xref: /freebsd/usr.sbin/bhyve/pci_e82545.c (revision 4133f23624058951a3b66e3ad735de980a485f36)
1 /*
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2016 Alexander Motin <mav@FreeBSD.org>
5  * Copyright (c) 2015 Peter Grehan <grehan@freebsd.org>
6  * Copyright (c) 2013 Jeremiah Lott, Avere Systems
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer
14  *    in this position and unchanged.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/types.h>
36 #ifndef WITHOUT_CAPSICUM
37 #include <sys/capsicum.h>
38 #endif
39 #include <sys/limits.h>
40 #include <sys/ioctl.h>
41 #include <sys/uio.h>
42 #include <net/ethernet.h>
43 #include <netinet/in.h>
44 #include <netinet/tcp.h>
45 
46 #ifndef WITHOUT_CAPSICUM
47 #include <capsicum_helpers.h>
48 #endif
49 #include <err.h>
50 #include <errno.h>
51 #include <fcntl.h>
52 #include <md5.h>
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <string.h>
56 #include <sysexits.h>
57 #include <unistd.h>
58 #include <pthread.h>
59 #include <pthread_np.h>
60 
61 #include "e1000_regs.h"
62 #include "e1000_defines.h"
63 #include "mii.h"
64 
65 #include "bhyverun.h"
66 #include "pci_emul.h"
67 #include "mevent.h"
68 #include "net_utils.h"
69 #include "net_backends.h"
70 
71 /* Hardware/register definitions XXX: move some to common code. */
72 #define E82545_VENDOR_ID_INTEL			0x8086
73 #define E82545_DEV_ID_82545EM_COPPER		0x100F
74 #define E82545_SUBDEV_ID			0x1008
75 
76 #define E82545_REVISION_4			4
77 
78 #define E82545_MDIC_DATA_MASK			0x0000FFFF
79 #define E82545_MDIC_OP_MASK			0x0c000000
80 #define E82545_MDIC_IE				0x20000000
81 
82 #define E82545_EECD_FWE_DIS	0x00000010 /* Flash writes disabled */
83 #define E82545_EECD_FWE_EN	0x00000020 /* Flash writes enabled */
84 #define E82545_EECD_FWE_MASK	0x00000030 /* Flash writes mask */
85 
86 #define E82545_BAR_REGISTER			0
87 #define E82545_BAR_REGISTER_LEN			(128*1024)
88 #define E82545_BAR_FLASH			1
89 #define E82545_BAR_FLASH_LEN			(64*1024)
90 #define E82545_BAR_IO				2
91 #define E82545_BAR_IO_LEN			8
92 
93 #define E82545_IOADDR				0x00000000
94 #define E82545_IODATA				0x00000004
95 #define E82545_IO_REGISTER_MAX			0x0001FFFF
96 #define E82545_IO_FLASH_BASE			0x00080000
97 #define E82545_IO_FLASH_MAX			0x000FFFFF
98 
99 #define E82545_ARRAY_ENTRY(reg, offset)		(reg + (offset<<2))
100 #define E82545_RAR_MAX				15
101 #define E82545_MTA_MAX				127
102 #define E82545_VFTA_MAX				127
103 
104 /* Slightly modified from the driver versions, hardcoded for 3 opcode bits,
105  * followed by 6 address bits.
106  * TODO: make opcode bits and addr bits configurable?
107  * NVM Commands - Microwire */
108 #define E82545_NVM_OPCODE_BITS	3
109 #define E82545_NVM_ADDR_BITS	6
110 #define E82545_NVM_DATA_BITS	16
111 #define E82545_NVM_OPADDR_BITS	(E82545_NVM_OPCODE_BITS + E82545_NVM_ADDR_BITS)
112 #define E82545_NVM_ADDR_MASK	((1 << E82545_NVM_ADDR_BITS)-1)
113 #define E82545_NVM_OPCODE_MASK	\
114     (((1 << E82545_NVM_OPCODE_BITS) - 1) << E82545_NVM_ADDR_BITS)
115 #define E82545_NVM_OPCODE_READ	(0x6 << E82545_NVM_ADDR_BITS)	/* read */
116 #define E82545_NVM_OPCODE_WRITE	(0x5 << E82545_NVM_ADDR_BITS)	/* write */
117 #define E82545_NVM_OPCODE_ERASE	(0x7 << E82545_NVM_ADDR_BITS)	/* erase */
118 #define	E82545_NVM_OPCODE_EWEN	(0x4 << E82545_NVM_ADDR_BITS)	/* wr-enable */
119 
120 #define	E82545_NVM_EEPROM_SIZE	64 /* 64 * 16-bit values == 128K */
121 
122 #define E1000_ICR_SRPD		0x00010000
123 
124 /* This is an arbitrary number.  There is no hard limit on the chip. */
125 #define I82545_MAX_TXSEGS	64
126 
127 /* Legacy receive descriptor */
128 struct e1000_rx_desc {
129 	uint64_t buffer_addr;	/* Address of the descriptor's data buffer */
130 	uint16_t length;	/* Length of data DMAed into data buffer */
131 	uint16_t csum;		/* Packet checksum */
132 	uint8_t	 status;       	/* Descriptor status */
133 	uint8_t  errors;	/* Descriptor Errors */
134 	uint16_t special;
135 };
136 
137 /* Transmit descriptor types */
138 #define	E1000_TXD_MASK		(E1000_TXD_CMD_DEXT | 0x00F00000)
139 #define E1000_TXD_TYP_L		(0)
140 #define E1000_TXD_TYP_C		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C)
141 #define E1000_TXD_TYP_D		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)
142 
143 /* Legacy transmit descriptor */
144 struct e1000_tx_desc {
145 	uint64_t buffer_addr;   /* Address of the descriptor's data buffer */
146 	union {
147 		uint32_t data;
148 		struct {
149 			uint16_t length;  /* Data buffer length */
150 			uint8_t  cso;  /* Checksum offset */
151 			uint8_t  cmd;  /* Descriptor control */
152 		} flags;
153 	} lower;
154 	union {
155 		uint32_t data;
156 		struct {
157 			uint8_t status; /* Descriptor status */
158 			uint8_t css;  /* Checksum start */
159 			uint16_t special;
160 		} fields;
161 	} upper;
162 };
163 
164 /* Context descriptor */
165 struct e1000_context_desc {
166 	union {
167 		uint32_t ip_config;
168 		struct {
169 			uint8_t ipcss;  /* IP checksum start */
170 			uint8_t ipcso;  /* IP checksum offset */
171 			uint16_t ipcse;  /* IP checksum end */
172 		} ip_fields;
173 	} lower_setup;
174 	union {
175 		uint32_t tcp_config;
176 		struct {
177 			uint8_t tucss;  /* TCP checksum start */
178 			uint8_t tucso;  /* TCP checksum offset */
179 			uint16_t tucse;  /* TCP checksum end */
180 		} tcp_fields;
181 	} upper_setup;
182 	uint32_t cmd_and_length;
183 	union {
184 		uint32_t data;
185 		struct {
186 			uint8_t status;  /* Descriptor status */
187 			uint8_t hdr_len;  /* Header length */
188 			uint16_t mss;  /* Maximum segment size */
189 		} fields;
190 	} tcp_seg_setup;
191 };
192 
193 /* Data descriptor */
194 struct e1000_data_desc {
195 	uint64_t buffer_addr;  /* Address of the descriptor's buffer address */
196 	union {
197 		uint32_t data;
198 		struct {
199 			uint16_t length;  /* Data buffer length */
200 			uint8_t typ_len_ext;
201 			uint8_t cmd;
202 		} flags;
203 	} lower;
204 	union {
205 		uint32_t data;
206 		struct {
207 			uint8_t status;  /* Descriptor status */
208 			uint8_t popts;  /* Packet Options */
209 			uint16_t special;
210 		} fields;
211 	} upper;
212 };
213 
214 union e1000_tx_udesc {
215 	struct e1000_tx_desc td;
216 	struct e1000_context_desc cd;
217 	struct e1000_data_desc dd;
218 };
219 
220 /* Tx checksum info for a packet. */
221 struct ck_info {
222 	int	ck_valid;	/* ck_info is valid */
223 	uint8_t	ck_start;	/* start byte of cksum calcuation */
224 	uint8_t	ck_off;		/* offset of cksum insertion */
225 	uint16_t ck_len;	/* length of cksum calc: 0 is to packet-end */
226 };
227 
228 /*
229  * Debug printf
230  */
231 static int e82545_debug = 0;
232 #define DPRINTF(msg,params...) if (e82545_debug) fprintf(stderr, "e82545: " msg, params)
233 #define WPRINTF(msg,params...) fprintf(stderr, "e82545: " msg, params)
234 
235 #define	MIN(a,b) (((a)<(b))?(a):(b))
236 #define	MAX(a,b) (((a)>(b))?(a):(b))
237 
238 /* s/w representation of the RAL/RAH regs */
239 struct  eth_uni {
240 	int		eu_valid;
241 	int		eu_addrsel;
242 	struct ether_addr eu_eth;
243 };
244 
245 
246 struct e82545_softc {
247 	struct pci_devinst *esc_pi;
248 	struct vmctx	*esc_ctx;
249 	struct mevent   *esc_mevpitr;
250 	pthread_mutex_t	esc_mtx;
251 	struct ether_addr esc_mac;
252 	net_backend_t	*esc_be;
253 
254 	/* General */
255 	uint32_t	esc_CTRL;	/* x0000 device ctl */
256 	uint32_t	esc_FCAL;	/* x0028 flow ctl addr lo */
257 	uint32_t	esc_FCAH;	/* x002C flow ctl addr hi */
258 	uint32_t	esc_FCT;	/* x0030 flow ctl type */
259 	uint32_t	esc_VET;	/* x0038 VLAN eth type */
260 	uint32_t	esc_FCTTV;	/* x0170 flow ctl tx timer */
261 	uint32_t	esc_LEDCTL;	/* x0E00 LED control */
262 	uint32_t	esc_PBA;	/* x1000 pkt buffer allocation */
263 
264 	/* Interrupt control */
265 	int		esc_irq_asserted;
266 	uint32_t	esc_ICR;	/* x00C0 cause read/clear */
267 	uint32_t	esc_ITR;	/* x00C4 intr throttling */
268 	uint32_t	esc_ICS;	/* x00C8 cause set */
269 	uint32_t	esc_IMS;	/* x00D0 mask set/read */
270 	uint32_t	esc_IMC;	/* x00D8 mask clear */
271 
272 	/* Transmit */
273 	union e1000_tx_udesc *esc_txdesc;
274 	struct e1000_context_desc esc_txctx;
275 	pthread_t	esc_tx_tid;
276 	pthread_cond_t	esc_tx_cond;
277 	int		esc_tx_enabled;
278 	int		esc_tx_active;
279 	uint32_t	esc_TXCW;	/* x0178 transmit config */
280 	uint32_t	esc_TCTL;	/* x0400 transmit ctl */
281 	uint32_t	esc_TIPG;	/* x0410 inter-packet gap */
282 	uint16_t	esc_AIT;	/* x0458 Adaptive Interframe Throttle */
283 	uint64_t	esc_tdba;      	/* verified 64-bit desc table addr */
284 	uint32_t	esc_TDBAL;	/* x3800 desc table addr, low bits */
285 	uint32_t	esc_TDBAH;	/* x3804 desc table addr, hi 32-bits */
286 	uint32_t	esc_TDLEN;	/* x3808 # descriptors in bytes */
287 	uint16_t	esc_TDH;	/* x3810 desc table head idx */
288 	uint16_t	esc_TDHr;	/* internal read version of TDH */
289 	uint16_t	esc_TDT;	/* x3818 desc table tail idx */
290 	uint32_t	esc_TIDV;	/* x3820 intr delay */
291 	uint32_t	esc_TXDCTL;	/* x3828 desc control */
292 	uint32_t	esc_TADV;	/* x382C intr absolute delay */
293 
294 	/* L2 frame acceptance */
295 	struct eth_uni	esc_uni[16];	/* 16 x unicast MAC addresses */
296 	uint32_t	esc_fmcast[128]; /* Multicast filter bit-match */
297 	uint32_t	esc_fvlan[128]; /* VLAN 4096-bit filter */
298 
299 	/* Receive */
300 	struct e1000_rx_desc *esc_rxdesc;
301 	pthread_cond_t	esc_rx_cond;
302 	int		esc_rx_enabled;
303 	int		esc_rx_active;
304 	int		esc_rx_loopback;
305 	uint32_t	esc_RCTL;	/* x0100 receive ctl */
306 	uint32_t	esc_FCRTL;	/* x2160 flow cntl thresh, low */
307 	uint32_t	esc_FCRTH;	/* x2168 flow cntl thresh, hi */
308 	uint64_t	esc_rdba;	/* verified 64-bit desc table addr */
309 	uint32_t	esc_RDBAL;	/* x2800 desc table addr, low bits */
310 	uint32_t	esc_RDBAH;	/* x2804 desc table addr, hi 32-bits*/
311 	uint32_t	esc_RDLEN;	/* x2808 #descriptors */
312 	uint16_t	esc_RDH;	/* x2810 desc table head idx */
313 	uint16_t	esc_RDT;	/* x2818 desc table tail idx */
314 	uint32_t	esc_RDTR;	/* x2820 intr delay */
315 	uint32_t	esc_RXDCTL;	/* x2828 desc control */
316 	uint32_t	esc_RADV;	/* x282C intr absolute delay */
317 	uint32_t	esc_RSRPD;	/* x2C00 recv small packet detect */
318 	uint32_t	esc_RXCSUM;     /* x5000 receive cksum ctl */
319 
320 	/* IO Port register access */
321 	uint32_t io_addr;
322 
323 	/* Shadow copy of MDIC */
324 	uint32_t mdi_control;
325 	/* Shadow copy of EECD */
326 	uint32_t eeprom_control;
327 	/* Latest NVM in/out */
328 	uint16_t nvm_data;
329 	uint16_t nvm_opaddr;
330 	/* stats */
331 	uint32_t missed_pkt_count; /* dropped for no room in rx queue */
332 	uint32_t pkt_rx_by_size[6];
333 	uint32_t pkt_tx_by_size[6];
334 	uint32_t good_pkt_rx_count;
335 	uint32_t bcast_pkt_rx_count;
336 	uint32_t mcast_pkt_rx_count;
337 	uint32_t good_pkt_tx_count;
338 	uint32_t bcast_pkt_tx_count;
339 	uint32_t mcast_pkt_tx_count;
340 	uint32_t oversize_rx_count;
341 	uint32_t tso_tx_count;
342 	uint64_t good_octets_rx;
343 	uint64_t good_octets_tx;
344 	uint64_t missed_octets; /* counts missed and oversized */
345 
346 	uint8_t nvm_bits:6; /* number of bits remaining in/out */
347 	uint8_t nvm_mode:2;
348 #define E82545_NVM_MODE_OPADDR  0x0
349 #define E82545_NVM_MODE_DATAIN  0x1
350 #define E82545_NVM_MODE_DATAOUT 0x2
351 	/* EEPROM data */
352 	uint16_t eeprom_data[E82545_NVM_EEPROM_SIZE];
353 };
354 
355 static void e82545_reset(struct e82545_softc *sc, int dev);
356 static void e82545_rx_enable(struct e82545_softc *sc);
357 static void e82545_rx_disable(struct e82545_softc *sc);
358 static void e82545_rx_callback(int fd, enum ev_type type, void *param);
359 static void e82545_tx_start(struct e82545_softc *sc);
360 static void e82545_tx_enable(struct e82545_softc *sc);
361 static void e82545_tx_disable(struct e82545_softc *sc);
362 
363 static inline int
364 e82545_size_stat_index(uint32_t size)
365 {
366 	if (size <= 64) {
367 		return 0;
368 	} else if (size >= 1024) {
369 		return 5;
370 	} else {
371 		/* should be 1-4 */
372 		return (ffs(size) - 6);
373 	}
374 }
375 
376 static void
377 e82545_init_eeprom(struct e82545_softc *sc)
378 {
379 	uint16_t checksum, i;
380 
381         /* mac addr */
382 	sc->eeprom_data[NVM_MAC_ADDR] = ((uint16_t)sc->esc_mac.octet[0]) |
383 		(((uint16_t)sc->esc_mac.octet[1]) << 8);
384 	sc->eeprom_data[NVM_MAC_ADDR+1] = ((uint16_t)sc->esc_mac.octet[2]) |
385 		(((uint16_t)sc->esc_mac.octet[3]) << 8);
386 	sc->eeprom_data[NVM_MAC_ADDR+2] = ((uint16_t)sc->esc_mac.octet[4]) |
387 		(((uint16_t)sc->esc_mac.octet[5]) << 8);
388 
389 	/* pci ids */
390 	sc->eeprom_data[NVM_SUB_DEV_ID] = E82545_SUBDEV_ID;
391 	sc->eeprom_data[NVM_SUB_VEN_ID] = E82545_VENDOR_ID_INTEL;
392 	sc->eeprom_data[NVM_DEV_ID] = E82545_DEV_ID_82545EM_COPPER;
393 	sc->eeprom_data[NVM_VEN_ID] = E82545_VENDOR_ID_INTEL;
394 
395 	/* fill in the checksum */
396         checksum = 0;
397 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
398 		checksum += sc->eeprom_data[i];
399 	}
400 	checksum = NVM_SUM - checksum;
401 	sc->eeprom_data[NVM_CHECKSUM_REG] = checksum;
402 	DPRINTF("eeprom checksum: 0x%x\r\n", checksum);
403 }
404 
405 static void
406 e82545_write_mdi(struct e82545_softc *sc, uint8_t reg_addr,
407 			uint8_t phy_addr, uint32_t data)
408 {
409 	DPRINTF("Write mdi reg:0x%x phy:0x%x data: 0x%x\r\n", reg_addr, phy_addr, data);
410 }
411 
412 static uint32_t
413 e82545_read_mdi(struct e82545_softc *sc, uint8_t reg_addr,
414 			uint8_t phy_addr)
415 {
416 	//DPRINTF("Read mdi reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
417 	switch (reg_addr) {
418 	case PHY_STATUS:
419 		return (MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS |
420 			MII_SR_AUTONEG_COMPLETE);
421 	case PHY_AUTONEG_ADV:
422 		return NWAY_AR_SELECTOR_FIELD;
423 	case PHY_LP_ABILITY:
424 		return 0;
425 	case PHY_1000T_STATUS:
426 		return (SR_1000T_LP_FD_CAPS | SR_1000T_REMOTE_RX_STATUS |
427 			SR_1000T_LOCAL_RX_STATUS);
428 	case PHY_ID1:
429 		return (M88E1011_I_PHY_ID >> 16) & 0xFFFF;
430 	case PHY_ID2:
431 		return (M88E1011_I_PHY_ID | E82545_REVISION_4) & 0xFFFF;
432 	default:
433 		DPRINTF("Unknown mdi read reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
434 		return 0;
435 	}
436 	/* not reached */
437 }
438 
439 static void
440 e82545_eecd_strobe(struct e82545_softc *sc)
441 {
442 	/* Microwire state machine */
443 	/*
444 	DPRINTF("eeprom state machine srtobe "
445 		"0x%x 0x%x 0x%x 0x%x\r\n",
446 		sc->nvm_mode, sc->nvm_bits,
447 		sc->nvm_opaddr, sc->nvm_data);*/
448 
449 	if (sc->nvm_bits == 0) {
450 		DPRINTF("eeprom state machine not expecting data! "
451 			"0x%x 0x%x 0x%x 0x%x\r\n",
452 			sc->nvm_mode, sc->nvm_bits,
453 			sc->nvm_opaddr, sc->nvm_data);
454 		return;
455 	}
456 	sc->nvm_bits--;
457 	if (sc->nvm_mode == E82545_NVM_MODE_DATAOUT) {
458 		/* shifting out */
459 		if (sc->nvm_data & 0x8000) {
460 			sc->eeprom_control |= E1000_EECD_DO;
461 		} else {
462 			sc->eeprom_control &= ~E1000_EECD_DO;
463 		}
464 		sc->nvm_data <<= 1;
465 		if (sc->nvm_bits == 0) {
466 			/* read done, back to opcode mode. */
467 			sc->nvm_opaddr = 0;
468 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
469 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
470 		}
471 	} else if (sc->nvm_mode == E82545_NVM_MODE_DATAIN) {
472 		/* shifting in */
473 		sc->nvm_data <<= 1;
474 		if (sc->eeprom_control & E1000_EECD_DI) {
475 			sc->nvm_data |= 1;
476 		}
477 		if (sc->nvm_bits == 0) {
478 			/* eeprom write */
479 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
480 			uint16_t addr = sc->nvm_opaddr & E82545_NVM_ADDR_MASK;
481 			if (op != E82545_NVM_OPCODE_WRITE) {
482 				DPRINTF("Illegal eeprom write op 0x%x\r\n",
483 					sc->nvm_opaddr);
484 			} else if (addr >= E82545_NVM_EEPROM_SIZE) {
485 				DPRINTF("Illegal eeprom write addr 0x%x\r\n",
486 					sc->nvm_opaddr);
487 			} else {
488 				DPRINTF("eeprom write eeprom[0x%x] = 0x%x\r\n",
489 				addr, sc->nvm_data);
490 				sc->eeprom_data[addr] = sc->nvm_data;
491 			}
492 			/* back to opcode mode */
493 			sc->nvm_opaddr = 0;
494 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
495 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
496 		}
497 	} else if (sc->nvm_mode == E82545_NVM_MODE_OPADDR) {
498 		sc->nvm_opaddr <<= 1;
499 		if (sc->eeprom_control & E1000_EECD_DI) {
500 			sc->nvm_opaddr |= 1;
501 		}
502 		if (sc->nvm_bits == 0) {
503 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
504 			switch (op) {
505 			case E82545_NVM_OPCODE_EWEN:
506 				DPRINTF("eeprom write enable: 0x%x\r\n",
507 					sc->nvm_opaddr);
508 				/* back to opcode mode */
509 				sc->nvm_opaddr = 0;
510 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
511 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
512 				break;
513 			case E82545_NVM_OPCODE_READ:
514 			{
515 				uint16_t addr = sc->nvm_opaddr &
516 					E82545_NVM_ADDR_MASK;
517 				sc->nvm_mode = E82545_NVM_MODE_DATAOUT;
518 				sc->nvm_bits = E82545_NVM_DATA_BITS;
519 				if (addr < E82545_NVM_EEPROM_SIZE) {
520 					sc->nvm_data = sc->eeprom_data[addr];
521 					DPRINTF("eeprom read: eeprom[0x%x] = 0x%x\r\n",
522 						addr, sc->nvm_data);
523 				} else {
524 					DPRINTF("eeprom illegal read: 0x%x\r\n",
525 						sc->nvm_opaddr);
526 					sc->nvm_data = 0;
527 				}
528 				break;
529 			}
530 			case E82545_NVM_OPCODE_WRITE:
531 				sc->nvm_mode = E82545_NVM_MODE_DATAIN;
532 				sc->nvm_bits = E82545_NVM_DATA_BITS;
533 				sc->nvm_data = 0;
534 				break;
535 			default:
536 				DPRINTF("eeprom unknown op: 0x%x\r\r",
537 					sc->nvm_opaddr);
538 				/* back to opcode mode */
539 				sc->nvm_opaddr = 0;
540 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
541 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
542 			}
543 		}
544 	} else {
545 		DPRINTF("eeprom state machine wrong state! "
546 			"0x%x 0x%x 0x%x 0x%x\r\n",
547 			sc->nvm_mode, sc->nvm_bits,
548 			sc->nvm_opaddr, sc->nvm_data);
549 	}
550 }
551 
552 static void
553 e82545_itr_callback(int fd, enum ev_type type, void *param)
554 {
555 	uint32_t new;
556 	struct e82545_softc *sc = param;
557 
558 	pthread_mutex_lock(&sc->esc_mtx);
559 	new = sc->esc_ICR & sc->esc_IMS;
560 	if (new && !sc->esc_irq_asserted) {
561 		DPRINTF("itr callback: lintr assert %x\r\n", new);
562 		sc->esc_irq_asserted = 1;
563 		pci_lintr_assert(sc->esc_pi);
564 	} else {
565 		mevent_delete(sc->esc_mevpitr);
566 		sc->esc_mevpitr = NULL;
567 	}
568 	pthread_mutex_unlock(&sc->esc_mtx);
569 }
570 
571 static void
572 e82545_icr_assert(struct e82545_softc *sc, uint32_t bits)
573 {
574 	uint32_t new;
575 
576 	DPRINTF("icr assert: 0x%x\r\n", bits);
577 
578 	/*
579 	 * An interrupt is only generated if bits are set that
580 	 * aren't already in the ICR, these bits are unmasked,
581 	 * and there isn't an interrupt already pending.
582 	 */
583 	new = bits & ~sc->esc_ICR & sc->esc_IMS;
584 	sc->esc_ICR |= bits;
585 
586 	if (new == 0) {
587 		DPRINTF("icr assert: masked %x, ims %x\r\n", new, sc->esc_IMS);
588 	} else if (sc->esc_mevpitr != NULL) {
589 		DPRINTF("icr assert: throttled %x, ims %x\r\n", new, sc->esc_IMS);
590 	} else if (!sc->esc_irq_asserted) {
591 		DPRINTF("icr assert: lintr assert %x\r\n", new);
592 		sc->esc_irq_asserted = 1;
593 		pci_lintr_assert(sc->esc_pi);
594 		if (sc->esc_ITR != 0) {
595 			sc->esc_mevpitr = mevent_add(
596 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
597 			    EVF_TIMER, e82545_itr_callback, sc);
598 		}
599 	}
600 }
601 
602 static void
603 e82545_ims_change(struct e82545_softc *sc, uint32_t bits)
604 {
605 	uint32_t new;
606 
607 	/*
608 	 * Changing the mask may allow previously asserted
609 	 * but masked interrupt requests to generate an interrupt.
610 	 */
611 	new = bits & sc->esc_ICR & ~sc->esc_IMS;
612 	sc->esc_IMS |= bits;
613 
614 	if (new == 0) {
615 		DPRINTF("ims change: masked %x, ims %x\r\n", new, sc->esc_IMS);
616 	} else if (sc->esc_mevpitr != NULL) {
617 		DPRINTF("ims change: throttled %x, ims %x\r\n", new, sc->esc_IMS);
618 	} else if (!sc->esc_irq_asserted) {
619 		DPRINTF("ims change: lintr assert %x\n\r", new);
620 		sc->esc_irq_asserted = 1;
621 		pci_lintr_assert(sc->esc_pi);
622 		if (sc->esc_ITR != 0) {
623 			sc->esc_mevpitr = mevent_add(
624 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
625 			    EVF_TIMER, e82545_itr_callback, sc);
626 		}
627 	}
628 }
629 
630 static void
631 e82545_icr_deassert(struct e82545_softc *sc, uint32_t bits)
632 {
633 
634 	DPRINTF("icr deassert: 0x%x\r\n", bits);
635 	sc->esc_ICR &= ~bits;
636 
637 	/*
638 	 * If there are no longer any interrupt sources and there
639 	 * was an asserted interrupt, clear it
640 	 */
641 	if (sc->esc_irq_asserted && !(sc->esc_ICR & sc->esc_IMS)) {
642 		DPRINTF("icr deassert: lintr deassert %x\r\n", bits);
643 		pci_lintr_deassert(sc->esc_pi);
644 		sc->esc_irq_asserted = 0;
645 	}
646 }
647 
648 static void
649 e82545_intr_write(struct e82545_softc *sc, uint32_t offset, uint32_t value)
650 {
651 
652 	DPRINTF("intr_write: off %x, val %x\n\r", offset, value);
653 
654 	switch (offset) {
655 	case E1000_ICR:
656 		e82545_icr_deassert(sc, value);
657 		break;
658 	case E1000_ITR:
659 		sc->esc_ITR = value;
660 		break;
661 	case E1000_ICS:
662 		sc->esc_ICS = value;	/* not used: store for debug */
663 		e82545_icr_assert(sc, value);
664 		break;
665 	case E1000_IMS:
666 		e82545_ims_change(sc, value);
667 		break;
668 	case E1000_IMC:
669 		sc->esc_IMC = value;	/* for debug */
670 		sc->esc_IMS &= ~value;
671 		// XXX clear interrupts if all ICR bits now masked
672 		// and interrupt was pending ?
673 		break;
674 	default:
675 		break;
676 	}
677 }
678 
679 static uint32_t
680 e82545_intr_read(struct e82545_softc *sc, uint32_t offset)
681 {
682 	uint32_t retval;
683 
684 	retval = 0;
685 
686 	DPRINTF("intr_read: off %x\n\r", offset);
687 
688 	switch (offset) {
689 	case E1000_ICR:
690 		retval = sc->esc_ICR;
691 		sc->esc_ICR = 0;
692 		e82545_icr_deassert(sc, ~0);
693 		break;
694 	case E1000_ITR:
695 		retval = sc->esc_ITR;
696 		break;
697 	case E1000_ICS:
698 		/* write-only register */
699 		break;
700 	case E1000_IMS:
701 		retval = sc->esc_IMS;
702 		break;
703 	case E1000_IMC:
704 		/* write-only register */
705 		break;
706 	default:
707 		break;
708 	}
709 
710 	return (retval);
711 }
712 
713 static void
714 e82545_devctl(struct e82545_softc *sc, uint32_t val)
715 {
716 
717 	sc->esc_CTRL = val & ~E1000_CTRL_RST;
718 
719 	if (val & E1000_CTRL_RST) {
720 		DPRINTF("e1k: s/w reset, ctl %x\n", val);
721 		e82545_reset(sc, 1);
722 	}
723 	/* XXX check for phy reset ? */
724 }
725 
726 static void
727 e82545_rx_update_rdba(struct e82545_softc *sc)
728 {
729 
730 	/* XXX verify desc base/len within phys mem range */
731 	sc->esc_rdba = (uint64_t)sc->esc_RDBAH << 32 |
732 	    sc->esc_RDBAL;
733 
734 	/* Cache host mapping of guest descriptor array */
735 	sc->esc_rxdesc = paddr_guest2host(sc->esc_ctx,
736 	    sc->esc_rdba, sc->esc_RDLEN);
737 }
738 
739 static void
740 e82545_rx_ctl(struct e82545_softc *sc, uint32_t val)
741 {
742 	int on;
743 
744 	on = ((val & E1000_RCTL_EN) == E1000_RCTL_EN);
745 
746 	/* Save RCTL after stripping reserved bits 31:27,24,21,14,11:10,0 */
747 	sc->esc_RCTL = val & ~0xF9204c01;
748 
749 	DPRINTF("rx_ctl - %s RCTL %x, val %x\n",
750 		on ? "on" : "off", sc->esc_RCTL, val);
751 
752 	/* state change requested */
753 	if (on != sc->esc_rx_enabled) {
754 		if (on) {
755 			/* Catch disallowed/unimplemented settings */
756 			//assert(!(val & E1000_RCTL_LBM_TCVR));
757 
758 			if (sc->esc_RCTL & E1000_RCTL_LBM_TCVR) {
759 				sc->esc_rx_loopback = 1;
760 			} else {
761 				sc->esc_rx_loopback = 0;
762 			}
763 
764 			e82545_rx_update_rdba(sc);
765 			e82545_rx_enable(sc);
766 		} else {
767 			e82545_rx_disable(sc);
768 			sc->esc_rx_loopback = 0;
769 			sc->esc_rdba = 0;
770 			sc->esc_rxdesc = NULL;
771 		}
772 	}
773 }
774 
775 static void
776 e82545_tx_update_tdba(struct e82545_softc *sc)
777 {
778 
779 	/* XXX verify desc base/len within phys mem range */
780 	sc->esc_tdba = (uint64_t)sc->esc_TDBAH << 32 | sc->esc_TDBAL;
781 
782 	/* Cache host mapping of guest descriptor array */
783 	sc->esc_txdesc = paddr_guest2host(sc->esc_ctx, sc->esc_tdba,
784             sc->esc_TDLEN);
785 }
786 
787 static void
788 e82545_tx_ctl(struct e82545_softc *sc, uint32_t val)
789 {
790 	int on;
791 
792 	on = ((val & E1000_TCTL_EN) == E1000_TCTL_EN);
793 
794 	/* ignore TCTL_EN settings that don't change state */
795 	if (on == sc->esc_tx_enabled)
796 		return;
797 
798 	if (on) {
799 		e82545_tx_update_tdba(sc);
800 		e82545_tx_enable(sc);
801 	} else {
802 		e82545_tx_disable(sc);
803 		sc->esc_tdba = 0;
804 		sc->esc_txdesc = NULL;
805 	}
806 
807 	/* Save TCTL value after stripping reserved bits 31:25,23,2,0 */
808 	sc->esc_TCTL = val & ~0xFE800005;
809 }
810 
811 int
812 e82545_bufsz(uint32_t rctl)
813 {
814 
815 	switch (rctl & (E1000_RCTL_BSEX | E1000_RCTL_SZ_256)) {
816 	case (E1000_RCTL_SZ_2048): return (2048);
817 	case (E1000_RCTL_SZ_1024): return (1024);
818 	case (E1000_RCTL_SZ_512): return (512);
819 	case (E1000_RCTL_SZ_256): return (256);
820 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_16384): return (16384);
821 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_8192): return (8192);
822 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_4096): return (4096);
823 	}
824 	return (256);	/* Forbidden value. */
825 }
826 
827 /* XXX one packet at a time until this is debugged */
828 static void
829 e82545_rx_callback(int fd, enum ev_type type, void *param)
830 {
831 	struct e82545_softc *sc = param;
832 	struct e1000_rx_desc *rxd;
833 	struct iovec vec[64];
834 	int left, len, lim, maxpktsz, maxpktdesc, bufsz, i, n, size;
835 	uint32_t cause = 0;
836 	uint16_t *tp, tag, head;
837 
838 	pthread_mutex_lock(&sc->esc_mtx);
839 	DPRINTF("rx_run: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
840 
841 	if (!sc->esc_rx_enabled || sc->esc_rx_loopback) {
842 		DPRINTF("rx disabled (!%d || %d) -- packet(s) dropped\r\n",
843 		    sc->esc_rx_enabled, sc->esc_rx_loopback);
844 		while (netbe_rx_discard(sc->esc_be) > 0) {
845 		}
846 		goto done1;
847 	}
848 	bufsz = e82545_bufsz(sc->esc_RCTL);
849 	maxpktsz = (sc->esc_RCTL & E1000_RCTL_LPE) ? 16384 : 1522;
850 	maxpktdesc = (maxpktsz + bufsz - 1) / bufsz;
851 	size = sc->esc_RDLEN / 16;
852 	head = sc->esc_RDH;
853 	left = (size + sc->esc_RDT - head) % size;
854 	if (left < maxpktdesc) {
855 		DPRINTF("rx overflow (%d < %d) -- packet(s) dropped\r\n",
856 		    left, maxpktdesc);
857 		while (netbe_rx_discard(sc->esc_be) > 0) {
858 		}
859 		goto done1;
860 	}
861 
862 	sc->esc_rx_active = 1;
863 	pthread_mutex_unlock(&sc->esc_mtx);
864 
865 	for (lim = size / 4; lim > 0 && left >= maxpktdesc; lim -= n) {
866 
867 		/* Grab rx descriptor pointed to by the head pointer */
868 		for (i = 0; i < maxpktdesc; i++) {
869 			rxd = &sc->esc_rxdesc[(head + i) % size];
870 			vec[i].iov_base = paddr_guest2host(sc->esc_ctx,
871 			    rxd->buffer_addr, bufsz);
872 			vec[i].iov_len = bufsz;
873 		}
874 		len = netbe_recv(sc->esc_be, vec, maxpktdesc);
875 		if (len <= 0) {
876 			DPRINTF("netbe_recv() returned %d\n", len);
877 			goto done;
878 		}
879 
880 		/*
881 		 * Adjust the packet length based on whether the CRC needs
882 		 * to be stripped or if the packet is less than the minimum
883 		 * eth packet size.
884 		 */
885 		if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
886 			len = ETHER_MIN_LEN - ETHER_CRC_LEN;
887 		if (!(sc->esc_RCTL & E1000_RCTL_SECRC))
888 			len += ETHER_CRC_LEN;
889 		n = (len + bufsz - 1) / bufsz;
890 
891 		DPRINTF("packet read %d bytes, %d segs, head %d\r\n",
892 		    len, n, head);
893 
894 		/* Apply VLAN filter. */
895 		tp = (uint16_t *)vec[0].iov_base + 6;
896 		if ((sc->esc_RCTL & E1000_RCTL_VFE) &&
897 		    (ntohs(tp[0]) == sc->esc_VET)) {
898 			tag = ntohs(tp[1]) & 0x0fff;
899 			if ((sc->esc_fvlan[tag >> 5] &
900 			    (1 << (tag & 0x1f))) != 0) {
901 				DPRINTF("known VLAN %d\r\n", tag);
902 			} else {
903 				DPRINTF("unknown VLAN %d\r\n", tag);
904 				n = 0;
905 				continue;
906 			}
907 		}
908 
909 		/* Update all consumed descriptors. */
910 		for (i = 0; i < n - 1; i++) {
911 			rxd = &sc->esc_rxdesc[(head + i) % size];
912 			rxd->length = bufsz;
913 			rxd->csum = 0;
914 			rxd->errors = 0;
915 			rxd->special = 0;
916 			rxd->status = E1000_RXD_STAT_DD;
917 		}
918 		rxd = &sc->esc_rxdesc[(head + i) % size];
919 		rxd->length = len % bufsz;
920 		rxd->csum = 0;
921 		rxd->errors = 0;
922 		rxd->special = 0;
923 		/* XXX signal no checksum for now */
924 		rxd->status = E1000_RXD_STAT_PIF | E1000_RXD_STAT_IXSM |
925 		    E1000_RXD_STAT_EOP | E1000_RXD_STAT_DD;
926 
927 		/* Schedule receive interrupts. */
928 		if (len <= sc->esc_RSRPD) {
929 			cause |= E1000_ICR_SRPD | E1000_ICR_RXT0;
930 		} else {
931 			/* XXX: RDRT and RADV timers should be here. */
932 			cause |= E1000_ICR_RXT0;
933 		}
934 
935 		head = (head + n) % size;
936 		left -= n;
937 	}
938 
939 done:
940 	pthread_mutex_lock(&sc->esc_mtx);
941 	sc->esc_rx_active = 0;
942 	if (sc->esc_rx_enabled == 0)
943 		pthread_cond_signal(&sc->esc_rx_cond);
944 
945 	sc->esc_RDH = head;
946 	/* Respect E1000_RCTL_RDMTS */
947 	left = (size + sc->esc_RDT - head) % size;
948 	if (left < (size >> (((sc->esc_RCTL >> 8) & 3) + 1)))
949 		cause |= E1000_ICR_RXDMT0;
950 	/* Assert all accumulated interrupts. */
951 	if (cause != 0)
952 		e82545_icr_assert(sc, cause);
953 done1:
954 	DPRINTF("rx_run done: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
955 	pthread_mutex_unlock(&sc->esc_mtx);
956 }
957 
958 static uint16_t
959 e82545_carry(uint32_t sum)
960 {
961 
962 	sum = (sum & 0xFFFF) + (sum >> 16);
963 	if (sum > 0xFFFF)
964 		sum -= 0xFFFF;
965 	return (sum);
966 }
967 
968 static uint16_t
969 e82545_buf_checksum(uint8_t *buf, int len)
970 {
971 	int i;
972 	uint32_t sum = 0;
973 
974 	/* Checksum all the pairs of bytes first... */
975 	for (i = 0; i < (len & ~1U); i += 2)
976 		sum += *((u_int16_t *)(buf + i));
977 
978 	/*
979 	 * If there's a single byte left over, checksum it, too.
980 	 * Network byte order is big-endian, so the remaining byte is
981 	 * the high byte.
982 	 */
983 	if (i < len)
984 		sum += htons(buf[i] << 8);
985 
986 	return (e82545_carry(sum));
987 }
988 
989 static uint16_t
990 e82545_iov_checksum(struct iovec *iov, int iovcnt, int off, int len)
991 {
992 	int now, odd;
993 	uint32_t sum = 0, s;
994 
995 	/* Skip completely unneeded vectors. */
996 	while (iovcnt > 0 && iov->iov_len <= off && off > 0) {
997 		off -= iov->iov_len;
998 		iov++;
999 		iovcnt--;
1000 	}
1001 
1002 	/* Calculate checksum of requested range. */
1003 	odd = 0;
1004 	while (len > 0 && iovcnt > 0) {
1005 		now = MIN(len, iov->iov_len - off);
1006 		s = e82545_buf_checksum(iov->iov_base + off, now);
1007 		sum += odd ? (s << 8) : s;
1008 		odd ^= (now & 1);
1009 		len -= now;
1010 		off = 0;
1011 		iov++;
1012 		iovcnt--;
1013 	}
1014 
1015 	return (e82545_carry(sum));
1016 }
1017 
1018 /*
1019  * Return the transmit descriptor type.
1020  */
1021 int
1022 e82545_txdesc_type(uint32_t lower)
1023 {
1024 	int type;
1025 
1026 	type = 0;
1027 
1028 	if (lower & E1000_TXD_CMD_DEXT)
1029 		type = lower & E1000_TXD_MASK;
1030 
1031 	return (type);
1032 }
1033 
1034 static void
1035 e82545_transmit_checksum(struct iovec *iov, int iovcnt, struct ck_info *ck)
1036 {
1037 	uint16_t cksum;
1038 	int cklen;
1039 
1040 	DPRINTF("tx cksum: iovcnt/s/off/len %d/%d/%d/%d\r\n",
1041 	    iovcnt, ck->ck_start, ck->ck_off, ck->ck_len);
1042 	cklen = ck->ck_len ? ck->ck_len - ck->ck_start + 1 : INT_MAX;
1043 	cksum = e82545_iov_checksum(iov, iovcnt, ck->ck_start, cklen);
1044 	*(uint16_t *)((uint8_t *)iov[0].iov_base + ck->ck_off) = ~cksum;
1045 }
1046 
1047 static void
1048 e82545_transmit_backend(struct e82545_softc *sc, struct iovec *iov, int iovcnt)
1049 {
1050 
1051 	if (sc->esc_be == NULL)
1052 		return;
1053 
1054 	(void) netbe_send(sc->esc_be, iov, iovcnt);
1055 }
1056 
1057 static void
1058 e82545_transmit_done(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1059     uint16_t dsize, int *tdwb)
1060 {
1061 	union e1000_tx_udesc *dsc;
1062 
1063 	for ( ; head != tail; head = (head + 1) % dsize) {
1064 		dsc = &sc->esc_txdesc[head];
1065 		if (dsc->td.lower.data & E1000_TXD_CMD_RS) {
1066 			dsc->td.upper.data |= E1000_TXD_STAT_DD;
1067 			*tdwb = 1;
1068 		}
1069 	}
1070 }
1071 
1072 static int
1073 e82545_transmit(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1074     uint16_t dsize, uint16_t *rhead, int *tdwb)
1075 {
1076 	uint8_t *hdr, *hdrp;
1077 	struct iovec iovb[I82545_MAX_TXSEGS + 2];
1078 	struct iovec tiov[I82545_MAX_TXSEGS + 2];
1079 	struct e1000_context_desc *cd;
1080 	struct ck_info ckinfo[2];
1081 	struct iovec *iov;
1082 	union  e1000_tx_udesc *dsc;
1083 	int desc, dtype, len, ntype, iovcnt, tlen, tcp, tso;
1084 	int mss, paylen, seg, tiovcnt, left, now, nleft, nnow, pv, pvoff;
1085 	unsigned hdrlen, vlen;
1086 	uint32_t tcpsum, tcpseq;
1087 	uint16_t ipcs, tcpcs, ipid, ohead;
1088 
1089 	ckinfo[0].ck_valid = ckinfo[1].ck_valid = 0;
1090 	iovcnt = 0;
1091 	tlen = 0;
1092 	ntype = 0;
1093 	tso = 0;
1094 	ohead = head;
1095 
1096 	/* iovb[0/1] may be used for writable copy of headers. */
1097 	iov = &iovb[2];
1098 
1099 	for (desc = 0; ; desc++, head = (head + 1) % dsize) {
1100 		if (head == tail) {
1101 			*rhead = head;
1102 			return (0);
1103 		}
1104 		dsc = &sc->esc_txdesc[head];
1105 		dtype = e82545_txdesc_type(dsc->td.lower.data);
1106 
1107 		if (desc == 0) {
1108 			switch (dtype) {
1109 			case E1000_TXD_TYP_C:
1110 				DPRINTF("tx ctxt desc idx %d: %016jx "
1111 				    "%08x%08x\r\n",
1112 				    head, dsc->td.buffer_addr,
1113 				    dsc->td.upper.data, dsc->td.lower.data);
1114 				/* Save context and return */
1115 				sc->esc_txctx = dsc->cd;
1116 				goto done;
1117 			case E1000_TXD_TYP_L:
1118 				DPRINTF("tx legacy desc idx %d: %08x%08x\r\n",
1119 				    head, dsc->td.upper.data, dsc->td.lower.data);
1120 				/*
1121 				 * legacy cksum start valid in first descriptor
1122 				 */
1123 				ntype = dtype;
1124 				ckinfo[0].ck_start = dsc->td.upper.fields.css;
1125 				break;
1126 			case E1000_TXD_TYP_D:
1127 				DPRINTF("tx data desc idx %d: %08x%08x\r\n",
1128 				    head, dsc->td.upper.data, dsc->td.lower.data);
1129 				ntype = dtype;
1130 				break;
1131 			default:
1132 				break;
1133 			}
1134 		} else {
1135 			/* Descriptor type must be consistent */
1136 			assert(dtype == ntype);
1137 			DPRINTF("tx next desc idx %d: %08x%08x\r\n",
1138 			    head, dsc->td.upper.data, dsc->td.lower.data);
1139 		}
1140 
1141 		len = (dtype == E1000_TXD_TYP_L) ? dsc->td.lower.flags.length :
1142 		    dsc->dd.lower.data & 0xFFFFF;
1143 
1144 		if (len > 0) {
1145 			/* Strip checksum supplied by guest. */
1146 			if ((dsc->td.lower.data & E1000_TXD_CMD_EOP) != 0 &&
1147 			    (dsc->td.lower.data & E1000_TXD_CMD_IFCS) == 0)
1148 				len -= 2;
1149 			tlen += len;
1150 			if (iovcnt < I82545_MAX_TXSEGS) {
1151 				iov[iovcnt].iov_base = paddr_guest2host(
1152 				    sc->esc_ctx, dsc->td.buffer_addr, len);
1153 				iov[iovcnt].iov_len = len;
1154 			}
1155 			iovcnt++;
1156 		}
1157 
1158 		/*
1159 		 * Pull out info that is valid in the final descriptor
1160 		 * and exit descriptor loop.
1161 		 */
1162 		if (dsc->td.lower.data & E1000_TXD_CMD_EOP) {
1163 			if (dtype == E1000_TXD_TYP_L) {
1164 				if (dsc->td.lower.data & E1000_TXD_CMD_IC) {
1165 					ckinfo[0].ck_valid = 1;
1166 					ckinfo[0].ck_off =
1167 					    dsc->td.lower.flags.cso;
1168 					ckinfo[0].ck_len = 0;
1169 				}
1170 			} else {
1171 				cd = &sc->esc_txctx;
1172 				if (dsc->dd.lower.data & E1000_TXD_CMD_TSE)
1173 					tso = 1;
1174 				if (dsc->dd.upper.fields.popts &
1175 				    E1000_TXD_POPTS_IXSM)
1176 					ckinfo[0].ck_valid = 1;
1177 				if (dsc->dd.upper.fields.popts &
1178 				    E1000_TXD_POPTS_IXSM || tso) {
1179 					ckinfo[0].ck_start =
1180 					    cd->lower_setup.ip_fields.ipcss;
1181 					ckinfo[0].ck_off =
1182 					    cd->lower_setup.ip_fields.ipcso;
1183 					ckinfo[0].ck_len =
1184 					    cd->lower_setup.ip_fields.ipcse;
1185 				}
1186 				if (dsc->dd.upper.fields.popts &
1187 				    E1000_TXD_POPTS_TXSM)
1188 					ckinfo[1].ck_valid = 1;
1189 				if (dsc->dd.upper.fields.popts &
1190 				    E1000_TXD_POPTS_TXSM || tso) {
1191 					ckinfo[1].ck_start =
1192 					    cd->upper_setup.tcp_fields.tucss;
1193 					ckinfo[1].ck_off =
1194 					    cd->upper_setup.tcp_fields.tucso;
1195 					ckinfo[1].ck_len =
1196 					    cd->upper_setup.tcp_fields.tucse;
1197 				}
1198 			}
1199 			break;
1200 		}
1201 	}
1202 
1203 	if (iovcnt > I82545_MAX_TXSEGS) {
1204 		WPRINTF("tx too many descriptors (%d > %d) -- dropped\r\n",
1205 		    iovcnt, I82545_MAX_TXSEGS);
1206 		goto done;
1207 	}
1208 
1209 	hdrlen = vlen = 0;
1210 	/* Estimate writable space for VLAN header insertion. */
1211 	if ((sc->esc_CTRL & E1000_CTRL_VME) &&
1212 	    (dsc->td.lower.data & E1000_TXD_CMD_VLE)) {
1213 		hdrlen = ETHER_ADDR_LEN*2;
1214 		vlen = ETHER_VLAN_ENCAP_LEN;
1215 	}
1216 	if (!tso) {
1217 		/* Estimate required writable space for checksums. */
1218 		if (ckinfo[0].ck_valid)
1219 			hdrlen = MAX(hdrlen, ckinfo[0].ck_off + 2);
1220 		if (ckinfo[1].ck_valid)
1221 			hdrlen = MAX(hdrlen, ckinfo[1].ck_off + 2);
1222 		/* Round up writable space to the first vector. */
1223 		if (hdrlen != 0 && iov[0].iov_len > hdrlen &&
1224 		    iov[0].iov_len < hdrlen + 100)
1225 			hdrlen = iov[0].iov_len;
1226 	} else {
1227 		/* In case of TSO header length provided by software. */
1228 		hdrlen = sc->esc_txctx.tcp_seg_setup.fields.hdr_len;
1229 
1230 		/*
1231 		 * Cap the header length at 240 based on 7.2.4.5 of
1232 		 * the Intel 82576EB (Rev 2.63) datasheet.
1233 		 */
1234 		if (hdrlen > 240) {
1235 			WPRINTF("TSO hdrlen too large: %d\r\n", hdrlen);
1236 			goto done;
1237 		}
1238 
1239 		/*
1240 		 * If VLAN insertion is requested, ensure the header
1241 		 * at least holds the amount of data copied during
1242 		 * VLAN insertion below.
1243 		 *
1244 		 * XXX: Realistic packets will include a full Ethernet
1245 		 * header before the IP header at ckinfo[0].ck_start,
1246 		 * but this check is sufficient to prevent
1247 		 * out-of-bounds access below.
1248 		 */
1249 		if (vlen != 0 && hdrlen < ETHER_ADDR_LEN*2) {
1250 			WPRINTF("TSO hdrlen too small for vlan insertion "
1251 			    "(%d vs %d) -- dropped\r\n", hdrlen,
1252 			    ETHER_ADDR_LEN*2);
1253 			goto done;
1254 		}
1255 
1256 		/*
1257 		 * Ensure that the header length covers the used fields
1258 		 * in the IP and TCP headers as well as the IP and TCP
1259 		 * checksums.  The following fields are accessed below:
1260 		 *
1261 		 * Header | Field | Offset | Length
1262 		 * -------+-------+--------+-------
1263 		 * IPv4   | len   | 2      | 2
1264 		 * IPv4   | ID    | 4      | 2
1265 		 * IPv6   | len   | 4      | 2
1266 		 * TCP    | seq # | 4      | 4
1267 		 * TCP    | flags | 13     | 1
1268 		 * UDP    | len   | 4      | 4
1269 		 */
1270 		if (hdrlen < ckinfo[0].ck_start + 6 ||
1271 		    hdrlen < ckinfo[0].ck_off + 2) {
1272 			WPRINTF("TSO hdrlen too small for IP fields (%d) "
1273 			    "-- dropped\r\n", hdrlen);
1274 			goto done;
1275 		}
1276 		if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) {
1277 			if (hdrlen < ckinfo[1].ck_start + 14 ||
1278 			    (ckinfo[1].ck_valid &&
1279 			    hdrlen < ckinfo[1].ck_off + 2)) {
1280 				WPRINTF("TSO hdrlen too small for TCP fields "
1281 				    "(%d) -- dropped\r\n", hdrlen);
1282 				goto done;
1283 			}
1284 		} else {
1285 			if (hdrlen < ckinfo[1].ck_start + 8) {
1286 				WPRINTF("TSO hdrlen too small for UDP fields "
1287 				    "(%d) -- dropped\r\n", hdrlen);
1288 				goto done;
1289 			}
1290 		}
1291 	}
1292 
1293 	/* Allocate, fill and prepend writable header vector. */
1294 	if (hdrlen != 0) {
1295 		hdr = __builtin_alloca(hdrlen + vlen);
1296 		hdr += vlen;
1297 		for (left = hdrlen, hdrp = hdr; left > 0;
1298 		    left -= now, hdrp += now) {
1299 			now = MIN(left, iov->iov_len);
1300 			memcpy(hdrp, iov->iov_base, now);
1301 			iov->iov_base += now;
1302 			iov->iov_len -= now;
1303 			if (iov->iov_len == 0) {
1304 				iov++;
1305 				iovcnt--;
1306 			}
1307 		}
1308 		iov--;
1309 		iovcnt++;
1310 		iov->iov_base = hdr;
1311 		iov->iov_len = hdrlen;
1312 	} else
1313 		hdr = NULL;
1314 
1315 	/* Insert VLAN tag. */
1316 	if (vlen != 0) {
1317 		hdr -= ETHER_VLAN_ENCAP_LEN;
1318 		memmove(hdr, hdr + ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN*2);
1319 		hdrlen += ETHER_VLAN_ENCAP_LEN;
1320 		hdr[ETHER_ADDR_LEN*2 + 0] = sc->esc_VET >> 8;
1321 		hdr[ETHER_ADDR_LEN*2 + 1] = sc->esc_VET & 0xff;
1322 		hdr[ETHER_ADDR_LEN*2 + 2] = dsc->td.upper.fields.special >> 8;
1323 		hdr[ETHER_ADDR_LEN*2 + 3] = dsc->td.upper.fields.special & 0xff;
1324 		iov->iov_base = hdr;
1325 		iov->iov_len += ETHER_VLAN_ENCAP_LEN;
1326 		/* Correct checksum offsets after VLAN tag insertion. */
1327 		ckinfo[0].ck_start += ETHER_VLAN_ENCAP_LEN;
1328 		ckinfo[0].ck_off += ETHER_VLAN_ENCAP_LEN;
1329 		if (ckinfo[0].ck_len != 0)
1330 			ckinfo[0].ck_len += ETHER_VLAN_ENCAP_LEN;
1331 		ckinfo[1].ck_start += ETHER_VLAN_ENCAP_LEN;
1332 		ckinfo[1].ck_off += ETHER_VLAN_ENCAP_LEN;
1333 		if (ckinfo[1].ck_len != 0)
1334 			ckinfo[1].ck_len += ETHER_VLAN_ENCAP_LEN;
1335 	}
1336 
1337 	/* Simple non-TSO case. */
1338 	if (!tso) {
1339 		/* Calculate checksums and transmit. */
1340 		if (ckinfo[0].ck_valid)
1341 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[0]);
1342 		if (ckinfo[1].ck_valid)
1343 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[1]);
1344 		e82545_transmit_backend(sc, iov, iovcnt);
1345 		goto done;
1346 	}
1347 
1348 	/* Doing TSO. */
1349 	tcp = (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) != 0;
1350 	mss = sc->esc_txctx.tcp_seg_setup.fields.mss;
1351 	paylen = (sc->esc_txctx.cmd_and_length & 0x000fffff);
1352 	DPRINTF("tx %s segmentation offload %d+%d/%d bytes %d iovs\r\n",
1353 	    tcp ? "TCP" : "UDP", hdrlen, paylen, mss, iovcnt);
1354 	ipid = ntohs(*(uint16_t *)&hdr[ckinfo[0].ck_start + 4]);
1355 	tcpseq = 0;
1356 	if (tcp)
1357 		tcpseq = ntohl(*(uint32_t *)&hdr[ckinfo[1].ck_start + 4]);
1358 	ipcs = *(uint16_t *)&hdr[ckinfo[0].ck_off];
1359 	tcpcs = 0;
1360 	if (ckinfo[1].ck_valid)	/* Save partial pseudo-header checksum. */
1361 		tcpcs = *(uint16_t *)&hdr[ckinfo[1].ck_off];
1362 	pv = 1;
1363 	pvoff = 0;
1364 	for (seg = 0, left = paylen; left > 0; seg++, left -= now) {
1365 		now = MIN(left, mss);
1366 
1367 		/* Construct IOVs for the segment. */
1368 		/* Include whole original header. */
1369 		tiov[0].iov_base = hdr;
1370 		tiov[0].iov_len = hdrlen;
1371 		tiovcnt = 1;
1372 		/* Include respective part of payload IOV. */
1373 		for (nleft = now; pv < iovcnt && nleft > 0; nleft -= nnow) {
1374 			nnow = MIN(nleft, iov[pv].iov_len - pvoff);
1375 			tiov[tiovcnt].iov_base = iov[pv].iov_base + pvoff;
1376 			tiov[tiovcnt++].iov_len = nnow;
1377 			if (pvoff + nnow == iov[pv].iov_len) {
1378 				pv++;
1379 				pvoff = 0;
1380 			} else
1381 				pvoff += nnow;
1382 		}
1383 		DPRINTF("tx segment %d %d+%d bytes %d iovs\r\n",
1384 		    seg, hdrlen, now, tiovcnt);
1385 
1386 		/* Update IP header. */
1387 		if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_IP) {
1388 			/* IPv4 -- set length and ID */
1389 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 2] =
1390 			    htons(hdrlen - ckinfo[0].ck_start + now);
1391 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1392 			    htons(ipid + seg);
1393 		} else {
1394 			/* IPv6 -- set length */
1395 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1396 			    htons(hdrlen - ckinfo[0].ck_start - 40 +
1397 				  now);
1398 		}
1399 
1400 		/* Update pseudo-header checksum. */
1401 		tcpsum = tcpcs;
1402 		tcpsum += htons(hdrlen - ckinfo[1].ck_start + now);
1403 
1404 		/* Update TCP/UDP headers. */
1405 		if (tcp) {
1406 			/* Update sequence number and FIN/PUSH flags. */
1407 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1408 			    htonl(tcpseq + paylen - left);
1409 			if (now < left) {
1410 				hdr[ckinfo[1].ck_start + 13] &=
1411 				    ~(TH_FIN | TH_PUSH);
1412 			}
1413 		} else {
1414 			/* Update payload length. */
1415 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1416 			    hdrlen - ckinfo[1].ck_start + now;
1417 		}
1418 
1419 		/* Calculate checksums and transmit. */
1420 		if (ckinfo[0].ck_valid) {
1421 			*(uint16_t *)&hdr[ckinfo[0].ck_off] = ipcs;
1422 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[0]);
1423 		}
1424 		if (ckinfo[1].ck_valid) {
1425 			*(uint16_t *)&hdr[ckinfo[1].ck_off] =
1426 			    e82545_carry(tcpsum);
1427 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[1]);
1428 		}
1429 		e82545_transmit_backend(sc, tiov, tiovcnt);
1430 	}
1431 
1432 done:
1433 	head = (head + 1) % dsize;
1434 	e82545_transmit_done(sc, ohead, head, dsize, tdwb);
1435 
1436 	*rhead = head;
1437 	return (desc + 1);
1438 }
1439 
1440 static void
1441 e82545_tx_run(struct e82545_softc *sc)
1442 {
1443 	uint32_t cause;
1444 	uint16_t head, rhead, tail, size;
1445 	int lim, tdwb, sent;
1446 
1447 	head = sc->esc_TDH;
1448 	tail = sc->esc_TDT;
1449 	size = sc->esc_TDLEN / 16;
1450 	DPRINTF("tx_run: head %x, rhead %x, tail %x\r\n",
1451 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1452 
1453 	pthread_mutex_unlock(&sc->esc_mtx);
1454 	rhead = head;
1455 	tdwb = 0;
1456 	for (lim = size / 4; sc->esc_tx_enabled && lim > 0; lim -= sent) {
1457 		sent = e82545_transmit(sc, head, tail, size, &rhead, &tdwb);
1458 		if (sent == 0)
1459 			break;
1460 		head = rhead;
1461 	}
1462 	pthread_mutex_lock(&sc->esc_mtx);
1463 
1464 	sc->esc_TDH = head;
1465 	sc->esc_TDHr = rhead;
1466 	cause = 0;
1467 	if (tdwb)
1468 		cause |= E1000_ICR_TXDW;
1469 	if (lim != size / 4 && sc->esc_TDH == sc->esc_TDT)
1470 		cause |= E1000_ICR_TXQE;
1471 	if (cause)
1472 		e82545_icr_assert(sc, cause);
1473 
1474 	DPRINTF("tx_run done: head %x, rhead %x, tail %x\r\n",
1475 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1476 }
1477 
1478 static _Noreturn void *
1479 e82545_tx_thread(void *param)
1480 {
1481 	struct e82545_softc *sc = param;
1482 
1483 	pthread_mutex_lock(&sc->esc_mtx);
1484 	for (;;) {
1485 		while (!sc->esc_tx_enabled || sc->esc_TDHr == sc->esc_TDT) {
1486 			if (sc->esc_tx_enabled && sc->esc_TDHr != sc->esc_TDT)
1487 				break;
1488 			sc->esc_tx_active = 0;
1489 			if (sc->esc_tx_enabled == 0)
1490 				pthread_cond_signal(&sc->esc_tx_cond);
1491 			pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1492 		}
1493 		sc->esc_tx_active = 1;
1494 
1495 		/* Process some tx descriptors.  Lock dropped inside. */
1496 		e82545_tx_run(sc);
1497 	}
1498 }
1499 
1500 static void
1501 e82545_tx_start(struct e82545_softc *sc)
1502 {
1503 
1504 	if (sc->esc_tx_active == 0)
1505 		pthread_cond_signal(&sc->esc_tx_cond);
1506 }
1507 
1508 static void
1509 e82545_tx_enable(struct e82545_softc *sc)
1510 {
1511 
1512 	sc->esc_tx_enabled = 1;
1513 }
1514 
1515 static void
1516 e82545_tx_disable(struct e82545_softc *sc)
1517 {
1518 
1519 	sc->esc_tx_enabled = 0;
1520 	while (sc->esc_tx_active)
1521 		pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1522 }
1523 
1524 static void
1525 e82545_rx_enable(struct e82545_softc *sc)
1526 {
1527 
1528 	sc->esc_rx_enabled = 1;
1529 }
1530 
1531 static void
1532 e82545_rx_disable(struct e82545_softc *sc)
1533 {
1534 
1535 	sc->esc_rx_enabled = 0;
1536 	while (sc->esc_rx_active)
1537 		pthread_cond_wait(&sc->esc_rx_cond, &sc->esc_mtx);
1538 }
1539 
1540 static void
1541 e82545_write_ra(struct e82545_softc *sc, int reg, uint32_t wval)
1542 {
1543 	struct eth_uni *eu;
1544 	int idx;
1545 
1546 	idx = reg >> 1;
1547 	assert(idx < 15);
1548 
1549 	eu = &sc->esc_uni[idx];
1550 
1551 	if (reg & 0x1) {
1552 		/* RAH */
1553 		eu->eu_valid = ((wval & E1000_RAH_AV) == E1000_RAH_AV);
1554 		eu->eu_addrsel = (wval >> 16) & 0x3;
1555 		eu->eu_eth.octet[5] = wval >> 8;
1556 		eu->eu_eth.octet[4] = wval;
1557 	} else {
1558 		/* RAL */
1559 		eu->eu_eth.octet[3] = wval >> 24;
1560 		eu->eu_eth.octet[2] = wval >> 16;
1561 		eu->eu_eth.octet[1] = wval >> 8;
1562 		eu->eu_eth.octet[0] = wval;
1563 	}
1564 }
1565 
1566 static uint32_t
1567 e82545_read_ra(struct e82545_softc *sc, int reg)
1568 {
1569 	struct eth_uni *eu;
1570 	uint32_t retval;
1571 	int idx;
1572 
1573 	idx = reg >> 1;
1574 	assert(idx < 15);
1575 
1576 	eu = &sc->esc_uni[idx];
1577 
1578 	if (reg & 0x1) {
1579 		/* RAH */
1580 		retval = (eu->eu_valid << 31) |
1581 			 (eu->eu_addrsel << 16) |
1582 			 (eu->eu_eth.octet[5] << 8) |
1583 			 eu->eu_eth.octet[4];
1584 	} else {
1585 		/* RAL */
1586 		retval = (eu->eu_eth.octet[3] << 24) |
1587 			 (eu->eu_eth.octet[2] << 16) |
1588 			 (eu->eu_eth.octet[1] << 8) |
1589 			 eu->eu_eth.octet[0];
1590 	}
1591 
1592 	return (retval);
1593 }
1594 
1595 static void
1596 e82545_write_register(struct e82545_softc *sc, uint32_t offset, uint32_t value)
1597 {
1598 	int ridx;
1599 
1600 	if (offset & 0x3) {
1601 		DPRINTF("Unaligned register write offset:0x%x value:0x%x\r\n", offset, value);
1602 		return;
1603 	}
1604 	DPRINTF("Register write: 0x%x value: 0x%x\r\n", offset, value);
1605 
1606 	switch (offset) {
1607 	case E1000_CTRL:
1608 	case E1000_CTRL_DUP:
1609 		e82545_devctl(sc, value);
1610 		break;
1611 	case E1000_FCAL:
1612 		sc->esc_FCAL = value;
1613 		break;
1614 	case E1000_FCAH:
1615 		sc->esc_FCAH = value & ~0xFFFF0000;
1616 		break;
1617 	case E1000_FCT:
1618 		sc->esc_FCT = value & ~0xFFFF0000;
1619 		break;
1620 	case E1000_VET:
1621 		sc->esc_VET = value & ~0xFFFF0000;
1622 		break;
1623 	case E1000_FCTTV:
1624 		sc->esc_FCTTV = value & ~0xFFFF0000;
1625 		break;
1626 	case E1000_LEDCTL:
1627 		sc->esc_LEDCTL = value & ~0x30303000;
1628 		break;
1629 	case E1000_PBA:
1630 		sc->esc_PBA = value & 0x0000FF80;
1631 		break;
1632 	case E1000_ICR:
1633 	case E1000_ITR:
1634 	case E1000_ICS:
1635 	case E1000_IMS:
1636 	case E1000_IMC:
1637 		e82545_intr_write(sc, offset, value);
1638 		break;
1639 	case E1000_RCTL:
1640 		e82545_rx_ctl(sc, value);
1641 		break;
1642 	case E1000_FCRTL:
1643 		sc->esc_FCRTL = value & ~0xFFFF0007;
1644 		break;
1645 	case E1000_FCRTH:
1646 		sc->esc_FCRTH = value & ~0xFFFF0007;
1647 		break;
1648 	case E1000_RDBAL(0):
1649 		sc->esc_RDBAL = value & ~0xF;
1650 		if (sc->esc_rx_enabled) {
1651 			/* Apparently legal: update cached address */
1652 			e82545_rx_update_rdba(sc);
1653 		}
1654 		break;
1655 	case E1000_RDBAH(0):
1656 		assert(!sc->esc_rx_enabled);
1657 		sc->esc_RDBAH = value;
1658 		break;
1659 	case E1000_RDLEN(0):
1660 		assert(!sc->esc_rx_enabled);
1661 		sc->esc_RDLEN = value & ~0xFFF0007F;
1662 		break;
1663 	case E1000_RDH(0):
1664 		/* XXX should only ever be zero ? Range check ? */
1665 		sc->esc_RDH = value;
1666 		break;
1667 	case E1000_RDT(0):
1668 		/* XXX if this opens up the rx ring, do something ? */
1669 		sc->esc_RDT = value;
1670 		break;
1671 	case E1000_RDTR:
1672 		/* ignore FPD bit 31 */
1673 		sc->esc_RDTR = value & ~0xFFFF0000;
1674 		break;
1675 	case E1000_RXDCTL(0):
1676 		sc->esc_RXDCTL = value & ~0xFEC0C0C0;
1677 		break;
1678 	case E1000_RADV:
1679 		sc->esc_RADV = value & ~0xFFFF0000;
1680 		break;
1681 	case E1000_RSRPD:
1682 		sc->esc_RSRPD = value & ~0xFFFFF000;
1683 		break;
1684 	case E1000_RXCSUM:
1685 		sc->esc_RXCSUM = value & ~0xFFFFF800;
1686 		break;
1687 	case E1000_TXCW:
1688 		sc->esc_TXCW = value & ~0x3FFF0000;
1689 		break;
1690 	case E1000_TCTL:
1691 		e82545_tx_ctl(sc, value);
1692 		break;
1693 	case E1000_TIPG:
1694 		sc->esc_TIPG = value;
1695 		break;
1696 	case E1000_AIT:
1697 		sc->esc_AIT = value;
1698 		break;
1699 	case E1000_TDBAL(0):
1700 		sc->esc_TDBAL = value & ~0xF;
1701 		if (sc->esc_tx_enabled) {
1702 			/* Apparently legal */
1703 			e82545_tx_update_tdba(sc);
1704 		}
1705 		break;
1706 	case E1000_TDBAH(0):
1707 		//assert(!sc->esc_tx_enabled);
1708 		sc->esc_TDBAH = value;
1709 		break;
1710 	case E1000_TDLEN(0):
1711 		//assert(!sc->esc_tx_enabled);
1712 		sc->esc_TDLEN = value & ~0xFFF0007F;
1713 		break;
1714 	case E1000_TDH(0):
1715 		//assert(!sc->esc_tx_enabled);
1716 		/* XXX should only ever be zero ? Range check ? */
1717 		sc->esc_TDHr = sc->esc_TDH = value;
1718 		break;
1719 	case E1000_TDT(0):
1720 		/* XXX range check ? */
1721 		sc->esc_TDT = value;
1722 		if (sc->esc_tx_enabled)
1723 			e82545_tx_start(sc);
1724 		break;
1725 	case E1000_TIDV:
1726 		sc->esc_TIDV = value & ~0xFFFF0000;
1727 		break;
1728 	case E1000_TXDCTL(0):
1729 		//assert(!sc->esc_tx_enabled);
1730 		sc->esc_TXDCTL = value & ~0xC0C0C0;
1731 		break;
1732 	case E1000_TADV:
1733 		sc->esc_TADV = value & ~0xFFFF0000;
1734 		break;
1735 	case E1000_RAL(0) ... E1000_RAH(15):
1736 		/* convert to u32 offset */
1737 		ridx = (offset - E1000_RAL(0)) >> 2;
1738 		e82545_write_ra(sc, ridx, value);
1739 		break;
1740 	case E1000_MTA ... (E1000_MTA + (127*4)):
1741 		sc->esc_fmcast[(offset - E1000_MTA) >> 2] = value;
1742 		break;
1743 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1744 		sc->esc_fvlan[(offset - E1000_VFTA) >> 2] = value;
1745 		break;
1746 	case E1000_EECD:
1747 	{
1748 		//DPRINTF("EECD write 0x%x -> 0x%x\r\n", sc->eeprom_control, value);
1749 		/* edge triggered low->high */
1750 		uint32_t eecd_strobe = ((sc->eeprom_control & E1000_EECD_SK) ?
1751 			0 : (value & E1000_EECD_SK));
1752 		uint32_t eecd_mask = (E1000_EECD_SK|E1000_EECD_CS|
1753 					E1000_EECD_DI|E1000_EECD_REQ);
1754 		sc->eeprom_control &= ~eecd_mask;
1755 		sc->eeprom_control |= (value & eecd_mask);
1756 		/* grant/revoke immediately */
1757 		if (value & E1000_EECD_REQ) {
1758 			sc->eeprom_control |= E1000_EECD_GNT;
1759 		} else {
1760                         sc->eeprom_control &= ~E1000_EECD_GNT;
1761 		}
1762 		if (eecd_strobe && (sc->eeprom_control & E1000_EECD_CS)) {
1763 			e82545_eecd_strobe(sc);
1764 		}
1765 		return;
1766 	}
1767 	case E1000_MDIC:
1768 	{
1769 		uint8_t reg_addr = (uint8_t)((value & E1000_MDIC_REG_MASK) >>
1770 						E1000_MDIC_REG_SHIFT);
1771 		uint8_t phy_addr = (uint8_t)((value & E1000_MDIC_PHY_MASK) >>
1772 						E1000_MDIC_PHY_SHIFT);
1773 		sc->mdi_control =
1774 			(value & ~(E1000_MDIC_ERROR|E1000_MDIC_DEST));
1775 		if ((value & E1000_MDIC_READY) != 0) {
1776 			DPRINTF("Incorrect MDIC ready bit: 0x%x\r\n", value);
1777 			return;
1778 		}
1779 		switch (value & E82545_MDIC_OP_MASK) {
1780 		case E1000_MDIC_OP_READ:
1781 			sc->mdi_control &= ~E82545_MDIC_DATA_MASK;
1782 			sc->mdi_control |= e82545_read_mdi(sc, reg_addr, phy_addr);
1783 			break;
1784 		case E1000_MDIC_OP_WRITE:
1785 			e82545_write_mdi(sc, reg_addr, phy_addr,
1786 				value & E82545_MDIC_DATA_MASK);
1787 			break;
1788 		default:
1789 			DPRINTF("Unknown MDIC op: 0x%x\r\n", value);
1790 			return;
1791 		}
1792 		/* TODO: barrier? */
1793 		sc->mdi_control |= E1000_MDIC_READY;
1794 		if (value & E82545_MDIC_IE) {
1795 			// TODO: generate interrupt
1796 		}
1797 		return;
1798 	}
1799 	case E1000_MANC:
1800 	case E1000_STATUS:
1801 		return;
1802 	default:
1803 		DPRINTF("Unknown write register: 0x%x value:%x\r\n", offset, value);
1804 		return;
1805 	}
1806 }
1807 
1808 static uint32_t
1809 e82545_read_register(struct e82545_softc *sc, uint32_t offset)
1810 {
1811 	uint32_t retval;
1812 	int ridx;
1813 
1814 	if (offset & 0x3) {
1815 		DPRINTF("Unaligned register read offset:0x%x\r\n", offset);
1816 		return 0;
1817 	}
1818 
1819 	DPRINTF("Register read: 0x%x\r\n", offset);
1820 
1821 	switch (offset) {
1822 	case E1000_CTRL:
1823 		retval = sc->esc_CTRL;
1824 		break;
1825 	case E1000_STATUS:
1826 		retval = E1000_STATUS_FD | E1000_STATUS_LU |
1827 		    E1000_STATUS_SPEED_1000;
1828 		break;
1829 	case E1000_FCAL:
1830 		retval = sc->esc_FCAL;
1831 		break;
1832 	case E1000_FCAH:
1833 		retval = sc->esc_FCAH;
1834 		break;
1835 	case E1000_FCT:
1836 		retval = sc->esc_FCT;
1837 		break;
1838 	case E1000_VET:
1839 		retval = sc->esc_VET;
1840 		break;
1841 	case E1000_FCTTV:
1842 		retval = sc->esc_FCTTV;
1843 		break;
1844 	case E1000_LEDCTL:
1845 		retval = sc->esc_LEDCTL;
1846 		break;
1847 	case E1000_PBA:
1848 		retval = sc->esc_PBA;
1849 		break;
1850 	case E1000_ICR:
1851 	case E1000_ITR:
1852 	case E1000_ICS:
1853 	case E1000_IMS:
1854 	case E1000_IMC:
1855 		retval = e82545_intr_read(sc, offset);
1856 		break;
1857 	case E1000_RCTL:
1858 		retval = sc->esc_RCTL;
1859 		break;
1860 	case E1000_FCRTL:
1861 		retval = sc->esc_FCRTL;
1862 		break;
1863 	case E1000_FCRTH:
1864 		retval = sc->esc_FCRTH;
1865 		break;
1866 	case E1000_RDBAL(0):
1867 		retval = sc->esc_RDBAL;
1868 		break;
1869 	case E1000_RDBAH(0):
1870 		retval = sc->esc_RDBAH;
1871 		break;
1872 	case E1000_RDLEN(0):
1873 		retval = sc->esc_RDLEN;
1874 		break;
1875 	case E1000_RDH(0):
1876 		retval = sc->esc_RDH;
1877 		break;
1878 	case E1000_RDT(0):
1879 		retval = sc->esc_RDT;
1880 		break;
1881 	case E1000_RDTR:
1882 		retval = sc->esc_RDTR;
1883 		break;
1884 	case E1000_RXDCTL(0):
1885 		retval = sc->esc_RXDCTL;
1886 		break;
1887 	case E1000_RADV:
1888 		retval = sc->esc_RADV;
1889 		break;
1890 	case E1000_RSRPD:
1891 		retval = sc->esc_RSRPD;
1892 		break;
1893 	case E1000_RXCSUM:
1894 		retval = sc->esc_RXCSUM;
1895 		break;
1896 	case E1000_TXCW:
1897 		retval = sc->esc_TXCW;
1898 		break;
1899 	case E1000_TCTL:
1900 		retval = sc->esc_TCTL;
1901 		break;
1902 	case E1000_TIPG:
1903 		retval = sc->esc_TIPG;
1904 		break;
1905 	case E1000_AIT:
1906 		retval = sc->esc_AIT;
1907 		break;
1908 	case E1000_TDBAL(0):
1909 		retval = sc->esc_TDBAL;
1910 		break;
1911 	case E1000_TDBAH(0):
1912 		retval = sc->esc_TDBAH;
1913 		break;
1914 	case E1000_TDLEN(0):
1915 		retval = sc->esc_TDLEN;
1916 		break;
1917 	case E1000_TDH(0):
1918 		retval = sc->esc_TDH;
1919 		break;
1920 	case E1000_TDT(0):
1921 		retval = sc->esc_TDT;
1922 		break;
1923 	case E1000_TIDV:
1924 		retval = sc->esc_TIDV;
1925 		break;
1926 	case E1000_TXDCTL(0):
1927 		retval = sc->esc_TXDCTL;
1928 		break;
1929 	case E1000_TADV:
1930 		retval = sc->esc_TADV;
1931 		break;
1932 	case E1000_RAL(0) ... E1000_RAH(15):
1933 		/* convert to u32 offset */
1934 		ridx = (offset - E1000_RAL(0)) >> 2;
1935 		retval = e82545_read_ra(sc, ridx);
1936 		break;
1937 	case E1000_MTA ... (E1000_MTA + (127*4)):
1938 		retval = sc->esc_fmcast[(offset - E1000_MTA) >> 2];
1939 		break;
1940 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1941 		retval = sc->esc_fvlan[(offset - E1000_VFTA) >> 2];
1942 		break;
1943 	case E1000_EECD:
1944 		//DPRINTF("EECD read %x\r\n", sc->eeprom_control);
1945 		retval = sc->eeprom_control;
1946 		break;
1947 	case E1000_MDIC:
1948 		retval = sc->mdi_control;
1949 		break;
1950 	case E1000_MANC:
1951 		retval = 0;
1952 		break;
1953 	/* stats that we emulate. */
1954 	case E1000_MPC:
1955 		retval = sc->missed_pkt_count;
1956 		break;
1957 	case E1000_PRC64:
1958 		retval = sc->pkt_rx_by_size[0];
1959 		break;
1960 	case E1000_PRC127:
1961 		retval = sc->pkt_rx_by_size[1];
1962 		break;
1963 	case E1000_PRC255:
1964 		retval = sc->pkt_rx_by_size[2];
1965 		break;
1966 	case E1000_PRC511:
1967 		retval = sc->pkt_rx_by_size[3];
1968 		break;
1969 	case E1000_PRC1023:
1970 		retval = sc->pkt_rx_by_size[4];
1971 		break;
1972 	case E1000_PRC1522:
1973 		retval = sc->pkt_rx_by_size[5];
1974 		break;
1975 	case E1000_GPRC:
1976 		retval = sc->good_pkt_rx_count;
1977 		break;
1978 	case E1000_BPRC:
1979 		retval = sc->bcast_pkt_rx_count;
1980 		break;
1981 	case E1000_MPRC:
1982 		retval = sc->mcast_pkt_rx_count;
1983 		break;
1984 	case E1000_GPTC:
1985 	case E1000_TPT:
1986 		retval = sc->good_pkt_tx_count;
1987 		break;
1988 	case E1000_GORCL:
1989 		retval = (uint32_t)sc->good_octets_rx;
1990 		break;
1991 	case E1000_GORCH:
1992 		retval = (uint32_t)(sc->good_octets_rx >> 32);
1993 		break;
1994 	case E1000_TOTL:
1995 	case E1000_GOTCL:
1996 		retval = (uint32_t)sc->good_octets_tx;
1997 		break;
1998 	case E1000_TOTH:
1999 	case E1000_GOTCH:
2000 		retval = (uint32_t)(sc->good_octets_tx >> 32);
2001 		break;
2002 	case E1000_ROC:
2003 		retval = sc->oversize_rx_count;
2004 		break;
2005 	case E1000_TORL:
2006 		retval = (uint32_t)(sc->good_octets_rx + sc->missed_octets);
2007 		break;
2008 	case E1000_TORH:
2009 		retval = (uint32_t)((sc->good_octets_rx +
2010 		    sc->missed_octets) >> 32);
2011 		break;
2012 	case E1000_TPR:
2013 		retval = sc->good_pkt_rx_count + sc->missed_pkt_count +
2014 		    sc->oversize_rx_count;
2015 		break;
2016 	case E1000_PTC64:
2017 		retval = sc->pkt_tx_by_size[0];
2018 		break;
2019 	case E1000_PTC127:
2020 		retval = sc->pkt_tx_by_size[1];
2021 		break;
2022 	case E1000_PTC255:
2023 		retval = sc->pkt_tx_by_size[2];
2024 		break;
2025 	case E1000_PTC511:
2026 		retval = sc->pkt_tx_by_size[3];
2027 		break;
2028 	case E1000_PTC1023:
2029 		retval = sc->pkt_tx_by_size[4];
2030 		break;
2031 	case E1000_PTC1522:
2032 		retval = sc->pkt_tx_by_size[5];
2033 		break;
2034 	case E1000_MPTC:
2035 		retval = sc->mcast_pkt_tx_count;
2036 		break;
2037 	case E1000_BPTC:
2038 		retval = sc->bcast_pkt_tx_count;
2039 		break;
2040 	case E1000_TSCTC:
2041 		retval = sc->tso_tx_count;
2042 		break;
2043 	/* stats that are always 0. */
2044 	case E1000_CRCERRS:
2045 	case E1000_ALGNERRC:
2046 	case E1000_SYMERRS:
2047 	case E1000_RXERRC:
2048 	case E1000_SCC:
2049 	case E1000_ECOL:
2050 	case E1000_MCC:
2051 	case E1000_LATECOL:
2052 	case E1000_COLC:
2053 	case E1000_DC:
2054 	case E1000_TNCRS:
2055 	case E1000_SEC:
2056 	case E1000_CEXTERR:
2057 	case E1000_RLEC:
2058 	case E1000_XONRXC:
2059 	case E1000_XONTXC:
2060 	case E1000_XOFFRXC:
2061 	case E1000_XOFFTXC:
2062 	case E1000_FCRUC:
2063 	case E1000_RNBC:
2064 	case E1000_RUC:
2065 	case E1000_RFC:
2066 	case E1000_RJC:
2067 	case E1000_MGTPRC:
2068 	case E1000_MGTPDC:
2069 	case E1000_MGTPTC:
2070 	case E1000_TSCTFC:
2071 		retval = 0;
2072 		break;
2073 	default:
2074 		DPRINTF("Unknown read register: 0x%x\r\n", offset);
2075 		retval = 0;
2076 		break;
2077 	}
2078 
2079 	return (retval);
2080 }
2081 
2082 static void
2083 e82545_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2084 	     uint64_t offset, int size, uint64_t value)
2085 {
2086 	struct e82545_softc *sc;
2087 
2088 	//DPRINTF("Write bar:%d offset:0x%lx value:0x%lx size:%d\r\n", baridx, offset, value, size);
2089 
2090 	sc = pi->pi_arg;
2091 
2092 	pthread_mutex_lock(&sc->esc_mtx);
2093 
2094 	switch (baridx) {
2095 	case E82545_BAR_IO:
2096 		switch (offset) {
2097 		case E82545_IOADDR:
2098 			if (size != 4) {
2099 				DPRINTF("Wrong io addr write sz:%d value:0x%lx\r\n", size, value);
2100 			} else
2101 				sc->io_addr = (uint32_t)value;
2102 			break;
2103 		case E82545_IODATA:
2104 			if (size != 4) {
2105 				DPRINTF("Wrong io data write size:%d value:0x%lx\r\n", size, value);
2106 			} else if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2107 				DPRINTF("Non-register io write addr:0x%x value:0x%lx\r\n", sc->io_addr, value);
2108 			} else
2109 				e82545_write_register(sc, sc->io_addr,
2110 						      (uint32_t)value);
2111 			break;
2112 		default:
2113 			DPRINTF("Unknown io bar write offset:0x%lx value:0x%lx size:%d\r\n", offset, value, size);
2114 			break;
2115 		}
2116 		break;
2117 	case E82545_BAR_REGISTER:
2118 		if (size != 4) {
2119 			DPRINTF("Wrong register write size:%d offset:0x%lx value:0x%lx\r\n", size, offset, value);
2120 		} else
2121 			e82545_write_register(sc, (uint32_t)offset,
2122 					      (uint32_t)value);
2123 		break;
2124 	default:
2125 		DPRINTF("Unknown write bar:%d off:0x%lx val:0x%lx size:%d\r\n",
2126 			baridx, offset, value, size);
2127 	}
2128 
2129 	pthread_mutex_unlock(&sc->esc_mtx);
2130 }
2131 
2132 static uint64_t
2133 e82545_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2134 	    uint64_t offset, int size)
2135 {
2136 	struct e82545_softc *sc;
2137 	uint64_t retval;
2138 
2139 	//DPRINTF("Read  bar:%d offset:0x%lx size:%d\r\n", baridx, offset, size);
2140 	sc = pi->pi_arg;
2141 	retval = 0;
2142 
2143 	pthread_mutex_lock(&sc->esc_mtx);
2144 
2145 	switch (baridx) {
2146 	case E82545_BAR_IO:
2147 		switch (offset) {
2148 		case E82545_IOADDR:
2149 			if (size != 4) {
2150 				DPRINTF("Wrong io addr read sz:%d\r\n", size);
2151 			} else
2152 				retval = sc->io_addr;
2153 			break;
2154 		case E82545_IODATA:
2155 			if (size != 4) {
2156 				DPRINTF("Wrong io data read sz:%d\r\n", size);
2157 			}
2158 			if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2159 				DPRINTF("Non-register io read addr:0x%x\r\n",
2160 					sc->io_addr);
2161 			} else
2162 				retval = e82545_read_register(sc, sc->io_addr);
2163 			break;
2164 		default:
2165 			DPRINTF("Unknown io bar read offset:0x%lx size:%d\r\n",
2166 				offset, size);
2167 			break;
2168 		}
2169 		break;
2170 	case E82545_BAR_REGISTER:
2171 		if (size != 4) {
2172 			DPRINTF("Wrong register read size:%d offset:0x%lx\r\n",
2173 				size, offset);
2174 		} else
2175 			retval = e82545_read_register(sc, (uint32_t)offset);
2176 		break;
2177 	default:
2178 		DPRINTF("Unknown read bar:%d offset:0x%lx size:%d\r\n",
2179 			baridx, offset, size);
2180 		break;
2181 	}
2182 
2183 	pthread_mutex_unlock(&sc->esc_mtx);
2184 
2185 	return (retval);
2186 }
2187 
2188 static void
2189 e82545_reset(struct e82545_softc *sc, int drvr)
2190 {
2191 	int i;
2192 
2193 	e82545_rx_disable(sc);
2194 	e82545_tx_disable(sc);
2195 
2196 	/* clear outstanding interrupts */
2197 	if (sc->esc_irq_asserted)
2198 		pci_lintr_deassert(sc->esc_pi);
2199 
2200 	/* misc */
2201 	if (!drvr) {
2202 		sc->esc_FCAL = 0;
2203 		sc->esc_FCAH = 0;
2204 		sc->esc_FCT = 0;
2205 		sc->esc_VET = 0;
2206 		sc->esc_FCTTV = 0;
2207 	}
2208 	sc->esc_LEDCTL = 0x07061302;
2209 	sc->esc_PBA = 0x00100030;
2210 
2211 	/* start nvm in opcode mode. */
2212 	sc->nvm_opaddr = 0;
2213 	sc->nvm_mode = E82545_NVM_MODE_OPADDR;
2214 	sc->nvm_bits = E82545_NVM_OPADDR_BITS;
2215 	sc->eeprom_control = E1000_EECD_PRES | E82545_EECD_FWE_EN;
2216 	e82545_init_eeprom(sc);
2217 
2218 	/* interrupt */
2219 	sc->esc_ICR = 0;
2220 	sc->esc_ITR = 250;
2221 	sc->esc_ICS = 0;
2222 	sc->esc_IMS = 0;
2223 	sc->esc_IMC = 0;
2224 
2225 	/* L2 filters */
2226 	if (!drvr) {
2227 		memset(sc->esc_fvlan, 0, sizeof(sc->esc_fvlan));
2228 		memset(sc->esc_fmcast, 0, sizeof(sc->esc_fmcast));
2229 		memset(sc->esc_uni, 0, sizeof(sc->esc_uni));
2230 
2231 		/* XXX not necessary on 82545 ?? */
2232 		sc->esc_uni[0].eu_valid = 1;
2233 		memcpy(sc->esc_uni[0].eu_eth.octet, sc->esc_mac.octet,
2234 		    ETHER_ADDR_LEN);
2235 	} else {
2236 		/* Clear RAH valid bits */
2237 		for (i = 0; i < 16; i++)
2238 			sc->esc_uni[i].eu_valid = 0;
2239 	}
2240 
2241 	/* receive */
2242 	if (!drvr) {
2243 		sc->esc_RDBAL = 0;
2244 		sc->esc_RDBAH = 0;
2245 	}
2246 	sc->esc_RCTL = 0;
2247 	sc->esc_FCRTL = 0;
2248 	sc->esc_FCRTH = 0;
2249 	sc->esc_RDLEN = 0;
2250 	sc->esc_RDH = 0;
2251 	sc->esc_RDT = 0;
2252 	sc->esc_RDTR = 0;
2253 	sc->esc_RXDCTL = (1 << 24) | (1 << 16); /* default GRAN/WTHRESH */
2254 	sc->esc_RADV = 0;
2255 	sc->esc_RXCSUM = 0;
2256 
2257 	/* transmit */
2258 	if (!drvr) {
2259 		sc->esc_TDBAL = 0;
2260 		sc->esc_TDBAH = 0;
2261 		sc->esc_TIPG = 0;
2262 		sc->esc_AIT = 0;
2263 		sc->esc_TIDV = 0;
2264 		sc->esc_TADV = 0;
2265 	}
2266 	sc->esc_tdba = 0;
2267 	sc->esc_txdesc = NULL;
2268 	sc->esc_TXCW = 0;
2269 	sc->esc_TCTL = 0;
2270 	sc->esc_TDLEN = 0;
2271 	sc->esc_TDT = 0;
2272 	sc->esc_TDHr = sc->esc_TDH = 0;
2273 	sc->esc_TXDCTL = 0;
2274 }
2275 
2276 static int
2277 e82545_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
2278 {
2279 	char nstr[80];
2280 	struct e82545_softc *sc;
2281 	char *devname;
2282 	char *vtopts;
2283 	int mac_provided;
2284 
2285 	DPRINTF("Loading with options: %s\r\n", opts);
2286 
2287 	/* Setup our softc */
2288 	sc = calloc(1, sizeof(*sc));
2289 
2290 	pi->pi_arg = sc;
2291 	sc->esc_pi = pi;
2292 	sc->esc_ctx = ctx;
2293 
2294 	pthread_mutex_init(&sc->esc_mtx, NULL);
2295 	pthread_cond_init(&sc->esc_rx_cond, NULL);
2296 	pthread_cond_init(&sc->esc_tx_cond, NULL);
2297 	pthread_create(&sc->esc_tx_tid, NULL, e82545_tx_thread, sc);
2298 	snprintf(nstr, sizeof(nstr), "e82545-%d:%d tx", pi->pi_slot,
2299 	    pi->pi_func);
2300         pthread_set_name_np(sc->esc_tx_tid, nstr);
2301 
2302 	pci_set_cfgdata16(pi, PCIR_DEVICE, E82545_DEV_ID_82545EM_COPPER);
2303 	pci_set_cfgdata16(pi, PCIR_VENDOR, E82545_VENDOR_ID_INTEL);
2304 	pci_set_cfgdata8(pi,  PCIR_CLASS, PCIC_NETWORK);
2305 	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_NETWORK_ETHERNET);
2306 	pci_set_cfgdata16(pi, PCIR_SUBDEV_0, E82545_SUBDEV_ID);
2307 	pci_set_cfgdata16(pi, PCIR_SUBVEND_0, E82545_VENDOR_ID_INTEL);
2308 
2309 	pci_set_cfgdata8(pi,  PCIR_HDRTYPE, PCIM_HDRTYPE_NORMAL);
2310 	pci_set_cfgdata8(pi,  PCIR_INTPIN, 0x1);
2311 
2312 	/* TODO: this card also supports msi, but the freebsd driver for it
2313 	 * does not, so I have not implemented it. */
2314 	pci_lintr_request(pi);
2315 
2316 	pci_emul_alloc_bar(pi, E82545_BAR_REGISTER, PCIBAR_MEM32,
2317 		E82545_BAR_REGISTER_LEN);
2318 	pci_emul_alloc_bar(pi, E82545_BAR_FLASH, PCIBAR_MEM32,
2319 		E82545_BAR_FLASH_LEN);
2320 	pci_emul_alloc_bar(pi, E82545_BAR_IO, PCIBAR_IO,
2321 		E82545_BAR_IO_LEN);
2322 
2323 	/*
2324 	 * Attempt to open the net backend and read the MAC address
2325 	 * if specified.  Copied from virtio-net, slightly modified.
2326 	 */
2327 	mac_provided = 0;
2328 	sc->esc_be = NULL;
2329 	if (opts != NULL) {
2330 		int err;
2331 
2332 		devname = vtopts = strdup(opts);
2333 		(void) strsep(&vtopts, ",");
2334 
2335 		if (vtopts != NULL) {
2336 			err = net_parsemac(vtopts, sc->esc_mac.octet);
2337 			if (err != 0) {
2338 				free(devname);
2339 				return (err);
2340 			}
2341 			mac_provided = 1;
2342 		}
2343 
2344 		err = netbe_init(&sc->esc_be, devname, e82545_rx_callback, sc);
2345 		free(devname);
2346 		if (err)
2347 			return (err);
2348 	}
2349 
2350 	if (!mac_provided) {
2351 		net_genmac(pi, sc->esc_mac.octet);
2352 	}
2353 
2354 	netbe_rx_enable(sc->esc_be);
2355 
2356 	/* H/w initiated reset */
2357 	e82545_reset(sc, 0);
2358 
2359 	return (0);
2360 }
2361 
2362 struct pci_devemu pci_de_e82545 = {
2363 	.pe_emu = 	"e1000",
2364 	.pe_init =	e82545_init,
2365 	.pe_barwrite =	e82545_write,
2366 	.pe_barread =	e82545_read
2367 };
2368 PCI_EMUL_SET(pci_de_e82545);
2369 
2370