xref: /freebsd/usr.sbin/bhyve/pci_e82545.c (revision 63d1fd5970ec814904aa0f4580b10a0d302d08b2)
1 /*
2  * Copyright (c) 2016 Alexander Motin <mav@FreeBSD.org>
3  * Copyright (c) 2015 Peter Grehan <grehan@freebsd.org>
4  * Copyright (c) 2013 Jeremiah Lott, Avere Systems
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/types.h>
34 #include <sys/limits.h>
35 #include <sys/ioctl.h>
36 #include <sys/uio.h>
37 #include <net/ethernet.h>
38 #include <netinet/in.h>
39 #include <netinet/tcp.h>
40 
41 #include <errno.h>
42 #include <fcntl.h>
43 #include <md5.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <unistd.h>
48 #include <pthread.h>
49 #include <pthread_np.h>
50 
51 #include "e1000_regs.h"
52 #include "e1000_defines.h"
53 #include "mii.h"
54 
55 #include "bhyverun.h"
56 #include "pci_emul.h"
57 #include "mevent.h"
58 
59 /* Hardware/register definitions XXX: move some to common code. */
60 #define E82545_VENDOR_ID_INTEL			0x8086
61 #define E82545_DEV_ID_82545EM_COPPER		0x100F
62 #define E82545_SUBDEV_ID			0x1008
63 
64 #define E82545_REVISION_4			4
65 
66 #define E82545_MDIC_DATA_MASK			0x0000FFFF
67 #define E82545_MDIC_OP_MASK			0x0c000000
68 #define E82545_MDIC_IE				0x20000000
69 
70 #define E82545_EECD_FWE_DIS	0x00000010 /* Flash writes disabled */
71 #define E82545_EECD_FWE_EN	0x00000020 /* Flash writes enabled */
72 #define E82545_EECD_FWE_MASK	0x00000030 /* Flash writes mask */
73 
74 #define E82545_BAR_REGISTER			0
75 #define E82545_BAR_REGISTER_LEN			(128*1024)
76 #define E82545_BAR_FLASH			1
77 #define E82545_BAR_FLASH_LEN			(64*1024)
78 #define E82545_BAR_IO				2
79 #define E82545_BAR_IO_LEN			8
80 
81 #define E82545_IOADDR				0x00000000
82 #define E82545_IODATA				0x00000004
83 #define E82545_IO_REGISTER_MAX			0x0001FFFF
84 #define E82545_IO_FLASH_BASE			0x00080000
85 #define E82545_IO_FLASH_MAX			0x000FFFFF
86 
87 #define E82545_ARRAY_ENTRY(reg, offset)		(reg + (offset<<2))
88 #define E82545_RAR_MAX				15
89 #define E82545_MTA_MAX				127
90 #define E82545_VFTA_MAX				127
91 
92 /* Slightly modified from the driver versions, hardcoded for 3 opcode bits,
93  * followed by 6 address bits.
94  * TODO: make opcode bits and addr bits configurable?
95  * NVM Commands - Microwire */
96 #define E82545_NVM_OPCODE_BITS	3
97 #define E82545_NVM_ADDR_BITS	6
98 #define E82545_NVM_DATA_BITS	16
99 #define E82545_NVM_OPADDR_BITS	(E82545_NVM_OPCODE_BITS + E82545_NVM_ADDR_BITS)
100 #define E82545_NVM_ADDR_MASK	((1 << E82545_NVM_ADDR_BITS)-1)
101 #define E82545_NVM_OPCODE_MASK	\
102     (((1 << E82545_NVM_OPCODE_BITS) - 1) << E82545_NVM_ADDR_BITS)
103 #define E82545_NVM_OPCODE_READ	(0x6 << E82545_NVM_ADDR_BITS)	/* read */
104 #define E82545_NVM_OPCODE_WRITE	(0x5 << E82545_NVM_ADDR_BITS)	/* write */
105 #define E82545_NVM_OPCODE_ERASE	(0x7 << E82545_NVM_ADDR_BITS)	/* erase */
106 #define	E82545_NVM_OPCODE_EWEN	(0x4 << E82545_NVM_ADDR_BITS)	/* wr-enable */
107 
108 #define	E82545_NVM_EEPROM_SIZE	64 /* 64 * 16-bit values == 128K */
109 
110 #define E1000_ICR_SRPD		0x00010000
111 
112 /* This is an arbitrary number.  There is no hard limit on the chip. */
113 #define I82545_MAX_TXSEGS	64
114 
115 /* Legacy receive descriptor */
116 struct e1000_rx_desc {
117 	uint64_t buffer_addr;	/* Address of the descriptor's data buffer */
118 	uint16_t length;	/* Length of data DMAed into data buffer */
119 	uint16_t csum;		/* Packet checksum */
120 	uint8_t	 status;       	/* Descriptor status */
121 	uint8_t  errors;	/* Descriptor Errors */
122 	uint16_t special;
123 };
124 
125 /* Transmit descriptor types */
126 #define	E1000_TXD_MASK		(E1000_TXD_CMD_DEXT | 0x00F00000)
127 #define E1000_TXD_TYP_L		(0)
128 #define E1000_TXD_TYP_C		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C)
129 #define E1000_TXD_TYP_D		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)
130 
131 /* Legacy transmit descriptor */
132 struct e1000_tx_desc {
133 	uint64_t buffer_addr;   /* Address of the descriptor's data buffer */
134 	union {
135 		uint32_t data;
136 		struct {
137 			uint16_t length;  /* Data buffer length */
138 			uint8_t  cso;  /* Checksum offset */
139 			uint8_t  cmd;  /* Descriptor control */
140 		} flags;
141 	} lower;
142 	union {
143 		uint32_t data;
144 		struct {
145 			uint8_t status; /* Descriptor status */
146 			uint8_t css;  /* Checksum start */
147 			uint16_t special;
148 		} fields;
149 	} upper;
150 };
151 
152 /* Context descriptor */
153 struct e1000_context_desc {
154 	union {
155 		uint32_t ip_config;
156 		struct {
157 			uint8_t ipcss;  /* IP checksum start */
158 			uint8_t ipcso;  /* IP checksum offset */
159 			uint16_t ipcse;  /* IP checksum end */
160 		} ip_fields;
161 	} lower_setup;
162 	union {
163 		uint32_t tcp_config;
164 		struct {
165 			uint8_t tucss;  /* TCP checksum start */
166 			uint8_t tucso;  /* TCP checksum offset */
167 			uint16_t tucse;  /* TCP checksum end */
168 		} tcp_fields;
169 	} upper_setup;
170 	uint32_t cmd_and_length;
171 	union {
172 		uint32_t data;
173 		struct {
174 			uint8_t status;  /* Descriptor status */
175 			uint8_t hdr_len;  /* Header length */
176 			uint16_t mss;  /* Maximum segment size */
177 		} fields;
178 	} tcp_seg_setup;
179 };
180 
181 /* Data descriptor */
182 struct e1000_data_desc {
183 	uint64_t buffer_addr;  /* Address of the descriptor's buffer address */
184 	union {
185 		uint32_t data;
186 		struct {
187 			uint16_t length;  /* Data buffer length */
188 			uint8_t typ_len_ext;
189 			uint8_t cmd;
190 		} flags;
191 	} lower;
192 	union {
193 		uint32_t data;
194 		struct {
195 			uint8_t status;  /* Descriptor status */
196 			uint8_t popts;  /* Packet Options */
197 			uint16_t special;
198 		} fields;
199 	} upper;
200 };
201 
202 union e1000_tx_udesc {
203 	struct e1000_tx_desc td;
204 	struct e1000_context_desc cd;
205 	struct e1000_data_desc dd;
206 };
207 
208 /* Tx checksum info for a packet. */
209 struct ck_info {
210 	int	ck_valid;	/* ck_info is valid */
211 	uint8_t	ck_start;	/* start byte of cksum calcuation */
212 	uint8_t	ck_off;		/* offset of cksum insertion */
213 	uint16_t ck_len;	/* length of cksum calc: 0 is to packet-end */
214 };
215 
216 /*
217  * Debug printf
218  */
219 static int e82545_debug = 0;
220 #define DPRINTF(msg,params...) if (e82545_debug) fprintf(stderr, "e82545: " msg, params)
221 #define WPRINTF(msg,params...) fprintf(stderr, "e82545: " msg, params)
222 
223 #define	MIN(a,b) (((a)<(b))?(a):(b))
224 #define	MAX(a,b) (((a)>(b))?(a):(b))
225 
226 /* s/w representation of the RAL/RAH regs */
227 struct  eth_uni {
228 	int		eu_valid;
229 	int		eu_addrsel;
230 	struct ether_addr eu_eth;
231 };
232 
233 
234 struct e82545_softc {
235 	struct pci_devinst *esc_pi;
236 	struct vmctx	*esc_ctx;
237 	struct mevent   *esc_mevp;
238 	struct mevent   *esc_mevpitr;
239 	pthread_mutex_t	esc_mtx;
240 	struct ether_addr esc_mac;
241 	int		esc_tapfd;
242 
243 	/* General */
244 	uint32_t	esc_CTRL;	/* x0000 device ctl */
245 	uint32_t	esc_FCAL;	/* x0028 flow ctl addr lo */
246 	uint32_t	esc_FCAH;	/* x002C flow ctl addr hi */
247 	uint32_t	esc_FCT;	/* x0030 flow ctl type */
248 	uint32_t	esc_VET;	/* x0038 VLAN eth type */
249 	uint32_t	esc_FCTTV;	/* x0170 flow ctl tx timer */
250 	uint32_t	esc_LEDCTL;	/* x0E00 LED control */
251 	uint32_t	esc_PBA;	/* x1000 pkt buffer allocation */
252 
253 	/* Interrupt control */
254 	int		esc_irq_asserted;
255 	uint32_t	esc_ICR;	/* x00C0 cause read/clear */
256 	uint32_t	esc_ITR;	/* x00C4 intr throttling */
257 	uint32_t	esc_ICS;	/* x00C8 cause set */
258 	uint32_t	esc_IMS;	/* x00D0 mask set/read */
259 	uint32_t	esc_IMC;	/* x00D8 mask clear */
260 
261 	/* Transmit */
262 	union e1000_tx_udesc *esc_txdesc;
263 	struct e1000_context_desc esc_txctx;
264 	pthread_t	esc_tx_tid;
265 	pthread_cond_t	esc_tx_cond;
266 	int		esc_tx_enabled;
267 	int		esc_tx_active;
268 	uint32_t	esc_TXCW;	/* x0178 transmit config */
269 	uint32_t	esc_TCTL;	/* x0400 transmit ctl */
270 	uint32_t	esc_TIPG;	/* x0410 inter-packet gap */
271 	uint16_t	esc_AIT;	/* x0458 Adaptive Interframe Throttle */
272 	uint64_t	esc_tdba;      	/* verified 64-bit desc table addr */
273 	uint32_t	esc_TDBAL;	/* x3800 desc table addr, low bits */
274 	uint32_t	esc_TDBAH;	/* x3804 desc table addr, hi 32-bits */
275 	uint32_t	esc_TDLEN;	/* x3808 # descriptors in bytes */
276 	uint16_t	esc_TDH;	/* x3810 desc table head idx */
277 	uint16_t	esc_TDHr;	/* internal read version of TDH */
278 	uint16_t	esc_TDT;	/* x3818 desc table tail idx */
279 	uint32_t	esc_TIDV;	/* x3820 intr delay */
280 	uint32_t	esc_TXDCTL;	/* x3828 desc control */
281 	uint32_t	esc_TADV;	/* x382C intr absolute delay */
282 
283 	/* L2 frame acceptance */
284 	struct eth_uni	esc_uni[16];	/* 16 x unicast MAC addresses */
285 	uint32_t	esc_fmcast[128]; /* Multicast filter bit-match */
286 	uint32_t	esc_fvlan[128]; /* VLAN 4096-bit filter */
287 
288 	/* Receive */
289 	struct e1000_rx_desc *esc_rxdesc;
290 	pthread_cond_t	esc_rx_cond;
291 	int		esc_rx_enabled;
292 	int		esc_rx_active;
293 	int		esc_rx_loopback;
294 	uint32_t	esc_RCTL;	/* x0100 receive ctl */
295 	uint32_t	esc_FCRTL;	/* x2160 flow cntl thresh, low */
296 	uint32_t	esc_FCRTH;	/* x2168 flow cntl thresh, hi */
297 	uint64_t	esc_rdba;	/* verified 64-bit desc table addr */
298 	uint32_t	esc_RDBAL;	/* x2800 desc table addr, low bits */
299 	uint32_t	esc_RDBAH;	/* x2804 desc table addr, hi 32-bits*/
300 	uint32_t	esc_RDLEN;	/* x2808 #descriptors */
301 	uint16_t	esc_RDH;	/* x2810 desc table head idx */
302 	uint16_t	esc_RDT;	/* x2818 desc table tail idx */
303 	uint32_t	esc_RDTR;	/* x2820 intr delay */
304 	uint32_t	esc_RXDCTL;	/* x2828 desc control */
305 	uint32_t	esc_RADV;	/* x282C intr absolute delay */
306 	uint32_t	esc_RSRPD;	/* x2C00 recv small packet detect */
307 	uint32_t	esc_RXCSUM;     /* x5000 receive cksum ctl */
308 
309 	/* IO Port register access */
310 	uint32_t io_addr;
311 
312 	/* Shadow copy of MDIC */
313 	uint32_t mdi_control;
314 	/* Shadow copy of EECD */
315 	uint32_t eeprom_control;
316 	/* Latest NVM in/out */
317 	uint16_t nvm_data;
318 	uint16_t nvm_opaddr;
319 	/* stats */
320 	uint32_t missed_pkt_count; /* dropped for no room in rx queue */
321 	uint32_t pkt_rx_by_size[6];
322 	uint32_t pkt_tx_by_size[6];
323 	uint32_t good_pkt_rx_count;
324 	uint32_t bcast_pkt_rx_count;
325 	uint32_t mcast_pkt_rx_count;
326 	uint32_t good_pkt_tx_count;
327 	uint32_t bcast_pkt_tx_count;
328 	uint32_t mcast_pkt_tx_count;
329 	uint32_t oversize_rx_count;
330 	uint32_t tso_tx_count;
331 	uint64_t good_octets_rx;
332 	uint64_t good_octets_tx;
333 	uint64_t missed_octets; /* counts missed and oversized */
334 
335 	uint8_t nvm_bits:6; /* number of bits remaining in/out */
336 	uint8_t nvm_mode:2;
337 #define E82545_NVM_MODE_OPADDR  0x0
338 #define E82545_NVM_MODE_DATAIN  0x1
339 #define E82545_NVM_MODE_DATAOUT 0x2
340         /* EEPROM data */
341         uint16_t eeprom_data[E82545_NVM_EEPROM_SIZE];
342 };
343 
344 static void e82545_reset(struct e82545_softc *sc, int dev);
345 static void e82545_rx_enable(struct e82545_softc *sc);
346 static void e82545_rx_disable(struct e82545_softc *sc);
347 static void e82545_tap_callback(int fd, enum ev_type type, void *param);
348 static void e82545_tx_start(struct e82545_softc *sc);
349 static void e82545_tx_enable(struct e82545_softc *sc);
350 static void e82545_tx_disable(struct e82545_softc *sc);
351 
352 static inline int
353 e82545_size_stat_index(uint32_t size)
354 {
355 	if (size <= 64) {
356 		return 0;
357 	} else if (size >= 1024) {
358 		return 5;
359 	} else {
360 		/* should be 1-4 */
361 		return (ffs(size) - 6);
362 	}
363 }
364 
365 static void
366 e82545_init_eeprom(struct e82545_softc *sc)
367 {
368 	uint16_t checksum, i;
369 
370         /* mac addr */
371 	sc->eeprom_data[NVM_MAC_ADDR] = ((uint16_t)sc->esc_mac.octet[0]) |
372 		(((uint16_t)sc->esc_mac.octet[1]) << 8);
373 	sc->eeprom_data[NVM_MAC_ADDR+1] = ((uint16_t)sc->esc_mac.octet[2]) |
374 		(((uint16_t)sc->esc_mac.octet[3]) << 8);
375 	sc->eeprom_data[NVM_MAC_ADDR+2] = ((uint16_t)sc->esc_mac.octet[4]) |
376 		(((uint16_t)sc->esc_mac.octet[5]) << 8);
377 
378 	/* pci ids */
379 	sc->eeprom_data[NVM_SUB_DEV_ID] = E82545_SUBDEV_ID;
380 	sc->eeprom_data[NVM_SUB_VEN_ID] = E82545_VENDOR_ID_INTEL;
381 	sc->eeprom_data[NVM_DEV_ID] = E82545_DEV_ID_82545EM_COPPER;
382 	sc->eeprom_data[NVM_VEN_ID] = E82545_VENDOR_ID_INTEL;
383 
384 	/* fill in the checksum */
385         checksum = 0;
386 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
387 		checksum += sc->eeprom_data[i];
388 	}
389 	checksum = NVM_SUM - checksum;
390 	sc->eeprom_data[NVM_CHECKSUM_REG] = checksum;
391 	DPRINTF("eeprom checksum: 0x%x\r\n", checksum);
392 }
393 
394 static void
395 e82545_write_mdi(struct e82545_softc *sc, uint8_t reg_addr,
396 			uint8_t phy_addr, uint32_t data)
397 {
398 	DPRINTF("Write mdi reg:0x%x phy:0x%x data: 0x%x\r\n", reg_addr, phy_addr, data);
399 }
400 
401 static uint32_t
402 e82545_read_mdi(struct e82545_softc *sc, uint8_t reg_addr,
403 			uint8_t phy_addr)
404 {
405 	//DPRINTF("Read mdi reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
406 	switch (reg_addr) {
407 	case PHY_STATUS:
408 		return (MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS |
409 			MII_SR_AUTONEG_COMPLETE);
410 	case PHY_AUTONEG_ADV:
411 		return NWAY_AR_SELECTOR_FIELD;
412 	case PHY_LP_ABILITY:
413 		return 0;
414 	case PHY_1000T_STATUS:
415 		return (SR_1000T_LP_FD_CAPS | SR_1000T_REMOTE_RX_STATUS |
416 			SR_1000T_LOCAL_RX_STATUS);
417 	case PHY_ID1:
418 		return (M88E1011_I_PHY_ID >> 16) & 0xFFFF;
419 	case PHY_ID2:
420 		return (M88E1011_I_PHY_ID | E82545_REVISION_4) & 0xFFFF;
421 	default:
422 		DPRINTF("Unknown mdi read reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
423 		return 0;
424 	}
425 	/* not reached */
426 }
427 
428 static void
429 e82545_eecd_strobe(struct e82545_softc *sc)
430 {
431 	/* Microwire state machine */
432 	/*
433 	DPRINTF("eeprom state machine srtobe "
434 		"0x%x 0x%x 0x%x 0x%x\r\n",
435 		sc->nvm_mode, sc->nvm_bits,
436 		sc->nvm_opaddr, sc->nvm_data);*/
437 
438 	if (sc->nvm_bits == 0) {
439 		DPRINTF("eeprom state machine not expecting data! "
440 			"0x%x 0x%x 0x%x 0x%x\r\n",
441 			sc->nvm_mode, sc->nvm_bits,
442 			sc->nvm_opaddr, sc->nvm_data);
443 		return;
444 	}
445 	sc->nvm_bits--;
446 	if (sc->nvm_mode == E82545_NVM_MODE_DATAOUT) {
447 		/* shifting out */
448 		if (sc->nvm_data & 0x8000) {
449 			sc->eeprom_control |= E1000_EECD_DO;
450 		} else {
451 			sc->eeprom_control &= ~E1000_EECD_DO;
452 		}
453 		sc->nvm_data <<= 1;
454 		if (sc->nvm_bits == 0) {
455 			/* read done, back to opcode mode. */
456 			sc->nvm_opaddr = 0;
457 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
458 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
459 		}
460 	} else if (sc->nvm_mode == E82545_NVM_MODE_DATAIN) {
461 		/* shifting in */
462 		sc->nvm_data <<= 1;
463 		if (sc->eeprom_control & E1000_EECD_DI) {
464 			sc->nvm_data |= 1;
465 		}
466 		if (sc->nvm_bits == 0) {
467 			/* eeprom write */
468 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
469 			uint16_t addr = sc->nvm_opaddr & E82545_NVM_ADDR_MASK;
470 			if (op != E82545_NVM_OPCODE_WRITE) {
471 				DPRINTF("Illegal eeprom write op 0x%x\r\n",
472 					sc->nvm_opaddr);
473 			} else if (addr >= E82545_NVM_EEPROM_SIZE) {
474 				DPRINTF("Illegal eeprom write addr 0x%x\r\n",
475 					sc->nvm_opaddr);
476 			} else {
477 				DPRINTF("eeprom write eeprom[0x%x] = 0x%x\r\n",
478 				addr, sc->nvm_data);
479 				sc->eeprom_data[addr] = sc->nvm_data;
480 			}
481 			/* back to opcode mode */
482 			sc->nvm_opaddr = 0;
483 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
484 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
485 		}
486 	} else if (sc->nvm_mode == E82545_NVM_MODE_OPADDR) {
487 		sc->nvm_opaddr <<= 1;
488 		if (sc->eeprom_control & E1000_EECD_DI) {
489 			sc->nvm_opaddr |= 1;
490 		}
491 		if (sc->nvm_bits == 0) {
492 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
493 			switch (op) {
494 			case E82545_NVM_OPCODE_EWEN:
495 				DPRINTF("eeprom write enable: 0x%x\r\n",
496 					sc->nvm_opaddr);
497 				/* back to opcode mode */
498 				sc->nvm_opaddr = 0;
499 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
500 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
501 				break;
502 			case E82545_NVM_OPCODE_READ:
503 			{
504 				uint16_t addr = sc->nvm_opaddr &
505 					E82545_NVM_ADDR_MASK;
506 				sc->nvm_mode = E82545_NVM_MODE_DATAOUT;
507 				sc->nvm_bits = E82545_NVM_DATA_BITS;
508 				if (addr < E82545_NVM_EEPROM_SIZE) {
509 					sc->nvm_data = sc->eeprom_data[addr];
510 					DPRINTF("eeprom read: eeprom[0x%x] = 0x%x\r\n",
511 						addr, sc->nvm_data);
512 				} else {
513 					DPRINTF("eeprom illegal read: 0x%x\r\n",
514 						sc->nvm_opaddr);
515 					sc->nvm_data = 0;
516 				}
517 				break;
518 			}
519 			case E82545_NVM_OPCODE_WRITE:
520 				sc->nvm_mode = E82545_NVM_MODE_DATAIN;
521 				sc->nvm_bits = E82545_NVM_DATA_BITS;
522 				sc->nvm_data = 0;
523 				break;
524 			default:
525 				DPRINTF("eeprom unknown op: 0x%x\r\r",
526 					sc->nvm_opaddr);
527 				/* back to opcode mode */
528 				sc->nvm_opaddr = 0;
529 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
530 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
531 			}
532 		}
533 	} else {
534 		DPRINTF("eeprom state machine wrong state! "
535 			"0x%x 0x%x 0x%x 0x%x\r\n",
536 			sc->nvm_mode, sc->nvm_bits,
537 			sc->nvm_opaddr, sc->nvm_data);
538 	}
539 }
540 
541 static void
542 e82545_itr_callback(int fd, enum ev_type type, void *param)
543 {
544 	uint32_t new;
545 	struct e82545_softc *sc = param;
546 
547 	pthread_mutex_lock(&sc->esc_mtx);
548 	new = sc->esc_ICR & sc->esc_IMS;
549 	if (new && !sc->esc_irq_asserted) {
550 		DPRINTF("itr callback: lintr assert %x\r\n", new);
551 		sc->esc_irq_asserted = 1;
552 		pci_lintr_assert(sc->esc_pi);
553 	} else {
554 		mevent_delete(sc->esc_mevpitr);
555 		sc->esc_mevpitr = NULL;
556 	}
557 	pthread_mutex_unlock(&sc->esc_mtx);
558 }
559 
560 static void
561 e82545_icr_assert(struct e82545_softc *sc, uint32_t bits)
562 {
563 	uint32_t new;
564 
565 	DPRINTF("icr assert: 0x%x\r\n", bits);
566 
567 	/*
568 	 * An interrupt is only generated if bits are set that
569 	 * aren't already in the ICR, these bits are unmasked,
570 	 * and there isn't an interrupt already pending.
571 	 */
572 	new = bits & ~sc->esc_ICR & sc->esc_IMS;
573 	sc->esc_ICR |= bits;
574 
575 	if (new == 0) {
576 		DPRINTF("icr assert: masked %x, ims %x\r\n", new, sc->esc_IMS);
577 	} else if (sc->esc_mevpitr != NULL) {
578 		DPRINTF("icr assert: throttled %x, ims %x\r\n", new, sc->esc_IMS);
579 	} else if (!sc->esc_irq_asserted) {
580 		DPRINTF("icr assert: lintr assert %x\r\n", new);
581 		sc->esc_irq_asserted = 1;
582 		pci_lintr_assert(sc->esc_pi);
583 		if (sc->esc_ITR != 0) {
584 			sc->esc_mevpitr = mevent_add(
585 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
586 			    EVF_TIMER, e82545_itr_callback, sc);
587 		}
588 	}
589 }
590 
591 static void
592 e82545_ims_change(struct e82545_softc *sc, uint32_t bits)
593 {
594 	uint32_t new;
595 
596 	/*
597 	 * Changing the mask may allow previously asserted
598 	 * but masked interrupt requests to generate an interrupt.
599 	 */
600 	new = bits & sc->esc_ICR & ~sc->esc_IMS;
601 	sc->esc_IMS |= bits;
602 
603 	if (new == 0) {
604 		DPRINTF("ims change: masked %x, ims %x\r\n", new, sc->esc_IMS);
605 	} else if (sc->esc_mevpitr != NULL) {
606 		DPRINTF("ims change: throttled %x, ims %x\r\n", new, sc->esc_IMS);
607 	} else if (!sc->esc_irq_asserted) {
608 		DPRINTF("ims change: lintr assert %x\n\r", new);
609 		sc->esc_irq_asserted = 1;
610 		pci_lintr_assert(sc->esc_pi);
611 		if (sc->esc_ITR != 0) {
612 			sc->esc_mevpitr = mevent_add(
613 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
614 			    EVF_TIMER, e82545_itr_callback, sc);
615 		}
616 	}
617 }
618 
619 static void
620 e82545_icr_deassert(struct e82545_softc *sc, uint32_t bits)
621 {
622 
623 	DPRINTF("icr deassert: 0x%x\r\n", bits);
624 	sc->esc_ICR &= ~bits;
625 
626 	/*
627 	 * If there are no longer any interrupt sources and there
628 	 * was an asserted interrupt, clear it
629 	 */
630 	if (sc->esc_irq_asserted && !(sc->esc_ICR & sc->esc_IMS)) {
631 		DPRINTF("icr deassert: lintr deassert %x\r\n", bits);
632 		pci_lintr_deassert(sc->esc_pi);
633 		sc->esc_irq_asserted = 0;
634 	}
635 }
636 
637 static void
638 e82545_intr_write(struct e82545_softc *sc, uint32_t offset, uint32_t value)
639 {
640 
641 	DPRINTF("intr_write: off %x, val %x\n\r", offset, value);
642 
643 	switch (offset) {
644 	case E1000_ICR:
645 		e82545_icr_deassert(sc, value);
646 		break;
647 	case E1000_ITR:
648 		sc->esc_ITR = value;
649 		break;
650 	case E1000_ICS:
651 		sc->esc_ICS = value;	/* not used: store for debug */
652 		e82545_icr_assert(sc, value);
653 		break;
654 	case E1000_IMS:
655 		e82545_ims_change(sc, value);
656 		break;
657 	case E1000_IMC:
658 		sc->esc_IMC = value;	/* for debug */
659 		sc->esc_IMS &= ~value;
660 		// XXX clear interrupts if all ICR bits now masked
661 		// and interrupt was pending ?
662 		break;
663 	default:
664 		break;
665 	}
666 }
667 
668 static uint32_t
669 e82545_intr_read(struct e82545_softc *sc, uint32_t offset)
670 {
671 	uint32_t retval;
672 
673 	retval = 0;
674 
675 	DPRINTF("intr_read: off %x\n\r", offset);
676 
677 	switch (offset) {
678 	case E1000_ICR:
679 		retval = sc->esc_ICR;
680 		sc->esc_ICR = 0;
681 		e82545_icr_deassert(sc, ~0);
682 		break;
683 	case E1000_ITR:
684 		retval = sc->esc_ITR;
685 		break;
686 	case E1000_ICS:
687 		/* write-only register */
688 		break;
689 	case E1000_IMS:
690 		retval = sc->esc_IMS;
691 		break;
692 	case E1000_IMC:
693 		/* write-only register */
694 		break;
695 	default:
696 		break;
697 	}
698 
699 	return (retval);
700 }
701 
702 static void
703 e82545_devctl(struct e82545_softc *sc, uint32_t val)
704 {
705 
706 	sc->esc_CTRL = val & ~E1000_CTRL_RST;
707 
708 	if (val & E1000_CTRL_RST) {
709 		DPRINTF("e1k: s/w reset, ctl %x\n", val);
710 		e82545_reset(sc, 1);
711 	}
712 	/* XXX check for phy reset ? */
713 }
714 
715 static void
716 e82545_rx_update_rdba(struct e82545_softc *sc)
717 {
718 
719 	/* XXX verify desc base/len within phys mem range */
720 	sc->esc_rdba = (uint64_t)sc->esc_RDBAH << 32 |
721 	    sc->esc_RDBAL;
722 
723 	/* Cache host mapping of guest descriptor array */
724 	sc->esc_rxdesc = paddr_guest2host(sc->esc_ctx,
725 	    sc->esc_rdba, sc->esc_RDLEN);
726 }
727 
728 static void
729 e82545_rx_ctl(struct e82545_softc *sc, uint32_t val)
730 {
731 	int on;
732 
733 	on = ((val & E1000_RCTL_EN) == E1000_RCTL_EN);
734 
735 	/* Save RCTL after stripping reserved bits 31:27,24,21,14,11:10,0 */
736 	sc->esc_RCTL = val & ~0xF9204c01;
737 
738 	DPRINTF("rx_ctl - %s RCTL %x, val %x\n",
739 		on ? "on" : "off", sc->esc_RCTL, val);
740 
741 	/* state change requested */
742 	if (on != sc->esc_rx_enabled) {
743 		if (on) {
744 			/* Catch disallowed/unimplemented settings */
745 			//assert(!(val & E1000_RCTL_LBM_TCVR));
746 
747 			if (sc->esc_RCTL & E1000_RCTL_LBM_TCVR) {
748 				sc->esc_rx_loopback = 1;
749 			} else {
750 				sc->esc_rx_loopback = 0;
751 			}
752 
753 			e82545_rx_update_rdba(sc);
754 			e82545_rx_enable(sc);
755 		} else {
756 			e82545_rx_disable(sc);
757 			sc->esc_rx_loopback = 0;
758 			sc->esc_rdba = 0;
759 			sc->esc_rxdesc = NULL;
760 		}
761 	}
762 }
763 
764 static void
765 e82545_tx_update_tdba(struct e82545_softc *sc)
766 {
767 
768 	/* XXX verify desc base/len within phys mem range */
769 	sc->esc_tdba = (uint64_t)sc->esc_TDBAH << 32 | sc->esc_TDBAL;
770 
771 	/* Cache host mapping of guest descriptor array */
772 	sc->esc_txdesc = paddr_guest2host(sc->esc_ctx, sc->esc_tdba,
773             sc->esc_TDLEN);
774 }
775 
776 static void
777 e82545_tx_ctl(struct e82545_softc *sc, uint32_t val)
778 {
779 	int on;
780 
781 	on = ((val & E1000_TCTL_EN) == E1000_TCTL_EN);
782 
783 	/* ignore TCTL_EN settings that don't change state */
784 	if (on == sc->esc_tx_enabled)
785 		return;
786 
787 	if (on) {
788 		e82545_tx_update_tdba(sc);
789 		e82545_tx_enable(sc);
790 	} else {
791 		e82545_tx_disable(sc);
792 		sc->esc_tdba = 0;
793 		sc->esc_txdesc = NULL;
794 	}
795 
796 	/* Save TCTL value after stripping reserved bits 31:25,23,2,0 */
797 	sc->esc_TCTL = val & ~0xFE800005;
798 }
799 
800 int
801 e82545_bufsz(uint32_t rctl)
802 {
803 
804 	switch (rctl & (E1000_RCTL_BSEX | E1000_RCTL_SZ_256)) {
805 	case (E1000_RCTL_SZ_2048): return (2048);
806 	case (E1000_RCTL_SZ_1024): return (1024);
807 	case (E1000_RCTL_SZ_512): return (512);
808 	case (E1000_RCTL_SZ_256): return (256);
809 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_16384): return (16384);
810 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_8192): return (8192);
811 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_4096): return (4096);
812 	}
813 	return (256);	/* Forbidden value. */
814 }
815 
816 static uint8_t dummybuf[2048];
817 
818 /* XXX one packet at a time until this is debugged */
819 static void
820 e82545_tap_callback(int fd, enum ev_type type, void *param)
821 {
822 	struct e82545_softc *sc = param;
823 	struct e1000_rx_desc *rxd;
824 	struct iovec vec[64];
825 	int left, len, lim, maxpktsz, maxpktdesc, bufsz, i, n, size;
826 	uint32_t cause = 0;
827 	uint16_t *tp, tag, head;
828 
829 	pthread_mutex_lock(&sc->esc_mtx);
830 	DPRINTF("rx_run: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
831 
832 	if (!sc->esc_rx_enabled || sc->esc_rx_loopback) {
833 		DPRINTF("rx disabled (!%d || %d) -- packet(s) dropped\r\n",
834 		    sc->esc_rx_enabled, sc->esc_rx_loopback);
835 		while (read(sc->esc_tapfd, dummybuf, sizeof(dummybuf)) > 0) {
836 		}
837 		goto done1;
838 	}
839 	bufsz = e82545_bufsz(sc->esc_RCTL);
840 	maxpktsz = (sc->esc_RCTL & E1000_RCTL_LPE) ? 16384 : 1522;
841 	maxpktdesc = (maxpktsz + bufsz - 1) / bufsz;
842 	size = sc->esc_RDLEN / 16;
843 	head = sc->esc_RDH;
844 	left = (size + sc->esc_RDT - head) % size;
845 	if (left < maxpktdesc) {
846 		DPRINTF("rx overflow (%d < %d) -- packet(s) dropped\r\n",
847 		    left, maxpktdesc);
848 		while (read(sc->esc_tapfd, dummybuf, sizeof(dummybuf)) > 0) {
849 		}
850 		goto done1;
851 	}
852 
853 	sc->esc_rx_active = 1;
854 	pthread_mutex_unlock(&sc->esc_mtx);
855 
856 	for (lim = size / 4; lim > 0 && left >= maxpktdesc; lim -= n) {
857 
858 		/* Grab rx descriptor pointed to by the head pointer */
859 		for (i = 0; i < maxpktdesc; i++) {
860 			rxd = &sc->esc_rxdesc[(head + i) % size];
861 			vec[i].iov_base = paddr_guest2host(sc->esc_ctx,
862 			    rxd->buffer_addr, bufsz);
863 			vec[i].iov_len = bufsz;
864 		}
865 		len = readv(sc->esc_tapfd, vec, maxpktdesc);
866 		if (len <= 0) {
867 			DPRINTF("tap: readv() returned %d\n", len);
868 			goto done;
869 		}
870 
871 		/*
872 		 * Adjust the packet length based on whether the CRC needs
873 		 * to be stripped or if the packet is less than the minimum
874 		 * eth packet size.
875 		 */
876 		if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
877 			len = ETHER_MIN_LEN - ETHER_CRC_LEN;
878 		if (!(sc->esc_RCTL & E1000_RCTL_SECRC))
879 			len += ETHER_CRC_LEN;
880 		n = (len + bufsz - 1) / bufsz;
881 
882 		DPRINTF("packet read %d bytes, %d segs, head %d\r\n",
883 		    len, n, head);
884 
885 		/* Apply VLAN filter. */
886 		tp = (uint16_t *)vec[0].iov_base + 6;
887 		if ((sc->esc_RCTL & E1000_RCTL_VFE) &&
888 		    (ntohs(tp[0]) == sc->esc_VET)) {
889 			tag = ntohs(tp[1]) & 0x0fff;
890 			if ((sc->esc_fvlan[tag >> 5] &
891 			    (1 << (tag & 0x1f))) != 0) {
892 				DPRINTF("known VLAN %d\r\n", tag);
893 			} else {
894 				DPRINTF("unknown VLAN %d\r\n", tag);
895 				n = 0;
896 				continue;
897 			}
898 		}
899 
900 		/* Update all consumed descriptors. */
901 		for (i = 0; i < n - 1; i++) {
902 			rxd = &sc->esc_rxdesc[(head + i) % size];
903 			rxd->length = bufsz;
904 			rxd->csum = 0;
905 			rxd->errors = 0;
906 			rxd->special = 0;
907 			rxd->status = E1000_RXD_STAT_DD;
908 		}
909 		rxd = &sc->esc_rxdesc[(head + i) % size];
910 		rxd->length = len % bufsz;
911 		rxd->csum = 0;
912 		rxd->errors = 0;
913 		rxd->special = 0;
914 		/* XXX signal no checksum for now */
915 		rxd->status = E1000_RXD_STAT_PIF | E1000_RXD_STAT_IXSM |
916 		    E1000_RXD_STAT_EOP | E1000_RXD_STAT_DD;
917 
918 		/* Schedule receive interrupts. */
919 		if (len <= sc->esc_RSRPD) {
920 			cause |= E1000_ICR_SRPD | E1000_ICR_RXT0;
921 		} else {
922 			/* XXX: RDRT and RADV timers should be here. */
923 			cause |= E1000_ICR_RXT0;
924 		}
925 
926 		head = (head + n) % size;
927 		left -= n;
928 	}
929 
930 done:
931 	pthread_mutex_lock(&sc->esc_mtx);
932 	sc->esc_rx_active = 0;
933 	if (sc->esc_rx_enabled == 0)
934 		pthread_cond_signal(&sc->esc_rx_cond);
935 
936 	sc->esc_RDH = head;
937 	/* Respect E1000_RCTL_RDMTS */
938 	left = (size + sc->esc_RDT - head) % size;
939 	if (left < (size >> (((sc->esc_RCTL >> 8) & 3) + 1)))
940 		cause |= E1000_ICR_RXDMT0;
941 	/* Assert all accumulated interrupts. */
942 	if (cause != 0)
943 		e82545_icr_assert(sc, cause);
944 done1:
945 	DPRINTF("rx_run done: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
946 	pthread_mutex_unlock(&sc->esc_mtx);
947 }
948 
949 static uint16_t
950 e82545_carry(uint32_t sum)
951 {
952 
953 	sum = (sum & 0xFFFF) + (sum >> 16);
954 	if (sum > 0xFFFF)
955 		sum -= 0xFFFF;
956 	return (sum);
957 }
958 
959 static uint16_t
960 e82545_buf_checksum(uint8_t *buf, int len)
961 {
962 	int i;
963 	uint32_t sum = 0;
964 
965 	/* Checksum all the pairs of bytes first... */
966 	for (i = 0; i < (len & ~1U); i += 2)
967 		sum += *((u_int16_t *)(buf + i));
968 
969 	/*
970 	 * If there's a single byte left over, checksum it, too.
971 	 * Network byte order is big-endian, so the remaining byte is
972 	 * the high byte.
973 	 */
974 	if (i < len)
975 		sum += htons(buf[i] << 8);
976 
977 	return (e82545_carry(sum));
978 }
979 
980 static uint16_t
981 e82545_iov_checksum(struct iovec *iov, int iovcnt, int off, int len)
982 {
983 	int now, odd;
984 	uint32_t sum = 0, s;
985 
986 	/* Skip completely unneeded vectors. */
987 	while (iovcnt > 0 && iov->iov_len <= off && off > 0) {
988 		off -= iov->iov_len;
989 		iov++;
990 		iovcnt--;
991 	}
992 
993 	/* Calculate checksum of requested range. */
994 	odd = 0;
995 	while (len > 0 && iovcnt > 0) {
996 		now = MIN(len, iov->iov_len - off);
997 		s = e82545_buf_checksum(iov->iov_base + off, now);
998 		sum += odd ? (s << 8) : s;
999 		odd ^= (now & 1);
1000 		len -= now;
1001 		off = 0;
1002 		iov++;
1003 		iovcnt--;
1004 	}
1005 
1006 	return (e82545_carry(sum));
1007 }
1008 
1009 /*
1010  * Return the transmit descriptor type.
1011  */
1012 int
1013 e82545_txdesc_type(uint32_t lower)
1014 {
1015 	int type;
1016 
1017 	type = 0;
1018 
1019 	if (lower & E1000_TXD_CMD_DEXT)
1020 		type = lower & E1000_TXD_MASK;
1021 
1022 	return (type);
1023 }
1024 
1025 static void
1026 e82545_transmit_checksum(struct iovec *iov, int iovcnt, struct ck_info *ck)
1027 {
1028 	uint16_t cksum;
1029 	int cklen;
1030 
1031 	DPRINTF("tx cksum: iovcnt/s/off/len %d/%d/%d/%d\r\n",
1032 	    iovcnt, ck->ck_start, ck->ck_off, ck->ck_len);
1033 	cklen = ck->ck_len ? ck->ck_len - ck->ck_start + 1 : INT_MAX;
1034 	cksum = e82545_iov_checksum(iov, iovcnt, ck->ck_start, cklen);
1035 	*(uint16_t *)((uint8_t *)iov[0].iov_base + ck->ck_off) = ~cksum;
1036 }
1037 
1038 static void
1039 e82545_transmit_backend(struct e82545_softc *sc, struct iovec *iov, int iovcnt)
1040 {
1041 
1042 	if (sc->esc_tapfd == -1)
1043 		return;
1044 
1045 	(void) writev(sc->esc_tapfd, iov, iovcnt);
1046 }
1047 
1048 static void
1049 e82545_transmit_done(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1050     uint16_t dsize, int *tdwb)
1051 {
1052 	union e1000_tx_udesc *dsc;
1053 
1054 	for ( ; head != tail; head = (head + 1) % dsize) {
1055 		dsc = &sc->esc_txdesc[head];
1056 		if (dsc->td.lower.data & E1000_TXD_CMD_RS) {
1057 			dsc->td.upper.data |= E1000_TXD_STAT_DD;
1058 			*tdwb = 1;
1059 		}
1060 	}
1061 }
1062 
1063 static int
1064 e82545_transmit(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1065     uint16_t dsize, uint16_t *rhead, int *tdwb)
1066 {
1067 	uint8_t *hdr, *hdrp;
1068 	struct iovec iovb[I82545_MAX_TXSEGS + 2];
1069 	struct iovec tiov[I82545_MAX_TXSEGS + 2];
1070 	struct e1000_context_desc *cd;
1071 	struct ck_info ckinfo[2];
1072 	struct iovec *iov;
1073 	union  e1000_tx_udesc *dsc;
1074 	int desc, dtype, len, ntype, iovcnt, tlen, hdrlen, vlen, tcp, tso;
1075 	int mss, paylen, seg, tiovcnt, left, now, nleft, nnow, pv, pvoff;
1076 	uint32_t tcpsum, tcpseq;
1077 	uint16_t ipcs, tcpcs, ipid, ohead;
1078 
1079 	ckinfo[0].ck_valid = ckinfo[1].ck_valid = 0;
1080 	iovcnt = 0;
1081 	tlen = 0;
1082 	ntype = 0;
1083 	tso = 0;
1084 	ohead = head;
1085 
1086 	/* iovb[0/1] may be used for writable copy of headers. */
1087 	iov = &iovb[2];
1088 
1089 	for (desc = 0; ; desc++, head = (head + 1) % dsize) {
1090 		if (head == tail) {
1091 			*rhead = head;
1092 			return (0);
1093 		}
1094 		dsc = &sc->esc_txdesc[head];
1095 		dtype = e82545_txdesc_type(dsc->td.lower.data);
1096 
1097 		if (desc == 0) {
1098 			switch (dtype) {
1099 			case E1000_TXD_TYP_C:
1100 				DPRINTF("tx ctxt desc idx %d: %016jx "
1101 				    "%08x%08x\r\n",
1102 				    head, dsc->td.buffer_addr,
1103 				    dsc->td.upper.data, dsc->td.lower.data);
1104 				/* Save context and return */
1105 				sc->esc_txctx = dsc->cd;
1106 				goto done;
1107 			case E1000_TXD_TYP_L:
1108 				DPRINTF("tx legacy desc idx %d: %08x%08x\r\n",
1109 				    head, dsc->td.upper.data, dsc->td.lower.data);
1110 				/*
1111 				 * legacy cksum start valid in first descriptor
1112 				 */
1113 				ntype = dtype;
1114 				ckinfo[0].ck_start = dsc->td.upper.fields.css;
1115 				break;
1116 			case E1000_TXD_TYP_D:
1117 				DPRINTF("tx data desc idx %d: %08x%08x\r\n",
1118 				    head, dsc->td.upper.data, dsc->td.lower.data);
1119 				ntype = dtype;
1120 				break;
1121 			default:
1122 				break;
1123 			}
1124 		} else {
1125 			/* Descriptor type must be consistent */
1126 			assert(dtype == ntype);
1127 			DPRINTF("tx next desc idx %d: %08x%08x\r\n",
1128 			    head, dsc->td.upper.data, dsc->td.lower.data);
1129 		}
1130 
1131 		len = (dtype == E1000_TXD_TYP_L) ? dsc->td.lower.flags.length :
1132 		    dsc->dd.lower.data & 0xFFFFF;
1133 
1134 		if (len > 0) {
1135 			/* Strip checksum supplied by guest. */
1136 			if ((dsc->td.lower.data & E1000_TXD_CMD_EOP) != 0 &&
1137 			    (dsc->td.lower.data & E1000_TXD_CMD_IFCS) == 0)
1138 				len -= 2;
1139 			tlen += len;
1140 			if (iovcnt < I82545_MAX_TXSEGS) {
1141 				iov[iovcnt].iov_base = paddr_guest2host(
1142 				    sc->esc_ctx, dsc->td.buffer_addr, len);
1143 				iov[iovcnt].iov_len = len;
1144 			}
1145 			iovcnt++;
1146 		}
1147 
1148 		/*
1149 		 * Pull out info that is valid in the final descriptor
1150 		 * and exit descriptor loop.
1151 		 */
1152 		if (dsc->td.lower.data & E1000_TXD_CMD_EOP) {
1153 			if (dtype == E1000_TXD_TYP_L) {
1154 				if (dsc->td.lower.data & E1000_TXD_CMD_IC) {
1155 					ckinfo[0].ck_valid = 1;
1156 					ckinfo[0].ck_off =
1157 					    dsc->td.lower.flags.cso;
1158 					ckinfo[0].ck_len = 0;
1159 				}
1160 			} else {
1161 				cd = &sc->esc_txctx;
1162 				if (dsc->dd.lower.data & E1000_TXD_CMD_TSE)
1163 					tso = 1;
1164 				if (dsc->dd.upper.fields.popts &
1165 				    E1000_TXD_POPTS_IXSM)
1166 					ckinfo[0].ck_valid = 1;
1167 				if (dsc->dd.upper.fields.popts &
1168 				    E1000_TXD_POPTS_IXSM || tso) {
1169 					ckinfo[0].ck_start =
1170 					    cd->lower_setup.ip_fields.ipcss;
1171 					ckinfo[0].ck_off =
1172 					    cd->lower_setup.ip_fields.ipcso;
1173 					ckinfo[0].ck_len =
1174 					    cd->lower_setup.ip_fields.ipcse;
1175 				}
1176 				if (dsc->dd.upper.fields.popts &
1177 				    E1000_TXD_POPTS_TXSM)
1178 					ckinfo[1].ck_valid = 1;
1179 				if (dsc->dd.upper.fields.popts &
1180 				    E1000_TXD_POPTS_TXSM || tso) {
1181 					ckinfo[1].ck_start =
1182 					    cd->upper_setup.tcp_fields.tucss;
1183 					ckinfo[1].ck_off =
1184 					    cd->upper_setup.tcp_fields.tucso;
1185 					ckinfo[1].ck_len =
1186 					    cd->upper_setup.tcp_fields.tucse;
1187 				}
1188 			}
1189 			break;
1190 		}
1191 	}
1192 
1193 	if (iovcnt > I82545_MAX_TXSEGS) {
1194 		WPRINTF("tx too many descriptors (%d > %d) -- dropped\r\n",
1195 		    iovcnt, I82545_MAX_TXSEGS);
1196 		goto done;
1197 	}
1198 
1199 	hdrlen = vlen = 0;
1200 	/* Estimate writable space for VLAN header insertion. */
1201 	if ((sc->esc_CTRL & E1000_CTRL_VME) &&
1202 	    (dsc->td.lower.data & E1000_TXD_CMD_VLE)) {
1203 		hdrlen = ETHER_ADDR_LEN*2;
1204 		vlen = ETHER_VLAN_ENCAP_LEN;
1205 	}
1206 	if (!tso) {
1207 		/* Estimate required writable space for checksums. */
1208 		if (ckinfo[0].ck_valid)
1209 			hdrlen = MAX(hdrlen, ckinfo[0].ck_off + 2);
1210 		if (ckinfo[1].ck_valid)
1211 			hdrlen = MAX(hdrlen, ckinfo[1].ck_off + 2);
1212 		/* Round up writable space to the first vector. */
1213 		if (hdrlen != 0 && iov[0].iov_len > hdrlen &&
1214 		    iov[0].iov_len < hdrlen + 100)
1215 			hdrlen = iov[0].iov_len;
1216 	} else {
1217 		/* In case of TSO header length provided by software. */
1218 		hdrlen = sc->esc_txctx.tcp_seg_setup.fields.hdr_len;
1219 	}
1220 
1221 	/* Allocate, fill and prepend writable header vector. */
1222 	if (hdrlen != 0) {
1223 		hdr = __builtin_alloca(hdrlen + vlen);
1224 		hdr += vlen;
1225 		for (left = hdrlen, hdrp = hdr; left > 0;
1226 		    left -= now, hdrp += now) {
1227 			now = MIN(left, iov->iov_len);
1228 			memcpy(hdrp, iov->iov_base, now);
1229 			iov->iov_base += now;
1230 			iov->iov_len -= now;
1231 			if (iov->iov_len == 0) {
1232 				iov++;
1233 				iovcnt--;
1234 			}
1235 		}
1236 		iov--;
1237 		iovcnt++;
1238 		iov->iov_base = hdr;
1239 		iov->iov_len = hdrlen;
1240 	}
1241 
1242 	/* Insert VLAN tag. */
1243 	if (vlen != 0) {
1244 		hdr -= ETHER_VLAN_ENCAP_LEN;
1245 		memmove(hdr, hdr + ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN*2);
1246 		hdrlen += ETHER_VLAN_ENCAP_LEN;
1247 		hdr[ETHER_ADDR_LEN*2 + 0] = sc->esc_VET >> 8;
1248 		hdr[ETHER_ADDR_LEN*2 + 1] = sc->esc_VET & 0xff;
1249 		hdr[ETHER_ADDR_LEN*2 + 2] = dsc->td.upper.fields.special >> 8;
1250 		hdr[ETHER_ADDR_LEN*2 + 3] = dsc->td.upper.fields.special & 0xff;
1251 		iov->iov_base = hdr;
1252 		iov->iov_len += ETHER_VLAN_ENCAP_LEN;
1253 		/* Correct checksum offsets after VLAN tag insertion. */
1254 		ckinfo[0].ck_start += ETHER_VLAN_ENCAP_LEN;
1255 		ckinfo[0].ck_off += ETHER_VLAN_ENCAP_LEN;
1256 		if (ckinfo[0].ck_len != 0)
1257 			ckinfo[0].ck_len += ETHER_VLAN_ENCAP_LEN;
1258 		ckinfo[1].ck_start += ETHER_VLAN_ENCAP_LEN;
1259 		ckinfo[1].ck_off += ETHER_VLAN_ENCAP_LEN;
1260 		if (ckinfo[1].ck_len != 0)
1261 			ckinfo[1].ck_len += ETHER_VLAN_ENCAP_LEN;
1262 	}
1263 
1264 	/* Simple non-TSO case. */
1265 	if (!tso) {
1266 		/* Calculate checksums and transmit. */
1267 		if (ckinfo[0].ck_valid)
1268 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[0]);
1269 		if (ckinfo[1].ck_valid)
1270 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[1]);
1271 		e82545_transmit_backend(sc, iov, iovcnt);
1272 		goto done;
1273 	}
1274 
1275 	/* Doing TSO. */
1276 	tcp = (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) != 0;
1277 	mss = sc->esc_txctx.tcp_seg_setup.fields.mss;
1278 	paylen = (sc->esc_txctx.cmd_and_length & 0x000fffff);
1279 	DPRINTF("tx %s segmentation offload %d+%d/%d bytes %d iovs\r\n",
1280 	    tcp ? "TCP" : "UDP", hdrlen, paylen, mss, iovcnt);
1281 	ipid = ntohs(*(uint16_t *)&hdr[ckinfo[0].ck_start + 4]);
1282 	tcpseq = ntohl(*(uint32_t *)&hdr[ckinfo[1].ck_start + 4]);
1283 	ipcs = *(uint16_t *)&hdr[ckinfo[0].ck_off];
1284 	tcpcs = 0;
1285 	if (ckinfo[1].ck_valid)	/* Save partial pseudo-header checksum. */
1286 		tcpcs = *(uint16_t *)&hdr[ckinfo[1].ck_off];
1287 	pv = 1;
1288 	pvoff = 0;
1289 	for (seg = 0, left = paylen; left > 0; seg++, left -= now) {
1290 		now = MIN(left, mss);
1291 
1292 		/* Construct IOVs for the segment. */
1293 		/* Include whole original header. */
1294 		tiov[0].iov_base = hdr;
1295 		tiov[0].iov_len = hdrlen;
1296 		tiovcnt = 1;
1297 		/* Include respective part of payload IOV. */
1298 		for (nleft = now; pv < iovcnt && nleft > 0; nleft -= nnow) {
1299 			nnow = MIN(nleft, iov[pv].iov_len - pvoff);
1300 			tiov[tiovcnt].iov_base = iov[pv].iov_base + pvoff;
1301 			tiov[tiovcnt++].iov_len = nnow;
1302 			if (pvoff + nnow == iov[pv].iov_len) {
1303 				pv++;
1304 				pvoff = 0;
1305 			} else
1306 				pvoff += nnow;
1307 		}
1308 		DPRINTF("tx segment %d %d+%d bytes %d iovs\r\n",
1309 		    seg, hdrlen, now, tiovcnt);
1310 
1311 		/* Update IP header. */
1312 		if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_IP) {
1313 			/* IPv4 -- set length and ID */
1314 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 2] =
1315 			    htons(hdrlen - ckinfo[0].ck_start + now);
1316 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1317 			    htons(ipid + seg);
1318 		} else {
1319 			/* IPv6 -- set length */
1320 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1321 			    htons(hdrlen - ckinfo[0].ck_start - 40 +
1322 				  now);
1323 		}
1324 
1325 		/* Update pseudo-header checksum. */
1326 		tcpsum = tcpcs;
1327 		tcpsum += htons(hdrlen - ckinfo[1].ck_start + now);
1328 
1329 		/* Update TCP/UDP headers. */
1330 		if (tcp) {
1331 			/* Update sequence number and FIN/PUSH flags. */
1332 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1333 			    htonl(tcpseq + paylen - left);
1334 			if (now < left) {
1335 				hdr[ckinfo[1].ck_start + 13] &=
1336 				    ~(TH_FIN | TH_PUSH);
1337 			}
1338 		} else {
1339 			/* Update payload length. */
1340 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1341 			    hdrlen - ckinfo[1].ck_start + now;
1342 		}
1343 
1344 		/* Calculate checksums and transmit. */
1345 		if (ckinfo[0].ck_valid) {
1346 			*(uint16_t *)&hdr[ckinfo[0].ck_off] = ipcs;
1347 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[0]);
1348 		}
1349 		if (ckinfo[1].ck_valid) {
1350 			*(uint16_t *)&hdr[ckinfo[1].ck_off] =
1351 			    e82545_carry(tcpsum);
1352 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[1]);
1353 		}
1354 		e82545_transmit_backend(sc, tiov, tiovcnt);
1355 	}
1356 
1357 done:
1358 	head = (head + 1) % dsize;
1359 	e82545_transmit_done(sc, ohead, head, dsize, tdwb);
1360 
1361 	*rhead = head;
1362 	return (desc + 1);
1363 }
1364 
1365 static void
1366 e82545_tx_run(struct e82545_softc *sc)
1367 {
1368 	uint32_t cause;
1369 	uint16_t head, rhead, tail, size;
1370 	int lim, tdwb, sent;
1371 
1372 	head = sc->esc_TDH;
1373 	tail = sc->esc_TDT;
1374 	size = sc->esc_TDLEN / 16;
1375 	DPRINTF("tx_run: head %x, rhead %x, tail %x\r\n",
1376 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1377 
1378 	pthread_mutex_unlock(&sc->esc_mtx);
1379 	rhead = head;
1380 	tdwb = 0;
1381 	for (lim = size / 4; sc->esc_tx_enabled && lim > 0; lim -= sent) {
1382 		sent = e82545_transmit(sc, head, tail, size, &rhead, &tdwb);
1383 		if (sent == 0)
1384 			break;
1385 		head = rhead;
1386 	}
1387 	pthread_mutex_lock(&sc->esc_mtx);
1388 
1389 	sc->esc_TDH = head;
1390 	sc->esc_TDHr = rhead;
1391 	cause = 0;
1392 	if (tdwb)
1393 		cause |= E1000_ICR_TXDW;
1394 	if (lim != size / 4 && sc->esc_TDH == sc->esc_TDT)
1395 		cause |= E1000_ICR_TXQE;
1396 	if (cause)
1397 		e82545_icr_assert(sc, cause);
1398 
1399 	DPRINTF("tx_run done: head %x, rhead %x, tail %x\r\n",
1400 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1401 }
1402 
1403 static void *
1404 e82545_tx_thread(void *param)
1405 {
1406 	struct e82545_softc *sc = param;
1407 
1408 	pthread_mutex_lock(&sc->esc_mtx);
1409 	for (;;) {
1410 		while (!sc->esc_tx_enabled || sc->esc_TDHr == sc->esc_TDT) {
1411 			if (sc->esc_tx_enabled && sc->esc_TDHr != sc->esc_TDT)
1412 				break;
1413 			sc->esc_tx_active = 0;
1414 			if (sc->esc_tx_enabled == 0)
1415 				pthread_cond_signal(&sc->esc_tx_cond);
1416 			pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1417 		}
1418 		sc->esc_tx_active = 1;
1419 
1420 		/* Process some tx descriptors.  Lock dropped inside. */
1421 		e82545_tx_run(sc);
1422 	}
1423 }
1424 
1425 static void
1426 e82545_tx_start(struct e82545_softc *sc)
1427 {
1428 
1429 	if (sc->esc_tx_active == 0)
1430 		pthread_cond_signal(&sc->esc_tx_cond);
1431 }
1432 
1433 static void
1434 e82545_tx_enable(struct e82545_softc *sc)
1435 {
1436 
1437 	sc->esc_tx_enabled = 1;
1438 }
1439 
1440 static void
1441 e82545_tx_disable(struct e82545_softc *sc)
1442 {
1443 
1444 	sc->esc_tx_enabled = 0;
1445 	while (sc->esc_tx_active)
1446 		pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1447 }
1448 
1449 static void
1450 e82545_rx_enable(struct e82545_softc *sc)
1451 {
1452 
1453 	sc->esc_rx_enabled = 1;
1454 }
1455 
1456 static void
1457 e82545_rx_disable(struct e82545_softc *sc)
1458 {
1459 
1460 	sc->esc_rx_enabled = 0;
1461 	while (sc->esc_rx_active)
1462 		pthread_cond_wait(&sc->esc_rx_cond, &sc->esc_mtx);
1463 }
1464 
1465 static void
1466 e82545_write_ra(struct e82545_softc *sc, int reg, uint32_t wval)
1467 {
1468         struct eth_uni *eu;
1469 	int idx;
1470 
1471 	idx = reg >> 1;
1472 	assert(idx < 15);
1473 
1474 	eu = &sc->esc_uni[idx];
1475 
1476 	if (reg & 0x1) {
1477 		/* RAH */
1478 		eu->eu_valid = ((wval & E1000_RAH_AV) == E1000_RAH_AV);
1479 		eu->eu_addrsel = (wval >> 16) & 0x3;
1480 		eu->eu_eth.octet[5] = wval >> 8;
1481 		eu->eu_eth.octet[4] = wval;
1482 	} else {
1483 		/* RAL */
1484 		eu->eu_eth.octet[3] = wval >> 24;
1485 		eu->eu_eth.octet[2] = wval >> 16;
1486 		eu->eu_eth.octet[1] = wval >> 8;
1487 		eu->eu_eth.octet[0] = wval;
1488 	}
1489 }
1490 
1491 static uint32_t
1492 e82545_read_ra(struct e82545_softc *sc, int reg)
1493 {
1494         struct eth_uni *eu;
1495 	uint32_t retval;
1496 	int idx;
1497 
1498 	idx = reg >> 1;
1499 	assert(idx < 15);
1500 
1501 	eu = &sc->esc_uni[idx];
1502 
1503 	if (reg & 0x1) {
1504 		/* RAH */
1505 		retval = (eu->eu_valid << 31) |
1506 			 (eu->eu_addrsel << 16) |
1507 			 (eu->eu_eth.octet[5] << 8) |
1508 			 eu->eu_eth.octet[4];
1509 	} else {
1510 		/* RAL */
1511 		retval = (eu->eu_eth.octet[3] << 24) |
1512 			 (eu->eu_eth.octet[2] << 16) |
1513 			 (eu->eu_eth.octet[1] << 8) |
1514 			 eu->eu_eth.octet[0];
1515 	}
1516 
1517 	return (retval);
1518 }
1519 
1520 static void
1521 e82545_write_register(struct e82545_softc *sc, uint32_t offset, uint32_t value)
1522 {
1523 	int ridx;
1524 
1525 	if (offset & 0x3) {
1526 		DPRINTF("Unaligned register write offset:0x%x value:0x%x\r\n", offset, value);
1527 		return;
1528 	}
1529 	DPRINTF("Register write: 0x%x value: 0x%x\r\n", offset, value);
1530 
1531 	switch (offset) {
1532 	case E1000_CTRL:
1533 	case E1000_CTRL_DUP:
1534 		e82545_devctl(sc, value);
1535 		break;
1536 	case E1000_FCAL:
1537 		sc->esc_FCAL = value;
1538 		break;
1539 	case E1000_FCAH:
1540 		sc->esc_FCAH = value & ~0xFFFF0000;
1541 		break;
1542 	case E1000_FCT:
1543 		sc->esc_FCT = value & ~0xFFFF0000;
1544 		break;
1545 	case E1000_VET:
1546 		sc->esc_VET = value & ~0xFFFF0000;
1547 		break;
1548 	case E1000_FCTTV:
1549 		sc->esc_FCTTV = value & ~0xFFFF0000;
1550 		break;
1551 	case E1000_LEDCTL:
1552 		sc->esc_LEDCTL = value & ~0x30303000;
1553 		break;
1554 	case E1000_PBA:
1555 		sc->esc_PBA = value & 0x0000FF80;
1556 		break;
1557 	case E1000_ICR:
1558 	case E1000_ITR:
1559 	case E1000_ICS:
1560 	case E1000_IMS:
1561 	case E1000_IMC:
1562 		e82545_intr_write(sc, offset, value);
1563 		break;
1564 	case E1000_RCTL:
1565 		e82545_rx_ctl(sc, value);
1566 		break;
1567 	case E1000_FCRTL:
1568 		sc->esc_FCRTL = value & ~0xFFFF0007;
1569 		break;
1570 	case E1000_FCRTH:
1571 		sc->esc_FCRTH = value & ~0xFFFF0007;
1572 		break;
1573 	case E1000_RDBAL(0):
1574 		sc->esc_RDBAL = value & ~0xF;
1575 		if (sc->esc_rx_enabled) {
1576 			/* Apparently legal: update cached address */
1577 			e82545_rx_update_rdba(sc);
1578 		}
1579 		break;
1580 	case E1000_RDBAH(0):
1581 		assert(!sc->esc_rx_enabled);
1582 		sc->esc_RDBAH = value;
1583 		break;
1584 	case E1000_RDLEN(0):
1585 		assert(!sc->esc_rx_enabled);
1586 		sc->esc_RDLEN = value & ~0xFFF0007F;
1587 		break;
1588 	case E1000_RDH(0):
1589 		/* XXX should only ever be zero ? Range check ? */
1590 		sc->esc_RDH = value;
1591 		break;
1592 	case E1000_RDT(0):
1593 		/* XXX if this opens up the rx ring, do something ? */
1594 		sc->esc_RDT = value;
1595 		break;
1596 	case E1000_RDTR:
1597 		/* ignore FPD bit 31 */
1598 		sc->esc_RDTR = value & ~0xFFFF0000;
1599 		break;
1600 	case E1000_RXDCTL(0):
1601 		sc->esc_RXDCTL = value & ~0xFEC0C0C0;
1602 		break;
1603 	case E1000_RADV:
1604 		sc->esc_RADV = value & ~0xFFFF0000;
1605 		break;
1606 	case E1000_RSRPD:
1607 		sc->esc_RSRPD = value & ~0xFFFFF000;
1608 		break;
1609 	case E1000_RXCSUM:
1610 		sc->esc_RXCSUM = value & ~0xFFFFF800;
1611 		break;
1612 	case E1000_TXCW:
1613 		sc->esc_TXCW = value & ~0x3FFF0000;
1614 		break;
1615 	case E1000_TCTL:
1616 		e82545_tx_ctl(sc, value);
1617 		break;
1618 	case E1000_TIPG:
1619 		sc->esc_TIPG = value;
1620 		break;
1621 	case E1000_AIT:
1622 		sc->esc_AIT = value;
1623 		break;
1624 	case E1000_TDBAL(0):
1625 		sc->esc_TDBAL = value & ~0xF;
1626 		if (sc->esc_tx_enabled) {
1627 			/* Apparently legal */
1628 			e82545_tx_update_tdba(sc);
1629 		}
1630 		break;
1631 	case E1000_TDBAH(0):
1632 		//assert(!sc->esc_tx_enabled);
1633 		sc->esc_TDBAH = value;
1634 		break;
1635 	case E1000_TDLEN(0):
1636 		//assert(!sc->esc_tx_enabled);
1637 		sc->esc_TDLEN = value & ~0xFFF0007F;
1638 		break;
1639 	case E1000_TDH(0):
1640 		//assert(!sc->esc_tx_enabled);
1641 		/* XXX should only ever be zero ? Range check ? */
1642 		sc->esc_TDHr = sc->esc_TDH = value;
1643 		break;
1644 	case E1000_TDT(0):
1645 		/* XXX range check ? */
1646 		sc->esc_TDT = value;
1647 		if (sc->esc_tx_enabled)
1648 			e82545_tx_start(sc);
1649 		break;
1650 	case E1000_TIDV:
1651 		sc->esc_TIDV = value & ~0xFFFF0000;
1652 		break;
1653 	case E1000_TXDCTL(0):
1654 		//assert(!sc->esc_tx_enabled);
1655 		sc->esc_TXDCTL = value & ~0xC0C0C0;
1656 		break;
1657 	case E1000_TADV:
1658 		sc->esc_TADV = value & ~0xFFFF0000;
1659 		break;
1660 	case E1000_RAL(0) ... E1000_RAH(15):
1661 		/* convert to u32 offset */
1662 		ridx = (offset - E1000_RAL(0)) >> 2;
1663 		e82545_write_ra(sc, ridx, value);
1664 		break;
1665 	case E1000_MTA ... (E1000_MTA + (127*4)):
1666 		sc->esc_fmcast[(offset - E1000_MTA) >> 2] = value;
1667 		break;
1668 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1669 		sc->esc_fvlan[(offset - E1000_VFTA) >> 2] = value;
1670 		break;
1671 	case E1000_EECD:
1672 	{
1673 		//DPRINTF("EECD write 0x%x -> 0x%x\r\n", sc->eeprom_control, value);
1674 		/* edge triggered low->high */
1675 		uint32_t eecd_strobe = ((sc->eeprom_control & E1000_EECD_SK) ?
1676 			0 : (value & E1000_EECD_SK));
1677 		uint32_t eecd_mask = (E1000_EECD_SK|E1000_EECD_CS|
1678 					E1000_EECD_DI|E1000_EECD_REQ);
1679 		sc->eeprom_control &= ~eecd_mask;
1680 		sc->eeprom_control |= (value & eecd_mask);
1681 		/* grant/revoke immediately */
1682 		if (value & E1000_EECD_REQ) {
1683 			sc->eeprom_control |= E1000_EECD_GNT;
1684 		} else {
1685                         sc->eeprom_control &= ~E1000_EECD_GNT;
1686 		}
1687 		if (eecd_strobe && (sc->eeprom_control & E1000_EECD_CS)) {
1688 			e82545_eecd_strobe(sc);
1689 		}
1690 		return;
1691 	}
1692 	case E1000_MDIC:
1693 	{
1694 		uint8_t reg_addr = (uint8_t)((value & E1000_MDIC_REG_MASK) >>
1695 						E1000_MDIC_REG_SHIFT);
1696 		uint8_t phy_addr = (uint8_t)((value & E1000_MDIC_PHY_MASK) >>
1697 						E1000_MDIC_PHY_SHIFT);
1698 		sc->mdi_control =
1699 			(value & ~(E1000_MDIC_ERROR|E1000_MDIC_DEST));
1700 		if ((value & E1000_MDIC_READY) != 0) {
1701 			DPRINTF("Incorrect MDIC ready bit: 0x%x\r\n", value);
1702 			return;
1703 		}
1704 		switch (value & E82545_MDIC_OP_MASK) {
1705 		case E1000_MDIC_OP_READ:
1706 			sc->mdi_control &= ~E82545_MDIC_DATA_MASK;
1707 			sc->mdi_control |= e82545_read_mdi(sc, reg_addr, phy_addr);
1708 			break;
1709 		case E1000_MDIC_OP_WRITE:
1710 			e82545_write_mdi(sc, reg_addr, phy_addr,
1711 				value & E82545_MDIC_DATA_MASK);
1712 			break;
1713 		default:
1714 			DPRINTF("Unknown MDIC op: 0x%x\r\n", value);
1715 			return;
1716 		}
1717 		/* TODO: barrier? */
1718 		sc->mdi_control |= E1000_MDIC_READY;
1719 		if (value & E82545_MDIC_IE) {
1720 			// TODO: generate interrupt
1721 		}
1722 		return;
1723 	}
1724 	case E1000_MANC:
1725 	case E1000_STATUS:
1726 		return;
1727 	default:
1728 		DPRINTF("Unknown write register: 0x%x value:%x\r\n", offset, value);
1729 		return;
1730 	}
1731 }
1732 
1733 static uint32_t
1734 e82545_read_register(struct e82545_softc *sc, uint32_t offset)
1735 {
1736 	uint32_t retval;
1737 	int ridx;
1738 
1739 	if (offset & 0x3) {
1740 		DPRINTF("Unaligned register read offset:0x%x\r\n", offset);
1741 		return 0;
1742 	}
1743 
1744 	DPRINTF("Register read: 0x%x\r\n", offset);
1745 
1746 	switch (offset) {
1747 	case E1000_CTRL:
1748 		retval = sc->esc_CTRL;
1749 		break;
1750 	case E1000_STATUS:
1751 		retval = E1000_STATUS_FD | E1000_STATUS_LU |
1752 		    E1000_STATUS_SPEED_1000;
1753 		break;
1754 	case E1000_FCAL:
1755 		retval = sc->esc_FCAL;
1756 		break;
1757 	case E1000_FCAH:
1758 		retval = sc->esc_FCAH;
1759 		break;
1760 	case E1000_FCT:
1761 		retval = sc->esc_FCT;
1762 		break;
1763 	case E1000_VET:
1764 		retval = sc->esc_VET;
1765 		break;
1766 	case E1000_FCTTV:
1767 		retval = sc->esc_FCTTV;
1768 		break;
1769 	case E1000_LEDCTL:
1770 		retval = sc->esc_LEDCTL;
1771 		break;
1772 	case E1000_PBA:
1773 		retval = sc->esc_PBA;
1774 		break;
1775 	case E1000_ICR:
1776 	case E1000_ITR:
1777 	case E1000_ICS:
1778 	case E1000_IMS:
1779 	case E1000_IMC:
1780 		retval = e82545_intr_read(sc, offset);
1781 		break;
1782 	case E1000_RCTL:
1783 		retval = sc->esc_RCTL;
1784 		break;
1785 	case E1000_FCRTL:
1786 		retval = sc->esc_FCRTL;
1787 		break;
1788 	case E1000_FCRTH:
1789 		retval = sc->esc_FCRTH;
1790 		break;
1791 	case E1000_RDBAL(0):
1792 		retval = sc->esc_RDBAL;
1793 		break;
1794 	case E1000_RDBAH(0):
1795 		retval = sc->esc_RDBAH;
1796 		break;
1797 	case E1000_RDLEN(0):
1798 		retval = sc->esc_RDLEN;
1799 		break;
1800 	case E1000_RDH(0):
1801 		retval = sc->esc_RDH;
1802 		break;
1803 	case E1000_RDT(0):
1804 		retval = sc->esc_RDT;
1805 		break;
1806 	case E1000_RDTR:
1807 		retval = sc->esc_RDTR;
1808 		break;
1809 	case E1000_RXDCTL(0):
1810 		retval = sc->esc_RXDCTL;
1811 		break;
1812 	case E1000_RADV:
1813 		retval = sc->esc_RADV;
1814 		break;
1815 	case E1000_RSRPD:
1816 		retval = sc->esc_RSRPD;
1817 		break;
1818 	case E1000_RXCSUM:
1819 		retval = sc->esc_RXCSUM;
1820 		break;
1821 	case E1000_TXCW:
1822 		retval = sc->esc_TXCW;
1823 		break;
1824 	case E1000_TCTL:
1825 		retval = sc->esc_TCTL;
1826 		break;
1827 	case E1000_TIPG:
1828 		retval = sc->esc_TIPG;
1829 		break;
1830 	case E1000_AIT:
1831 		retval = sc->esc_AIT;
1832 		break;
1833 	case E1000_TDBAL(0):
1834 		retval = sc->esc_TDBAL;
1835 		break;
1836 	case E1000_TDBAH(0):
1837 		retval = sc->esc_TDBAH;
1838 		break;
1839 	case E1000_TDLEN(0):
1840 		retval = sc->esc_TDLEN;
1841 		break;
1842 	case E1000_TDH(0):
1843 		retval = sc->esc_TDH;
1844 		break;
1845 	case E1000_TDT(0):
1846 		retval = sc->esc_TDT;
1847 		break;
1848 	case E1000_TIDV:
1849 		retval = sc->esc_TIDV;
1850 		break;
1851 	case E1000_TXDCTL(0):
1852 		retval = sc->esc_TXDCTL;
1853 		break;
1854 	case E1000_TADV:
1855 		retval = sc->esc_TADV;
1856 		break;
1857 	case E1000_RAL(0) ... E1000_RAH(15):
1858 		/* convert to u32 offset */
1859 		ridx = (offset - E1000_RAL(0)) >> 2;
1860 		retval = e82545_read_ra(sc, ridx);
1861 		break;
1862 	case E1000_MTA ... (E1000_MTA + (127*4)):
1863 		retval = sc->esc_fmcast[(offset - E1000_MTA) >> 2];
1864 		break;
1865 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1866 		retval = sc->esc_fvlan[(offset - E1000_VFTA) >> 2];
1867 		break;
1868 	case E1000_EECD:
1869 		//DPRINTF("EECD read %x\r\n", sc->eeprom_control);
1870 		retval = sc->eeprom_control;
1871 		break;
1872 	case E1000_MDIC:
1873 		retval = sc->mdi_control;
1874 		break;
1875 	case E1000_MANC:
1876 		retval = 0;
1877 		break;
1878 	/* stats that we emulate. */
1879 	case E1000_MPC:
1880 		retval = sc->missed_pkt_count;
1881 		break;
1882 	case E1000_PRC64:
1883 		retval = sc->pkt_rx_by_size[0];
1884 		break;
1885 	case E1000_PRC127:
1886 		retval = sc->pkt_rx_by_size[1];
1887 		break;
1888 	case E1000_PRC255:
1889 		retval = sc->pkt_rx_by_size[2];
1890 		break;
1891 	case E1000_PRC511:
1892 		retval = sc->pkt_rx_by_size[3];
1893 		break;
1894 	case E1000_PRC1023:
1895 		retval = sc->pkt_rx_by_size[4];
1896 		break;
1897 	case E1000_PRC1522:
1898 		retval = sc->pkt_rx_by_size[5];
1899 		break;
1900 	case E1000_GPRC:
1901 		retval = sc->good_pkt_rx_count;
1902 		break;
1903 	case E1000_BPRC:
1904 		retval = sc->bcast_pkt_rx_count;
1905 		break;
1906 	case E1000_MPRC:
1907 		retval = sc->mcast_pkt_rx_count;
1908 		break;
1909 	case E1000_GPTC:
1910 	case E1000_TPT:
1911 		retval = sc->good_pkt_tx_count;
1912 		break;
1913 	case E1000_GORCL:
1914 		retval = (uint32_t)sc->good_octets_rx;
1915 		break;
1916 	case E1000_GORCH:
1917 		retval = (uint32_t)(sc->good_octets_rx >> 32);
1918 		break;
1919 	case E1000_TOTL:
1920 	case E1000_GOTCL:
1921 		retval = (uint32_t)sc->good_octets_tx;
1922 		break;
1923 	case E1000_TOTH:
1924 	case E1000_GOTCH:
1925 		retval = (uint32_t)(sc->good_octets_tx >> 32);
1926 		break;
1927 	case E1000_ROC:
1928 		retval = sc->oversize_rx_count;
1929 		break;
1930 	case E1000_TORL:
1931 		retval = (uint32_t)(sc->good_octets_rx + sc->missed_octets);
1932 		break;
1933 	case E1000_TORH:
1934 		retval = (uint32_t)((sc->good_octets_rx +
1935 		    sc->missed_octets) >> 32);
1936 		break;
1937 	case E1000_TPR:
1938 		retval = sc->good_pkt_rx_count + sc->missed_pkt_count +
1939 		    sc->oversize_rx_count;
1940 		break;
1941 	case E1000_PTC64:
1942 		retval = sc->pkt_tx_by_size[0];
1943 		break;
1944 	case E1000_PTC127:
1945 		retval = sc->pkt_tx_by_size[1];
1946 		break;
1947 	case E1000_PTC255:
1948 		retval = sc->pkt_tx_by_size[2];
1949 		break;
1950 	case E1000_PTC511:
1951 		retval = sc->pkt_tx_by_size[3];
1952 		break;
1953 	case E1000_PTC1023:
1954 		retval = sc->pkt_tx_by_size[4];
1955 		break;
1956 	case E1000_PTC1522:
1957 		retval = sc->pkt_tx_by_size[5];
1958 		break;
1959 	case E1000_MPTC:
1960 		retval = sc->mcast_pkt_tx_count;
1961 		break;
1962 	case E1000_BPTC:
1963 		retval = sc->bcast_pkt_tx_count;
1964 		break;
1965 	case E1000_TSCTC:
1966 		retval = sc->tso_tx_count;
1967 		break;
1968 	/* stats that are always 0. */
1969 	case E1000_CRCERRS:
1970 	case E1000_ALGNERRC:
1971 	case E1000_SYMERRS:
1972 	case E1000_RXERRC:
1973 	case E1000_SCC:
1974 	case E1000_ECOL:
1975 	case E1000_MCC:
1976 	case E1000_LATECOL:
1977 	case E1000_COLC:
1978 	case E1000_DC:
1979 	case E1000_TNCRS:
1980 	case E1000_SEC:
1981 	case E1000_CEXTERR:
1982 	case E1000_RLEC:
1983 	case E1000_XONRXC:
1984 	case E1000_XONTXC:
1985 	case E1000_XOFFRXC:
1986 	case E1000_XOFFTXC:
1987 	case E1000_FCRUC:
1988 	case E1000_RNBC:
1989 	case E1000_RUC:
1990 	case E1000_RFC:
1991 	case E1000_RJC:
1992 	case E1000_MGTPRC:
1993 	case E1000_MGTPDC:
1994 	case E1000_MGTPTC:
1995 	case E1000_TSCTFC:
1996 		retval = 0;
1997 		break;
1998 	default:
1999 		DPRINTF("Unknown read register: 0x%x\r\n", offset);
2000 		retval = 0;
2001 		break;
2002 	}
2003 
2004 	return (retval);
2005 }
2006 
2007 static void
2008 e82545_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2009 	     uint64_t offset, int size, uint64_t value)
2010 {
2011 	struct e82545_softc *sc;
2012 
2013 	//DPRINTF("Write bar:%d offset:0x%lx value:0x%lx size:%d\r\n", baridx, offset, value, size);
2014 
2015 	sc = pi->pi_arg;
2016 
2017 	pthread_mutex_lock(&sc->esc_mtx);
2018 
2019 	switch (baridx) {
2020 	case E82545_BAR_IO:
2021 		switch (offset) {
2022 		case E82545_IOADDR:
2023 			if (size != 4) {
2024 				DPRINTF("Wrong io addr write sz:%d value:0x%lx\r\n", size, value);
2025 			} else
2026 				sc->io_addr = (uint32_t)value;
2027 			break;
2028 		case E82545_IODATA:
2029 			if (size != 4) {
2030 				DPRINTF("Wrong io data write size:%d value:0x%lx\r\n", size, value);
2031 			} else if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2032 				DPRINTF("Non-register io write addr:0x%x value:0x%lx\r\n", sc->io_addr, value);
2033 			} else
2034 				e82545_write_register(sc, sc->io_addr,
2035 						      (uint32_t)value);
2036 			break;
2037 		default:
2038 			DPRINTF("Unknown io bar write offset:0x%lx value:0x%lx size:%d\r\n", offset, value, size);
2039 			break;
2040 		}
2041 		break;
2042 	case E82545_BAR_REGISTER:
2043 		if (size != 4) {
2044 			DPRINTF("Wrong register write size:%d offset:0x%lx value:0x%lx\r\n", size, offset, value);
2045 		} else
2046 			e82545_write_register(sc, (uint32_t)offset,
2047 					      (uint32_t)value);
2048 		break;
2049 	default:
2050 		DPRINTF("Unknown write bar:%d off:0x%lx val:0x%lx size:%d\r\n",
2051 			baridx, offset, value, size);
2052 	}
2053 
2054 	pthread_mutex_unlock(&sc->esc_mtx);
2055 }
2056 
2057 static uint64_t
2058 e82545_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2059 	    uint64_t offset, int size)
2060 {
2061 	struct e82545_softc *sc;
2062 	uint64_t retval;
2063 
2064 	//DPRINTF("Read  bar:%d offset:0x%lx size:%d\r\n", baridx, offset, size);
2065 	sc = pi->pi_arg;
2066 	retval = 0;
2067 
2068 	pthread_mutex_lock(&sc->esc_mtx);
2069 
2070 	switch (baridx) {
2071 	case E82545_BAR_IO:
2072 		switch (offset) {
2073 		case E82545_IOADDR:
2074 			if (size != 4) {
2075 				DPRINTF("Wrong io addr read sz:%d\r\n", size);
2076 			} else
2077 				retval = sc->io_addr;
2078 			break;
2079 		case E82545_IODATA:
2080 			if (size != 4) {
2081 				DPRINTF("Wrong io data read sz:%d\r\n", size);
2082 			}
2083 			if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2084 				DPRINTF("Non-register io read addr:0x%x\r\n",
2085 					sc->io_addr);
2086 			} else
2087 				retval = e82545_read_register(sc, sc->io_addr);
2088 			break;
2089 		default:
2090 			DPRINTF("Unknown io bar read offset:0x%lx size:%d\r\n",
2091 				offset, size);
2092 			break;
2093 		}
2094 		break;
2095 	case E82545_BAR_REGISTER:
2096 		if (size != 4) {
2097 			DPRINTF("Wrong register read size:%d offset:0x%lx\r\n",
2098 				size, offset);
2099 		} else
2100 			retval = e82545_read_register(sc, (uint32_t)offset);
2101 		break;
2102 	default:
2103 		DPRINTF("Unknown read bar:%d offset:0x%lx size:%d\r\n",
2104 			baridx, offset, size);
2105 		break;
2106 	}
2107 
2108 	pthread_mutex_unlock(&sc->esc_mtx);
2109 
2110 	return (retval);
2111 }
2112 
2113 static void
2114 e82545_reset(struct e82545_softc *sc, int drvr)
2115 {
2116 	int i;
2117 
2118 	e82545_rx_disable(sc);
2119 	e82545_tx_disable(sc);
2120 
2121 	/* clear outstanding interrupts */
2122 	if (sc->esc_irq_asserted)
2123 		pci_lintr_deassert(sc->esc_pi);
2124 
2125 	/* misc */
2126 	if (!drvr) {
2127 		sc->esc_FCAL = 0;
2128 		sc->esc_FCAH = 0;
2129 		sc->esc_FCT = 0;
2130 		sc->esc_VET = 0;
2131 		sc->esc_FCTTV = 0;
2132 	}
2133 	sc->esc_LEDCTL = 0x07061302;
2134 	sc->esc_PBA = 0x00100030;
2135 
2136 	/* start nvm in opcode mode. */
2137 	sc->nvm_opaddr = 0;
2138 	sc->nvm_mode = E82545_NVM_MODE_OPADDR;
2139 	sc->nvm_bits = E82545_NVM_OPADDR_BITS;
2140 	sc->eeprom_control = E1000_EECD_PRES | E82545_EECD_FWE_EN;
2141 	e82545_init_eeprom(sc);
2142 
2143 	/* interrupt */
2144 	sc->esc_ICR = 0;
2145 	sc->esc_ITR = 250;
2146 	sc->esc_ICS = 0;
2147 	sc->esc_IMS = 0;
2148 	sc->esc_IMC = 0;
2149 
2150 	/* L2 filters */
2151 	if (!drvr) {
2152 		memset(sc->esc_fvlan, 0, sizeof(sc->esc_fvlan));
2153 		memset(sc->esc_fmcast, 0, sizeof(sc->esc_fmcast));
2154 		memset(sc->esc_uni, 0, sizeof(sc->esc_uni));
2155 
2156 		/* XXX not necessary on 82545 ?? */
2157 		sc->esc_uni[0].eu_valid = 1;
2158 		memcpy(sc->esc_uni[0].eu_eth.octet, sc->esc_mac.octet,
2159 		    ETHER_ADDR_LEN);
2160 	} else {
2161 		/* Clear RAH valid bits */
2162 		for (i = 0; i < 16; i++)
2163 			sc->esc_uni[i].eu_valid = 0;
2164 	}
2165 
2166 	/* receive */
2167 	if (!drvr) {
2168 		sc->esc_RDBAL = 0;
2169 		sc->esc_RDBAH = 0;
2170 	}
2171 	sc->esc_RCTL = 0;
2172 	sc->esc_FCRTL = 0;
2173 	sc->esc_FCRTH = 0;
2174 	sc->esc_RDLEN = 0;
2175 	sc->esc_RDH = 0;
2176 	sc->esc_RDT = 0;
2177 	sc->esc_RDTR = 0;
2178 	sc->esc_RXDCTL = (1 << 24) | (1 << 16); /* default GRAN/WTHRESH */
2179 	sc->esc_RADV = 0;
2180 	sc->esc_RXCSUM = 0;
2181 
2182 	/* transmit */
2183 	if (!drvr) {
2184 		sc->esc_TDBAL = 0;
2185 		sc->esc_TDBAH = 0;
2186 		sc->esc_TIPG = 0;
2187 		sc->esc_AIT = 0;
2188 		sc->esc_TIDV = 0;
2189 		sc->esc_TADV = 0;
2190 	}
2191 	sc->esc_tdba = 0;
2192 	sc->esc_txdesc = NULL;
2193 	sc->esc_TXCW = 0;
2194 	sc->esc_TCTL = 0;
2195 	sc->esc_TDLEN = 0;
2196 	sc->esc_TDT = 0;
2197 	sc->esc_TDHr = sc->esc_TDH = 0;
2198 	sc->esc_TXDCTL = 0;
2199 }
2200 
2201 static void
2202 e82545_open_tap(struct e82545_softc *sc, char *opts)
2203 {
2204 	char tbuf[80];
2205 
2206 	if (opts == NULL) {
2207 		sc->esc_tapfd = -1;
2208 		return;
2209 	}
2210 
2211 	strcpy(tbuf, "/dev/");
2212 	strlcat(tbuf, opts, sizeof(tbuf));
2213 
2214 	sc->esc_tapfd = open(tbuf, O_RDWR);
2215 	if (sc->esc_tapfd == -1) {
2216 		DPRINTF("unable to open tap device %s\n", opts);
2217 		exit(1);
2218 	}
2219 
2220 	/*
2221 	 * Set non-blocking and register for read
2222 	 * notifications with the event loop
2223 	 */
2224 	int opt = 1;
2225 	if (ioctl(sc->esc_tapfd, FIONBIO, &opt) < 0) {
2226 		WPRINTF("tap device O_NONBLOCK failed: %d\n", errno);
2227 		close(sc->esc_tapfd);
2228 		sc->esc_tapfd = -1;
2229 	}
2230 
2231 	sc->esc_mevp = mevent_add(sc->esc_tapfd,
2232 				  EVF_READ,
2233 				  e82545_tap_callback,
2234 				  sc);
2235 	if (sc->esc_mevp == NULL) {
2236 		DPRINTF("Could not register mevent %d\n", EVF_READ);
2237 		close(sc->esc_tapfd);
2238 		sc->esc_tapfd = -1;
2239 	}
2240 }
2241 
2242 static int
2243 e82545_parsemac(char *mac_str, uint8_t *mac_addr)
2244 {
2245 	struct ether_addr *ea;
2246 	char *tmpstr;
2247 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2248 
2249 	tmpstr = strsep(&mac_str,"=");
2250 	if ((mac_str != NULL) && (!strcmp(tmpstr,"mac"))) {
2251 		ea = ether_aton(mac_str);
2252 		if (ea == NULL || ETHER_IS_MULTICAST(ea->octet) ||
2253 		    memcmp(ea->octet, zero_addr, ETHER_ADDR_LEN) == 0) {
2254 			fprintf(stderr, "Invalid MAC %s\n", mac_str);
2255 			return (1);
2256 		} else
2257 			memcpy(mac_addr, ea->octet, ETHER_ADDR_LEN);
2258 	}
2259 	return (0);
2260 }
2261 
2262 static int
2263 e82545_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
2264 {
2265 	DPRINTF("Loading with options: %s\r\n", opts);
2266 
2267 	MD5_CTX mdctx;
2268 	unsigned char digest[16];
2269 	char nstr[80];
2270 	struct e82545_softc *sc;
2271 	char *devname;
2272 	char *vtopts;
2273 	int mac_provided;
2274 
2275 	/* Setup our softc */
2276 	sc = calloc(1, sizeof(*sc));
2277 
2278 	pi->pi_arg = sc;
2279 	sc->esc_pi = pi;
2280 	sc->esc_ctx = ctx;
2281 
2282 	pthread_mutex_init(&sc->esc_mtx, NULL);
2283 	pthread_cond_init(&sc->esc_rx_cond, NULL);
2284 	pthread_cond_init(&sc->esc_tx_cond, NULL);
2285 	pthread_create(&sc->esc_tx_tid, NULL, e82545_tx_thread, sc);
2286 	snprintf(nstr, sizeof(nstr), "e82545-%d:%d tx", pi->pi_slot,
2287 	    pi->pi_func);
2288         pthread_set_name_np(sc->esc_tx_tid, nstr);
2289 
2290 	pci_set_cfgdata16(pi, PCIR_DEVICE, E82545_DEV_ID_82545EM_COPPER);
2291 	pci_set_cfgdata16(pi, PCIR_VENDOR, E82545_VENDOR_ID_INTEL);
2292 	pci_set_cfgdata8(pi,  PCIR_CLASS, PCIC_NETWORK);
2293 	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_NETWORK_ETHERNET);
2294 	pci_set_cfgdata16(pi, PCIR_SUBDEV_0, E82545_SUBDEV_ID);
2295 	pci_set_cfgdata16(pi, PCIR_SUBVEND_0, E82545_VENDOR_ID_INTEL);
2296 
2297 	pci_set_cfgdata8(pi,  PCIR_HDRTYPE, PCIM_HDRTYPE_NORMAL);
2298 	pci_set_cfgdata8(pi,  PCIR_INTPIN, 0x1);
2299 
2300 	/* TODO: this card also supports msi, but the freebsd driver for it
2301 	 * does not, so I have not implemented it. */
2302 	pci_lintr_request(pi);
2303 
2304 	pci_emul_alloc_bar(pi, E82545_BAR_REGISTER, PCIBAR_MEM32,
2305 		E82545_BAR_REGISTER_LEN);
2306 	pci_emul_alloc_bar(pi, E82545_BAR_FLASH, PCIBAR_MEM32,
2307 		E82545_BAR_FLASH_LEN);
2308 	pci_emul_alloc_bar(pi, E82545_BAR_IO, PCIBAR_IO,
2309 		E82545_BAR_IO_LEN);
2310 
2311 	/*
2312 	 * Attempt to open the tap device and read the MAC address
2313 	 * if specified.  Copied from virtio-net, slightly modified.
2314 	 */
2315 	mac_provided = 0;
2316 	sc->esc_tapfd = -1;
2317 	if (opts != NULL) {
2318 		int err;
2319 
2320 		devname = vtopts = strdup(opts);
2321 		(void) strsep(&vtopts, ",");
2322 
2323 		if (vtopts != NULL) {
2324 			err = e82545_parsemac(vtopts, sc->esc_mac.octet);
2325 			if (err != 0) {
2326 				free(devname);
2327 				return (err);
2328 			}
2329 			mac_provided = 1;
2330 		}
2331 
2332 		if (strncmp(devname, "tap", 3) == 0 ||
2333 		    strncmp(devname, "vmnet", 5) == 0)
2334 			e82545_open_tap(sc, devname);
2335 
2336 		free(devname);
2337 	}
2338 
2339 	/*
2340 	 * The default MAC address is the standard NetApp OUI of 00-a0-98,
2341 	 * followed by an MD5 of the PCI slot/func number and dev name
2342 	 */
2343 	if (!mac_provided) {
2344 		snprintf(nstr, sizeof(nstr), "%d-%d-%s", pi->pi_slot,
2345 		    pi->pi_func, vmname);
2346 
2347 		MD5Init(&mdctx);
2348 		MD5Update(&mdctx, nstr, strlen(nstr));
2349 		MD5Final(digest, &mdctx);
2350 
2351 		sc->esc_mac.octet[0] = 0x00;
2352 		sc->esc_mac.octet[1] = 0xa0;
2353 		sc->esc_mac.octet[2] = 0x98;
2354 		sc->esc_mac.octet[3] = digest[0];
2355 		sc->esc_mac.octet[4] = digest[1];
2356 		sc->esc_mac.octet[5] = digest[2];
2357 	}
2358 
2359 	/* H/w initiated reset */
2360 	e82545_reset(sc, 0);
2361 
2362 	return (0);
2363 }
2364 
2365 struct pci_devemu pci_de_e82545 = {
2366 	.pe_emu = 	"e1000",
2367 	.pe_init =	e82545_init,
2368 	.pe_barwrite =	e82545_write,
2369 	.pe_barread =	e82545_read
2370 };
2371 PCI_EMUL_SET(pci_de_e82545);
2372 
2373