1 /* 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2016 Alexander Motin <mav@FreeBSD.org> 5 * Copyright (c) 2015 Peter Grehan <grehan@freebsd.org> 6 * Copyright (c) 2013 Jeremiah Lott, Avere Systems 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer 14 * in this position and unchanged. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/types.h> 33 #ifndef WITHOUT_CAPSICUM 34 #include <sys/capsicum.h> 35 #endif 36 #include <sys/limits.h> 37 #include <sys/ioctl.h> 38 #include <sys/uio.h> 39 #include <net/ethernet.h> 40 #include <netinet/in.h> 41 #include <netinet/tcp.h> 42 43 #ifndef WITHOUT_CAPSICUM 44 #include <capsicum_helpers.h> 45 #endif 46 47 #include <err.h> 48 #include <errno.h> 49 #include <fcntl.h> 50 #include <md5.h> 51 #include <stdio.h> 52 #include <stdlib.h> 53 #include <string.h> 54 #include <sysexits.h> 55 #include <unistd.h> 56 #include <pthread.h> 57 #include <pthread_np.h> 58 59 #include "e1000_regs.h" 60 #include "e1000_defines.h" 61 #include "mii.h" 62 63 #include "bhyverun.h" 64 #include "config.h" 65 #include "debug.h" 66 #include "pci_emul.h" 67 #ifdef BHYVE_SNAPSHOT 68 #include "snapshot.h" 69 #endif 70 #include "mevent.h" 71 #include "net_utils.h" 72 #include "net_backends.h" 73 74 /* Hardware/register definitions XXX: move some to common code. */ 75 #define E82545_VENDOR_ID_INTEL 0x8086 76 #define E82545_DEV_ID_82545EM_COPPER 0x100F 77 #define E82545_SUBDEV_ID 0x1008 78 79 #define E82545_REVISION_4 4 80 81 #define E82545_MDIC_DATA_MASK 0x0000FFFF 82 #define E82545_MDIC_OP_MASK 0x0c000000 83 #define E82545_MDIC_IE 0x20000000 84 85 #define E82545_EECD_FWE_DIS 0x00000010 /* Flash writes disabled */ 86 #define E82545_EECD_FWE_EN 0x00000020 /* Flash writes enabled */ 87 #define E82545_EECD_FWE_MASK 0x00000030 /* Flash writes mask */ 88 89 #define E82545_BAR_REGISTER 0 90 #define E82545_BAR_REGISTER_LEN (128*1024) 91 #define E82545_BAR_FLASH 1 92 #define E82545_BAR_FLASH_LEN (64*1024) 93 #define E82545_BAR_IO 2 94 #define E82545_BAR_IO_LEN 8 95 96 #define E82545_IOADDR 0x00000000 97 #define E82545_IODATA 0x00000004 98 #define E82545_IO_REGISTER_MAX 0x0001FFFF 99 #define E82545_IO_FLASH_BASE 0x00080000 100 #define E82545_IO_FLASH_MAX 0x000FFFFF 101 102 #define E82545_ARRAY_ENTRY(reg, offset) (reg + (offset<<2)) 103 #define E82545_RAR_MAX 15 104 #define E82545_MTA_MAX 127 105 #define E82545_VFTA_MAX 127 106 107 /* Slightly modified from the driver versions, hardcoded for 3 opcode bits, 108 * followed by 6 address bits. 109 * TODO: make opcode bits and addr bits configurable? 110 * NVM Commands - Microwire */ 111 #define E82545_NVM_OPCODE_BITS 3 112 #define E82545_NVM_ADDR_BITS 6 113 #define E82545_NVM_DATA_BITS 16 114 #define E82545_NVM_OPADDR_BITS (E82545_NVM_OPCODE_BITS + E82545_NVM_ADDR_BITS) 115 #define E82545_NVM_ADDR_MASK ((1 << E82545_NVM_ADDR_BITS)-1) 116 #define E82545_NVM_OPCODE_MASK \ 117 (((1 << E82545_NVM_OPCODE_BITS) - 1) << E82545_NVM_ADDR_BITS) 118 #define E82545_NVM_OPCODE_READ (0x6 << E82545_NVM_ADDR_BITS) /* read */ 119 #define E82545_NVM_OPCODE_WRITE (0x5 << E82545_NVM_ADDR_BITS) /* write */ 120 #define E82545_NVM_OPCODE_ERASE (0x7 << E82545_NVM_ADDR_BITS) /* erase */ 121 #define E82545_NVM_OPCODE_EWEN (0x4 << E82545_NVM_ADDR_BITS) /* wr-enable */ 122 123 #define E82545_NVM_EEPROM_SIZE 64 /* 64 * 16-bit values == 128K */ 124 125 #define E1000_ICR_SRPD 0x00010000 126 127 /* This is an arbitrary number. There is no hard limit on the chip. */ 128 #define I82545_MAX_TXSEGS 64 129 130 /* Legacy receive descriptor */ 131 struct e1000_rx_desc { 132 uint64_t buffer_addr; /* Address of the descriptor's data buffer */ 133 uint16_t length; /* Length of data DMAed into data buffer */ 134 uint16_t csum; /* Packet checksum */ 135 uint8_t status; /* Descriptor status */ 136 uint8_t errors; /* Descriptor Errors */ 137 uint16_t special; 138 }; 139 140 /* Transmit descriptor types */ 141 #define E1000_TXD_MASK (E1000_TXD_CMD_DEXT | 0x00F00000) 142 #define E1000_TXD_TYP_L (0) 143 #define E1000_TXD_TYP_C (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C) 144 #define E1000_TXD_TYP_D (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D) 145 146 /* Legacy transmit descriptor */ 147 struct e1000_tx_desc { 148 uint64_t buffer_addr; /* Address of the descriptor's data buffer */ 149 union { 150 uint32_t data; 151 struct { 152 uint16_t length; /* Data buffer length */ 153 uint8_t cso; /* Checksum offset */ 154 uint8_t cmd; /* Descriptor control */ 155 } flags; 156 } lower; 157 union { 158 uint32_t data; 159 struct { 160 uint8_t status; /* Descriptor status */ 161 uint8_t css; /* Checksum start */ 162 uint16_t special; 163 } fields; 164 } upper; 165 }; 166 167 /* Context descriptor */ 168 struct e1000_context_desc { 169 union { 170 uint32_t ip_config; 171 struct { 172 uint8_t ipcss; /* IP checksum start */ 173 uint8_t ipcso; /* IP checksum offset */ 174 uint16_t ipcse; /* IP checksum end */ 175 } ip_fields; 176 } lower_setup; 177 union { 178 uint32_t tcp_config; 179 struct { 180 uint8_t tucss; /* TCP checksum start */ 181 uint8_t tucso; /* TCP checksum offset */ 182 uint16_t tucse; /* TCP checksum end */ 183 } tcp_fields; 184 } upper_setup; 185 uint32_t cmd_and_length; 186 union { 187 uint32_t data; 188 struct { 189 uint8_t status; /* Descriptor status */ 190 uint8_t hdr_len; /* Header length */ 191 uint16_t mss; /* Maximum segment size */ 192 } fields; 193 } tcp_seg_setup; 194 }; 195 196 /* Data descriptor */ 197 struct e1000_data_desc { 198 uint64_t buffer_addr; /* Address of the descriptor's buffer address */ 199 union { 200 uint32_t data; 201 struct { 202 uint16_t length; /* Data buffer length */ 203 uint8_t typ_len_ext; 204 uint8_t cmd; 205 } flags; 206 } lower; 207 union { 208 uint32_t data; 209 struct { 210 uint8_t status; /* Descriptor status */ 211 uint8_t popts; /* Packet Options */ 212 uint16_t special; 213 } fields; 214 } upper; 215 }; 216 217 union e1000_tx_udesc { 218 struct e1000_tx_desc td; 219 struct e1000_context_desc cd; 220 struct e1000_data_desc dd; 221 }; 222 223 /* Tx checksum info for a packet. */ 224 struct ck_info { 225 int ck_valid; /* ck_info is valid */ 226 uint8_t ck_start; /* start byte of cksum calcuation */ 227 uint8_t ck_off; /* offset of cksum insertion */ 228 uint16_t ck_len; /* length of cksum calc: 0 is to packet-end */ 229 }; 230 231 /* 232 * Debug printf 233 */ 234 static int e82545_debug = 0; 235 #define WPRINTF(msg,params...) PRINTLN("e82545: " msg, ##params) 236 #define DPRINTF(msg,params...) if (e82545_debug) WPRINTF(msg, params) 237 238 #define MIN(a,b) (((a)<(b))?(a):(b)) 239 #define MAX(a,b) (((a)>(b))?(a):(b)) 240 241 /* s/w representation of the RAL/RAH regs */ 242 struct eth_uni { 243 int eu_valid; 244 int eu_addrsel; 245 struct ether_addr eu_eth; 246 }; 247 248 249 struct e82545_softc { 250 struct pci_devinst *esc_pi; 251 struct vmctx *esc_ctx; 252 struct mevent *esc_mevpitr; 253 pthread_mutex_t esc_mtx; 254 struct ether_addr esc_mac; 255 net_backend_t *esc_be; 256 257 /* General */ 258 uint32_t esc_CTRL; /* x0000 device ctl */ 259 uint32_t esc_FCAL; /* x0028 flow ctl addr lo */ 260 uint32_t esc_FCAH; /* x002C flow ctl addr hi */ 261 uint32_t esc_FCT; /* x0030 flow ctl type */ 262 uint32_t esc_VET; /* x0038 VLAN eth type */ 263 uint32_t esc_FCTTV; /* x0170 flow ctl tx timer */ 264 uint32_t esc_LEDCTL; /* x0E00 LED control */ 265 uint32_t esc_PBA; /* x1000 pkt buffer allocation */ 266 267 /* Interrupt control */ 268 int esc_irq_asserted; 269 uint32_t esc_ICR; /* x00C0 cause read/clear */ 270 uint32_t esc_ITR; /* x00C4 intr throttling */ 271 uint32_t esc_ICS; /* x00C8 cause set */ 272 uint32_t esc_IMS; /* x00D0 mask set/read */ 273 uint32_t esc_IMC; /* x00D8 mask clear */ 274 275 /* Transmit */ 276 union e1000_tx_udesc *esc_txdesc; 277 struct e1000_context_desc esc_txctx; 278 pthread_t esc_tx_tid; 279 pthread_cond_t esc_tx_cond; 280 int esc_tx_enabled; 281 int esc_tx_active; 282 uint32_t esc_TXCW; /* x0178 transmit config */ 283 uint32_t esc_TCTL; /* x0400 transmit ctl */ 284 uint32_t esc_TIPG; /* x0410 inter-packet gap */ 285 uint16_t esc_AIT; /* x0458 Adaptive Interframe Throttle */ 286 uint64_t esc_tdba; /* verified 64-bit desc table addr */ 287 uint32_t esc_TDBAL; /* x3800 desc table addr, low bits */ 288 uint32_t esc_TDBAH; /* x3804 desc table addr, hi 32-bits */ 289 uint32_t esc_TDLEN; /* x3808 # descriptors in bytes */ 290 uint16_t esc_TDH; /* x3810 desc table head idx */ 291 uint16_t esc_TDHr; /* internal read version of TDH */ 292 uint16_t esc_TDT; /* x3818 desc table tail idx */ 293 uint32_t esc_TIDV; /* x3820 intr delay */ 294 uint32_t esc_TXDCTL; /* x3828 desc control */ 295 uint32_t esc_TADV; /* x382C intr absolute delay */ 296 297 /* L2 frame acceptance */ 298 struct eth_uni esc_uni[16]; /* 16 x unicast MAC addresses */ 299 uint32_t esc_fmcast[128]; /* Multicast filter bit-match */ 300 uint32_t esc_fvlan[128]; /* VLAN 4096-bit filter */ 301 302 /* Receive */ 303 struct e1000_rx_desc *esc_rxdesc; 304 pthread_cond_t esc_rx_cond; 305 int esc_rx_enabled; 306 int esc_rx_active; 307 int esc_rx_loopback; 308 uint32_t esc_RCTL; /* x0100 receive ctl */ 309 uint32_t esc_FCRTL; /* x2160 flow cntl thresh, low */ 310 uint32_t esc_FCRTH; /* x2168 flow cntl thresh, hi */ 311 uint64_t esc_rdba; /* verified 64-bit desc table addr */ 312 uint32_t esc_RDBAL; /* x2800 desc table addr, low bits */ 313 uint32_t esc_RDBAH; /* x2804 desc table addr, hi 32-bits*/ 314 uint32_t esc_RDLEN; /* x2808 #descriptors */ 315 uint16_t esc_RDH; /* x2810 desc table head idx */ 316 uint16_t esc_RDT; /* x2818 desc table tail idx */ 317 uint32_t esc_RDTR; /* x2820 intr delay */ 318 uint32_t esc_RXDCTL; /* x2828 desc control */ 319 uint32_t esc_RADV; /* x282C intr absolute delay */ 320 uint32_t esc_RSRPD; /* x2C00 recv small packet detect */ 321 uint32_t esc_RXCSUM; /* x5000 receive cksum ctl */ 322 323 /* IO Port register access */ 324 uint32_t io_addr; 325 326 /* Shadow copy of MDIC */ 327 uint32_t mdi_control; 328 /* Shadow copy of EECD */ 329 uint32_t eeprom_control; 330 /* Latest NVM in/out */ 331 uint16_t nvm_data; 332 uint16_t nvm_opaddr; 333 /* stats */ 334 uint32_t missed_pkt_count; /* dropped for no room in rx queue */ 335 uint32_t pkt_rx_by_size[6]; 336 uint32_t pkt_tx_by_size[6]; 337 uint32_t good_pkt_rx_count; 338 uint32_t bcast_pkt_rx_count; 339 uint32_t mcast_pkt_rx_count; 340 uint32_t good_pkt_tx_count; 341 uint32_t bcast_pkt_tx_count; 342 uint32_t mcast_pkt_tx_count; 343 uint32_t oversize_rx_count; 344 uint32_t tso_tx_count; 345 uint64_t good_octets_rx; 346 uint64_t good_octets_tx; 347 uint64_t missed_octets; /* counts missed and oversized */ 348 349 uint8_t nvm_bits:6; /* number of bits remaining in/out */ 350 uint8_t nvm_mode:2; 351 #define E82545_NVM_MODE_OPADDR 0x0 352 #define E82545_NVM_MODE_DATAIN 0x1 353 #define E82545_NVM_MODE_DATAOUT 0x2 354 /* EEPROM data */ 355 uint16_t eeprom_data[E82545_NVM_EEPROM_SIZE]; 356 }; 357 358 static void e82545_reset(struct e82545_softc *sc, int dev); 359 static void e82545_rx_enable(struct e82545_softc *sc); 360 static void e82545_rx_disable(struct e82545_softc *sc); 361 static void e82545_rx_callback(int fd, enum ev_type type, void *param); 362 static void e82545_tx_start(struct e82545_softc *sc); 363 static void e82545_tx_enable(struct e82545_softc *sc); 364 static void e82545_tx_disable(struct e82545_softc *sc); 365 366 static inline int __unused 367 e82545_size_stat_index(uint32_t size) 368 { 369 if (size <= 64) { 370 return 0; 371 } else if (size >= 1024) { 372 return 5; 373 } else { 374 /* should be 1-4 */ 375 return (ffs(size) - 6); 376 } 377 } 378 379 static void 380 e82545_init_eeprom(struct e82545_softc *sc) 381 { 382 uint16_t checksum, i; 383 384 /* mac addr */ 385 sc->eeprom_data[NVM_MAC_ADDR] = ((uint16_t)sc->esc_mac.octet[0]) | 386 (((uint16_t)sc->esc_mac.octet[1]) << 8); 387 sc->eeprom_data[NVM_MAC_ADDR+1] = ((uint16_t)sc->esc_mac.octet[2]) | 388 (((uint16_t)sc->esc_mac.octet[3]) << 8); 389 sc->eeprom_data[NVM_MAC_ADDR+2] = ((uint16_t)sc->esc_mac.octet[4]) | 390 (((uint16_t)sc->esc_mac.octet[5]) << 8); 391 392 /* pci ids */ 393 sc->eeprom_data[NVM_SUB_DEV_ID] = E82545_SUBDEV_ID; 394 sc->eeprom_data[NVM_SUB_VEN_ID] = E82545_VENDOR_ID_INTEL; 395 sc->eeprom_data[NVM_DEV_ID] = E82545_DEV_ID_82545EM_COPPER; 396 sc->eeprom_data[NVM_VEN_ID] = E82545_VENDOR_ID_INTEL; 397 398 /* fill in the checksum */ 399 checksum = 0; 400 for (i = 0; i < NVM_CHECKSUM_REG; i++) { 401 checksum += sc->eeprom_data[i]; 402 } 403 checksum = NVM_SUM - checksum; 404 sc->eeprom_data[NVM_CHECKSUM_REG] = checksum; 405 DPRINTF("eeprom checksum: 0x%x", checksum); 406 } 407 408 static void 409 e82545_write_mdi(struct e82545_softc *sc __unused, uint8_t reg_addr, 410 uint8_t phy_addr, uint32_t data) 411 { 412 DPRINTF("Write mdi reg:0x%x phy:0x%x data: 0x%x", reg_addr, phy_addr, data); 413 } 414 415 static uint32_t 416 e82545_read_mdi(struct e82545_softc *sc __unused, uint8_t reg_addr, 417 uint8_t phy_addr) 418 { 419 //DPRINTF("Read mdi reg:0x%x phy:0x%x", reg_addr, phy_addr); 420 switch (reg_addr) { 421 case PHY_STATUS: 422 return (MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS | 423 MII_SR_AUTONEG_COMPLETE); 424 case PHY_AUTONEG_ADV: 425 return NWAY_AR_SELECTOR_FIELD; 426 case PHY_LP_ABILITY: 427 return 0; 428 case PHY_1000T_STATUS: 429 return (SR_1000T_LP_FD_CAPS | SR_1000T_REMOTE_RX_STATUS | 430 SR_1000T_LOCAL_RX_STATUS); 431 case PHY_ID1: 432 return (M88E1011_I_PHY_ID >> 16) & 0xFFFF; 433 case PHY_ID2: 434 return (M88E1011_I_PHY_ID | E82545_REVISION_4) & 0xFFFF; 435 default: 436 DPRINTF("Unknown mdi read reg:0x%x phy:0x%x", reg_addr, phy_addr); 437 return 0; 438 } 439 /* not reached */ 440 } 441 442 static void 443 e82545_eecd_strobe(struct e82545_softc *sc) 444 { 445 /* Microwire state machine */ 446 /* 447 DPRINTF("eeprom state machine srtobe " 448 "0x%x 0x%x 0x%x 0x%x", 449 sc->nvm_mode, sc->nvm_bits, 450 sc->nvm_opaddr, sc->nvm_data);*/ 451 452 if (sc->nvm_bits == 0) { 453 DPRINTF("eeprom state machine not expecting data! " 454 "0x%x 0x%x 0x%x 0x%x", 455 sc->nvm_mode, sc->nvm_bits, 456 sc->nvm_opaddr, sc->nvm_data); 457 return; 458 } 459 sc->nvm_bits--; 460 if (sc->nvm_mode == E82545_NVM_MODE_DATAOUT) { 461 /* shifting out */ 462 if (sc->nvm_data & 0x8000) { 463 sc->eeprom_control |= E1000_EECD_DO; 464 } else { 465 sc->eeprom_control &= ~E1000_EECD_DO; 466 } 467 sc->nvm_data <<= 1; 468 if (sc->nvm_bits == 0) { 469 /* read done, back to opcode mode. */ 470 sc->nvm_opaddr = 0; 471 sc->nvm_mode = E82545_NVM_MODE_OPADDR; 472 sc->nvm_bits = E82545_NVM_OPADDR_BITS; 473 } 474 } else if (sc->nvm_mode == E82545_NVM_MODE_DATAIN) { 475 /* shifting in */ 476 sc->nvm_data <<= 1; 477 if (sc->eeprom_control & E1000_EECD_DI) { 478 sc->nvm_data |= 1; 479 } 480 if (sc->nvm_bits == 0) { 481 /* eeprom write */ 482 uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK; 483 uint16_t addr = sc->nvm_opaddr & E82545_NVM_ADDR_MASK; 484 if (op != E82545_NVM_OPCODE_WRITE) { 485 DPRINTF("Illegal eeprom write op 0x%x", 486 sc->nvm_opaddr); 487 } else if (addr >= E82545_NVM_EEPROM_SIZE) { 488 DPRINTF("Illegal eeprom write addr 0x%x", 489 sc->nvm_opaddr); 490 } else { 491 DPRINTF("eeprom write eeprom[0x%x] = 0x%x", 492 addr, sc->nvm_data); 493 sc->eeprom_data[addr] = sc->nvm_data; 494 } 495 /* back to opcode mode */ 496 sc->nvm_opaddr = 0; 497 sc->nvm_mode = E82545_NVM_MODE_OPADDR; 498 sc->nvm_bits = E82545_NVM_OPADDR_BITS; 499 } 500 } else if (sc->nvm_mode == E82545_NVM_MODE_OPADDR) { 501 sc->nvm_opaddr <<= 1; 502 if (sc->eeprom_control & E1000_EECD_DI) { 503 sc->nvm_opaddr |= 1; 504 } 505 if (sc->nvm_bits == 0) { 506 uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK; 507 switch (op) { 508 case E82545_NVM_OPCODE_EWEN: 509 DPRINTF("eeprom write enable: 0x%x", 510 sc->nvm_opaddr); 511 /* back to opcode mode */ 512 sc->nvm_opaddr = 0; 513 sc->nvm_mode = E82545_NVM_MODE_OPADDR; 514 sc->nvm_bits = E82545_NVM_OPADDR_BITS; 515 break; 516 case E82545_NVM_OPCODE_READ: 517 { 518 uint16_t addr = sc->nvm_opaddr & 519 E82545_NVM_ADDR_MASK; 520 sc->nvm_mode = E82545_NVM_MODE_DATAOUT; 521 sc->nvm_bits = E82545_NVM_DATA_BITS; 522 if (addr < E82545_NVM_EEPROM_SIZE) { 523 sc->nvm_data = sc->eeprom_data[addr]; 524 DPRINTF("eeprom read: eeprom[0x%x] = 0x%x", 525 addr, sc->nvm_data); 526 } else { 527 DPRINTF("eeprom illegal read: 0x%x", 528 sc->nvm_opaddr); 529 sc->nvm_data = 0; 530 } 531 break; 532 } 533 case E82545_NVM_OPCODE_WRITE: 534 sc->nvm_mode = E82545_NVM_MODE_DATAIN; 535 sc->nvm_bits = E82545_NVM_DATA_BITS; 536 sc->nvm_data = 0; 537 break; 538 default: 539 DPRINTF("eeprom unknown op: 0x%x", 540 sc->nvm_opaddr); 541 /* back to opcode mode */ 542 sc->nvm_opaddr = 0; 543 sc->nvm_mode = E82545_NVM_MODE_OPADDR; 544 sc->nvm_bits = E82545_NVM_OPADDR_BITS; 545 } 546 } 547 } else { 548 DPRINTF("eeprom state machine wrong state! " 549 "0x%x 0x%x 0x%x 0x%x", 550 sc->nvm_mode, sc->nvm_bits, 551 sc->nvm_opaddr, sc->nvm_data); 552 } 553 } 554 555 static void 556 e82545_itr_callback(int fd __unused, enum ev_type type __unused, void *param) 557 { 558 uint32_t new; 559 struct e82545_softc *sc = param; 560 561 pthread_mutex_lock(&sc->esc_mtx); 562 new = sc->esc_ICR & sc->esc_IMS; 563 if (new && !sc->esc_irq_asserted) { 564 DPRINTF("itr callback: lintr assert %x", new); 565 sc->esc_irq_asserted = 1; 566 pci_lintr_assert(sc->esc_pi); 567 } else { 568 mevent_delete(sc->esc_mevpitr); 569 sc->esc_mevpitr = NULL; 570 } 571 pthread_mutex_unlock(&sc->esc_mtx); 572 } 573 574 static void 575 e82545_icr_assert(struct e82545_softc *sc, uint32_t bits) 576 { 577 uint32_t new; 578 579 DPRINTF("icr assert: 0x%x", bits); 580 581 /* 582 * An interrupt is only generated if bits are set that 583 * aren't already in the ICR, these bits are unmasked, 584 * and there isn't an interrupt already pending. 585 */ 586 new = bits & ~sc->esc_ICR & sc->esc_IMS; 587 sc->esc_ICR |= bits; 588 589 if (new == 0) { 590 DPRINTF("icr assert: masked %x, ims %x", new, sc->esc_IMS); 591 } else if (sc->esc_mevpitr != NULL) { 592 DPRINTF("icr assert: throttled %x, ims %x", new, sc->esc_IMS); 593 } else if (!sc->esc_irq_asserted) { 594 DPRINTF("icr assert: lintr assert %x", new); 595 sc->esc_irq_asserted = 1; 596 pci_lintr_assert(sc->esc_pi); 597 if (sc->esc_ITR != 0) { 598 sc->esc_mevpitr = mevent_add( 599 (sc->esc_ITR + 3905) / 3906, /* 256ns -> 1ms */ 600 EVF_TIMER, e82545_itr_callback, sc); 601 } 602 } 603 } 604 605 static void 606 e82545_ims_change(struct e82545_softc *sc, uint32_t bits) 607 { 608 uint32_t new; 609 610 /* 611 * Changing the mask may allow previously asserted 612 * but masked interrupt requests to generate an interrupt. 613 */ 614 new = bits & sc->esc_ICR & ~sc->esc_IMS; 615 sc->esc_IMS |= bits; 616 617 if (new == 0) { 618 DPRINTF("ims change: masked %x, ims %x", new, sc->esc_IMS); 619 } else if (sc->esc_mevpitr != NULL) { 620 DPRINTF("ims change: throttled %x, ims %x", new, sc->esc_IMS); 621 } else if (!sc->esc_irq_asserted) { 622 DPRINTF("ims change: lintr assert %x", new); 623 sc->esc_irq_asserted = 1; 624 pci_lintr_assert(sc->esc_pi); 625 if (sc->esc_ITR != 0) { 626 sc->esc_mevpitr = mevent_add( 627 (sc->esc_ITR + 3905) / 3906, /* 256ns -> 1ms */ 628 EVF_TIMER, e82545_itr_callback, sc); 629 } 630 } 631 } 632 633 static void 634 e82545_icr_deassert(struct e82545_softc *sc, uint32_t bits) 635 { 636 637 DPRINTF("icr deassert: 0x%x", bits); 638 sc->esc_ICR &= ~bits; 639 640 /* 641 * If there are no longer any interrupt sources and there 642 * was an asserted interrupt, clear it 643 */ 644 if (sc->esc_irq_asserted && !(sc->esc_ICR & sc->esc_IMS)) { 645 DPRINTF("icr deassert: lintr deassert %x", bits); 646 pci_lintr_deassert(sc->esc_pi); 647 sc->esc_irq_asserted = 0; 648 } 649 } 650 651 static void 652 e82545_intr_write(struct e82545_softc *sc, uint32_t offset, uint32_t value) 653 { 654 655 DPRINTF("intr_write: off %x, val %x", offset, value); 656 657 switch (offset) { 658 case E1000_ICR: 659 e82545_icr_deassert(sc, value); 660 break; 661 case E1000_ITR: 662 sc->esc_ITR = value; 663 break; 664 case E1000_ICS: 665 sc->esc_ICS = value; /* not used: store for debug */ 666 e82545_icr_assert(sc, value); 667 break; 668 case E1000_IMS: 669 e82545_ims_change(sc, value); 670 break; 671 case E1000_IMC: 672 sc->esc_IMC = value; /* for debug */ 673 sc->esc_IMS &= ~value; 674 // XXX clear interrupts if all ICR bits now masked 675 // and interrupt was pending ? 676 break; 677 default: 678 break; 679 } 680 } 681 682 static uint32_t 683 e82545_intr_read(struct e82545_softc *sc, uint32_t offset) 684 { 685 uint32_t retval; 686 687 retval = 0; 688 689 DPRINTF("intr_read: off %x", offset); 690 691 switch (offset) { 692 case E1000_ICR: 693 retval = sc->esc_ICR; 694 sc->esc_ICR = 0; 695 e82545_icr_deassert(sc, ~0); 696 break; 697 case E1000_ITR: 698 retval = sc->esc_ITR; 699 break; 700 case E1000_ICS: 701 /* write-only register */ 702 break; 703 case E1000_IMS: 704 retval = sc->esc_IMS; 705 break; 706 case E1000_IMC: 707 /* write-only register */ 708 break; 709 default: 710 break; 711 } 712 713 return (retval); 714 } 715 716 static void 717 e82545_devctl(struct e82545_softc *sc, uint32_t val) 718 { 719 720 sc->esc_CTRL = val & ~E1000_CTRL_RST; 721 722 if (val & E1000_CTRL_RST) { 723 DPRINTF("e1k: s/w reset, ctl %x", val); 724 e82545_reset(sc, 1); 725 } 726 /* XXX check for phy reset ? */ 727 } 728 729 static void 730 e82545_rx_update_rdba(struct e82545_softc *sc) 731 { 732 733 /* XXX verify desc base/len within phys mem range */ 734 sc->esc_rdba = (uint64_t)sc->esc_RDBAH << 32 | 735 sc->esc_RDBAL; 736 737 /* Cache host mapping of guest descriptor array */ 738 sc->esc_rxdesc = paddr_guest2host(sc->esc_ctx, 739 sc->esc_rdba, sc->esc_RDLEN); 740 } 741 742 static void 743 e82545_rx_ctl(struct e82545_softc *sc, uint32_t val) 744 { 745 int on; 746 747 on = ((val & E1000_RCTL_EN) == E1000_RCTL_EN); 748 749 /* Save RCTL after stripping reserved bits 31:27,24,21,14,11:10,0 */ 750 sc->esc_RCTL = val & ~0xF9204c01; 751 752 DPRINTF("rx_ctl - %s RCTL %x, val %x", 753 on ? "on" : "off", sc->esc_RCTL, val); 754 755 /* state change requested */ 756 if (on != sc->esc_rx_enabled) { 757 if (on) { 758 /* Catch disallowed/unimplemented settings */ 759 //assert(!(val & E1000_RCTL_LBM_TCVR)); 760 761 if (sc->esc_RCTL & E1000_RCTL_LBM_TCVR) { 762 sc->esc_rx_loopback = 1; 763 } else { 764 sc->esc_rx_loopback = 0; 765 } 766 767 e82545_rx_update_rdba(sc); 768 e82545_rx_enable(sc); 769 } else { 770 e82545_rx_disable(sc); 771 sc->esc_rx_loopback = 0; 772 sc->esc_rdba = 0; 773 sc->esc_rxdesc = NULL; 774 } 775 } 776 } 777 778 static void 779 e82545_tx_update_tdba(struct e82545_softc *sc) 780 { 781 782 /* XXX verify desc base/len within phys mem range */ 783 sc->esc_tdba = (uint64_t)sc->esc_TDBAH << 32 | sc->esc_TDBAL; 784 785 /* Cache host mapping of guest descriptor array */ 786 sc->esc_txdesc = paddr_guest2host(sc->esc_ctx, sc->esc_tdba, 787 sc->esc_TDLEN); 788 } 789 790 static void 791 e82545_tx_ctl(struct e82545_softc *sc, uint32_t val) 792 { 793 int on; 794 795 on = ((val & E1000_TCTL_EN) == E1000_TCTL_EN); 796 797 /* ignore TCTL_EN settings that don't change state */ 798 if (on == sc->esc_tx_enabled) 799 return; 800 801 if (on) { 802 e82545_tx_update_tdba(sc); 803 e82545_tx_enable(sc); 804 } else { 805 e82545_tx_disable(sc); 806 sc->esc_tdba = 0; 807 sc->esc_txdesc = NULL; 808 } 809 810 /* Save TCTL value after stripping reserved bits 31:25,23,2,0 */ 811 sc->esc_TCTL = val & ~0xFE800005; 812 } 813 814 static int 815 e82545_bufsz(uint32_t rctl) 816 { 817 818 switch (rctl & (E1000_RCTL_BSEX | E1000_RCTL_SZ_256)) { 819 case (E1000_RCTL_SZ_2048): return (2048); 820 case (E1000_RCTL_SZ_1024): return (1024); 821 case (E1000_RCTL_SZ_512): return (512); 822 case (E1000_RCTL_SZ_256): return (256); 823 case (E1000_RCTL_BSEX|E1000_RCTL_SZ_16384): return (16384); 824 case (E1000_RCTL_BSEX|E1000_RCTL_SZ_8192): return (8192); 825 case (E1000_RCTL_BSEX|E1000_RCTL_SZ_4096): return (4096); 826 } 827 return (256); /* Forbidden value. */ 828 } 829 830 /* XXX one packet at a time until this is debugged */ 831 static void 832 e82545_rx_callback(int fd __unused, enum ev_type type __unused, void *param) 833 { 834 struct e82545_softc *sc = param; 835 struct e1000_rx_desc *rxd; 836 struct iovec vec[64]; 837 ssize_t len; 838 int left, lim, maxpktsz, maxpktdesc, bufsz, i, n, size; 839 uint32_t cause = 0; 840 uint16_t *tp, tag, head; 841 842 pthread_mutex_lock(&sc->esc_mtx); 843 DPRINTF("rx_run: head %x, tail %x", sc->esc_RDH, sc->esc_RDT); 844 845 if (!sc->esc_rx_enabled || sc->esc_rx_loopback) { 846 DPRINTF("rx disabled (!%d || %d) -- packet(s) dropped", 847 sc->esc_rx_enabled, sc->esc_rx_loopback); 848 while (netbe_rx_discard(sc->esc_be) > 0) { 849 } 850 goto done1; 851 } 852 bufsz = e82545_bufsz(sc->esc_RCTL); 853 maxpktsz = (sc->esc_RCTL & E1000_RCTL_LPE) ? 16384 : 1522; 854 maxpktdesc = (maxpktsz + bufsz - 1) / bufsz; 855 size = sc->esc_RDLEN / 16; 856 head = sc->esc_RDH; 857 left = (size + sc->esc_RDT - head) % size; 858 if (left < maxpktdesc) { 859 DPRINTF("rx overflow (%d < %d) -- packet(s) dropped", 860 left, maxpktdesc); 861 while (netbe_rx_discard(sc->esc_be) > 0) { 862 } 863 goto done1; 864 } 865 866 sc->esc_rx_active = 1; 867 pthread_mutex_unlock(&sc->esc_mtx); 868 869 for (lim = size / 4; lim > 0 && left >= maxpktdesc; lim -= n) { 870 871 /* Grab rx descriptor pointed to by the head pointer */ 872 for (i = 0; i < maxpktdesc; i++) { 873 rxd = &sc->esc_rxdesc[(head + i) % size]; 874 vec[i].iov_base = paddr_guest2host(sc->esc_ctx, 875 rxd->buffer_addr, bufsz); 876 vec[i].iov_len = bufsz; 877 } 878 len = netbe_recv(sc->esc_be, vec, maxpktdesc); 879 if (len <= 0) { 880 DPRINTF("netbe_recv() returned %zd", len); 881 goto done; 882 } 883 884 /* 885 * Adjust the packet length based on whether the CRC needs 886 * to be stripped or if the packet is less than the minimum 887 * eth packet size. 888 */ 889 if (len < ETHER_MIN_LEN - ETHER_CRC_LEN) 890 len = ETHER_MIN_LEN - ETHER_CRC_LEN; 891 if (!(sc->esc_RCTL & E1000_RCTL_SECRC)) 892 len += ETHER_CRC_LEN; 893 n = (len + bufsz - 1) / bufsz; 894 895 DPRINTF("packet read %zd bytes, %d segs, head %d", 896 len, n, head); 897 898 /* Apply VLAN filter. */ 899 tp = (uint16_t *)vec[0].iov_base + 6; 900 if ((sc->esc_RCTL & E1000_RCTL_VFE) && 901 (ntohs(tp[0]) == sc->esc_VET)) { 902 tag = ntohs(tp[1]) & 0x0fff; 903 if ((sc->esc_fvlan[tag >> 5] & 904 (1 << (tag & 0x1f))) != 0) { 905 DPRINTF("known VLAN %d", tag); 906 } else { 907 DPRINTF("unknown VLAN %d", tag); 908 n = 0; 909 continue; 910 } 911 } 912 913 /* Update all consumed descriptors. */ 914 for (i = 0; i < n - 1; i++) { 915 rxd = &sc->esc_rxdesc[(head + i) % size]; 916 rxd->length = bufsz; 917 rxd->csum = 0; 918 rxd->errors = 0; 919 rxd->special = 0; 920 rxd->status = E1000_RXD_STAT_DD; 921 } 922 rxd = &sc->esc_rxdesc[(head + i) % size]; 923 rxd->length = len % bufsz; 924 rxd->csum = 0; 925 rxd->errors = 0; 926 rxd->special = 0; 927 /* XXX signal no checksum for now */ 928 rxd->status = E1000_RXD_STAT_PIF | E1000_RXD_STAT_IXSM | 929 E1000_RXD_STAT_EOP | E1000_RXD_STAT_DD; 930 931 /* Schedule receive interrupts. */ 932 if ((uint32_t)len <= sc->esc_RSRPD) { 933 cause |= E1000_ICR_SRPD | E1000_ICR_RXT0; 934 } else { 935 /* XXX: RDRT and RADV timers should be here. */ 936 cause |= E1000_ICR_RXT0; 937 } 938 939 head = (head + n) % size; 940 left -= n; 941 } 942 943 done: 944 pthread_mutex_lock(&sc->esc_mtx); 945 sc->esc_rx_active = 0; 946 if (sc->esc_rx_enabled == 0) 947 pthread_cond_signal(&sc->esc_rx_cond); 948 949 sc->esc_RDH = head; 950 /* Respect E1000_RCTL_RDMTS */ 951 left = (size + sc->esc_RDT - head) % size; 952 if (left < (size >> (((sc->esc_RCTL >> 8) & 3) + 1))) 953 cause |= E1000_ICR_RXDMT0; 954 /* Assert all accumulated interrupts. */ 955 if (cause != 0) 956 e82545_icr_assert(sc, cause); 957 done1: 958 DPRINTF("rx_run done: head %x, tail %x", sc->esc_RDH, sc->esc_RDT); 959 pthread_mutex_unlock(&sc->esc_mtx); 960 } 961 962 static uint16_t 963 e82545_carry(uint32_t sum) 964 { 965 966 sum = (sum & 0xFFFF) + (sum >> 16); 967 if (sum > 0xFFFF) 968 sum -= 0xFFFF; 969 return (sum); 970 } 971 972 static uint16_t 973 e82545_buf_checksum(uint8_t *buf, int len) 974 { 975 int i; 976 uint32_t sum = 0; 977 978 /* Checksum all the pairs of bytes first... */ 979 for (i = 0; i < (len & ~1); i += 2) 980 sum += *((u_int16_t *)(buf + i)); 981 982 /* 983 * If there's a single byte left over, checksum it, too. 984 * Network byte order is big-endian, so the remaining byte is 985 * the high byte. 986 */ 987 if (i < len) 988 sum += htons(buf[i] << 8); 989 990 return (e82545_carry(sum)); 991 } 992 993 static uint16_t 994 e82545_iov_checksum(struct iovec *iov, int iovcnt, unsigned int off, 995 unsigned int len) 996 { 997 unsigned int now, odd; 998 uint32_t sum = 0, s; 999 1000 /* Skip completely unneeded vectors. */ 1001 while (iovcnt > 0 && iov->iov_len <= off && off > 0) { 1002 off -= iov->iov_len; 1003 iov++; 1004 iovcnt--; 1005 } 1006 1007 /* Calculate checksum of requested range. */ 1008 odd = 0; 1009 while (len > 0 && iovcnt > 0) { 1010 now = MIN(len, iov->iov_len - off); 1011 s = e82545_buf_checksum((uint8_t *)iov->iov_base + off, now); 1012 sum += odd ? (s << 8) : s; 1013 odd ^= (now & 1); 1014 len -= now; 1015 off = 0; 1016 iov++; 1017 iovcnt--; 1018 } 1019 1020 return (e82545_carry(sum)); 1021 } 1022 1023 /* 1024 * Return the transmit descriptor type. 1025 */ 1026 static int 1027 e82545_txdesc_type(uint32_t lower) 1028 { 1029 int type; 1030 1031 type = 0; 1032 1033 if (lower & E1000_TXD_CMD_DEXT) 1034 type = lower & E1000_TXD_MASK; 1035 1036 return (type); 1037 } 1038 1039 static void 1040 e82545_transmit_checksum(struct iovec *iov, int iovcnt, struct ck_info *ck) 1041 { 1042 uint16_t cksum; 1043 unsigned int cklen; 1044 1045 DPRINTF("tx cksum: iovcnt/s/off/len %d/%d/%d/%d", 1046 iovcnt, ck->ck_start, ck->ck_off, ck->ck_len); 1047 cklen = ck->ck_len ? ck->ck_len - ck->ck_start + 1U : UINT_MAX; 1048 cksum = e82545_iov_checksum(iov, iovcnt, ck->ck_start, cklen); 1049 *(uint16_t *)((uint8_t *)iov[0].iov_base + ck->ck_off) = ~cksum; 1050 } 1051 1052 static void 1053 e82545_transmit_backend(struct e82545_softc *sc, struct iovec *iov, int iovcnt) 1054 { 1055 1056 if (sc->esc_be == NULL) 1057 return; 1058 1059 (void) netbe_send(sc->esc_be, iov, iovcnt); 1060 } 1061 1062 static void 1063 e82545_transmit_done(struct e82545_softc *sc, uint16_t head, uint16_t tail, 1064 uint16_t dsize, int *tdwb) 1065 { 1066 union e1000_tx_udesc *dsc; 1067 1068 for ( ; head != tail; head = (head + 1) % dsize) { 1069 dsc = &sc->esc_txdesc[head]; 1070 if (dsc->td.lower.data & E1000_TXD_CMD_RS) { 1071 dsc->td.upper.data |= E1000_TXD_STAT_DD; 1072 *tdwb = 1; 1073 } 1074 } 1075 } 1076 1077 static int 1078 e82545_transmit(struct e82545_softc *sc, uint16_t head, uint16_t tail, 1079 uint16_t dsize, uint16_t *rhead, int *tdwb) 1080 { 1081 uint8_t *hdr, *hdrp; 1082 struct iovec iovb[I82545_MAX_TXSEGS + 2]; 1083 struct iovec tiov[I82545_MAX_TXSEGS + 2]; 1084 struct e1000_context_desc *cd; 1085 struct ck_info ckinfo[2]; 1086 struct iovec *iov; 1087 union e1000_tx_udesc *dsc; 1088 int desc, dtype, ntype, iovcnt, tcp, tso, paylen, seg, tiovcnt, pv; 1089 unsigned hdrlen, vlen, pktlen, len, left, mss, now, nnow, nleft, pvoff; 1090 uint32_t tcpsum, tcpseq; 1091 uint16_t ipcs, tcpcs, ipid, ohead; 1092 bool invalid; 1093 1094 ckinfo[0].ck_valid = ckinfo[1].ck_valid = 0; 1095 iovcnt = 0; 1096 ntype = 0; 1097 tso = 0; 1098 pktlen = 0; 1099 ohead = head; 1100 invalid = false; 1101 1102 /* iovb[0/1] may be used for writable copy of headers. */ 1103 iov = &iovb[2]; 1104 1105 for (desc = 0; ; desc++, head = (head + 1) % dsize) { 1106 if (head == tail) { 1107 *rhead = head; 1108 return (0); 1109 } 1110 dsc = &sc->esc_txdesc[head]; 1111 dtype = e82545_txdesc_type(dsc->td.lower.data); 1112 1113 if (desc == 0) { 1114 switch (dtype) { 1115 case E1000_TXD_TYP_C: 1116 DPRINTF("tx ctxt desc idx %d: %016jx " 1117 "%08x%08x", 1118 head, dsc->td.buffer_addr, 1119 dsc->td.upper.data, dsc->td.lower.data); 1120 /* Save context and return */ 1121 sc->esc_txctx = dsc->cd; 1122 goto done; 1123 case E1000_TXD_TYP_L: 1124 DPRINTF("tx legacy desc idx %d: %08x%08x", 1125 head, dsc->td.upper.data, dsc->td.lower.data); 1126 /* 1127 * legacy cksum start valid in first descriptor 1128 */ 1129 ntype = dtype; 1130 ckinfo[0].ck_start = dsc->td.upper.fields.css; 1131 break; 1132 case E1000_TXD_TYP_D: 1133 DPRINTF("tx data desc idx %d: %08x%08x", 1134 head, dsc->td.upper.data, dsc->td.lower.data); 1135 ntype = dtype; 1136 break; 1137 default: 1138 break; 1139 } 1140 } else { 1141 /* Descriptor type must be consistent */ 1142 assert(dtype == ntype); 1143 DPRINTF("tx next desc idx %d: %08x%08x", 1144 head, dsc->td.upper.data, dsc->td.lower.data); 1145 } 1146 1147 len = (dtype == E1000_TXD_TYP_L) ? dsc->td.lower.flags.length : 1148 dsc->dd.lower.data & 0xFFFFF; 1149 1150 /* Strip checksum supplied by guest. */ 1151 if ((dsc->td.lower.data & E1000_TXD_CMD_EOP) != 0 && 1152 (dsc->td.lower.data & E1000_TXD_CMD_IFCS) == 0) { 1153 if (len <= 2) { 1154 WPRINTF("final descriptor too short (%d) -- dropped", 1155 len); 1156 invalid = true; 1157 } else 1158 len -= 2; 1159 } 1160 1161 if (len > 0 && iovcnt < I82545_MAX_TXSEGS) { 1162 iov[iovcnt].iov_base = paddr_guest2host(sc->esc_ctx, 1163 dsc->td.buffer_addr, len); 1164 iov[iovcnt].iov_len = len; 1165 iovcnt++; 1166 pktlen += len; 1167 } 1168 1169 /* 1170 * Pull out info that is valid in the final descriptor 1171 * and exit descriptor loop. 1172 */ 1173 if (dsc->td.lower.data & E1000_TXD_CMD_EOP) { 1174 if (dtype == E1000_TXD_TYP_L) { 1175 if (dsc->td.lower.data & E1000_TXD_CMD_IC) { 1176 ckinfo[0].ck_valid = 1; 1177 ckinfo[0].ck_off = 1178 dsc->td.lower.flags.cso; 1179 ckinfo[0].ck_len = 0; 1180 } 1181 } else { 1182 cd = &sc->esc_txctx; 1183 if (dsc->dd.lower.data & E1000_TXD_CMD_TSE) 1184 tso = 1; 1185 if (dsc->dd.upper.fields.popts & 1186 E1000_TXD_POPTS_IXSM) 1187 ckinfo[0].ck_valid = 1; 1188 if (dsc->dd.upper.fields.popts & 1189 E1000_TXD_POPTS_IXSM || tso) { 1190 ckinfo[0].ck_start = 1191 cd->lower_setup.ip_fields.ipcss; 1192 ckinfo[0].ck_off = 1193 cd->lower_setup.ip_fields.ipcso; 1194 ckinfo[0].ck_len = 1195 cd->lower_setup.ip_fields.ipcse; 1196 } 1197 if (dsc->dd.upper.fields.popts & 1198 E1000_TXD_POPTS_TXSM) 1199 ckinfo[1].ck_valid = 1; 1200 if (dsc->dd.upper.fields.popts & 1201 E1000_TXD_POPTS_TXSM || tso) { 1202 ckinfo[1].ck_start = 1203 cd->upper_setup.tcp_fields.tucss; 1204 ckinfo[1].ck_off = 1205 cd->upper_setup.tcp_fields.tucso; 1206 ckinfo[1].ck_len = 1207 cd->upper_setup.tcp_fields.tucse; 1208 } 1209 } 1210 break; 1211 } 1212 } 1213 1214 if (invalid) 1215 goto done; 1216 1217 if (iovcnt > I82545_MAX_TXSEGS) { 1218 WPRINTF("tx too many descriptors (%d > %d) -- dropped", 1219 iovcnt, I82545_MAX_TXSEGS); 1220 goto done; 1221 } 1222 1223 hdrlen = vlen = 0; 1224 /* Estimate writable space for VLAN header insertion. */ 1225 if ((sc->esc_CTRL & E1000_CTRL_VME) && 1226 (dsc->td.lower.data & E1000_TXD_CMD_VLE)) { 1227 hdrlen = ETHER_ADDR_LEN*2; 1228 vlen = ETHER_VLAN_ENCAP_LEN; 1229 } 1230 if (!tso) { 1231 /* Estimate required writable space for checksums. */ 1232 if (ckinfo[0].ck_valid) 1233 hdrlen = MAX(hdrlen, ckinfo[0].ck_off + 2U); 1234 if (ckinfo[1].ck_valid) 1235 hdrlen = MAX(hdrlen, ckinfo[1].ck_off + 2U); 1236 /* Round up writable space to the first vector. */ 1237 if (hdrlen != 0 && iov[0].iov_len > hdrlen && 1238 iov[0].iov_len < hdrlen + 100) 1239 hdrlen = iov[0].iov_len; 1240 } else { 1241 /* In case of TSO header length provided by software. */ 1242 hdrlen = sc->esc_txctx.tcp_seg_setup.fields.hdr_len; 1243 1244 /* 1245 * Cap the header length at 240 based on 7.2.4.5 of 1246 * the Intel 82576EB (Rev 2.63) datasheet. 1247 */ 1248 if (hdrlen > 240) { 1249 WPRINTF("TSO hdrlen too large: %d", hdrlen); 1250 goto done; 1251 } 1252 1253 /* 1254 * If VLAN insertion is requested, ensure the header 1255 * at least holds the amount of data copied during 1256 * VLAN insertion below. 1257 * 1258 * XXX: Realistic packets will include a full Ethernet 1259 * header before the IP header at ckinfo[0].ck_start, 1260 * but this check is sufficient to prevent 1261 * out-of-bounds access below. 1262 */ 1263 if (vlen != 0 && hdrlen < ETHER_ADDR_LEN*2) { 1264 WPRINTF("TSO hdrlen too small for vlan insertion " 1265 "(%d vs %d) -- dropped", hdrlen, 1266 ETHER_ADDR_LEN*2); 1267 goto done; 1268 } 1269 1270 /* 1271 * Ensure that the header length covers the used fields 1272 * in the IP and TCP headers as well as the IP and TCP 1273 * checksums. The following fields are accessed below: 1274 * 1275 * Header | Field | Offset | Length 1276 * -------+-------+--------+------- 1277 * IPv4 | len | 2 | 2 1278 * IPv4 | ID | 4 | 2 1279 * IPv6 | len | 4 | 2 1280 * TCP | seq # | 4 | 4 1281 * TCP | flags | 13 | 1 1282 * UDP | len | 4 | 4 1283 */ 1284 if (hdrlen < ckinfo[0].ck_start + 6U || 1285 hdrlen < ckinfo[0].ck_off + 2U) { 1286 WPRINTF("TSO hdrlen too small for IP fields (%d) " 1287 "-- dropped", hdrlen); 1288 goto done; 1289 } 1290 if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) { 1291 if (hdrlen < ckinfo[1].ck_start + 14U) { 1292 WPRINTF("TSO hdrlen too small for TCP fields " 1293 "(%d) -- dropped", hdrlen); 1294 goto done; 1295 } 1296 } else { 1297 if (hdrlen < ckinfo[1].ck_start + 8U) { 1298 WPRINTF("TSO hdrlen too small for UDP fields " 1299 "(%d) -- dropped", hdrlen); 1300 goto done; 1301 } 1302 } 1303 if (ckinfo[1].ck_valid && hdrlen < ckinfo[1].ck_off + 2U) { 1304 WPRINTF("TSO hdrlen too small for TCP/UDP fields " 1305 "(%d) -- dropped", hdrlen); 1306 goto done; 1307 } 1308 } 1309 1310 if (pktlen < hdrlen + vlen) { 1311 WPRINTF("packet too small for writable header"); 1312 goto done; 1313 } 1314 1315 /* Allocate, fill and prepend writable header vector. */ 1316 if (hdrlen + vlen != 0) { 1317 hdr = __builtin_alloca(hdrlen + vlen); 1318 hdr += vlen; 1319 for (left = hdrlen, hdrp = hdr; left > 0; 1320 left -= now, hdrp += now) { 1321 now = MIN(left, iov->iov_len); 1322 memcpy(hdrp, iov->iov_base, now); 1323 iov->iov_base = (uint8_t *)iov->iov_base + now; 1324 iov->iov_len -= now; 1325 if (iov->iov_len == 0) { 1326 iov++; 1327 iovcnt--; 1328 } 1329 } 1330 iov--; 1331 iovcnt++; 1332 iov->iov_base = hdr; 1333 iov->iov_len = hdrlen; 1334 } else 1335 hdr = NULL; 1336 1337 /* Insert VLAN tag. */ 1338 if (vlen != 0) { 1339 hdr -= ETHER_VLAN_ENCAP_LEN; 1340 memmove(hdr, hdr + ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN*2); 1341 hdrlen += ETHER_VLAN_ENCAP_LEN; 1342 hdr[ETHER_ADDR_LEN*2 + 0] = sc->esc_VET >> 8; 1343 hdr[ETHER_ADDR_LEN*2 + 1] = sc->esc_VET & 0xff; 1344 hdr[ETHER_ADDR_LEN*2 + 2] = dsc->td.upper.fields.special >> 8; 1345 hdr[ETHER_ADDR_LEN*2 + 3] = dsc->td.upper.fields.special & 0xff; 1346 iov->iov_base = hdr; 1347 iov->iov_len += ETHER_VLAN_ENCAP_LEN; 1348 /* Correct checksum offsets after VLAN tag insertion. */ 1349 ckinfo[0].ck_start += ETHER_VLAN_ENCAP_LEN; 1350 ckinfo[0].ck_off += ETHER_VLAN_ENCAP_LEN; 1351 if (ckinfo[0].ck_len != 0) 1352 ckinfo[0].ck_len += ETHER_VLAN_ENCAP_LEN; 1353 ckinfo[1].ck_start += ETHER_VLAN_ENCAP_LEN; 1354 ckinfo[1].ck_off += ETHER_VLAN_ENCAP_LEN; 1355 if (ckinfo[1].ck_len != 0) 1356 ckinfo[1].ck_len += ETHER_VLAN_ENCAP_LEN; 1357 } 1358 1359 /* Simple non-TSO case. */ 1360 if (!tso) { 1361 /* Calculate checksums and transmit. */ 1362 if (ckinfo[0].ck_valid) 1363 e82545_transmit_checksum(iov, iovcnt, &ckinfo[0]); 1364 if (ckinfo[1].ck_valid) 1365 e82545_transmit_checksum(iov, iovcnt, &ckinfo[1]); 1366 e82545_transmit_backend(sc, iov, iovcnt); 1367 goto done; 1368 } 1369 1370 /* Doing TSO. */ 1371 tcp = (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) != 0; 1372 mss = sc->esc_txctx.tcp_seg_setup.fields.mss; 1373 paylen = (sc->esc_txctx.cmd_and_length & 0x000fffff); 1374 DPRINTF("tx %s segmentation offload %d+%d/%u bytes %d iovs", 1375 tcp ? "TCP" : "UDP", hdrlen, paylen, mss, iovcnt); 1376 ipid = ntohs(*(uint16_t *)&hdr[ckinfo[0].ck_start + 4]); 1377 tcpseq = 0; 1378 if (tcp) 1379 tcpseq = ntohl(*(uint32_t *)&hdr[ckinfo[1].ck_start + 4]); 1380 ipcs = *(uint16_t *)&hdr[ckinfo[0].ck_off]; 1381 tcpcs = 0; 1382 if (ckinfo[1].ck_valid) /* Save partial pseudo-header checksum. */ 1383 tcpcs = *(uint16_t *)&hdr[ckinfo[1].ck_off]; 1384 pv = 1; 1385 pvoff = 0; 1386 for (seg = 0, left = paylen; left > 0; seg++, left -= now) { 1387 now = MIN(left, mss); 1388 1389 /* Construct IOVs for the segment. */ 1390 /* Include whole original header. */ 1391 tiov[0].iov_base = hdr; 1392 tiov[0].iov_len = hdrlen; 1393 tiovcnt = 1; 1394 /* Include respective part of payload IOV. */ 1395 for (nleft = now; pv < iovcnt && nleft > 0; nleft -= nnow) { 1396 nnow = MIN(nleft, iov[pv].iov_len - pvoff); 1397 tiov[tiovcnt].iov_base = (uint8_t *)iov[pv].iov_base + 1398 pvoff; 1399 tiov[tiovcnt++].iov_len = nnow; 1400 if (pvoff + nnow == iov[pv].iov_len) { 1401 pv++; 1402 pvoff = 0; 1403 } else 1404 pvoff += nnow; 1405 } 1406 DPRINTF("tx segment %d %d+%d bytes %d iovs", 1407 seg, hdrlen, now, tiovcnt); 1408 1409 /* Update IP header. */ 1410 if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_IP) { 1411 /* IPv4 -- set length and ID */ 1412 *(uint16_t *)&hdr[ckinfo[0].ck_start + 2] = 1413 htons(hdrlen - ckinfo[0].ck_start + now); 1414 *(uint16_t *)&hdr[ckinfo[0].ck_start + 4] = 1415 htons(ipid + seg); 1416 } else { 1417 /* IPv6 -- set length */ 1418 *(uint16_t *)&hdr[ckinfo[0].ck_start + 4] = 1419 htons(hdrlen - ckinfo[0].ck_start - 40 + 1420 now); 1421 } 1422 1423 /* Update pseudo-header checksum. */ 1424 tcpsum = tcpcs; 1425 tcpsum += htons(hdrlen - ckinfo[1].ck_start + now); 1426 1427 /* Update TCP/UDP headers. */ 1428 if (tcp) { 1429 /* Update sequence number and FIN/PUSH flags. */ 1430 *(uint32_t *)&hdr[ckinfo[1].ck_start + 4] = 1431 htonl(tcpseq + paylen - left); 1432 if (now < left) { 1433 hdr[ckinfo[1].ck_start + 13] &= 1434 ~(TH_FIN | TH_PUSH); 1435 } 1436 } else { 1437 /* Update payload length. */ 1438 *(uint32_t *)&hdr[ckinfo[1].ck_start + 4] = 1439 hdrlen - ckinfo[1].ck_start + now; 1440 } 1441 1442 /* Calculate checksums and transmit. */ 1443 if (ckinfo[0].ck_valid) { 1444 *(uint16_t *)&hdr[ckinfo[0].ck_off] = ipcs; 1445 e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[0]); 1446 } 1447 if (ckinfo[1].ck_valid) { 1448 *(uint16_t *)&hdr[ckinfo[1].ck_off] = 1449 e82545_carry(tcpsum); 1450 e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[1]); 1451 } 1452 e82545_transmit_backend(sc, tiov, tiovcnt); 1453 } 1454 1455 done: 1456 head = (head + 1) % dsize; 1457 e82545_transmit_done(sc, ohead, head, dsize, tdwb); 1458 1459 *rhead = head; 1460 return (desc + 1); 1461 } 1462 1463 static void 1464 e82545_tx_run(struct e82545_softc *sc) 1465 { 1466 uint32_t cause; 1467 uint16_t head, rhead, tail, size; 1468 int lim, tdwb, sent; 1469 1470 size = sc->esc_TDLEN / 16; 1471 if (size == 0) 1472 return; 1473 1474 head = sc->esc_TDH % size; 1475 tail = sc->esc_TDT % size; 1476 DPRINTF("tx_run: head %x, rhead %x, tail %x", 1477 sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT); 1478 1479 pthread_mutex_unlock(&sc->esc_mtx); 1480 rhead = head; 1481 tdwb = 0; 1482 for (lim = size / 4; sc->esc_tx_enabled && lim > 0; lim -= sent) { 1483 sent = e82545_transmit(sc, head, tail, size, &rhead, &tdwb); 1484 if (sent == 0) 1485 break; 1486 head = rhead; 1487 } 1488 pthread_mutex_lock(&sc->esc_mtx); 1489 1490 sc->esc_TDH = head; 1491 sc->esc_TDHr = rhead; 1492 cause = 0; 1493 if (tdwb) 1494 cause |= E1000_ICR_TXDW; 1495 if (lim != size / 4 && sc->esc_TDH == sc->esc_TDT) 1496 cause |= E1000_ICR_TXQE; 1497 if (cause) 1498 e82545_icr_assert(sc, cause); 1499 1500 DPRINTF("tx_run done: head %x, rhead %x, tail %x", 1501 sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT); 1502 } 1503 1504 static _Noreturn void * 1505 e82545_tx_thread(void *param) 1506 { 1507 struct e82545_softc *sc = param; 1508 1509 pthread_mutex_lock(&sc->esc_mtx); 1510 for (;;) { 1511 while (!sc->esc_tx_enabled || sc->esc_TDHr == sc->esc_TDT) { 1512 if (sc->esc_tx_enabled && sc->esc_TDHr != sc->esc_TDT) 1513 break; 1514 sc->esc_tx_active = 0; 1515 if (sc->esc_tx_enabled == 0) 1516 pthread_cond_signal(&sc->esc_tx_cond); 1517 pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx); 1518 } 1519 sc->esc_tx_active = 1; 1520 1521 /* Process some tx descriptors. Lock dropped inside. */ 1522 e82545_tx_run(sc); 1523 } 1524 } 1525 1526 static void 1527 e82545_tx_start(struct e82545_softc *sc) 1528 { 1529 1530 if (sc->esc_tx_active == 0) 1531 pthread_cond_signal(&sc->esc_tx_cond); 1532 } 1533 1534 static void 1535 e82545_tx_enable(struct e82545_softc *sc) 1536 { 1537 1538 sc->esc_tx_enabled = 1; 1539 } 1540 1541 static void 1542 e82545_tx_disable(struct e82545_softc *sc) 1543 { 1544 1545 sc->esc_tx_enabled = 0; 1546 while (sc->esc_tx_active) 1547 pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx); 1548 } 1549 1550 static void 1551 e82545_rx_enable(struct e82545_softc *sc) 1552 { 1553 1554 sc->esc_rx_enabled = 1; 1555 } 1556 1557 static void 1558 e82545_rx_disable(struct e82545_softc *sc) 1559 { 1560 1561 sc->esc_rx_enabled = 0; 1562 while (sc->esc_rx_active) 1563 pthread_cond_wait(&sc->esc_rx_cond, &sc->esc_mtx); 1564 } 1565 1566 static void 1567 e82545_write_ra(struct e82545_softc *sc, int reg, uint32_t wval) 1568 { 1569 struct eth_uni *eu; 1570 int idx; 1571 1572 idx = reg >> 1; 1573 assert(idx < 15); 1574 1575 eu = &sc->esc_uni[idx]; 1576 1577 if (reg & 0x1) { 1578 /* RAH */ 1579 eu->eu_valid = ((wval & E1000_RAH_AV) == E1000_RAH_AV); 1580 eu->eu_addrsel = (wval >> 16) & 0x3; 1581 eu->eu_eth.octet[5] = wval >> 8; 1582 eu->eu_eth.octet[4] = wval; 1583 } else { 1584 /* RAL */ 1585 eu->eu_eth.octet[3] = wval >> 24; 1586 eu->eu_eth.octet[2] = wval >> 16; 1587 eu->eu_eth.octet[1] = wval >> 8; 1588 eu->eu_eth.octet[0] = wval; 1589 } 1590 } 1591 1592 static uint32_t 1593 e82545_read_ra(struct e82545_softc *sc, int reg) 1594 { 1595 struct eth_uni *eu; 1596 uint32_t retval; 1597 int idx; 1598 1599 idx = reg >> 1; 1600 assert(idx < 15); 1601 1602 eu = &sc->esc_uni[idx]; 1603 1604 if (reg & 0x1) { 1605 /* RAH */ 1606 retval = (eu->eu_valid << 31) | 1607 (eu->eu_addrsel << 16) | 1608 (eu->eu_eth.octet[5] << 8) | 1609 eu->eu_eth.octet[4]; 1610 } else { 1611 /* RAL */ 1612 retval = (eu->eu_eth.octet[3] << 24) | 1613 (eu->eu_eth.octet[2] << 16) | 1614 (eu->eu_eth.octet[1] << 8) | 1615 eu->eu_eth.octet[0]; 1616 } 1617 1618 return (retval); 1619 } 1620 1621 static void 1622 e82545_write_register(struct e82545_softc *sc, uint32_t offset, uint32_t value) 1623 { 1624 int ridx; 1625 1626 if (offset & 0x3) { 1627 DPRINTF("Unaligned register write offset:0x%x value:0x%x", offset, value); 1628 return; 1629 } 1630 DPRINTF("Register write: 0x%x value: 0x%x", offset, value); 1631 1632 switch (offset) { 1633 case E1000_CTRL: 1634 case E1000_CTRL_DUP: 1635 e82545_devctl(sc, value); 1636 break; 1637 case E1000_FCAL: 1638 sc->esc_FCAL = value; 1639 break; 1640 case E1000_FCAH: 1641 sc->esc_FCAH = value & ~0xFFFF0000; 1642 break; 1643 case E1000_FCT: 1644 sc->esc_FCT = value & ~0xFFFF0000; 1645 break; 1646 case E1000_VET: 1647 sc->esc_VET = value & ~0xFFFF0000; 1648 break; 1649 case E1000_FCTTV: 1650 sc->esc_FCTTV = value & ~0xFFFF0000; 1651 break; 1652 case E1000_LEDCTL: 1653 sc->esc_LEDCTL = value & ~0x30303000; 1654 break; 1655 case E1000_PBA: 1656 sc->esc_PBA = value & 0x0000FF80; 1657 break; 1658 case E1000_ICR: 1659 case E1000_ITR: 1660 case E1000_ICS: 1661 case E1000_IMS: 1662 case E1000_IMC: 1663 e82545_intr_write(sc, offset, value); 1664 break; 1665 case E1000_RCTL: 1666 e82545_rx_ctl(sc, value); 1667 break; 1668 case E1000_FCRTL: 1669 sc->esc_FCRTL = value & ~0xFFFF0007; 1670 break; 1671 case E1000_FCRTH: 1672 sc->esc_FCRTH = value & ~0xFFFF0007; 1673 break; 1674 case E1000_RDBAL(0): 1675 sc->esc_RDBAL = value & ~0xF; 1676 if (sc->esc_rx_enabled) { 1677 /* Apparently legal: update cached address */ 1678 e82545_rx_update_rdba(sc); 1679 } 1680 break; 1681 case E1000_RDBAH(0): 1682 assert(!sc->esc_rx_enabled); 1683 sc->esc_RDBAH = value; 1684 break; 1685 case E1000_RDLEN(0): 1686 assert(!sc->esc_rx_enabled); 1687 sc->esc_RDLEN = value & ~0xFFF0007F; 1688 break; 1689 case E1000_RDH(0): 1690 /* XXX should only ever be zero ? Range check ? */ 1691 sc->esc_RDH = value; 1692 break; 1693 case E1000_RDT(0): 1694 /* XXX if this opens up the rx ring, do something ? */ 1695 sc->esc_RDT = value; 1696 break; 1697 case E1000_RDTR: 1698 /* ignore FPD bit 31 */ 1699 sc->esc_RDTR = value & ~0xFFFF0000; 1700 break; 1701 case E1000_RXDCTL(0): 1702 sc->esc_RXDCTL = value & ~0xFEC0C0C0; 1703 break; 1704 case E1000_RADV: 1705 sc->esc_RADV = value & ~0xFFFF0000; 1706 break; 1707 case E1000_RSRPD: 1708 sc->esc_RSRPD = value & ~0xFFFFF000; 1709 break; 1710 case E1000_RXCSUM: 1711 sc->esc_RXCSUM = value & ~0xFFFFF800; 1712 break; 1713 case E1000_TXCW: 1714 sc->esc_TXCW = value & ~0x3FFF0000; 1715 break; 1716 case E1000_TCTL: 1717 e82545_tx_ctl(sc, value); 1718 break; 1719 case E1000_TIPG: 1720 sc->esc_TIPG = value; 1721 break; 1722 case E1000_AIT: 1723 sc->esc_AIT = value; 1724 break; 1725 case E1000_TDBAL(0): 1726 sc->esc_TDBAL = value & ~0xF; 1727 if (sc->esc_tx_enabled) 1728 e82545_tx_update_tdba(sc); 1729 break; 1730 case E1000_TDBAH(0): 1731 sc->esc_TDBAH = value; 1732 if (sc->esc_tx_enabled) 1733 e82545_tx_update_tdba(sc); 1734 break; 1735 case E1000_TDLEN(0): 1736 sc->esc_TDLEN = value & ~0xFFF0007F; 1737 if (sc->esc_tx_enabled) 1738 e82545_tx_update_tdba(sc); 1739 break; 1740 case E1000_TDH(0): 1741 if (sc->esc_tx_enabled) { 1742 WPRINTF("ignoring write to TDH while transmit enabled"); 1743 break; 1744 } 1745 if (value != 0) { 1746 WPRINTF("ignoring non-zero value written to TDH"); 1747 break; 1748 } 1749 sc->esc_TDHr = sc->esc_TDH = value; 1750 break; 1751 case E1000_TDT(0): 1752 sc->esc_TDT = value; 1753 if (sc->esc_tx_enabled) 1754 e82545_tx_start(sc); 1755 break; 1756 case E1000_TIDV: 1757 sc->esc_TIDV = value & ~0xFFFF0000; 1758 break; 1759 case E1000_TXDCTL(0): 1760 //assert(!sc->esc_tx_enabled); 1761 sc->esc_TXDCTL = value & ~0xC0C0C0; 1762 break; 1763 case E1000_TADV: 1764 sc->esc_TADV = value & ~0xFFFF0000; 1765 break; 1766 case E1000_RAL(0) ... E1000_RAH(15): 1767 /* convert to u32 offset */ 1768 ridx = (offset - E1000_RAL(0)) >> 2; 1769 e82545_write_ra(sc, ridx, value); 1770 break; 1771 case E1000_MTA ... (E1000_MTA + (127*4)): 1772 sc->esc_fmcast[(offset - E1000_MTA) >> 2] = value; 1773 break; 1774 case E1000_VFTA ... (E1000_VFTA + (127*4)): 1775 sc->esc_fvlan[(offset - E1000_VFTA) >> 2] = value; 1776 break; 1777 case E1000_EECD: 1778 { 1779 //DPRINTF("EECD write 0x%x -> 0x%x", sc->eeprom_control, value); 1780 /* edge triggered low->high */ 1781 uint32_t eecd_strobe = ((sc->eeprom_control & E1000_EECD_SK) ? 1782 0 : (value & E1000_EECD_SK)); 1783 uint32_t eecd_mask = (E1000_EECD_SK|E1000_EECD_CS| 1784 E1000_EECD_DI|E1000_EECD_REQ); 1785 sc->eeprom_control &= ~eecd_mask; 1786 sc->eeprom_control |= (value & eecd_mask); 1787 /* grant/revoke immediately */ 1788 if (value & E1000_EECD_REQ) { 1789 sc->eeprom_control |= E1000_EECD_GNT; 1790 } else { 1791 sc->eeprom_control &= ~E1000_EECD_GNT; 1792 } 1793 if (eecd_strobe && (sc->eeprom_control & E1000_EECD_CS)) { 1794 e82545_eecd_strobe(sc); 1795 } 1796 return; 1797 } 1798 case E1000_MDIC: 1799 { 1800 uint8_t reg_addr = (uint8_t)((value & E1000_MDIC_REG_MASK) >> 1801 E1000_MDIC_REG_SHIFT); 1802 uint8_t phy_addr = (uint8_t)((value & E1000_MDIC_PHY_MASK) >> 1803 E1000_MDIC_PHY_SHIFT); 1804 sc->mdi_control = 1805 (value & ~(E1000_MDIC_ERROR|E1000_MDIC_DEST)); 1806 if ((value & E1000_MDIC_READY) != 0) { 1807 DPRINTF("Incorrect MDIC ready bit: 0x%x", value); 1808 return; 1809 } 1810 switch (value & E82545_MDIC_OP_MASK) { 1811 case E1000_MDIC_OP_READ: 1812 sc->mdi_control &= ~E82545_MDIC_DATA_MASK; 1813 sc->mdi_control |= e82545_read_mdi(sc, reg_addr, phy_addr); 1814 break; 1815 case E1000_MDIC_OP_WRITE: 1816 e82545_write_mdi(sc, reg_addr, phy_addr, 1817 value & E82545_MDIC_DATA_MASK); 1818 break; 1819 default: 1820 DPRINTF("Unknown MDIC op: 0x%x", value); 1821 return; 1822 } 1823 /* TODO: barrier? */ 1824 sc->mdi_control |= E1000_MDIC_READY; 1825 if (value & E82545_MDIC_IE) { 1826 // TODO: generate interrupt 1827 } 1828 return; 1829 } 1830 case E1000_MANC: 1831 case E1000_STATUS: 1832 return; 1833 default: 1834 DPRINTF("Unknown write register: 0x%x value:%x", offset, value); 1835 return; 1836 } 1837 } 1838 1839 static uint32_t 1840 e82545_read_register(struct e82545_softc *sc, uint32_t offset) 1841 { 1842 uint32_t retval; 1843 int ridx; 1844 1845 if (offset & 0x3) { 1846 DPRINTF("Unaligned register read offset:0x%x", offset); 1847 return 0; 1848 } 1849 1850 DPRINTF("Register read: 0x%x", offset); 1851 1852 switch (offset) { 1853 case E1000_CTRL: 1854 retval = sc->esc_CTRL; 1855 break; 1856 case E1000_STATUS: 1857 retval = E1000_STATUS_FD | E1000_STATUS_LU | 1858 E1000_STATUS_SPEED_1000; 1859 break; 1860 case E1000_FCAL: 1861 retval = sc->esc_FCAL; 1862 break; 1863 case E1000_FCAH: 1864 retval = sc->esc_FCAH; 1865 break; 1866 case E1000_FCT: 1867 retval = sc->esc_FCT; 1868 break; 1869 case E1000_VET: 1870 retval = sc->esc_VET; 1871 break; 1872 case E1000_FCTTV: 1873 retval = sc->esc_FCTTV; 1874 break; 1875 case E1000_LEDCTL: 1876 retval = sc->esc_LEDCTL; 1877 break; 1878 case E1000_PBA: 1879 retval = sc->esc_PBA; 1880 break; 1881 case E1000_ICR: 1882 case E1000_ITR: 1883 case E1000_ICS: 1884 case E1000_IMS: 1885 case E1000_IMC: 1886 retval = e82545_intr_read(sc, offset); 1887 break; 1888 case E1000_RCTL: 1889 retval = sc->esc_RCTL; 1890 break; 1891 case E1000_FCRTL: 1892 retval = sc->esc_FCRTL; 1893 break; 1894 case E1000_FCRTH: 1895 retval = sc->esc_FCRTH; 1896 break; 1897 case E1000_RDBAL(0): 1898 retval = sc->esc_RDBAL; 1899 break; 1900 case E1000_RDBAH(0): 1901 retval = sc->esc_RDBAH; 1902 break; 1903 case E1000_RDLEN(0): 1904 retval = sc->esc_RDLEN; 1905 break; 1906 case E1000_RDH(0): 1907 retval = sc->esc_RDH; 1908 break; 1909 case E1000_RDT(0): 1910 retval = sc->esc_RDT; 1911 break; 1912 case E1000_RDTR: 1913 retval = sc->esc_RDTR; 1914 break; 1915 case E1000_RXDCTL(0): 1916 retval = sc->esc_RXDCTL; 1917 break; 1918 case E1000_RADV: 1919 retval = sc->esc_RADV; 1920 break; 1921 case E1000_RSRPD: 1922 retval = sc->esc_RSRPD; 1923 break; 1924 case E1000_RXCSUM: 1925 retval = sc->esc_RXCSUM; 1926 break; 1927 case E1000_TXCW: 1928 retval = sc->esc_TXCW; 1929 break; 1930 case E1000_TCTL: 1931 retval = sc->esc_TCTL; 1932 break; 1933 case E1000_TIPG: 1934 retval = sc->esc_TIPG; 1935 break; 1936 case E1000_AIT: 1937 retval = sc->esc_AIT; 1938 break; 1939 case E1000_TDBAL(0): 1940 retval = sc->esc_TDBAL; 1941 break; 1942 case E1000_TDBAH(0): 1943 retval = sc->esc_TDBAH; 1944 break; 1945 case E1000_TDLEN(0): 1946 retval = sc->esc_TDLEN; 1947 break; 1948 case E1000_TDH(0): 1949 retval = sc->esc_TDH; 1950 break; 1951 case E1000_TDT(0): 1952 retval = sc->esc_TDT; 1953 break; 1954 case E1000_TIDV: 1955 retval = sc->esc_TIDV; 1956 break; 1957 case E1000_TXDCTL(0): 1958 retval = sc->esc_TXDCTL; 1959 break; 1960 case E1000_TADV: 1961 retval = sc->esc_TADV; 1962 break; 1963 case E1000_RAL(0) ... E1000_RAH(15): 1964 /* convert to u32 offset */ 1965 ridx = (offset - E1000_RAL(0)) >> 2; 1966 retval = e82545_read_ra(sc, ridx); 1967 break; 1968 case E1000_MTA ... (E1000_MTA + (127*4)): 1969 retval = sc->esc_fmcast[(offset - E1000_MTA) >> 2]; 1970 break; 1971 case E1000_VFTA ... (E1000_VFTA + (127*4)): 1972 retval = sc->esc_fvlan[(offset - E1000_VFTA) >> 2]; 1973 break; 1974 case E1000_EECD: 1975 //DPRINTF("EECD read %x", sc->eeprom_control); 1976 retval = sc->eeprom_control; 1977 break; 1978 case E1000_MDIC: 1979 retval = sc->mdi_control; 1980 break; 1981 case E1000_MANC: 1982 retval = 0; 1983 break; 1984 /* stats that we emulate. */ 1985 case E1000_MPC: 1986 retval = sc->missed_pkt_count; 1987 break; 1988 case E1000_PRC64: 1989 retval = sc->pkt_rx_by_size[0]; 1990 break; 1991 case E1000_PRC127: 1992 retval = sc->pkt_rx_by_size[1]; 1993 break; 1994 case E1000_PRC255: 1995 retval = sc->pkt_rx_by_size[2]; 1996 break; 1997 case E1000_PRC511: 1998 retval = sc->pkt_rx_by_size[3]; 1999 break; 2000 case E1000_PRC1023: 2001 retval = sc->pkt_rx_by_size[4]; 2002 break; 2003 case E1000_PRC1522: 2004 retval = sc->pkt_rx_by_size[5]; 2005 break; 2006 case E1000_GPRC: 2007 retval = sc->good_pkt_rx_count; 2008 break; 2009 case E1000_BPRC: 2010 retval = sc->bcast_pkt_rx_count; 2011 break; 2012 case E1000_MPRC: 2013 retval = sc->mcast_pkt_rx_count; 2014 break; 2015 case E1000_GPTC: 2016 case E1000_TPT: 2017 retval = sc->good_pkt_tx_count; 2018 break; 2019 case E1000_GORCL: 2020 retval = (uint32_t)sc->good_octets_rx; 2021 break; 2022 case E1000_GORCH: 2023 retval = (uint32_t)(sc->good_octets_rx >> 32); 2024 break; 2025 case E1000_TOTL: 2026 case E1000_GOTCL: 2027 retval = (uint32_t)sc->good_octets_tx; 2028 break; 2029 case E1000_TOTH: 2030 case E1000_GOTCH: 2031 retval = (uint32_t)(sc->good_octets_tx >> 32); 2032 break; 2033 case E1000_ROC: 2034 retval = sc->oversize_rx_count; 2035 break; 2036 case E1000_TORL: 2037 retval = (uint32_t)(sc->good_octets_rx + sc->missed_octets); 2038 break; 2039 case E1000_TORH: 2040 retval = (uint32_t)((sc->good_octets_rx + 2041 sc->missed_octets) >> 32); 2042 break; 2043 case E1000_TPR: 2044 retval = sc->good_pkt_rx_count + sc->missed_pkt_count + 2045 sc->oversize_rx_count; 2046 break; 2047 case E1000_PTC64: 2048 retval = sc->pkt_tx_by_size[0]; 2049 break; 2050 case E1000_PTC127: 2051 retval = sc->pkt_tx_by_size[1]; 2052 break; 2053 case E1000_PTC255: 2054 retval = sc->pkt_tx_by_size[2]; 2055 break; 2056 case E1000_PTC511: 2057 retval = sc->pkt_tx_by_size[3]; 2058 break; 2059 case E1000_PTC1023: 2060 retval = sc->pkt_tx_by_size[4]; 2061 break; 2062 case E1000_PTC1522: 2063 retval = sc->pkt_tx_by_size[5]; 2064 break; 2065 case E1000_MPTC: 2066 retval = sc->mcast_pkt_tx_count; 2067 break; 2068 case E1000_BPTC: 2069 retval = sc->bcast_pkt_tx_count; 2070 break; 2071 case E1000_TSCTC: 2072 retval = sc->tso_tx_count; 2073 break; 2074 /* stats that are always 0. */ 2075 case E1000_CRCERRS: 2076 case E1000_ALGNERRC: 2077 case E1000_SYMERRS: 2078 case E1000_RXERRC: 2079 case E1000_SCC: 2080 case E1000_ECOL: 2081 case E1000_MCC: 2082 case E1000_LATECOL: 2083 case E1000_COLC: 2084 case E1000_DC: 2085 case E1000_TNCRS: 2086 case E1000_SEC: 2087 case E1000_CEXTERR: 2088 case E1000_RLEC: 2089 case E1000_XONRXC: 2090 case E1000_XONTXC: 2091 case E1000_XOFFRXC: 2092 case E1000_XOFFTXC: 2093 case E1000_FCRUC: 2094 case E1000_RNBC: 2095 case E1000_RUC: 2096 case E1000_RFC: 2097 case E1000_RJC: 2098 case E1000_MGTPRC: 2099 case E1000_MGTPDC: 2100 case E1000_MGTPTC: 2101 case E1000_TSCTFC: 2102 retval = 0; 2103 break; 2104 default: 2105 DPRINTF("Unknown read register: 0x%x", offset); 2106 retval = 0; 2107 break; 2108 } 2109 2110 return (retval); 2111 } 2112 2113 static void 2114 e82545_write(struct pci_devinst *pi, int baridx, uint64_t offset, int size, 2115 uint64_t value) 2116 { 2117 struct e82545_softc *sc; 2118 2119 //DPRINTF("Write bar:%d offset:0x%lx value:0x%lx size:%d", baridx, offset, value, size); 2120 2121 sc = pi->pi_arg; 2122 2123 pthread_mutex_lock(&sc->esc_mtx); 2124 2125 switch (baridx) { 2126 case E82545_BAR_IO: 2127 switch (offset) { 2128 case E82545_IOADDR: 2129 if (size != 4) { 2130 DPRINTF("Wrong io addr write sz:%d value:0x%lx", size, value); 2131 } else 2132 sc->io_addr = (uint32_t)value; 2133 break; 2134 case E82545_IODATA: 2135 if (size != 4) { 2136 DPRINTF("Wrong io data write size:%d value:0x%lx", size, value); 2137 } else if (sc->io_addr > E82545_IO_REGISTER_MAX) { 2138 DPRINTF("Non-register io write addr:0x%x value:0x%lx", sc->io_addr, value); 2139 } else 2140 e82545_write_register(sc, sc->io_addr, 2141 (uint32_t)value); 2142 break; 2143 default: 2144 DPRINTF("Unknown io bar write offset:0x%lx value:0x%lx size:%d", offset, value, size); 2145 break; 2146 } 2147 break; 2148 case E82545_BAR_REGISTER: 2149 if (size != 4) { 2150 DPRINTF("Wrong register write size:%d offset:0x%lx value:0x%lx", size, offset, value); 2151 } else 2152 e82545_write_register(sc, (uint32_t)offset, 2153 (uint32_t)value); 2154 break; 2155 default: 2156 DPRINTF("Unknown write bar:%d off:0x%lx val:0x%lx size:%d", 2157 baridx, offset, value, size); 2158 } 2159 2160 pthread_mutex_unlock(&sc->esc_mtx); 2161 } 2162 2163 static uint64_t 2164 e82545_read(struct pci_devinst *pi, int baridx, uint64_t offset, int size) 2165 { 2166 struct e82545_softc *sc; 2167 uint64_t retval; 2168 2169 //DPRINTF("Read bar:%d offset:0x%lx size:%d", baridx, offset, size); 2170 sc = pi->pi_arg; 2171 retval = 0; 2172 2173 pthread_mutex_lock(&sc->esc_mtx); 2174 2175 switch (baridx) { 2176 case E82545_BAR_IO: 2177 switch (offset) { 2178 case E82545_IOADDR: 2179 if (size != 4) { 2180 DPRINTF("Wrong io addr read sz:%d", size); 2181 } else 2182 retval = sc->io_addr; 2183 break; 2184 case E82545_IODATA: 2185 if (size != 4) { 2186 DPRINTF("Wrong io data read sz:%d", size); 2187 } 2188 if (sc->io_addr > E82545_IO_REGISTER_MAX) { 2189 DPRINTF("Non-register io read addr:0x%x", 2190 sc->io_addr); 2191 } else 2192 retval = e82545_read_register(sc, sc->io_addr); 2193 break; 2194 default: 2195 DPRINTF("Unknown io bar read offset:0x%lx size:%d", 2196 offset, size); 2197 break; 2198 } 2199 break; 2200 case E82545_BAR_REGISTER: 2201 if (size != 4) { 2202 DPRINTF("Wrong register read size:%d offset:0x%lx", 2203 size, offset); 2204 } else 2205 retval = e82545_read_register(sc, (uint32_t)offset); 2206 break; 2207 default: 2208 DPRINTF("Unknown read bar:%d offset:0x%lx size:%d", 2209 baridx, offset, size); 2210 break; 2211 } 2212 2213 pthread_mutex_unlock(&sc->esc_mtx); 2214 2215 return (retval); 2216 } 2217 2218 static void 2219 e82545_reset(struct e82545_softc *sc, int drvr) 2220 { 2221 int i; 2222 2223 e82545_rx_disable(sc); 2224 e82545_tx_disable(sc); 2225 2226 /* clear outstanding interrupts */ 2227 if (sc->esc_irq_asserted) 2228 pci_lintr_deassert(sc->esc_pi); 2229 2230 /* misc */ 2231 if (!drvr) { 2232 sc->esc_FCAL = 0; 2233 sc->esc_FCAH = 0; 2234 sc->esc_FCT = 0; 2235 sc->esc_VET = 0; 2236 sc->esc_FCTTV = 0; 2237 } 2238 sc->esc_LEDCTL = 0x07061302; 2239 sc->esc_PBA = 0x00100030; 2240 2241 /* start nvm in opcode mode. */ 2242 sc->nvm_opaddr = 0; 2243 sc->nvm_mode = E82545_NVM_MODE_OPADDR; 2244 sc->nvm_bits = E82545_NVM_OPADDR_BITS; 2245 sc->eeprom_control = E1000_EECD_PRES | E82545_EECD_FWE_EN; 2246 e82545_init_eeprom(sc); 2247 2248 /* interrupt */ 2249 sc->esc_ICR = 0; 2250 sc->esc_ITR = 250; 2251 sc->esc_ICS = 0; 2252 sc->esc_IMS = 0; 2253 sc->esc_IMC = 0; 2254 2255 /* L2 filters */ 2256 if (!drvr) { 2257 memset(sc->esc_fvlan, 0, sizeof(sc->esc_fvlan)); 2258 memset(sc->esc_fmcast, 0, sizeof(sc->esc_fmcast)); 2259 memset(sc->esc_uni, 0, sizeof(sc->esc_uni)); 2260 2261 /* XXX not necessary on 82545 ?? */ 2262 sc->esc_uni[0].eu_valid = 1; 2263 memcpy(sc->esc_uni[0].eu_eth.octet, sc->esc_mac.octet, 2264 ETHER_ADDR_LEN); 2265 } else { 2266 /* Clear RAH valid bits */ 2267 for (i = 0; i < 16; i++) 2268 sc->esc_uni[i].eu_valid = 0; 2269 } 2270 2271 /* receive */ 2272 if (!drvr) { 2273 sc->esc_RDBAL = 0; 2274 sc->esc_RDBAH = 0; 2275 } 2276 sc->esc_RCTL = 0; 2277 sc->esc_FCRTL = 0; 2278 sc->esc_FCRTH = 0; 2279 sc->esc_RDLEN = 0; 2280 sc->esc_RDH = 0; 2281 sc->esc_RDT = 0; 2282 sc->esc_RDTR = 0; 2283 sc->esc_RXDCTL = (1 << 24) | (1 << 16); /* default GRAN/WTHRESH */ 2284 sc->esc_RADV = 0; 2285 sc->esc_RXCSUM = 0; 2286 2287 /* transmit */ 2288 if (!drvr) { 2289 sc->esc_TDBAL = 0; 2290 sc->esc_TDBAH = 0; 2291 sc->esc_TIPG = 0; 2292 sc->esc_AIT = 0; 2293 sc->esc_TIDV = 0; 2294 sc->esc_TADV = 0; 2295 } 2296 sc->esc_tdba = 0; 2297 sc->esc_txdesc = NULL; 2298 sc->esc_TXCW = 0; 2299 sc->esc_TCTL = 0; 2300 sc->esc_TDLEN = 0; 2301 sc->esc_TDT = 0; 2302 sc->esc_TDHr = sc->esc_TDH = 0; 2303 sc->esc_TXDCTL = 0; 2304 } 2305 2306 static int 2307 e82545_init(struct pci_devinst *pi, nvlist_t *nvl) 2308 { 2309 char nstr[80]; 2310 struct e82545_softc *sc; 2311 const char *mac; 2312 int err; 2313 2314 /* Setup our softc */ 2315 sc = calloc(1, sizeof(*sc)); 2316 2317 pi->pi_arg = sc; 2318 sc->esc_pi = pi; 2319 sc->esc_ctx = pi->pi_vmctx; 2320 2321 pthread_mutex_init(&sc->esc_mtx, NULL); 2322 pthread_cond_init(&sc->esc_rx_cond, NULL); 2323 pthread_cond_init(&sc->esc_tx_cond, NULL); 2324 pthread_create(&sc->esc_tx_tid, NULL, e82545_tx_thread, sc); 2325 snprintf(nstr, sizeof(nstr), "e82545-%d:%d tx", pi->pi_slot, 2326 pi->pi_func); 2327 pthread_set_name_np(sc->esc_tx_tid, nstr); 2328 2329 pci_set_cfgdata16(pi, PCIR_DEVICE, E82545_DEV_ID_82545EM_COPPER); 2330 pci_set_cfgdata16(pi, PCIR_VENDOR, E82545_VENDOR_ID_INTEL); 2331 pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_NETWORK); 2332 pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_NETWORK_ETHERNET); 2333 pci_set_cfgdata16(pi, PCIR_SUBDEV_0, E82545_SUBDEV_ID); 2334 pci_set_cfgdata16(pi, PCIR_SUBVEND_0, E82545_VENDOR_ID_INTEL); 2335 2336 pci_set_cfgdata8(pi, PCIR_HDRTYPE, PCIM_HDRTYPE_NORMAL); 2337 pci_set_cfgdata8(pi, PCIR_INTPIN, 0x1); 2338 2339 /* TODO: this card also supports msi, but the freebsd driver for it 2340 * does not, so I have not implemented it. */ 2341 pci_lintr_request(pi); 2342 2343 pci_emul_alloc_bar(pi, E82545_BAR_REGISTER, PCIBAR_MEM32, 2344 E82545_BAR_REGISTER_LEN); 2345 pci_emul_alloc_bar(pi, E82545_BAR_FLASH, PCIBAR_MEM32, 2346 E82545_BAR_FLASH_LEN); 2347 pci_emul_alloc_bar(pi, E82545_BAR_IO, PCIBAR_IO, 2348 E82545_BAR_IO_LEN); 2349 2350 mac = get_config_value_node(nvl, "mac"); 2351 if (mac != NULL) { 2352 err = net_parsemac(mac, sc->esc_mac.octet); 2353 if (err) { 2354 free(sc); 2355 return (err); 2356 } 2357 } else 2358 net_genmac(pi, sc->esc_mac.octet); 2359 2360 err = netbe_init(&sc->esc_be, nvl, e82545_rx_callback, sc); 2361 if (err) { 2362 free(sc); 2363 return (err); 2364 } 2365 2366 netbe_rx_enable(sc->esc_be); 2367 2368 /* H/w initiated reset */ 2369 e82545_reset(sc, 0); 2370 2371 return (0); 2372 } 2373 2374 #ifdef BHYVE_SNAPSHOT 2375 static int 2376 e82545_snapshot(struct vm_snapshot_meta *meta) 2377 { 2378 int i; 2379 int ret; 2380 struct e82545_softc *sc; 2381 struct pci_devinst *pi; 2382 uint64_t bitmap_value; 2383 2384 pi = meta->dev_data; 2385 sc = pi->pi_arg; 2386 2387 /* esc_mevp and esc_mevpitr should be reinitiated at init. */ 2388 SNAPSHOT_VAR_OR_LEAVE(sc->esc_mac, meta, ret, done); 2389 2390 /* General */ 2391 SNAPSHOT_VAR_OR_LEAVE(sc->esc_CTRL, meta, ret, done); 2392 SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCAL, meta, ret, done); 2393 SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCAH, meta, ret, done); 2394 SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCT, meta, ret, done); 2395 SNAPSHOT_VAR_OR_LEAVE(sc->esc_VET, meta, ret, done); 2396 SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCTTV, meta, ret, done); 2397 SNAPSHOT_VAR_OR_LEAVE(sc->esc_LEDCTL, meta, ret, done); 2398 SNAPSHOT_VAR_OR_LEAVE(sc->esc_PBA, meta, ret, done); 2399 2400 /* Interrupt control */ 2401 SNAPSHOT_VAR_OR_LEAVE(sc->esc_irq_asserted, meta, ret, done); 2402 SNAPSHOT_VAR_OR_LEAVE(sc->esc_ICR, meta, ret, done); 2403 SNAPSHOT_VAR_OR_LEAVE(sc->esc_ITR, meta, ret, done); 2404 SNAPSHOT_VAR_OR_LEAVE(sc->esc_ICS, meta, ret, done); 2405 SNAPSHOT_VAR_OR_LEAVE(sc->esc_IMS, meta, ret, done); 2406 SNAPSHOT_VAR_OR_LEAVE(sc->esc_IMC, meta, ret, done); 2407 2408 /* 2409 * Transmit 2410 * 2411 * The fields in the unions are in superposition to access certain 2412 * bytes in the larger uint variables. 2413 * e.g., ip_config = [ipcss|ipcso|ipcse0|ipcse1] 2414 */ 2415 SNAPSHOT_VAR_OR_LEAVE(sc->esc_txctx.lower_setup.ip_config, meta, ret, done); 2416 SNAPSHOT_VAR_OR_LEAVE(sc->esc_txctx.upper_setup.tcp_config, meta, ret, done); 2417 SNAPSHOT_VAR_OR_LEAVE(sc->esc_txctx.cmd_and_length, meta, ret, done); 2418 SNAPSHOT_VAR_OR_LEAVE(sc->esc_txctx.tcp_seg_setup.data, meta, ret, done); 2419 2420 SNAPSHOT_VAR_OR_LEAVE(sc->esc_tx_enabled, meta, ret, done); 2421 SNAPSHOT_VAR_OR_LEAVE(sc->esc_tx_active, meta, ret, done); 2422 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TXCW, meta, ret, done); 2423 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TCTL, meta, ret, done); 2424 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TIPG, meta, ret, done); 2425 SNAPSHOT_VAR_OR_LEAVE(sc->esc_AIT, meta, ret, done); 2426 SNAPSHOT_VAR_OR_LEAVE(sc->esc_tdba, meta, ret, done); 2427 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDBAL, meta, ret, done); 2428 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDBAH, meta, ret, done); 2429 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDLEN, meta, ret, done); 2430 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDH, meta, ret, done); 2431 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDHr, meta, ret, done); 2432 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDT, meta, ret, done); 2433 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TIDV, meta, ret, done); 2434 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TXDCTL, meta, ret, done); 2435 SNAPSHOT_VAR_OR_LEAVE(sc->esc_TADV, meta, ret, done); 2436 2437 /* Has dependency on esc_TDLEN; reoreder of fields from struct. */ 2438 SNAPSHOT_GUEST2HOST_ADDR_OR_LEAVE(pi->pi_vmctx, sc->esc_txdesc, 2439 sc->esc_TDLEN, true, meta, ret, done); 2440 2441 /* L2 frame acceptance */ 2442 for (i = 0; i < (int)nitems(sc->esc_uni); i++) { 2443 SNAPSHOT_VAR_OR_LEAVE(sc->esc_uni[i].eu_valid, meta, ret, done); 2444 SNAPSHOT_VAR_OR_LEAVE(sc->esc_uni[i].eu_addrsel, meta, ret, done); 2445 SNAPSHOT_VAR_OR_LEAVE(sc->esc_uni[i].eu_eth, meta, ret, done); 2446 } 2447 2448 SNAPSHOT_BUF_OR_LEAVE(sc->esc_fmcast, sizeof(sc->esc_fmcast), 2449 meta, ret, done); 2450 SNAPSHOT_BUF_OR_LEAVE(sc->esc_fvlan, sizeof(sc->esc_fvlan), 2451 meta, ret, done); 2452 2453 /* Receive */ 2454 SNAPSHOT_VAR_OR_LEAVE(sc->esc_rx_enabled, meta, ret, done); 2455 SNAPSHOT_VAR_OR_LEAVE(sc->esc_rx_active, meta, ret, done); 2456 SNAPSHOT_VAR_OR_LEAVE(sc->esc_rx_loopback, meta, ret, done); 2457 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RCTL, meta, ret, done); 2458 SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCRTL, meta, ret, done); 2459 SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCRTH, meta, ret, done); 2460 SNAPSHOT_VAR_OR_LEAVE(sc->esc_rdba, meta, ret, done); 2461 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDBAL, meta, ret, done); 2462 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDBAH, meta, ret, done); 2463 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDLEN, meta, ret, done); 2464 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDH, meta, ret, done); 2465 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDT, meta, ret, done); 2466 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDTR, meta, ret, done); 2467 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RXDCTL, meta, ret, done); 2468 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RADV, meta, ret, done); 2469 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RSRPD, meta, ret, done); 2470 SNAPSHOT_VAR_OR_LEAVE(sc->esc_RXCSUM, meta, ret, done); 2471 2472 /* Has dependency on esc_RDLEN; reoreder of fields from struct. */ 2473 SNAPSHOT_GUEST2HOST_ADDR_OR_LEAVE(pi->pi_vmctx, sc->esc_rxdesc, 2474 sc->esc_TDLEN, true, meta, ret, done); 2475 2476 /* IO Port register access */ 2477 SNAPSHOT_VAR_OR_LEAVE(sc->io_addr, meta, ret, done); 2478 2479 /* Shadow copy of MDIC */ 2480 SNAPSHOT_VAR_OR_LEAVE(sc->mdi_control, meta, ret, done); 2481 2482 /* Shadow copy of EECD */ 2483 SNAPSHOT_VAR_OR_LEAVE(sc->eeprom_control, meta, ret, done); 2484 2485 /* Latest NVM in/out */ 2486 SNAPSHOT_VAR_OR_LEAVE(sc->nvm_data, meta, ret, done); 2487 SNAPSHOT_VAR_OR_LEAVE(sc->nvm_opaddr, meta, ret, done); 2488 2489 /* Stats */ 2490 SNAPSHOT_VAR_OR_LEAVE(sc->missed_pkt_count, meta, ret, done); 2491 SNAPSHOT_BUF_OR_LEAVE(sc->pkt_rx_by_size, sizeof(sc->pkt_rx_by_size), 2492 meta, ret, done); 2493 SNAPSHOT_BUF_OR_LEAVE(sc->pkt_tx_by_size, sizeof(sc->pkt_tx_by_size), 2494 meta, ret, done); 2495 SNAPSHOT_VAR_OR_LEAVE(sc->good_pkt_rx_count, meta, ret, done); 2496 SNAPSHOT_VAR_OR_LEAVE(sc->bcast_pkt_rx_count, meta, ret, done); 2497 SNAPSHOT_VAR_OR_LEAVE(sc->mcast_pkt_rx_count, meta, ret, done); 2498 SNAPSHOT_VAR_OR_LEAVE(sc->good_pkt_tx_count, meta, ret, done); 2499 SNAPSHOT_VAR_OR_LEAVE(sc->bcast_pkt_tx_count, meta, ret, done); 2500 SNAPSHOT_VAR_OR_LEAVE(sc->mcast_pkt_tx_count, meta, ret, done); 2501 SNAPSHOT_VAR_OR_LEAVE(sc->oversize_rx_count, meta, ret, done); 2502 SNAPSHOT_VAR_OR_LEAVE(sc->tso_tx_count, meta, ret, done); 2503 SNAPSHOT_VAR_OR_LEAVE(sc->good_octets_rx, meta, ret, done); 2504 SNAPSHOT_VAR_OR_LEAVE(sc->good_octets_tx, meta, ret, done); 2505 SNAPSHOT_VAR_OR_LEAVE(sc->missed_octets, meta, ret, done); 2506 2507 if (meta->op == VM_SNAPSHOT_SAVE) 2508 bitmap_value = sc->nvm_bits; 2509 SNAPSHOT_VAR_OR_LEAVE(bitmap_value, meta, ret, done); 2510 if (meta->op == VM_SNAPSHOT_RESTORE) 2511 sc->nvm_bits = bitmap_value; 2512 2513 if (meta->op == VM_SNAPSHOT_SAVE) 2514 bitmap_value = sc->nvm_bits; 2515 SNAPSHOT_VAR_OR_LEAVE(bitmap_value, meta, ret, done); 2516 if (meta->op == VM_SNAPSHOT_RESTORE) 2517 sc->nvm_bits = bitmap_value; 2518 2519 /* EEPROM data */ 2520 SNAPSHOT_BUF_OR_LEAVE(sc->eeprom_data, sizeof(sc->eeprom_data), 2521 meta, ret, done); 2522 2523 done: 2524 return (ret); 2525 } 2526 #endif 2527 2528 static const struct pci_devemu pci_de_e82545 = { 2529 .pe_emu = "e1000", 2530 .pe_init = e82545_init, 2531 .pe_legacy_config = netbe_legacy_config, 2532 .pe_barwrite = e82545_write, 2533 .pe_barread = e82545_read, 2534 #ifdef BHYVE_SNAPSHOT 2535 .pe_snapshot = e82545_snapshot, 2536 #endif 2537 }; 2538 PCI_EMUL_SET(pci_de_e82545); 2539