx_tid, NULL, e82545_tx_thread, sc); 2325 snprintf(nstr, sizeof(nstr), "e82545-%d:%d tx", pi->pi_slot, 2326 pi->pi_func); 2327 pthread_set_name_np(sc->esc_tx_tid, nstr); 2328 2329 pci_set_cfgdata16(pi, PCIR_DEVICE, E82545_DEV_ID_82545EM_COPPER); 2330 pci_set_cfgdata16(pi, PCIR_VENDOR, E82545_VENDOR_ID_INTEL); 2331 pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_NETWORK); 2332 pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_NETWORK_ETHERNET); 2333 pci_set_cfgdata16(pi, PCIR_SUBDEV_0, E82545_SUBDEV_ID); 2334 pci_set_cfgdata16(pi, PCIR_SUBVEND_0, E82545_VENDOR_ID_INTEL); 2335 2336 pci_set_cfgdata8(pi, PCIR_HDRTYPE, PCIM_HDRTYPE_NORMAL); 2337 pci_set_cfgdata8(pi, PCIR_INTPIN, 0x1); 2338 2339 /* TODO: this card also supports msi, but the freebsd driver for it 2340 * does not, so I have not implemented it. */ 2341 pci_lintr_request(pi); 2342 2343 pci_emul_alloc_bar(pi, E82545_BAR_REGISTER, PCIBAR_MEM32, 2344 E82545_BAR_REGISTER_LEN); 2345 pci_emul_alloc_bar(pi, E82545_BAR_FLASH, PCIBAR_MEM32, 2346 E82545_BAR_FLASH_LEN); 2347 pci_emul_alloc_bar(pi, E82545_BAR_IO, PCIBAR_IO, 2348 E82545_BAR_IO_LEN); 2349 2350 mac = get_config_value_node(nvl, "mac"); 2351 if (mac != NULL) { 2352 err = net_parsemac(mac, sc->esc_mac.octet); 2353 if (err) { 2354 free(sc); 2355 return (err); 2356 } 2357 } else 2358 net_genmac(pi, sc->esc_mac.octet); 2359 2360 err = netbe_init(&sc->esc_be, nvl, e82545_rx_callback, sc); 2361 if (err) { 2362 free(sc); 2363 return (err); 2364 } 2365 2366 netbe_rx_enable(sc->esc_be); 2367 2368 /* H/w initiated reset */ 2369 e82545_reset(sc, 0); 2370 2371 return (0); 2372 } 2373 2374 #ifdef BHYVE_SNAPSHOT 2375 static int 2376 e82545_snapshot(struct vm_snapshot_meta *meta) 2377 { 2378 int i; 2379 int ret; 2380 struct e82545_softc *sc; 2381 struct pci_devinst *pi; 2382 uint64_t bitmap_value; 2383 2384 pi = meta->dev_data; 2385 sc = pi->pi_arg; 2386 2387 /* esc_mevp and esc_mevpitr should be reinitiated at init. */ 2388 SNAPSHOT_VAR_OR_LEAVE(sc->esc_mac, meta, ret, done); 2389 2390 /* General */ 2391 SNAPSHOT_VAR_OR_LEAVE(sc->esc_CTRL, meta, ret, done); 2392 SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCAL, meta, ret, done); 2393 SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCAH, meta, ret, done); 2394 SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCT, meta, ret, done); 2395 SNAPSHOT_VAR_OR_LEAVE(sc->esc_VET, meta, ret, done); 2396 SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCTTV, meta, ret, done); 2397 SNAPSHOT_VAR_OR_LEAVE(sc->esc_LEDCTL, meta, ret, done); 2398 SNAPSHOT_VAR_OR_LEAVE(sc->esc_PBA, meta, ret, done); 2399 2400 /* Interrupt control */ 2401 SNAPSHOT_VAR_OR_LEAVE(sc->esc_irq_asserted, meta, ret, done); 2402 SNAPSHOT_VAR_OR_LEAVE(sc->esc_ICR, meta, ret, done); 2403 SNAPSHOT_VAR_OR_LEAVE(sc->esc_ITR, meta, ret, done); 2404 SNAPSHOT_VAR_OR_LEAVE(sc->esc_ICS, meta, ret, done); 2405 SNAPSHOT_VAR_OR_LEAVE(sc->esc_IMS, meta, ret, done); 2406 SNAPSHOT_VAR_OR_LEAVE(sc->esc_IMC, meta, ret, done); 2407 2408 /* 2409 * Transmit 2410 * 2411 * The fields in the unions are in superposition to access certain 2412 * bytes in the larger uint variables. 2413 * e.g., ip_config = [ipcss|ipcso|ipcse0|ipcse1] 2414 */ 2415 SNAPSHOT_VAR_OR_LEAVE(sc->esc_txctx.lower_setup.ip_config, meta, ret, done); 2416 SNAPSHOT_VAR_OR_LEAVE(sc->esc_txctx.upper_setup.tcp_config, meta, ret, done); 2417 SNAPSHOT_VAR_OR_LEAVE(sc->esc_txctx.cmd_and_length, meta, ret, done); 2418 SNAPSHOT_VAR_OR_LEAVE(sc->esc_txctx.tcp_seg_setup.data, meta, ret, done); 2419 2420 SNAPSHOT_VAR_OR_LEAVE(sc->esc_tx_enabled, meta, ret, done); 2421 SNAPSHOT_VAR_OR_LEAVE(sc->esc_tx_active, meta, ret, done); 2422 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TXCW, meta, ret, done); 2423 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TCTL, meta, ret, done); 2424 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TIPG, meta, ret, done); 2425 SNAPSHOT_VAR_OR_LEAVE(sc->esc_AIT, meta, ret, done); 2426 SNAPSHOT_VAR_OR_LEAVE(sc->esc_tdba, meta, ret, done); 2427 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDBAL, meta, ret, done); 2428 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDBAH, meta, ret, done); 2429 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDLEN, meta, ret, done); 2430 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDH, meta, ret, done); 2431 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDHr, meta, ret, done); 2432 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDT, meta, ret, done); 2433 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TIDV, meta, ret, done); 2434 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TXDCTL, meta, ret, done); 2435 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TADV, meta, ret, done); 2436 2437 /* Has dependency on esc_TDLEN; reoreder of fields from struct. */ 2438 SNAPSHOT_GUEST2HOST_ADDR_OR_LEAVE(sc->esc_txdesc, sc->esc_TDLEN, 2439 true, meta, ret, done); 2440 2441 /* L2 frame acceptance */ 2442 for (i = 0; i < nitems(sc->esc_uni); i++) { 2443 SNAPSHOT_VAR_OR_LEAVE(sc->esc_uni[i].eu_valid, meta, ret, done); 2444 SNAPSHOT_VAR_OR_LEAVE(sc->esc_uni[i].eu_addrsel, meta, ret, done); 2445 SNAPSHOT_VAR_OR_LEAVE(sc->esc_uni[i].eu_eth, meta, ret, done); 2446 } 2447 2448 SNAPSHOT_BUF_OR_LEAVE(sc->esc_fmcast, sizeof(sc->esc_fmcast), 2449 meta, ret, done); 2450 SNAPSHOT_BUF_OR_LEAVE(sc->esc_fvlan, sizeof(sc->esc_fvlan), 2451 meta, ret, done); 2452 2453 /* Receive */ 2454 SNAPSHOT_VAR_OR_LEAVE(sc->esc_rx_enabled, meta, ret, done); 2455 SNAPSHOT_VAR_OR_LEAVE(sc->esc_rx_active, meta, ret, done); 2456 SNAPSHOT_VAR_OR_LEAVE(sc->esc_rx_loopback, meta, ret, done); 2457 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RCTL, meta, ret, done); 2458 SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCRTL, meta, ret, done); 2459 SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCRTH, meta, ret, done); 2460 SNAPSHOT_VAR_OR_LEAVE(sc->esc_rdba, meta, ret, done); 2461 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDBAL, meta, ret, done); 2462 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDBAH, meta, ret, done); 2463 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDLEN, meta, ret, done); 2464 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDH, meta, ret, done); 2465 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDT, meta, ret, done); 2466 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDTR, meta, ret, done); 2467 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RXDCTL, meta, ret, done); 2468 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RADV, meta, ret, done); 2469 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RSRPD, meta, ret, done); 2470 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RXCSUM, meta, ret, done); 2471 2472 /* Has dependency on esc_RDLEN; reoreder of fields from struct. */ 2473 SNAPSHOT_GUEST2HOST_ADDR_OR_LEAVE(sc->esc_rxdesc, sc->esc_TDLEN, 2474 true, meta, ret, done); 2475 2476 /* IO Port register access */ 2477 SNAPSHOT_VAR_OR_LEAVE(sc->io_addr, meta, ret, done); 2478 2479 /* Shadow copy of MDIC */ 2480 SNAPSHOT_VAR_OR_LEAVE(sc->mdi_control, meta, ret, done); 2481 2482 /* Shadow copy of EECD */ 2483 SNAPSHOT_VAR_OR_LEAVE(sc->eeprom_control, meta, ret, done); 2484 2485 /* Latest NVM in/out */ 2486 SNAPSHOT_VAR_OR_LEAVE(sc->nvm_data, meta, ret, done); 2487 SNAPSHOT_VAR_OR_LEAVE(sc->nvm_opaddr, meta, ret, done); 2488 2489 /* Stats */ 2490 SNAPSHOT_VAR_OR_LEAVE(sc->missed_pkt_count, meta, ret, done); 2491 SNAPSHOT_BUF_OR_LEAVE(sc->pkt_rx_by_size, sizeof(sc->pkt_rx_by_size), 2492 meta, ret, done); 2493 SNAPSHOT_BUF_OR_LEAVE(sc->pkt_tx_by_size, sizeof(sc->pkt_tx_by_size), 2494 meta, ret, done); 2495 SNAPSHOT_VAR_OR_LEAVE(sc->good_pkt_rx_count, meta, ret, done); 2496 SNAPSHOT_VAR_OR_LEAVE(sc->bcast_pkt_rx_count, meta, ret, done); 2497 SNAPSHOT_VAR_OR_LEAVE(sc->mcast_pkt_rx_count, meta, ret, done); 2498 SNAPSHOT_VAR_OR_LEAVE(sc->good_pkt_tx_count, meta, ret, done); 2499 SNAPSHOT_VAR_OR_LEAVE(sc->bcast_pkt_tx_count, meta, ret, done); 2500 SNAPSHOT_VAR_OR_LEAVE(sc->mcast_pkt_tx_count, meta, ret, done); 2501 SNAPSHOT_VAR_OR_LEAVE(sc->oversize_rx_count, meta, ret, done); 2502 SNAPSHOT_VAR_OR_LEAVE(sc->tso_tx_count, meta, ret, done); 2503 SNAPSHOT_VAR_OR_LEAVE(sc->good_octets_rx, meta, ret, done); 2504 SNAPSHOT_VAR_OR_LEAVE(sc->good_octets_tx, meta, ret, done); 2505 SNAPSHOT_VAR_OR_LEAVE(sc->missed_octets, meta, ret, done); 2506 2507 if (meta->op == VM_SNAPSHOT_SAVE) 2508 bitmap_value = sc->nvm_bits; 2509 SNAPSHOT_VAR_OR_LEAVE(bitmap_value, meta, ret, done); 2510 if (meta->op == VM_SNAPSHOT_RESTORE) 2511 sc->nvm_bits = bitmap_value; 2512 2513 if (meta->op == VM_SNAPSHOT_SAVE) 2514 bitmap_value = sc->nvm_bits; 2515 SNAPSHOT_VAR_OR_LEAVE(bitmap_value, meta, ret, done); 2516 if (meta->op == VM_SNAPSHOT_RESTORE) 2517 sc->nvm_bits = bitmap_value; 2518 2519 /* EEPROM data */ 2520 SNAPSHOT_BUF_OR_LEAVE(sc->eeprom_data, sizeof(sc->eeprom_data), 2521 meta, ret, done); 2522 2523 done: 2524 return (ret); 2525 } 2526 #endif 2527 2528 static const struct pci_devemu pci_de_e82545 = { 2529 .pe_emu = "e1000", 2530 .pe_init = e82545_init, 2531 .pe_legacy_config = netbe_legacy_config, 2532 .pe_barwrite = e82545_write, 2533 .pe_barread = e82545_read, 2534 #ifdef BHYVE_SNAPSHOT 2535 .pe_snapshot = e82545_snapshot, 2536 #endif 2537 }; 2538 PCI_EMUL_SET(pci_de_e82545); 2539