xref: /freebsd/usr.sbin/bhyve/pci_e82545.c (revision 3c5ba95ad12285ad37c182a4bfc1b240ec6d18a7)
1 /*
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2016 Alexander Motin <mav@FreeBSD.org>
5  * Copyright (c) 2015 Peter Grehan <grehan@freebsd.org>
6  * Copyright (c) 2013 Jeremiah Lott, Avere Systems
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer
14  *    in this position and unchanged.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/types.h>
36 #ifndef WITHOUT_CAPSICUM
37 #include <sys/capsicum.h>
38 #endif
39 #include <sys/limits.h>
40 #include <sys/ioctl.h>
41 #include <sys/uio.h>
42 #include <net/ethernet.h>
43 #include <netinet/in.h>
44 #include <netinet/tcp.h>
45 
46 #include <err.h>
47 #include <errno.h>
48 #include <fcntl.h>
49 #include <md5.h>
50 #include <stdio.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <sysexits.h>
54 #include <unistd.h>
55 #include <pthread.h>
56 #include <pthread_np.h>
57 
58 #include "e1000_regs.h"
59 #include "e1000_defines.h"
60 #include "mii.h"
61 
62 #include "bhyverun.h"
63 #include "pci_emul.h"
64 #include "mevent.h"
65 
66 /* Hardware/register definitions XXX: move some to common code. */
67 #define E82545_VENDOR_ID_INTEL			0x8086
68 #define E82545_DEV_ID_82545EM_COPPER		0x100F
69 #define E82545_SUBDEV_ID			0x1008
70 
71 #define E82545_REVISION_4			4
72 
73 #define E82545_MDIC_DATA_MASK			0x0000FFFF
74 #define E82545_MDIC_OP_MASK			0x0c000000
75 #define E82545_MDIC_IE				0x20000000
76 
77 #define E82545_EECD_FWE_DIS	0x00000010 /* Flash writes disabled */
78 #define E82545_EECD_FWE_EN	0x00000020 /* Flash writes enabled */
79 #define E82545_EECD_FWE_MASK	0x00000030 /* Flash writes mask */
80 
81 #define E82545_BAR_REGISTER			0
82 #define E82545_BAR_REGISTER_LEN			(128*1024)
83 #define E82545_BAR_FLASH			1
84 #define E82545_BAR_FLASH_LEN			(64*1024)
85 #define E82545_BAR_IO				2
86 #define E82545_BAR_IO_LEN			8
87 
88 #define E82545_IOADDR				0x00000000
89 #define E82545_IODATA				0x00000004
90 #define E82545_IO_REGISTER_MAX			0x0001FFFF
91 #define E82545_IO_FLASH_BASE			0x00080000
92 #define E82545_IO_FLASH_MAX			0x000FFFFF
93 
94 #define E82545_ARRAY_ENTRY(reg, offset)		(reg + (offset<<2))
95 #define E82545_RAR_MAX				15
96 #define E82545_MTA_MAX				127
97 #define E82545_VFTA_MAX				127
98 
99 /* Slightly modified from the driver versions, hardcoded for 3 opcode bits,
100  * followed by 6 address bits.
101  * TODO: make opcode bits and addr bits configurable?
102  * NVM Commands - Microwire */
103 #define E82545_NVM_OPCODE_BITS	3
104 #define E82545_NVM_ADDR_BITS	6
105 #define E82545_NVM_DATA_BITS	16
106 #define E82545_NVM_OPADDR_BITS	(E82545_NVM_OPCODE_BITS + E82545_NVM_ADDR_BITS)
107 #define E82545_NVM_ADDR_MASK	((1 << E82545_NVM_ADDR_BITS)-1)
108 #define E82545_NVM_OPCODE_MASK	\
109     (((1 << E82545_NVM_OPCODE_BITS) - 1) << E82545_NVM_ADDR_BITS)
110 #define E82545_NVM_OPCODE_READ	(0x6 << E82545_NVM_ADDR_BITS)	/* read */
111 #define E82545_NVM_OPCODE_WRITE	(0x5 << E82545_NVM_ADDR_BITS)	/* write */
112 #define E82545_NVM_OPCODE_ERASE	(0x7 << E82545_NVM_ADDR_BITS)	/* erase */
113 #define	E82545_NVM_OPCODE_EWEN	(0x4 << E82545_NVM_ADDR_BITS)	/* wr-enable */
114 
115 #define	E82545_NVM_EEPROM_SIZE	64 /* 64 * 16-bit values == 128K */
116 
117 #define E1000_ICR_SRPD		0x00010000
118 
119 /* This is an arbitrary number.  There is no hard limit on the chip. */
120 #define I82545_MAX_TXSEGS	64
121 
122 /* Legacy receive descriptor */
123 struct e1000_rx_desc {
124 	uint64_t buffer_addr;	/* Address of the descriptor's data buffer */
125 	uint16_t length;	/* Length of data DMAed into data buffer */
126 	uint16_t csum;		/* Packet checksum */
127 	uint8_t	 status;       	/* Descriptor status */
128 	uint8_t  errors;	/* Descriptor Errors */
129 	uint16_t special;
130 };
131 
132 /* Transmit descriptor types */
133 #define	E1000_TXD_MASK		(E1000_TXD_CMD_DEXT | 0x00F00000)
134 #define E1000_TXD_TYP_L		(0)
135 #define E1000_TXD_TYP_C		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C)
136 #define E1000_TXD_TYP_D		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)
137 
138 /* Legacy transmit descriptor */
139 struct e1000_tx_desc {
140 	uint64_t buffer_addr;   /* Address of the descriptor's data buffer */
141 	union {
142 		uint32_t data;
143 		struct {
144 			uint16_t length;  /* Data buffer length */
145 			uint8_t  cso;  /* Checksum offset */
146 			uint8_t  cmd;  /* Descriptor control */
147 		} flags;
148 	} lower;
149 	union {
150 		uint32_t data;
151 		struct {
152 			uint8_t status; /* Descriptor status */
153 			uint8_t css;  /* Checksum start */
154 			uint16_t special;
155 		} fields;
156 	} upper;
157 };
158 
159 /* Context descriptor */
160 struct e1000_context_desc {
161 	union {
162 		uint32_t ip_config;
163 		struct {
164 			uint8_t ipcss;  /* IP checksum start */
165 			uint8_t ipcso;  /* IP checksum offset */
166 			uint16_t ipcse;  /* IP checksum end */
167 		} ip_fields;
168 	} lower_setup;
169 	union {
170 		uint32_t tcp_config;
171 		struct {
172 			uint8_t tucss;  /* TCP checksum start */
173 			uint8_t tucso;  /* TCP checksum offset */
174 			uint16_t tucse;  /* TCP checksum end */
175 		} tcp_fields;
176 	} upper_setup;
177 	uint32_t cmd_and_length;
178 	union {
179 		uint32_t data;
180 		struct {
181 			uint8_t status;  /* Descriptor status */
182 			uint8_t hdr_len;  /* Header length */
183 			uint16_t mss;  /* Maximum segment size */
184 		} fields;
185 	} tcp_seg_setup;
186 };
187 
188 /* Data descriptor */
189 struct e1000_data_desc {
190 	uint64_t buffer_addr;  /* Address of the descriptor's buffer address */
191 	union {
192 		uint32_t data;
193 		struct {
194 			uint16_t length;  /* Data buffer length */
195 			uint8_t typ_len_ext;
196 			uint8_t cmd;
197 		} flags;
198 	} lower;
199 	union {
200 		uint32_t data;
201 		struct {
202 			uint8_t status;  /* Descriptor status */
203 			uint8_t popts;  /* Packet Options */
204 			uint16_t special;
205 		} fields;
206 	} upper;
207 };
208 
209 union e1000_tx_udesc {
210 	struct e1000_tx_desc td;
211 	struct e1000_context_desc cd;
212 	struct e1000_data_desc dd;
213 };
214 
215 /* Tx checksum info for a packet. */
216 struct ck_info {
217 	int	ck_valid;	/* ck_info is valid */
218 	uint8_t	ck_start;	/* start byte of cksum calcuation */
219 	uint8_t	ck_off;		/* offset of cksum insertion */
220 	uint16_t ck_len;	/* length of cksum calc: 0 is to packet-end */
221 };
222 
223 /*
224  * Debug printf
225  */
226 static int e82545_debug = 0;
227 #define DPRINTF(msg,params...) if (e82545_debug) fprintf(stderr, "e82545: " msg, params)
228 #define WPRINTF(msg,params...) fprintf(stderr, "e82545: " msg, params)
229 
230 #define	MIN(a,b) (((a)<(b))?(a):(b))
231 #define	MAX(a,b) (((a)>(b))?(a):(b))
232 
233 /* s/w representation of the RAL/RAH regs */
234 struct  eth_uni {
235 	int		eu_valid;
236 	int		eu_addrsel;
237 	struct ether_addr eu_eth;
238 };
239 
240 
241 struct e82545_softc {
242 	struct pci_devinst *esc_pi;
243 	struct vmctx	*esc_ctx;
244 	struct mevent   *esc_mevp;
245 	struct mevent   *esc_mevpitr;
246 	pthread_mutex_t	esc_mtx;
247 	struct ether_addr esc_mac;
248 	int		esc_tapfd;
249 
250 	/* General */
251 	uint32_t	esc_CTRL;	/* x0000 device ctl */
252 	uint32_t	esc_FCAL;	/* x0028 flow ctl addr lo */
253 	uint32_t	esc_FCAH;	/* x002C flow ctl addr hi */
254 	uint32_t	esc_FCT;	/* x0030 flow ctl type */
255 	uint32_t	esc_VET;	/* x0038 VLAN eth type */
256 	uint32_t	esc_FCTTV;	/* x0170 flow ctl tx timer */
257 	uint32_t	esc_LEDCTL;	/* x0E00 LED control */
258 	uint32_t	esc_PBA;	/* x1000 pkt buffer allocation */
259 
260 	/* Interrupt control */
261 	int		esc_irq_asserted;
262 	uint32_t	esc_ICR;	/* x00C0 cause read/clear */
263 	uint32_t	esc_ITR;	/* x00C4 intr throttling */
264 	uint32_t	esc_ICS;	/* x00C8 cause set */
265 	uint32_t	esc_IMS;	/* x00D0 mask set/read */
266 	uint32_t	esc_IMC;	/* x00D8 mask clear */
267 
268 	/* Transmit */
269 	union e1000_tx_udesc *esc_txdesc;
270 	struct e1000_context_desc esc_txctx;
271 	pthread_t	esc_tx_tid;
272 	pthread_cond_t	esc_tx_cond;
273 	int		esc_tx_enabled;
274 	int		esc_tx_active;
275 	uint32_t	esc_TXCW;	/* x0178 transmit config */
276 	uint32_t	esc_TCTL;	/* x0400 transmit ctl */
277 	uint32_t	esc_TIPG;	/* x0410 inter-packet gap */
278 	uint16_t	esc_AIT;	/* x0458 Adaptive Interframe Throttle */
279 	uint64_t	esc_tdba;      	/* verified 64-bit desc table addr */
280 	uint32_t	esc_TDBAL;	/* x3800 desc table addr, low bits */
281 	uint32_t	esc_TDBAH;	/* x3804 desc table addr, hi 32-bits */
282 	uint32_t	esc_TDLEN;	/* x3808 # descriptors in bytes */
283 	uint16_t	esc_TDH;	/* x3810 desc table head idx */
284 	uint16_t	esc_TDHr;	/* internal read version of TDH */
285 	uint16_t	esc_TDT;	/* x3818 desc table tail idx */
286 	uint32_t	esc_TIDV;	/* x3820 intr delay */
287 	uint32_t	esc_TXDCTL;	/* x3828 desc control */
288 	uint32_t	esc_TADV;	/* x382C intr absolute delay */
289 
290 	/* L2 frame acceptance */
291 	struct eth_uni	esc_uni[16];	/* 16 x unicast MAC addresses */
292 	uint32_t	esc_fmcast[128]; /* Multicast filter bit-match */
293 	uint32_t	esc_fvlan[128]; /* VLAN 4096-bit filter */
294 
295 	/* Receive */
296 	struct e1000_rx_desc *esc_rxdesc;
297 	pthread_cond_t	esc_rx_cond;
298 	int		esc_rx_enabled;
299 	int		esc_rx_active;
300 	int		esc_rx_loopback;
301 	uint32_t	esc_RCTL;	/* x0100 receive ctl */
302 	uint32_t	esc_FCRTL;	/* x2160 flow cntl thresh, low */
303 	uint32_t	esc_FCRTH;	/* x2168 flow cntl thresh, hi */
304 	uint64_t	esc_rdba;	/* verified 64-bit desc table addr */
305 	uint32_t	esc_RDBAL;	/* x2800 desc table addr, low bits */
306 	uint32_t	esc_RDBAH;	/* x2804 desc table addr, hi 32-bits*/
307 	uint32_t	esc_RDLEN;	/* x2808 #descriptors */
308 	uint16_t	esc_RDH;	/* x2810 desc table head idx */
309 	uint16_t	esc_RDT;	/* x2818 desc table tail idx */
310 	uint32_t	esc_RDTR;	/* x2820 intr delay */
311 	uint32_t	esc_RXDCTL;	/* x2828 desc control */
312 	uint32_t	esc_RADV;	/* x282C intr absolute delay */
313 	uint32_t	esc_RSRPD;	/* x2C00 recv small packet detect */
314 	uint32_t	esc_RXCSUM;     /* x5000 receive cksum ctl */
315 
316 	/* IO Port register access */
317 	uint32_t io_addr;
318 
319 	/* Shadow copy of MDIC */
320 	uint32_t mdi_control;
321 	/* Shadow copy of EECD */
322 	uint32_t eeprom_control;
323 	/* Latest NVM in/out */
324 	uint16_t nvm_data;
325 	uint16_t nvm_opaddr;
326 	/* stats */
327 	uint32_t missed_pkt_count; /* dropped for no room in rx queue */
328 	uint32_t pkt_rx_by_size[6];
329 	uint32_t pkt_tx_by_size[6];
330 	uint32_t good_pkt_rx_count;
331 	uint32_t bcast_pkt_rx_count;
332 	uint32_t mcast_pkt_rx_count;
333 	uint32_t good_pkt_tx_count;
334 	uint32_t bcast_pkt_tx_count;
335 	uint32_t mcast_pkt_tx_count;
336 	uint32_t oversize_rx_count;
337 	uint32_t tso_tx_count;
338 	uint64_t good_octets_rx;
339 	uint64_t good_octets_tx;
340 	uint64_t missed_octets; /* counts missed and oversized */
341 
342 	uint8_t nvm_bits:6; /* number of bits remaining in/out */
343 	uint8_t nvm_mode:2;
344 #define E82545_NVM_MODE_OPADDR  0x0
345 #define E82545_NVM_MODE_DATAIN  0x1
346 #define E82545_NVM_MODE_DATAOUT 0x2
347 	/* EEPROM data */
348 	uint16_t eeprom_data[E82545_NVM_EEPROM_SIZE];
349 };
350 
351 static void e82545_reset(struct e82545_softc *sc, int dev);
352 static void e82545_rx_enable(struct e82545_softc *sc);
353 static void e82545_rx_disable(struct e82545_softc *sc);
354 static void e82545_tap_callback(int fd, enum ev_type type, void *param);
355 static void e82545_tx_start(struct e82545_softc *sc);
356 static void e82545_tx_enable(struct e82545_softc *sc);
357 static void e82545_tx_disable(struct e82545_softc *sc);
358 
359 static inline int
360 e82545_size_stat_index(uint32_t size)
361 {
362 	if (size <= 64) {
363 		return 0;
364 	} else if (size >= 1024) {
365 		return 5;
366 	} else {
367 		/* should be 1-4 */
368 		return (ffs(size) - 6);
369 	}
370 }
371 
372 static void
373 e82545_init_eeprom(struct e82545_softc *sc)
374 {
375 	uint16_t checksum, i;
376 
377         /* mac addr */
378 	sc->eeprom_data[NVM_MAC_ADDR] = ((uint16_t)sc->esc_mac.octet[0]) |
379 		(((uint16_t)sc->esc_mac.octet[1]) << 8);
380 	sc->eeprom_data[NVM_MAC_ADDR+1] = ((uint16_t)sc->esc_mac.octet[2]) |
381 		(((uint16_t)sc->esc_mac.octet[3]) << 8);
382 	sc->eeprom_data[NVM_MAC_ADDR+2] = ((uint16_t)sc->esc_mac.octet[4]) |
383 		(((uint16_t)sc->esc_mac.octet[5]) << 8);
384 
385 	/* pci ids */
386 	sc->eeprom_data[NVM_SUB_DEV_ID] = E82545_SUBDEV_ID;
387 	sc->eeprom_data[NVM_SUB_VEN_ID] = E82545_VENDOR_ID_INTEL;
388 	sc->eeprom_data[NVM_DEV_ID] = E82545_DEV_ID_82545EM_COPPER;
389 	sc->eeprom_data[NVM_VEN_ID] = E82545_VENDOR_ID_INTEL;
390 
391 	/* fill in the checksum */
392         checksum = 0;
393 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
394 		checksum += sc->eeprom_data[i];
395 	}
396 	checksum = NVM_SUM - checksum;
397 	sc->eeprom_data[NVM_CHECKSUM_REG] = checksum;
398 	DPRINTF("eeprom checksum: 0x%x\r\n", checksum);
399 }
400 
401 static void
402 e82545_write_mdi(struct e82545_softc *sc, uint8_t reg_addr,
403 			uint8_t phy_addr, uint32_t data)
404 {
405 	DPRINTF("Write mdi reg:0x%x phy:0x%x data: 0x%x\r\n", reg_addr, phy_addr, data);
406 }
407 
408 static uint32_t
409 e82545_read_mdi(struct e82545_softc *sc, uint8_t reg_addr,
410 			uint8_t phy_addr)
411 {
412 	//DPRINTF("Read mdi reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
413 	switch (reg_addr) {
414 	case PHY_STATUS:
415 		return (MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS |
416 			MII_SR_AUTONEG_COMPLETE);
417 	case PHY_AUTONEG_ADV:
418 		return NWAY_AR_SELECTOR_FIELD;
419 	case PHY_LP_ABILITY:
420 		return 0;
421 	case PHY_1000T_STATUS:
422 		return (SR_1000T_LP_FD_CAPS | SR_1000T_REMOTE_RX_STATUS |
423 			SR_1000T_LOCAL_RX_STATUS);
424 	case PHY_ID1:
425 		return (M88E1011_I_PHY_ID >> 16) & 0xFFFF;
426 	case PHY_ID2:
427 		return (M88E1011_I_PHY_ID | E82545_REVISION_4) & 0xFFFF;
428 	default:
429 		DPRINTF("Unknown mdi read reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
430 		return 0;
431 	}
432 	/* not reached */
433 }
434 
435 static void
436 e82545_eecd_strobe(struct e82545_softc *sc)
437 {
438 	/* Microwire state machine */
439 	/*
440 	DPRINTF("eeprom state machine srtobe "
441 		"0x%x 0x%x 0x%x 0x%x\r\n",
442 		sc->nvm_mode, sc->nvm_bits,
443 		sc->nvm_opaddr, sc->nvm_data);*/
444 
445 	if (sc->nvm_bits == 0) {
446 		DPRINTF("eeprom state machine not expecting data! "
447 			"0x%x 0x%x 0x%x 0x%x\r\n",
448 			sc->nvm_mode, sc->nvm_bits,
449 			sc->nvm_opaddr, sc->nvm_data);
450 		return;
451 	}
452 	sc->nvm_bits--;
453 	if (sc->nvm_mode == E82545_NVM_MODE_DATAOUT) {
454 		/* shifting out */
455 		if (sc->nvm_data & 0x8000) {
456 			sc->eeprom_control |= E1000_EECD_DO;
457 		} else {
458 			sc->eeprom_control &= ~E1000_EECD_DO;
459 		}
460 		sc->nvm_data <<= 1;
461 		if (sc->nvm_bits == 0) {
462 			/* read done, back to opcode mode. */
463 			sc->nvm_opaddr = 0;
464 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
465 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
466 		}
467 	} else if (sc->nvm_mode == E82545_NVM_MODE_DATAIN) {
468 		/* shifting in */
469 		sc->nvm_data <<= 1;
470 		if (sc->eeprom_control & E1000_EECD_DI) {
471 			sc->nvm_data |= 1;
472 		}
473 		if (sc->nvm_bits == 0) {
474 			/* eeprom write */
475 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
476 			uint16_t addr = sc->nvm_opaddr & E82545_NVM_ADDR_MASK;
477 			if (op != E82545_NVM_OPCODE_WRITE) {
478 				DPRINTF("Illegal eeprom write op 0x%x\r\n",
479 					sc->nvm_opaddr);
480 			} else if (addr >= E82545_NVM_EEPROM_SIZE) {
481 				DPRINTF("Illegal eeprom write addr 0x%x\r\n",
482 					sc->nvm_opaddr);
483 			} else {
484 				DPRINTF("eeprom write eeprom[0x%x] = 0x%x\r\n",
485 				addr, sc->nvm_data);
486 				sc->eeprom_data[addr] = sc->nvm_data;
487 			}
488 			/* back to opcode mode */
489 			sc->nvm_opaddr = 0;
490 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
491 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
492 		}
493 	} else if (sc->nvm_mode == E82545_NVM_MODE_OPADDR) {
494 		sc->nvm_opaddr <<= 1;
495 		if (sc->eeprom_control & E1000_EECD_DI) {
496 			sc->nvm_opaddr |= 1;
497 		}
498 		if (sc->nvm_bits == 0) {
499 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
500 			switch (op) {
501 			case E82545_NVM_OPCODE_EWEN:
502 				DPRINTF("eeprom write enable: 0x%x\r\n",
503 					sc->nvm_opaddr);
504 				/* back to opcode mode */
505 				sc->nvm_opaddr = 0;
506 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
507 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
508 				break;
509 			case E82545_NVM_OPCODE_READ:
510 			{
511 				uint16_t addr = sc->nvm_opaddr &
512 					E82545_NVM_ADDR_MASK;
513 				sc->nvm_mode = E82545_NVM_MODE_DATAOUT;
514 				sc->nvm_bits = E82545_NVM_DATA_BITS;
515 				if (addr < E82545_NVM_EEPROM_SIZE) {
516 					sc->nvm_data = sc->eeprom_data[addr];
517 					DPRINTF("eeprom read: eeprom[0x%x] = 0x%x\r\n",
518 						addr, sc->nvm_data);
519 				} else {
520 					DPRINTF("eeprom illegal read: 0x%x\r\n",
521 						sc->nvm_opaddr);
522 					sc->nvm_data = 0;
523 				}
524 				break;
525 			}
526 			case E82545_NVM_OPCODE_WRITE:
527 				sc->nvm_mode = E82545_NVM_MODE_DATAIN;
528 				sc->nvm_bits = E82545_NVM_DATA_BITS;
529 				sc->nvm_data = 0;
530 				break;
531 			default:
532 				DPRINTF("eeprom unknown op: 0x%x\r\r",
533 					sc->nvm_opaddr);
534 				/* back to opcode mode */
535 				sc->nvm_opaddr = 0;
536 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
537 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
538 			}
539 		}
540 	} else {
541 		DPRINTF("eeprom state machine wrong state! "
542 			"0x%x 0x%x 0x%x 0x%x\r\n",
543 			sc->nvm_mode, sc->nvm_bits,
544 			sc->nvm_opaddr, sc->nvm_data);
545 	}
546 }
547 
548 static void
549 e82545_itr_callback(int fd, enum ev_type type, void *param)
550 {
551 	uint32_t new;
552 	struct e82545_softc *sc = param;
553 
554 	pthread_mutex_lock(&sc->esc_mtx);
555 	new = sc->esc_ICR & sc->esc_IMS;
556 	if (new && !sc->esc_irq_asserted) {
557 		DPRINTF("itr callback: lintr assert %x\r\n", new);
558 		sc->esc_irq_asserted = 1;
559 		pci_lintr_assert(sc->esc_pi);
560 	} else {
561 		mevent_delete(sc->esc_mevpitr);
562 		sc->esc_mevpitr = NULL;
563 	}
564 	pthread_mutex_unlock(&sc->esc_mtx);
565 }
566 
567 static void
568 e82545_icr_assert(struct e82545_softc *sc, uint32_t bits)
569 {
570 	uint32_t new;
571 
572 	DPRINTF("icr assert: 0x%x\r\n", bits);
573 
574 	/*
575 	 * An interrupt is only generated if bits are set that
576 	 * aren't already in the ICR, these bits are unmasked,
577 	 * and there isn't an interrupt already pending.
578 	 */
579 	new = bits & ~sc->esc_ICR & sc->esc_IMS;
580 	sc->esc_ICR |= bits;
581 
582 	if (new == 0) {
583 		DPRINTF("icr assert: masked %x, ims %x\r\n", new, sc->esc_IMS);
584 	} else if (sc->esc_mevpitr != NULL) {
585 		DPRINTF("icr assert: throttled %x, ims %x\r\n", new, sc->esc_IMS);
586 	} else if (!sc->esc_irq_asserted) {
587 		DPRINTF("icr assert: lintr assert %x\r\n", new);
588 		sc->esc_irq_asserted = 1;
589 		pci_lintr_assert(sc->esc_pi);
590 		if (sc->esc_ITR != 0) {
591 			sc->esc_mevpitr = mevent_add(
592 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
593 			    EVF_TIMER, e82545_itr_callback, sc);
594 		}
595 	}
596 }
597 
598 static void
599 e82545_ims_change(struct e82545_softc *sc, uint32_t bits)
600 {
601 	uint32_t new;
602 
603 	/*
604 	 * Changing the mask may allow previously asserted
605 	 * but masked interrupt requests to generate an interrupt.
606 	 */
607 	new = bits & sc->esc_ICR & ~sc->esc_IMS;
608 	sc->esc_IMS |= bits;
609 
610 	if (new == 0) {
611 		DPRINTF("ims change: masked %x, ims %x\r\n", new, sc->esc_IMS);
612 	} else if (sc->esc_mevpitr != NULL) {
613 		DPRINTF("ims change: throttled %x, ims %x\r\n", new, sc->esc_IMS);
614 	} else if (!sc->esc_irq_asserted) {
615 		DPRINTF("ims change: lintr assert %x\n\r", new);
616 		sc->esc_irq_asserted = 1;
617 		pci_lintr_assert(sc->esc_pi);
618 		if (sc->esc_ITR != 0) {
619 			sc->esc_mevpitr = mevent_add(
620 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
621 			    EVF_TIMER, e82545_itr_callback, sc);
622 		}
623 	}
624 }
625 
626 static void
627 e82545_icr_deassert(struct e82545_softc *sc, uint32_t bits)
628 {
629 
630 	DPRINTF("icr deassert: 0x%x\r\n", bits);
631 	sc->esc_ICR &= ~bits;
632 
633 	/*
634 	 * If there are no longer any interrupt sources and there
635 	 * was an asserted interrupt, clear it
636 	 */
637 	if (sc->esc_irq_asserted && !(sc->esc_ICR & sc->esc_IMS)) {
638 		DPRINTF("icr deassert: lintr deassert %x\r\n", bits);
639 		pci_lintr_deassert(sc->esc_pi);
640 		sc->esc_irq_asserted = 0;
641 	}
642 }
643 
644 static void
645 e82545_intr_write(struct e82545_softc *sc, uint32_t offset, uint32_t value)
646 {
647 
648 	DPRINTF("intr_write: off %x, val %x\n\r", offset, value);
649 
650 	switch (offset) {
651 	case E1000_ICR:
652 		e82545_icr_deassert(sc, value);
653 		break;
654 	case E1000_ITR:
655 		sc->esc_ITR = value;
656 		break;
657 	case E1000_ICS:
658 		sc->esc_ICS = value;	/* not used: store for debug */
659 		e82545_icr_assert(sc, value);
660 		break;
661 	case E1000_IMS:
662 		e82545_ims_change(sc, value);
663 		break;
664 	case E1000_IMC:
665 		sc->esc_IMC = value;	/* for debug */
666 		sc->esc_IMS &= ~value;
667 		// XXX clear interrupts if all ICR bits now masked
668 		// and interrupt was pending ?
669 		break;
670 	default:
671 		break;
672 	}
673 }
674 
675 static uint32_t
676 e82545_intr_read(struct e82545_softc *sc, uint32_t offset)
677 {
678 	uint32_t retval;
679 
680 	retval = 0;
681 
682 	DPRINTF("intr_read: off %x\n\r", offset);
683 
684 	switch (offset) {
685 	case E1000_ICR:
686 		retval = sc->esc_ICR;
687 		sc->esc_ICR = 0;
688 		e82545_icr_deassert(sc, ~0);
689 		break;
690 	case E1000_ITR:
691 		retval = sc->esc_ITR;
692 		break;
693 	case E1000_ICS:
694 		/* write-only register */
695 		break;
696 	case E1000_IMS:
697 		retval = sc->esc_IMS;
698 		break;
699 	case E1000_IMC:
700 		/* write-only register */
701 		break;
702 	default:
703 		break;
704 	}
705 
706 	return (retval);
707 }
708 
709 static void
710 e82545_devctl(struct e82545_softc *sc, uint32_t val)
711 {
712 
713 	sc->esc_CTRL = val & ~E1000_CTRL_RST;
714 
715 	if (val & E1000_CTRL_RST) {
716 		DPRINTF("e1k: s/w reset, ctl %x\n", val);
717 		e82545_reset(sc, 1);
718 	}
719 	/* XXX check for phy reset ? */
720 }
721 
722 static void
723 e82545_rx_update_rdba(struct e82545_softc *sc)
724 {
725 
726 	/* XXX verify desc base/len within phys mem range */
727 	sc->esc_rdba = (uint64_t)sc->esc_RDBAH << 32 |
728 	    sc->esc_RDBAL;
729 
730 	/* Cache host mapping of guest descriptor array */
731 	sc->esc_rxdesc = paddr_guest2host(sc->esc_ctx,
732 	    sc->esc_rdba, sc->esc_RDLEN);
733 }
734 
735 static void
736 e82545_rx_ctl(struct e82545_softc *sc, uint32_t val)
737 {
738 	int on;
739 
740 	on = ((val & E1000_RCTL_EN) == E1000_RCTL_EN);
741 
742 	/* Save RCTL after stripping reserved bits 31:27,24,21,14,11:10,0 */
743 	sc->esc_RCTL = val & ~0xF9204c01;
744 
745 	DPRINTF("rx_ctl - %s RCTL %x, val %x\n",
746 		on ? "on" : "off", sc->esc_RCTL, val);
747 
748 	/* state change requested */
749 	if (on != sc->esc_rx_enabled) {
750 		if (on) {
751 			/* Catch disallowed/unimplemented settings */
752 			//assert(!(val & E1000_RCTL_LBM_TCVR));
753 
754 			if (sc->esc_RCTL & E1000_RCTL_LBM_TCVR) {
755 				sc->esc_rx_loopback = 1;
756 			} else {
757 				sc->esc_rx_loopback = 0;
758 			}
759 
760 			e82545_rx_update_rdba(sc);
761 			e82545_rx_enable(sc);
762 		} else {
763 			e82545_rx_disable(sc);
764 			sc->esc_rx_loopback = 0;
765 			sc->esc_rdba = 0;
766 			sc->esc_rxdesc = NULL;
767 		}
768 	}
769 }
770 
771 static void
772 e82545_tx_update_tdba(struct e82545_softc *sc)
773 {
774 
775 	/* XXX verify desc base/len within phys mem range */
776 	sc->esc_tdba = (uint64_t)sc->esc_TDBAH << 32 | sc->esc_TDBAL;
777 
778 	/* Cache host mapping of guest descriptor array */
779 	sc->esc_txdesc = paddr_guest2host(sc->esc_ctx, sc->esc_tdba,
780             sc->esc_TDLEN);
781 }
782 
783 static void
784 e82545_tx_ctl(struct e82545_softc *sc, uint32_t val)
785 {
786 	int on;
787 
788 	on = ((val & E1000_TCTL_EN) == E1000_TCTL_EN);
789 
790 	/* ignore TCTL_EN settings that don't change state */
791 	if (on == sc->esc_tx_enabled)
792 		return;
793 
794 	if (on) {
795 		e82545_tx_update_tdba(sc);
796 		e82545_tx_enable(sc);
797 	} else {
798 		e82545_tx_disable(sc);
799 		sc->esc_tdba = 0;
800 		sc->esc_txdesc = NULL;
801 	}
802 
803 	/* Save TCTL value after stripping reserved bits 31:25,23,2,0 */
804 	sc->esc_TCTL = val & ~0xFE800005;
805 }
806 
807 int
808 e82545_bufsz(uint32_t rctl)
809 {
810 
811 	switch (rctl & (E1000_RCTL_BSEX | E1000_RCTL_SZ_256)) {
812 	case (E1000_RCTL_SZ_2048): return (2048);
813 	case (E1000_RCTL_SZ_1024): return (1024);
814 	case (E1000_RCTL_SZ_512): return (512);
815 	case (E1000_RCTL_SZ_256): return (256);
816 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_16384): return (16384);
817 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_8192): return (8192);
818 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_4096): return (4096);
819 	}
820 	return (256);	/* Forbidden value. */
821 }
822 
823 static uint8_t dummybuf[2048];
824 
825 /* XXX one packet at a time until this is debugged */
826 static void
827 e82545_tap_callback(int fd, enum ev_type type, void *param)
828 {
829 	struct e82545_softc *sc = param;
830 	struct e1000_rx_desc *rxd;
831 	struct iovec vec[64];
832 	int left, len, lim, maxpktsz, maxpktdesc, bufsz, i, n, size;
833 	uint32_t cause = 0;
834 	uint16_t *tp, tag, head;
835 
836 	pthread_mutex_lock(&sc->esc_mtx);
837 	DPRINTF("rx_run: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
838 
839 	if (!sc->esc_rx_enabled || sc->esc_rx_loopback) {
840 		DPRINTF("rx disabled (!%d || %d) -- packet(s) dropped\r\n",
841 		    sc->esc_rx_enabled, sc->esc_rx_loopback);
842 		while (read(sc->esc_tapfd, dummybuf, sizeof(dummybuf)) > 0) {
843 		}
844 		goto done1;
845 	}
846 	bufsz = e82545_bufsz(sc->esc_RCTL);
847 	maxpktsz = (sc->esc_RCTL & E1000_RCTL_LPE) ? 16384 : 1522;
848 	maxpktdesc = (maxpktsz + bufsz - 1) / bufsz;
849 	size = sc->esc_RDLEN / 16;
850 	head = sc->esc_RDH;
851 	left = (size + sc->esc_RDT - head) % size;
852 	if (left < maxpktdesc) {
853 		DPRINTF("rx overflow (%d < %d) -- packet(s) dropped\r\n",
854 		    left, maxpktdesc);
855 		while (read(sc->esc_tapfd, dummybuf, sizeof(dummybuf)) > 0) {
856 		}
857 		goto done1;
858 	}
859 
860 	sc->esc_rx_active = 1;
861 	pthread_mutex_unlock(&sc->esc_mtx);
862 
863 	for (lim = size / 4; lim > 0 && left >= maxpktdesc; lim -= n) {
864 
865 		/* Grab rx descriptor pointed to by the head pointer */
866 		for (i = 0; i < maxpktdesc; i++) {
867 			rxd = &sc->esc_rxdesc[(head + i) % size];
868 			vec[i].iov_base = paddr_guest2host(sc->esc_ctx,
869 			    rxd->buffer_addr, bufsz);
870 			vec[i].iov_len = bufsz;
871 		}
872 		len = readv(sc->esc_tapfd, vec, maxpktdesc);
873 		if (len <= 0) {
874 			DPRINTF("tap: readv() returned %d\n", len);
875 			goto done;
876 		}
877 
878 		/*
879 		 * Adjust the packet length based on whether the CRC needs
880 		 * to be stripped or if the packet is less than the minimum
881 		 * eth packet size.
882 		 */
883 		if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
884 			len = ETHER_MIN_LEN - ETHER_CRC_LEN;
885 		if (!(sc->esc_RCTL & E1000_RCTL_SECRC))
886 			len += ETHER_CRC_LEN;
887 		n = (len + bufsz - 1) / bufsz;
888 
889 		DPRINTF("packet read %d bytes, %d segs, head %d\r\n",
890 		    len, n, head);
891 
892 		/* Apply VLAN filter. */
893 		tp = (uint16_t *)vec[0].iov_base + 6;
894 		if ((sc->esc_RCTL & E1000_RCTL_VFE) &&
895 		    (ntohs(tp[0]) == sc->esc_VET)) {
896 			tag = ntohs(tp[1]) & 0x0fff;
897 			if ((sc->esc_fvlan[tag >> 5] &
898 			    (1 << (tag & 0x1f))) != 0) {
899 				DPRINTF("known VLAN %d\r\n", tag);
900 			} else {
901 				DPRINTF("unknown VLAN %d\r\n", tag);
902 				n = 0;
903 				continue;
904 			}
905 		}
906 
907 		/* Update all consumed descriptors. */
908 		for (i = 0; i < n - 1; i++) {
909 			rxd = &sc->esc_rxdesc[(head + i) % size];
910 			rxd->length = bufsz;
911 			rxd->csum = 0;
912 			rxd->errors = 0;
913 			rxd->special = 0;
914 			rxd->status = E1000_RXD_STAT_DD;
915 		}
916 		rxd = &sc->esc_rxdesc[(head + i) % size];
917 		rxd->length = len % bufsz;
918 		rxd->csum = 0;
919 		rxd->errors = 0;
920 		rxd->special = 0;
921 		/* XXX signal no checksum for now */
922 		rxd->status = E1000_RXD_STAT_PIF | E1000_RXD_STAT_IXSM |
923 		    E1000_RXD_STAT_EOP | E1000_RXD_STAT_DD;
924 
925 		/* Schedule receive interrupts. */
926 		if (len <= sc->esc_RSRPD) {
927 			cause |= E1000_ICR_SRPD | E1000_ICR_RXT0;
928 		} else {
929 			/* XXX: RDRT and RADV timers should be here. */
930 			cause |= E1000_ICR_RXT0;
931 		}
932 
933 		head = (head + n) % size;
934 		left -= n;
935 	}
936 
937 done:
938 	pthread_mutex_lock(&sc->esc_mtx);
939 	sc->esc_rx_active = 0;
940 	if (sc->esc_rx_enabled == 0)
941 		pthread_cond_signal(&sc->esc_rx_cond);
942 
943 	sc->esc_RDH = head;
944 	/* Respect E1000_RCTL_RDMTS */
945 	left = (size + sc->esc_RDT - head) % size;
946 	if (left < (size >> (((sc->esc_RCTL >> 8) & 3) + 1)))
947 		cause |= E1000_ICR_RXDMT0;
948 	/* Assert all accumulated interrupts. */
949 	if (cause != 0)
950 		e82545_icr_assert(sc, cause);
951 done1:
952 	DPRINTF("rx_run done: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
953 	pthread_mutex_unlock(&sc->esc_mtx);
954 }
955 
956 static uint16_t
957 e82545_carry(uint32_t sum)
958 {
959 
960 	sum = (sum & 0xFFFF) + (sum >> 16);
961 	if (sum > 0xFFFF)
962 		sum -= 0xFFFF;
963 	return (sum);
964 }
965 
966 static uint16_t
967 e82545_buf_checksum(uint8_t *buf, int len)
968 {
969 	int i;
970 	uint32_t sum = 0;
971 
972 	/* Checksum all the pairs of bytes first... */
973 	for (i = 0; i < (len & ~1U); i += 2)
974 		sum += *((u_int16_t *)(buf + i));
975 
976 	/*
977 	 * If there's a single byte left over, checksum it, too.
978 	 * Network byte order is big-endian, so the remaining byte is
979 	 * the high byte.
980 	 */
981 	if (i < len)
982 		sum += htons(buf[i] << 8);
983 
984 	return (e82545_carry(sum));
985 }
986 
987 static uint16_t
988 e82545_iov_checksum(struct iovec *iov, int iovcnt, int off, int len)
989 {
990 	int now, odd;
991 	uint32_t sum = 0, s;
992 
993 	/* Skip completely unneeded vectors. */
994 	while (iovcnt > 0 && iov->iov_len <= off && off > 0) {
995 		off -= iov->iov_len;
996 		iov++;
997 		iovcnt--;
998 	}
999 
1000 	/* Calculate checksum of requested range. */
1001 	odd = 0;
1002 	while (len > 0 && iovcnt > 0) {
1003 		now = MIN(len, iov->iov_len - off);
1004 		s = e82545_buf_checksum(iov->iov_base + off, now);
1005 		sum += odd ? (s << 8) : s;
1006 		odd ^= (now & 1);
1007 		len -= now;
1008 		off = 0;
1009 		iov++;
1010 		iovcnt--;
1011 	}
1012 
1013 	return (e82545_carry(sum));
1014 }
1015 
1016 /*
1017  * Return the transmit descriptor type.
1018  */
1019 int
1020 e82545_txdesc_type(uint32_t lower)
1021 {
1022 	int type;
1023 
1024 	type = 0;
1025 
1026 	if (lower & E1000_TXD_CMD_DEXT)
1027 		type = lower & E1000_TXD_MASK;
1028 
1029 	return (type);
1030 }
1031 
1032 static void
1033 e82545_transmit_checksum(struct iovec *iov, int iovcnt, struct ck_info *ck)
1034 {
1035 	uint16_t cksum;
1036 	int cklen;
1037 
1038 	DPRINTF("tx cksum: iovcnt/s/off/len %d/%d/%d/%d\r\n",
1039 	    iovcnt, ck->ck_start, ck->ck_off, ck->ck_len);
1040 	cklen = ck->ck_len ? ck->ck_len - ck->ck_start + 1 : INT_MAX;
1041 	cksum = e82545_iov_checksum(iov, iovcnt, ck->ck_start, cklen);
1042 	*(uint16_t *)((uint8_t *)iov[0].iov_base + ck->ck_off) = ~cksum;
1043 }
1044 
1045 static void
1046 e82545_transmit_backend(struct e82545_softc *sc, struct iovec *iov, int iovcnt)
1047 {
1048 
1049 	if (sc->esc_tapfd == -1)
1050 		return;
1051 
1052 	(void) writev(sc->esc_tapfd, iov, iovcnt);
1053 }
1054 
1055 static void
1056 e82545_transmit_done(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1057     uint16_t dsize, int *tdwb)
1058 {
1059 	union e1000_tx_udesc *dsc;
1060 
1061 	for ( ; head != tail; head = (head + 1) % dsize) {
1062 		dsc = &sc->esc_txdesc[head];
1063 		if (dsc->td.lower.data & E1000_TXD_CMD_RS) {
1064 			dsc->td.upper.data |= E1000_TXD_STAT_DD;
1065 			*tdwb = 1;
1066 		}
1067 	}
1068 }
1069 
1070 static int
1071 e82545_transmit(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1072     uint16_t dsize, uint16_t *rhead, int *tdwb)
1073 {
1074 	uint8_t *hdr, *hdrp;
1075 	struct iovec iovb[I82545_MAX_TXSEGS + 2];
1076 	struct iovec tiov[I82545_MAX_TXSEGS + 2];
1077 	struct e1000_context_desc *cd;
1078 	struct ck_info ckinfo[2];
1079 	struct iovec *iov;
1080 	union  e1000_tx_udesc *dsc;
1081 	int desc, dtype, len, ntype, iovcnt, tlen, hdrlen, vlen, tcp, tso;
1082 	int mss, paylen, seg, tiovcnt, left, now, nleft, nnow, pv, pvoff;
1083 	uint32_t tcpsum, tcpseq;
1084 	uint16_t ipcs, tcpcs, ipid, ohead;
1085 
1086 	ckinfo[0].ck_valid = ckinfo[1].ck_valid = 0;
1087 	iovcnt = 0;
1088 	tlen = 0;
1089 	ntype = 0;
1090 	tso = 0;
1091 	ohead = head;
1092 
1093 	/* iovb[0/1] may be used for writable copy of headers. */
1094 	iov = &iovb[2];
1095 
1096 	for (desc = 0; ; desc++, head = (head + 1) % dsize) {
1097 		if (head == tail) {
1098 			*rhead = head;
1099 			return (0);
1100 		}
1101 		dsc = &sc->esc_txdesc[head];
1102 		dtype = e82545_txdesc_type(dsc->td.lower.data);
1103 
1104 		if (desc == 0) {
1105 			switch (dtype) {
1106 			case E1000_TXD_TYP_C:
1107 				DPRINTF("tx ctxt desc idx %d: %016jx "
1108 				    "%08x%08x\r\n",
1109 				    head, dsc->td.buffer_addr,
1110 				    dsc->td.upper.data, dsc->td.lower.data);
1111 				/* Save context and return */
1112 				sc->esc_txctx = dsc->cd;
1113 				goto done;
1114 			case E1000_TXD_TYP_L:
1115 				DPRINTF("tx legacy desc idx %d: %08x%08x\r\n",
1116 				    head, dsc->td.upper.data, dsc->td.lower.data);
1117 				/*
1118 				 * legacy cksum start valid in first descriptor
1119 				 */
1120 				ntype = dtype;
1121 				ckinfo[0].ck_start = dsc->td.upper.fields.css;
1122 				break;
1123 			case E1000_TXD_TYP_D:
1124 				DPRINTF("tx data desc idx %d: %08x%08x\r\n",
1125 				    head, dsc->td.upper.data, dsc->td.lower.data);
1126 				ntype = dtype;
1127 				break;
1128 			default:
1129 				break;
1130 			}
1131 		} else {
1132 			/* Descriptor type must be consistent */
1133 			assert(dtype == ntype);
1134 			DPRINTF("tx next desc idx %d: %08x%08x\r\n",
1135 			    head, dsc->td.upper.data, dsc->td.lower.data);
1136 		}
1137 
1138 		len = (dtype == E1000_TXD_TYP_L) ? dsc->td.lower.flags.length :
1139 		    dsc->dd.lower.data & 0xFFFFF;
1140 
1141 		if (len > 0) {
1142 			/* Strip checksum supplied by guest. */
1143 			if ((dsc->td.lower.data & E1000_TXD_CMD_EOP) != 0 &&
1144 			    (dsc->td.lower.data & E1000_TXD_CMD_IFCS) == 0)
1145 				len -= 2;
1146 			tlen += len;
1147 			if (iovcnt < I82545_MAX_TXSEGS) {
1148 				iov[iovcnt].iov_base = paddr_guest2host(
1149 				    sc->esc_ctx, dsc->td.buffer_addr, len);
1150 				iov[iovcnt].iov_len = len;
1151 			}
1152 			iovcnt++;
1153 		}
1154 
1155 		/*
1156 		 * Pull out info that is valid in the final descriptor
1157 		 * and exit descriptor loop.
1158 		 */
1159 		if (dsc->td.lower.data & E1000_TXD_CMD_EOP) {
1160 			if (dtype == E1000_TXD_TYP_L) {
1161 				if (dsc->td.lower.data & E1000_TXD_CMD_IC) {
1162 					ckinfo[0].ck_valid = 1;
1163 					ckinfo[0].ck_off =
1164 					    dsc->td.lower.flags.cso;
1165 					ckinfo[0].ck_len = 0;
1166 				}
1167 			} else {
1168 				cd = &sc->esc_txctx;
1169 				if (dsc->dd.lower.data & E1000_TXD_CMD_TSE)
1170 					tso = 1;
1171 				if (dsc->dd.upper.fields.popts &
1172 				    E1000_TXD_POPTS_IXSM)
1173 					ckinfo[0].ck_valid = 1;
1174 				if (dsc->dd.upper.fields.popts &
1175 				    E1000_TXD_POPTS_IXSM || tso) {
1176 					ckinfo[0].ck_start =
1177 					    cd->lower_setup.ip_fields.ipcss;
1178 					ckinfo[0].ck_off =
1179 					    cd->lower_setup.ip_fields.ipcso;
1180 					ckinfo[0].ck_len =
1181 					    cd->lower_setup.ip_fields.ipcse;
1182 				}
1183 				if (dsc->dd.upper.fields.popts &
1184 				    E1000_TXD_POPTS_TXSM)
1185 					ckinfo[1].ck_valid = 1;
1186 				if (dsc->dd.upper.fields.popts &
1187 				    E1000_TXD_POPTS_TXSM || tso) {
1188 					ckinfo[1].ck_start =
1189 					    cd->upper_setup.tcp_fields.tucss;
1190 					ckinfo[1].ck_off =
1191 					    cd->upper_setup.tcp_fields.tucso;
1192 					ckinfo[1].ck_len =
1193 					    cd->upper_setup.tcp_fields.tucse;
1194 				}
1195 			}
1196 			break;
1197 		}
1198 	}
1199 
1200 	if (iovcnt > I82545_MAX_TXSEGS) {
1201 		WPRINTF("tx too many descriptors (%d > %d) -- dropped\r\n",
1202 		    iovcnt, I82545_MAX_TXSEGS);
1203 		goto done;
1204 	}
1205 
1206 	hdrlen = vlen = 0;
1207 	/* Estimate writable space for VLAN header insertion. */
1208 	if ((sc->esc_CTRL & E1000_CTRL_VME) &&
1209 	    (dsc->td.lower.data & E1000_TXD_CMD_VLE)) {
1210 		hdrlen = ETHER_ADDR_LEN*2;
1211 		vlen = ETHER_VLAN_ENCAP_LEN;
1212 	}
1213 	if (!tso) {
1214 		/* Estimate required writable space for checksums. */
1215 		if (ckinfo[0].ck_valid)
1216 			hdrlen = MAX(hdrlen, ckinfo[0].ck_off + 2);
1217 		if (ckinfo[1].ck_valid)
1218 			hdrlen = MAX(hdrlen, ckinfo[1].ck_off + 2);
1219 		/* Round up writable space to the first vector. */
1220 		if (hdrlen != 0 && iov[0].iov_len > hdrlen &&
1221 		    iov[0].iov_len < hdrlen + 100)
1222 			hdrlen = iov[0].iov_len;
1223 	} else {
1224 		/* In case of TSO header length provided by software. */
1225 		hdrlen = sc->esc_txctx.tcp_seg_setup.fields.hdr_len;
1226 	}
1227 
1228 	/* Allocate, fill and prepend writable header vector. */
1229 	if (hdrlen != 0) {
1230 		hdr = __builtin_alloca(hdrlen + vlen);
1231 		hdr += vlen;
1232 		for (left = hdrlen, hdrp = hdr; left > 0;
1233 		    left -= now, hdrp += now) {
1234 			now = MIN(left, iov->iov_len);
1235 			memcpy(hdrp, iov->iov_base, now);
1236 			iov->iov_base += now;
1237 			iov->iov_len -= now;
1238 			if (iov->iov_len == 0) {
1239 				iov++;
1240 				iovcnt--;
1241 			}
1242 		}
1243 		iov--;
1244 		iovcnt++;
1245 		iov->iov_base = hdr;
1246 		iov->iov_len = hdrlen;
1247 	}
1248 
1249 	/* Insert VLAN tag. */
1250 	if (vlen != 0) {
1251 		hdr -= ETHER_VLAN_ENCAP_LEN;
1252 		memmove(hdr, hdr + ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN*2);
1253 		hdrlen += ETHER_VLAN_ENCAP_LEN;
1254 		hdr[ETHER_ADDR_LEN*2 + 0] = sc->esc_VET >> 8;
1255 		hdr[ETHER_ADDR_LEN*2 + 1] = sc->esc_VET & 0xff;
1256 		hdr[ETHER_ADDR_LEN*2 + 2] = dsc->td.upper.fields.special >> 8;
1257 		hdr[ETHER_ADDR_LEN*2 + 3] = dsc->td.upper.fields.special & 0xff;
1258 		iov->iov_base = hdr;
1259 		iov->iov_len += ETHER_VLAN_ENCAP_LEN;
1260 		/* Correct checksum offsets after VLAN tag insertion. */
1261 		ckinfo[0].ck_start += ETHER_VLAN_ENCAP_LEN;
1262 		ckinfo[0].ck_off += ETHER_VLAN_ENCAP_LEN;
1263 		if (ckinfo[0].ck_len != 0)
1264 			ckinfo[0].ck_len += ETHER_VLAN_ENCAP_LEN;
1265 		ckinfo[1].ck_start += ETHER_VLAN_ENCAP_LEN;
1266 		ckinfo[1].ck_off += ETHER_VLAN_ENCAP_LEN;
1267 		if (ckinfo[1].ck_len != 0)
1268 			ckinfo[1].ck_len += ETHER_VLAN_ENCAP_LEN;
1269 	}
1270 
1271 	/* Simple non-TSO case. */
1272 	if (!tso) {
1273 		/* Calculate checksums and transmit. */
1274 		if (ckinfo[0].ck_valid)
1275 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[0]);
1276 		if (ckinfo[1].ck_valid)
1277 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[1]);
1278 		e82545_transmit_backend(sc, iov, iovcnt);
1279 		goto done;
1280 	}
1281 
1282 	/* Doing TSO. */
1283 	tcp = (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) != 0;
1284 	mss = sc->esc_txctx.tcp_seg_setup.fields.mss;
1285 	paylen = (sc->esc_txctx.cmd_and_length & 0x000fffff);
1286 	DPRINTF("tx %s segmentation offload %d+%d/%d bytes %d iovs\r\n",
1287 	    tcp ? "TCP" : "UDP", hdrlen, paylen, mss, iovcnt);
1288 	ipid = ntohs(*(uint16_t *)&hdr[ckinfo[0].ck_start + 4]);
1289 	tcpseq = ntohl(*(uint32_t *)&hdr[ckinfo[1].ck_start + 4]);
1290 	ipcs = *(uint16_t *)&hdr[ckinfo[0].ck_off];
1291 	tcpcs = 0;
1292 	if (ckinfo[1].ck_valid)	/* Save partial pseudo-header checksum. */
1293 		tcpcs = *(uint16_t *)&hdr[ckinfo[1].ck_off];
1294 	pv = 1;
1295 	pvoff = 0;
1296 	for (seg = 0, left = paylen; left > 0; seg++, left -= now) {
1297 		now = MIN(left, mss);
1298 
1299 		/* Construct IOVs for the segment. */
1300 		/* Include whole original header. */
1301 		tiov[0].iov_base = hdr;
1302 		tiov[0].iov_len = hdrlen;
1303 		tiovcnt = 1;
1304 		/* Include respective part of payload IOV. */
1305 		for (nleft = now; pv < iovcnt && nleft > 0; nleft -= nnow) {
1306 			nnow = MIN(nleft, iov[pv].iov_len - pvoff);
1307 			tiov[tiovcnt].iov_base = iov[pv].iov_base + pvoff;
1308 			tiov[tiovcnt++].iov_len = nnow;
1309 			if (pvoff + nnow == iov[pv].iov_len) {
1310 				pv++;
1311 				pvoff = 0;
1312 			} else
1313 				pvoff += nnow;
1314 		}
1315 		DPRINTF("tx segment %d %d+%d bytes %d iovs\r\n",
1316 		    seg, hdrlen, now, tiovcnt);
1317 
1318 		/* Update IP header. */
1319 		if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_IP) {
1320 			/* IPv4 -- set length and ID */
1321 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 2] =
1322 			    htons(hdrlen - ckinfo[0].ck_start + now);
1323 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1324 			    htons(ipid + seg);
1325 		} else {
1326 			/* IPv6 -- set length */
1327 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1328 			    htons(hdrlen - ckinfo[0].ck_start - 40 +
1329 				  now);
1330 		}
1331 
1332 		/* Update pseudo-header checksum. */
1333 		tcpsum = tcpcs;
1334 		tcpsum += htons(hdrlen - ckinfo[1].ck_start + now);
1335 
1336 		/* Update TCP/UDP headers. */
1337 		if (tcp) {
1338 			/* Update sequence number and FIN/PUSH flags. */
1339 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1340 			    htonl(tcpseq + paylen - left);
1341 			if (now < left) {
1342 				hdr[ckinfo[1].ck_start + 13] &=
1343 				    ~(TH_FIN | TH_PUSH);
1344 			}
1345 		} else {
1346 			/* Update payload length. */
1347 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1348 			    hdrlen - ckinfo[1].ck_start + now;
1349 		}
1350 
1351 		/* Calculate checksums and transmit. */
1352 		if (ckinfo[0].ck_valid) {
1353 			*(uint16_t *)&hdr[ckinfo[0].ck_off] = ipcs;
1354 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[0]);
1355 		}
1356 		if (ckinfo[1].ck_valid) {
1357 			*(uint16_t *)&hdr[ckinfo[1].ck_off] =
1358 			    e82545_carry(tcpsum);
1359 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[1]);
1360 		}
1361 		e82545_transmit_backend(sc, tiov, tiovcnt);
1362 	}
1363 
1364 done:
1365 	head = (head + 1) % dsize;
1366 	e82545_transmit_done(sc, ohead, head, dsize, tdwb);
1367 
1368 	*rhead = head;
1369 	return (desc + 1);
1370 }
1371 
1372 static void
1373 e82545_tx_run(struct e82545_softc *sc)
1374 {
1375 	uint32_t cause;
1376 	uint16_t head, rhead, tail, size;
1377 	int lim, tdwb, sent;
1378 
1379 	head = sc->esc_TDH;
1380 	tail = sc->esc_TDT;
1381 	size = sc->esc_TDLEN / 16;
1382 	DPRINTF("tx_run: head %x, rhead %x, tail %x\r\n",
1383 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1384 
1385 	pthread_mutex_unlock(&sc->esc_mtx);
1386 	rhead = head;
1387 	tdwb = 0;
1388 	for (lim = size / 4; sc->esc_tx_enabled && lim > 0; lim -= sent) {
1389 		sent = e82545_transmit(sc, head, tail, size, &rhead, &tdwb);
1390 		if (sent == 0)
1391 			break;
1392 		head = rhead;
1393 	}
1394 	pthread_mutex_lock(&sc->esc_mtx);
1395 
1396 	sc->esc_TDH = head;
1397 	sc->esc_TDHr = rhead;
1398 	cause = 0;
1399 	if (tdwb)
1400 		cause |= E1000_ICR_TXDW;
1401 	if (lim != size / 4 && sc->esc_TDH == sc->esc_TDT)
1402 		cause |= E1000_ICR_TXQE;
1403 	if (cause)
1404 		e82545_icr_assert(sc, cause);
1405 
1406 	DPRINTF("tx_run done: head %x, rhead %x, tail %x\r\n",
1407 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1408 }
1409 
1410 static _Noreturn void *
1411 e82545_tx_thread(void *param)
1412 {
1413 	struct e82545_softc *sc = param;
1414 
1415 	pthread_mutex_lock(&sc->esc_mtx);
1416 	for (;;) {
1417 		while (!sc->esc_tx_enabled || sc->esc_TDHr == sc->esc_TDT) {
1418 			if (sc->esc_tx_enabled && sc->esc_TDHr != sc->esc_TDT)
1419 				break;
1420 			sc->esc_tx_active = 0;
1421 			if (sc->esc_tx_enabled == 0)
1422 				pthread_cond_signal(&sc->esc_tx_cond);
1423 			pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1424 		}
1425 		sc->esc_tx_active = 1;
1426 
1427 		/* Process some tx descriptors.  Lock dropped inside. */
1428 		e82545_tx_run(sc);
1429 	}
1430 }
1431 
1432 static void
1433 e82545_tx_start(struct e82545_softc *sc)
1434 {
1435 
1436 	if (sc->esc_tx_active == 0)
1437 		pthread_cond_signal(&sc->esc_tx_cond);
1438 }
1439 
1440 static void
1441 e82545_tx_enable(struct e82545_softc *sc)
1442 {
1443 
1444 	sc->esc_tx_enabled = 1;
1445 }
1446 
1447 static void
1448 e82545_tx_disable(struct e82545_softc *sc)
1449 {
1450 
1451 	sc->esc_tx_enabled = 0;
1452 	while (sc->esc_tx_active)
1453 		pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1454 }
1455 
1456 static void
1457 e82545_rx_enable(struct e82545_softc *sc)
1458 {
1459 
1460 	sc->esc_rx_enabled = 1;
1461 }
1462 
1463 static void
1464 e82545_rx_disable(struct e82545_softc *sc)
1465 {
1466 
1467 	sc->esc_rx_enabled = 0;
1468 	while (sc->esc_rx_active)
1469 		pthread_cond_wait(&sc->esc_rx_cond, &sc->esc_mtx);
1470 }
1471 
1472 static void
1473 e82545_write_ra(struct e82545_softc *sc, int reg, uint32_t wval)
1474 {
1475 	struct eth_uni *eu;
1476 	int idx;
1477 
1478 	idx = reg >> 1;
1479 	assert(idx < 15);
1480 
1481 	eu = &sc->esc_uni[idx];
1482 
1483 	if (reg & 0x1) {
1484 		/* RAH */
1485 		eu->eu_valid = ((wval & E1000_RAH_AV) == E1000_RAH_AV);
1486 		eu->eu_addrsel = (wval >> 16) & 0x3;
1487 		eu->eu_eth.octet[5] = wval >> 8;
1488 		eu->eu_eth.octet[4] = wval;
1489 	} else {
1490 		/* RAL */
1491 		eu->eu_eth.octet[3] = wval >> 24;
1492 		eu->eu_eth.octet[2] = wval >> 16;
1493 		eu->eu_eth.octet[1] = wval >> 8;
1494 		eu->eu_eth.octet[0] = wval;
1495 	}
1496 }
1497 
1498 static uint32_t
1499 e82545_read_ra(struct e82545_softc *sc, int reg)
1500 {
1501 	struct eth_uni *eu;
1502 	uint32_t retval;
1503 	int idx;
1504 
1505 	idx = reg >> 1;
1506 	assert(idx < 15);
1507 
1508 	eu = &sc->esc_uni[idx];
1509 
1510 	if (reg & 0x1) {
1511 		/* RAH */
1512 		retval = (eu->eu_valid << 31) |
1513 			 (eu->eu_addrsel << 16) |
1514 			 (eu->eu_eth.octet[5] << 8) |
1515 			 eu->eu_eth.octet[4];
1516 	} else {
1517 		/* RAL */
1518 		retval = (eu->eu_eth.octet[3] << 24) |
1519 			 (eu->eu_eth.octet[2] << 16) |
1520 			 (eu->eu_eth.octet[1] << 8) |
1521 			 eu->eu_eth.octet[0];
1522 	}
1523 
1524 	return (retval);
1525 }
1526 
1527 static void
1528 e82545_write_register(struct e82545_softc *sc, uint32_t offset, uint32_t value)
1529 {
1530 	int ridx;
1531 
1532 	if (offset & 0x3) {
1533 		DPRINTF("Unaligned register write offset:0x%x value:0x%x\r\n", offset, value);
1534 		return;
1535 	}
1536 	DPRINTF("Register write: 0x%x value: 0x%x\r\n", offset, value);
1537 
1538 	switch (offset) {
1539 	case E1000_CTRL:
1540 	case E1000_CTRL_DUP:
1541 		e82545_devctl(sc, value);
1542 		break;
1543 	case E1000_FCAL:
1544 		sc->esc_FCAL = value;
1545 		break;
1546 	case E1000_FCAH:
1547 		sc->esc_FCAH = value & ~0xFFFF0000;
1548 		break;
1549 	case E1000_FCT:
1550 		sc->esc_FCT = value & ~0xFFFF0000;
1551 		break;
1552 	case E1000_VET:
1553 		sc->esc_VET = value & ~0xFFFF0000;
1554 		break;
1555 	case E1000_FCTTV:
1556 		sc->esc_FCTTV = value & ~0xFFFF0000;
1557 		break;
1558 	case E1000_LEDCTL:
1559 		sc->esc_LEDCTL = value & ~0x30303000;
1560 		break;
1561 	case E1000_PBA:
1562 		sc->esc_PBA = value & 0x0000FF80;
1563 		break;
1564 	case E1000_ICR:
1565 	case E1000_ITR:
1566 	case E1000_ICS:
1567 	case E1000_IMS:
1568 	case E1000_IMC:
1569 		e82545_intr_write(sc, offset, value);
1570 		break;
1571 	case E1000_RCTL:
1572 		e82545_rx_ctl(sc, value);
1573 		break;
1574 	case E1000_FCRTL:
1575 		sc->esc_FCRTL = value & ~0xFFFF0007;
1576 		break;
1577 	case E1000_FCRTH:
1578 		sc->esc_FCRTH = value & ~0xFFFF0007;
1579 		break;
1580 	case E1000_RDBAL(0):
1581 		sc->esc_RDBAL = value & ~0xF;
1582 		if (sc->esc_rx_enabled) {
1583 			/* Apparently legal: update cached address */
1584 			e82545_rx_update_rdba(sc);
1585 		}
1586 		break;
1587 	case E1000_RDBAH(0):
1588 		assert(!sc->esc_rx_enabled);
1589 		sc->esc_RDBAH = value;
1590 		break;
1591 	case E1000_RDLEN(0):
1592 		assert(!sc->esc_rx_enabled);
1593 		sc->esc_RDLEN = value & ~0xFFF0007F;
1594 		break;
1595 	case E1000_RDH(0):
1596 		/* XXX should only ever be zero ? Range check ? */
1597 		sc->esc_RDH = value;
1598 		break;
1599 	case E1000_RDT(0):
1600 		/* XXX if this opens up the rx ring, do something ? */
1601 		sc->esc_RDT = value;
1602 		break;
1603 	case E1000_RDTR:
1604 		/* ignore FPD bit 31 */
1605 		sc->esc_RDTR = value & ~0xFFFF0000;
1606 		break;
1607 	case E1000_RXDCTL(0):
1608 		sc->esc_RXDCTL = value & ~0xFEC0C0C0;
1609 		break;
1610 	case E1000_RADV:
1611 		sc->esc_RADV = value & ~0xFFFF0000;
1612 		break;
1613 	case E1000_RSRPD:
1614 		sc->esc_RSRPD = value & ~0xFFFFF000;
1615 		break;
1616 	case E1000_RXCSUM:
1617 		sc->esc_RXCSUM = value & ~0xFFFFF800;
1618 		break;
1619 	case E1000_TXCW:
1620 		sc->esc_TXCW = value & ~0x3FFF0000;
1621 		break;
1622 	case E1000_TCTL:
1623 		e82545_tx_ctl(sc, value);
1624 		break;
1625 	case E1000_TIPG:
1626 		sc->esc_TIPG = value;
1627 		break;
1628 	case E1000_AIT:
1629 		sc->esc_AIT = value;
1630 		break;
1631 	case E1000_TDBAL(0):
1632 		sc->esc_TDBAL = value & ~0xF;
1633 		if (sc->esc_tx_enabled) {
1634 			/* Apparently legal */
1635 			e82545_tx_update_tdba(sc);
1636 		}
1637 		break;
1638 	case E1000_TDBAH(0):
1639 		//assert(!sc->esc_tx_enabled);
1640 		sc->esc_TDBAH = value;
1641 		break;
1642 	case E1000_TDLEN(0):
1643 		//assert(!sc->esc_tx_enabled);
1644 		sc->esc_TDLEN = value & ~0xFFF0007F;
1645 		break;
1646 	case E1000_TDH(0):
1647 		//assert(!sc->esc_tx_enabled);
1648 		/* XXX should only ever be zero ? Range check ? */
1649 		sc->esc_TDHr = sc->esc_TDH = value;
1650 		break;
1651 	case E1000_TDT(0):
1652 		/* XXX range check ? */
1653 		sc->esc_TDT = value;
1654 		if (sc->esc_tx_enabled)
1655 			e82545_tx_start(sc);
1656 		break;
1657 	case E1000_TIDV:
1658 		sc->esc_TIDV = value & ~0xFFFF0000;
1659 		break;
1660 	case E1000_TXDCTL(0):
1661 		//assert(!sc->esc_tx_enabled);
1662 		sc->esc_TXDCTL = value & ~0xC0C0C0;
1663 		break;
1664 	case E1000_TADV:
1665 		sc->esc_TADV = value & ~0xFFFF0000;
1666 		break;
1667 	case E1000_RAL(0) ... E1000_RAH(15):
1668 		/* convert to u32 offset */
1669 		ridx = (offset - E1000_RAL(0)) >> 2;
1670 		e82545_write_ra(sc, ridx, value);
1671 		break;
1672 	case E1000_MTA ... (E1000_MTA + (127*4)):
1673 		sc->esc_fmcast[(offset - E1000_MTA) >> 2] = value;
1674 		break;
1675 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1676 		sc->esc_fvlan[(offset - E1000_VFTA) >> 2] = value;
1677 		break;
1678 	case E1000_EECD:
1679 	{
1680 		//DPRINTF("EECD write 0x%x -> 0x%x\r\n", sc->eeprom_control, value);
1681 		/* edge triggered low->high */
1682 		uint32_t eecd_strobe = ((sc->eeprom_control & E1000_EECD_SK) ?
1683 			0 : (value & E1000_EECD_SK));
1684 		uint32_t eecd_mask = (E1000_EECD_SK|E1000_EECD_CS|
1685 					E1000_EECD_DI|E1000_EECD_REQ);
1686 		sc->eeprom_control &= ~eecd_mask;
1687 		sc->eeprom_control |= (value & eecd_mask);
1688 		/* grant/revoke immediately */
1689 		if (value & E1000_EECD_REQ) {
1690 			sc->eeprom_control |= E1000_EECD_GNT;
1691 		} else {
1692                         sc->eeprom_control &= ~E1000_EECD_GNT;
1693 		}
1694 		if (eecd_strobe && (sc->eeprom_control & E1000_EECD_CS)) {
1695 			e82545_eecd_strobe(sc);
1696 		}
1697 		return;
1698 	}
1699 	case E1000_MDIC:
1700 	{
1701 		uint8_t reg_addr = (uint8_t)((value & E1000_MDIC_REG_MASK) >>
1702 						E1000_MDIC_REG_SHIFT);
1703 		uint8_t phy_addr = (uint8_t)((value & E1000_MDIC_PHY_MASK) >>
1704 						E1000_MDIC_PHY_SHIFT);
1705 		sc->mdi_control =
1706 			(value & ~(E1000_MDIC_ERROR|E1000_MDIC_DEST));
1707 		if ((value & E1000_MDIC_READY) != 0) {
1708 			DPRINTF("Incorrect MDIC ready bit: 0x%x\r\n", value);
1709 			return;
1710 		}
1711 		switch (value & E82545_MDIC_OP_MASK) {
1712 		case E1000_MDIC_OP_READ:
1713 			sc->mdi_control &= ~E82545_MDIC_DATA_MASK;
1714 			sc->mdi_control |= e82545_read_mdi(sc, reg_addr, phy_addr);
1715 			break;
1716 		case E1000_MDIC_OP_WRITE:
1717 			e82545_write_mdi(sc, reg_addr, phy_addr,
1718 				value & E82545_MDIC_DATA_MASK);
1719 			break;
1720 		default:
1721 			DPRINTF("Unknown MDIC op: 0x%x\r\n", value);
1722 			return;
1723 		}
1724 		/* TODO: barrier? */
1725 		sc->mdi_control |= E1000_MDIC_READY;
1726 		if (value & E82545_MDIC_IE) {
1727 			// TODO: generate interrupt
1728 		}
1729 		return;
1730 	}
1731 	case E1000_MANC:
1732 	case E1000_STATUS:
1733 		return;
1734 	default:
1735 		DPRINTF("Unknown write register: 0x%x value:%x\r\n", offset, value);
1736 		return;
1737 	}
1738 }
1739 
1740 static uint32_t
1741 e82545_read_register(struct e82545_softc *sc, uint32_t offset)
1742 {
1743 	uint32_t retval;
1744 	int ridx;
1745 
1746 	if (offset & 0x3) {
1747 		DPRINTF("Unaligned register read offset:0x%x\r\n", offset);
1748 		return 0;
1749 	}
1750 
1751 	DPRINTF("Register read: 0x%x\r\n", offset);
1752 
1753 	switch (offset) {
1754 	case E1000_CTRL:
1755 		retval = sc->esc_CTRL;
1756 		break;
1757 	case E1000_STATUS:
1758 		retval = E1000_STATUS_FD | E1000_STATUS_LU |
1759 		    E1000_STATUS_SPEED_1000;
1760 		break;
1761 	case E1000_FCAL:
1762 		retval = sc->esc_FCAL;
1763 		break;
1764 	case E1000_FCAH:
1765 		retval = sc->esc_FCAH;
1766 		break;
1767 	case E1000_FCT:
1768 		retval = sc->esc_FCT;
1769 		break;
1770 	case E1000_VET:
1771 		retval = sc->esc_VET;
1772 		break;
1773 	case E1000_FCTTV:
1774 		retval = sc->esc_FCTTV;
1775 		break;
1776 	case E1000_LEDCTL:
1777 		retval = sc->esc_LEDCTL;
1778 		break;
1779 	case E1000_PBA:
1780 		retval = sc->esc_PBA;
1781 		break;
1782 	case E1000_ICR:
1783 	case E1000_ITR:
1784 	case E1000_ICS:
1785 	case E1000_IMS:
1786 	case E1000_IMC:
1787 		retval = e82545_intr_read(sc, offset);
1788 		break;
1789 	case E1000_RCTL:
1790 		retval = sc->esc_RCTL;
1791 		break;
1792 	case E1000_FCRTL:
1793 		retval = sc->esc_FCRTL;
1794 		break;
1795 	case E1000_FCRTH:
1796 		retval = sc->esc_FCRTH;
1797 		break;
1798 	case E1000_RDBAL(0):
1799 		retval = sc->esc_RDBAL;
1800 		break;
1801 	case E1000_RDBAH(0):
1802 		retval = sc->esc_RDBAH;
1803 		break;
1804 	case E1000_RDLEN(0):
1805 		retval = sc->esc_RDLEN;
1806 		break;
1807 	case E1000_RDH(0):
1808 		retval = sc->esc_RDH;
1809 		break;
1810 	case E1000_RDT(0):
1811 		retval = sc->esc_RDT;
1812 		break;
1813 	case E1000_RDTR:
1814 		retval = sc->esc_RDTR;
1815 		break;
1816 	case E1000_RXDCTL(0):
1817 		retval = sc->esc_RXDCTL;
1818 		break;
1819 	case E1000_RADV:
1820 		retval = sc->esc_RADV;
1821 		break;
1822 	case E1000_RSRPD:
1823 		retval = sc->esc_RSRPD;
1824 		break;
1825 	case E1000_RXCSUM:
1826 		retval = sc->esc_RXCSUM;
1827 		break;
1828 	case E1000_TXCW:
1829 		retval = sc->esc_TXCW;
1830 		break;
1831 	case E1000_TCTL:
1832 		retval = sc->esc_TCTL;
1833 		break;
1834 	case E1000_TIPG:
1835 		retval = sc->esc_TIPG;
1836 		break;
1837 	case E1000_AIT:
1838 		retval = sc->esc_AIT;
1839 		break;
1840 	case E1000_TDBAL(0):
1841 		retval = sc->esc_TDBAL;
1842 		break;
1843 	case E1000_TDBAH(0):
1844 		retval = sc->esc_TDBAH;
1845 		break;
1846 	case E1000_TDLEN(0):
1847 		retval = sc->esc_TDLEN;
1848 		break;
1849 	case E1000_TDH(0):
1850 		retval = sc->esc_TDH;
1851 		break;
1852 	case E1000_TDT(0):
1853 		retval = sc->esc_TDT;
1854 		break;
1855 	case E1000_TIDV:
1856 		retval = sc->esc_TIDV;
1857 		break;
1858 	case E1000_TXDCTL(0):
1859 		retval = sc->esc_TXDCTL;
1860 		break;
1861 	case E1000_TADV:
1862 		retval = sc->esc_TADV;
1863 		break;
1864 	case E1000_RAL(0) ... E1000_RAH(15):
1865 		/* convert to u32 offset */
1866 		ridx = (offset - E1000_RAL(0)) >> 2;
1867 		retval = e82545_read_ra(sc, ridx);
1868 		break;
1869 	case E1000_MTA ... (E1000_MTA + (127*4)):
1870 		retval = sc->esc_fmcast[(offset - E1000_MTA) >> 2];
1871 		break;
1872 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1873 		retval = sc->esc_fvlan[(offset - E1000_VFTA) >> 2];
1874 		break;
1875 	case E1000_EECD:
1876 		//DPRINTF("EECD read %x\r\n", sc->eeprom_control);
1877 		retval = sc->eeprom_control;
1878 		break;
1879 	case E1000_MDIC:
1880 		retval = sc->mdi_control;
1881 		break;
1882 	case E1000_MANC:
1883 		retval = 0;
1884 		break;
1885 	/* stats that we emulate. */
1886 	case E1000_MPC:
1887 		retval = sc->missed_pkt_count;
1888 		break;
1889 	case E1000_PRC64:
1890 		retval = sc->pkt_rx_by_size[0];
1891 		break;
1892 	case E1000_PRC127:
1893 		retval = sc->pkt_rx_by_size[1];
1894 		break;
1895 	case E1000_PRC255:
1896 		retval = sc->pkt_rx_by_size[2];
1897 		break;
1898 	case E1000_PRC511:
1899 		retval = sc->pkt_rx_by_size[3];
1900 		break;
1901 	case E1000_PRC1023:
1902 		retval = sc->pkt_rx_by_size[4];
1903 		break;
1904 	case E1000_PRC1522:
1905 		retval = sc->pkt_rx_by_size[5];
1906 		break;
1907 	case E1000_GPRC:
1908 		retval = sc->good_pkt_rx_count;
1909 		break;
1910 	case E1000_BPRC:
1911 		retval = sc->bcast_pkt_rx_count;
1912 		break;
1913 	case E1000_MPRC:
1914 		retval = sc->mcast_pkt_rx_count;
1915 		break;
1916 	case E1000_GPTC:
1917 	case E1000_TPT:
1918 		retval = sc->good_pkt_tx_count;
1919 		break;
1920 	case E1000_GORCL:
1921 		retval = (uint32_t)sc->good_octets_rx;
1922 		break;
1923 	case E1000_GORCH:
1924 		retval = (uint32_t)(sc->good_octets_rx >> 32);
1925 		break;
1926 	case E1000_TOTL:
1927 	case E1000_GOTCL:
1928 		retval = (uint32_t)sc->good_octets_tx;
1929 		break;
1930 	case E1000_TOTH:
1931 	case E1000_GOTCH:
1932 		retval = (uint32_t)(sc->good_octets_tx >> 32);
1933 		break;
1934 	case E1000_ROC:
1935 		retval = sc->oversize_rx_count;
1936 		break;
1937 	case E1000_TORL:
1938 		retval = (uint32_t)(sc->good_octets_rx + sc->missed_octets);
1939 		break;
1940 	case E1000_TORH:
1941 		retval = (uint32_t)((sc->good_octets_rx +
1942 		    sc->missed_octets) >> 32);
1943 		break;
1944 	case E1000_TPR:
1945 		retval = sc->good_pkt_rx_count + sc->missed_pkt_count +
1946 		    sc->oversize_rx_count;
1947 		break;
1948 	case E1000_PTC64:
1949 		retval = sc->pkt_tx_by_size[0];
1950 		break;
1951 	case E1000_PTC127:
1952 		retval = sc->pkt_tx_by_size[1];
1953 		break;
1954 	case E1000_PTC255:
1955 		retval = sc->pkt_tx_by_size[2];
1956 		break;
1957 	case E1000_PTC511:
1958 		retval = sc->pkt_tx_by_size[3];
1959 		break;
1960 	case E1000_PTC1023:
1961 		retval = sc->pkt_tx_by_size[4];
1962 		break;
1963 	case E1000_PTC1522:
1964 		retval = sc->pkt_tx_by_size[5];
1965 		break;
1966 	case E1000_MPTC:
1967 		retval = sc->mcast_pkt_tx_count;
1968 		break;
1969 	case E1000_BPTC:
1970 		retval = sc->bcast_pkt_tx_count;
1971 		break;
1972 	case E1000_TSCTC:
1973 		retval = sc->tso_tx_count;
1974 		break;
1975 	/* stats that are always 0. */
1976 	case E1000_CRCERRS:
1977 	case E1000_ALGNERRC:
1978 	case E1000_SYMERRS:
1979 	case E1000_RXERRC:
1980 	case E1000_SCC:
1981 	case E1000_ECOL:
1982 	case E1000_MCC:
1983 	case E1000_LATECOL:
1984 	case E1000_COLC:
1985 	case E1000_DC:
1986 	case E1000_TNCRS:
1987 	case E1000_SEC:
1988 	case E1000_CEXTERR:
1989 	case E1000_RLEC:
1990 	case E1000_XONRXC:
1991 	case E1000_XONTXC:
1992 	case E1000_XOFFRXC:
1993 	case E1000_XOFFTXC:
1994 	case E1000_FCRUC:
1995 	case E1000_RNBC:
1996 	case E1000_RUC:
1997 	case E1000_RFC:
1998 	case E1000_RJC:
1999 	case E1000_MGTPRC:
2000 	case E1000_MGTPDC:
2001 	case E1000_MGTPTC:
2002 	case E1000_TSCTFC:
2003 		retval = 0;
2004 		break;
2005 	default:
2006 		DPRINTF("Unknown read register: 0x%x\r\n", offset);
2007 		retval = 0;
2008 		break;
2009 	}
2010 
2011 	return (retval);
2012 }
2013 
2014 static void
2015 e82545_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2016 	     uint64_t offset, int size, uint64_t value)
2017 {
2018 	struct e82545_softc *sc;
2019 
2020 	//DPRINTF("Write bar:%d offset:0x%lx value:0x%lx size:%d\r\n", baridx, offset, value, size);
2021 
2022 	sc = pi->pi_arg;
2023 
2024 	pthread_mutex_lock(&sc->esc_mtx);
2025 
2026 	switch (baridx) {
2027 	case E82545_BAR_IO:
2028 		switch (offset) {
2029 		case E82545_IOADDR:
2030 			if (size != 4) {
2031 				DPRINTF("Wrong io addr write sz:%d value:0x%lx\r\n", size, value);
2032 			} else
2033 				sc->io_addr = (uint32_t)value;
2034 			break;
2035 		case E82545_IODATA:
2036 			if (size != 4) {
2037 				DPRINTF("Wrong io data write size:%d value:0x%lx\r\n", size, value);
2038 			} else if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2039 				DPRINTF("Non-register io write addr:0x%x value:0x%lx\r\n", sc->io_addr, value);
2040 			} else
2041 				e82545_write_register(sc, sc->io_addr,
2042 						      (uint32_t)value);
2043 			break;
2044 		default:
2045 			DPRINTF("Unknown io bar write offset:0x%lx value:0x%lx size:%d\r\n", offset, value, size);
2046 			break;
2047 		}
2048 		break;
2049 	case E82545_BAR_REGISTER:
2050 		if (size != 4) {
2051 			DPRINTF("Wrong register write size:%d offset:0x%lx value:0x%lx\r\n", size, offset, value);
2052 		} else
2053 			e82545_write_register(sc, (uint32_t)offset,
2054 					      (uint32_t)value);
2055 		break;
2056 	default:
2057 		DPRINTF("Unknown write bar:%d off:0x%lx val:0x%lx size:%d\r\n",
2058 			baridx, offset, value, size);
2059 	}
2060 
2061 	pthread_mutex_unlock(&sc->esc_mtx);
2062 }
2063 
2064 static uint64_t
2065 e82545_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2066 	    uint64_t offset, int size)
2067 {
2068 	struct e82545_softc *sc;
2069 	uint64_t retval;
2070 
2071 	//DPRINTF("Read  bar:%d offset:0x%lx size:%d\r\n", baridx, offset, size);
2072 	sc = pi->pi_arg;
2073 	retval = 0;
2074 
2075 	pthread_mutex_lock(&sc->esc_mtx);
2076 
2077 	switch (baridx) {
2078 	case E82545_BAR_IO:
2079 		switch (offset) {
2080 		case E82545_IOADDR:
2081 			if (size != 4) {
2082 				DPRINTF("Wrong io addr read sz:%d\r\n", size);
2083 			} else
2084 				retval = sc->io_addr;
2085 			break;
2086 		case E82545_IODATA:
2087 			if (size != 4) {
2088 				DPRINTF("Wrong io data read sz:%d\r\n", size);
2089 			}
2090 			if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2091 				DPRINTF("Non-register io read addr:0x%x\r\n",
2092 					sc->io_addr);
2093 			} else
2094 				retval = e82545_read_register(sc, sc->io_addr);
2095 			break;
2096 		default:
2097 			DPRINTF("Unknown io bar read offset:0x%lx size:%d\r\n",
2098 				offset, size);
2099 			break;
2100 		}
2101 		break;
2102 	case E82545_BAR_REGISTER:
2103 		if (size != 4) {
2104 			DPRINTF("Wrong register read size:%d offset:0x%lx\r\n",
2105 				size, offset);
2106 		} else
2107 			retval = e82545_read_register(sc, (uint32_t)offset);
2108 		break;
2109 	default:
2110 		DPRINTF("Unknown read bar:%d offset:0x%lx size:%d\r\n",
2111 			baridx, offset, size);
2112 		break;
2113 	}
2114 
2115 	pthread_mutex_unlock(&sc->esc_mtx);
2116 
2117 	return (retval);
2118 }
2119 
2120 static void
2121 e82545_reset(struct e82545_softc *sc, int drvr)
2122 {
2123 	int i;
2124 
2125 	e82545_rx_disable(sc);
2126 	e82545_tx_disable(sc);
2127 
2128 	/* clear outstanding interrupts */
2129 	if (sc->esc_irq_asserted)
2130 		pci_lintr_deassert(sc->esc_pi);
2131 
2132 	/* misc */
2133 	if (!drvr) {
2134 		sc->esc_FCAL = 0;
2135 		sc->esc_FCAH = 0;
2136 		sc->esc_FCT = 0;
2137 		sc->esc_VET = 0;
2138 		sc->esc_FCTTV = 0;
2139 	}
2140 	sc->esc_LEDCTL = 0x07061302;
2141 	sc->esc_PBA = 0x00100030;
2142 
2143 	/* start nvm in opcode mode. */
2144 	sc->nvm_opaddr = 0;
2145 	sc->nvm_mode = E82545_NVM_MODE_OPADDR;
2146 	sc->nvm_bits = E82545_NVM_OPADDR_BITS;
2147 	sc->eeprom_control = E1000_EECD_PRES | E82545_EECD_FWE_EN;
2148 	e82545_init_eeprom(sc);
2149 
2150 	/* interrupt */
2151 	sc->esc_ICR = 0;
2152 	sc->esc_ITR = 250;
2153 	sc->esc_ICS = 0;
2154 	sc->esc_IMS = 0;
2155 	sc->esc_IMC = 0;
2156 
2157 	/* L2 filters */
2158 	if (!drvr) {
2159 		memset(sc->esc_fvlan, 0, sizeof(sc->esc_fvlan));
2160 		memset(sc->esc_fmcast, 0, sizeof(sc->esc_fmcast));
2161 		memset(sc->esc_uni, 0, sizeof(sc->esc_uni));
2162 
2163 		/* XXX not necessary on 82545 ?? */
2164 		sc->esc_uni[0].eu_valid = 1;
2165 		memcpy(sc->esc_uni[0].eu_eth.octet, sc->esc_mac.octet,
2166 		    ETHER_ADDR_LEN);
2167 	} else {
2168 		/* Clear RAH valid bits */
2169 		for (i = 0; i < 16; i++)
2170 			sc->esc_uni[i].eu_valid = 0;
2171 	}
2172 
2173 	/* receive */
2174 	if (!drvr) {
2175 		sc->esc_RDBAL = 0;
2176 		sc->esc_RDBAH = 0;
2177 	}
2178 	sc->esc_RCTL = 0;
2179 	sc->esc_FCRTL = 0;
2180 	sc->esc_FCRTH = 0;
2181 	sc->esc_RDLEN = 0;
2182 	sc->esc_RDH = 0;
2183 	sc->esc_RDT = 0;
2184 	sc->esc_RDTR = 0;
2185 	sc->esc_RXDCTL = (1 << 24) | (1 << 16); /* default GRAN/WTHRESH */
2186 	sc->esc_RADV = 0;
2187 	sc->esc_RXCSUM = 0;
2188 
2189 	/* transmit */
2190 	if (!drvr) {
2191 		sc->esc_TDBAL = 0;
2192 		sc->esc_TDBAH = 0;
2193 		sc->esc_TIPG = 0;
2194 		sc->esc_AIT = 0;
2195 		sc->esc_TIDV = 0;
2196 		sc->esc_TADV = 0;
2197 	}
2198 	sc->esc_tdba = 0;
2199 	sc->esc_txdesc = NULL;
2200 	sc->esc_TXCW = 0;
2201 	sc->esc_TCTL = 0;
2202 	sc->esc_TDLEN = 0;
2203 	sc->esc_TDT = 0;
2204 	sc->esc_TDHr = sc->esc_TDH = 0;
2205 	sc->esc_TXDCTL = 0;
2206 }
2207 
2208 static void
2209 e82545_open_tap(struct e82545_softc *sc, char *opts)
2210 {
2211 	char tbuf[80];
2212 #ifndef WITHOUT_CAPSICUM
2213 	cap_rights_t rights;
2214 #endif
2215 
2216 	if (opts == NULL) {
2217 		sc->esc_tapfd = -1;
2218 		return;
2219 	}
2220 
2221 	strcpy(tbuf, "/dev/");
2222 	strlcat(tbuf, opts, sizeof(tbuf));
2223 
2224 	sc->esc_tapfd = open(tbuf, O_RDWR);
2225 	if (sc->esc_tapfd == -1) {
2226 		DPRINTF("unable to open tap device %s\n", opts);
2227 		exit(4);
2228 	}
2229 
2230 	/*
2231 	 * Set non-blocking and register for read
2232 	 * notifications with the event loop
2233 	 */
2234 	int opt = 1;
2235 	if (ioctl(sc->esc_tapfd, FIONBIO, &opt) < 0) {
2236 		WPRINTF("tap device O_NONBLOCK failed: %d\n", errno);
2237 		close(sc->esc_tapfd);
2238 		sc->esc_tapfd = -1;
2239 	}
2240 
2241 #ifndef WITHOUT_CAPSICUM
2242 	cap_rights_init(&rights, CAP_EVENT, CAP_READ, CAP_WRITE);
2243 	if (cap_rights_limit(sc->esc_tapfd, &rights) == -1 && errno != ENOSYS)
2244 		errx(EX_OSERR, "Unable to apply rights for sandbox");
2245 #endif
2246 
2247 	sc->esc_mevp = mevent_add(sc->esc_tapfd,
2248 				  EVF_READ,
2249 				  e82545_tap_callback,
2250 				  sc);
2251 	if (sc->esc_mevp == NULL) {
2252 		DPRINTF("Could not register mevent %d\n", EVF_READ);
2253 		close(sc->esc_tapfd);
2254 		sc->esc_tapfd = -1;
2255 	}
2256 }
2257 
2258 static int
2259 e82545_parsemac(char *mac_str, uint8_t *mac_addr)
2260 {
2261 	struct ether_addr *ea;
2262 	char *tmpstr;
2263 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2264 
2265 	tmpstr = strsep(&mac_str,"=");
2266 	if ((mac_str != NULL) && (!strcmp(tmpstr,"mac"))) {
2267 		ea = ether_aton(mac_str);
2268 		if (ea == NULL || ETHER_IS_MULTICAST(ea->octet) ||
2269 		    memcmp(ea->octet, zero_addr, ETHER_ADDR_LEN) == 0) {
2270 			fprintf(stderr, "Invalid MAC %s\n", mac_str);
2271 			return (1);
2272 		} else
2273 			memcpy(mac_addr, ea->octet, ETHER_ADDR_LEN);
2274 	}
2275 	return (0);
2276 }
2277 
2278 static int
2279 e82545_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
2280 {
2281 	DPRINTF("Loading with options: %s\r\n", opts);
2282 
2283 	MD5_CTX mdctx;
2284 	unsigned char digest[16];
2285 	char nstr[80];
2286 	struct e82545_softc *sc;
2287 	char *devname;
2288 	char *vtopts;
2289 	int mac_provided;
2290 
2291 	/* Setup our softc */
2292 	sc = calloc(1, sizeof(*sc));
2293 
2294 	pi->pi_arg = sc;
2295 	sc->esc_pi = pi;
2296 	sc->esc_ctx = ctx;
2297 
2298 	pthread_mutex_init(&sc->esc_mtx, NULL);
2299 	pthread_cond_init(&sc->esc_rx_cond, NULL);
2300 	pthread_cond_init(&sc->esc_tx_cond, NULL);
2301 	pthread_create(&sc->esc_tx_tid, NULL, e82545_tx_thread, sc);
2302 	snprintf(nstr, sizeof(nstr), "e82545-%d:%d tx", pi->pi_slot,
2303 	    pi->pi_func);
2304         pthread_set_name_np(sc->esc_tx_tid, nstr);
2305 
2306 	pci_set_cfgdata16(pi, PCIR_DEVICE, E82545_DEV_ID_82545EM_COPPER);
2307 	pci_set_cfgdata16(pi, PCIR_VENDOR, E82545_VENDOR_ID_INTEL);
2308 	pci_set_cfgdata8(pi,  PCIR_CLASS, PCIC_NETWORK);
2309 	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_NETWORK_ETHERNET);
2310 	pci_set_cfgdata16(pi, PCIR_SUBDEV_0, E82545_SUBDEV_ID);
2311 	pci_set_cfgdata16(pi, PCIR_SUBVEND_0, E82545_VENDOR_ID_INTEL);
2312 
2313 	pci_set_cfgdata8(pi,  PCIR_HDRTYPE, PCIM_HDRTYPE_NORMAL);
2314 	pci_set_cfgdata8(pi,  PCIR_INTPIN, 0x1);
2315 
2316 	/* TODO: this card also supports msi, but the freebsd driver for it
2317 	 * does not, so I have not implemented it. */
2318 	pci_lintr_request(pi);
2319 
2320 	pci_emul_alloc_bar(pi, E82545_BAR_REGISTER, PCIBAR_MEM32,
2321 		E82545_BAR_REGISTER_LEN);
2322 	pci_emul_alloc_bar(pi, E82545_BAR_FLASH, PCIBAR_MEM32,
2323 		E82545_BAR_FLASH_LEN);
2324 	pci_emul_alloc_bar(pi, E82545_BAR_IO, PCIBAR_IO,
2325 		E82545_BAR_IO_LEN);
2326 
2327 	/*
2328 	 * Attempt to open the tap device and read the MAC address
2329 	 * if specified.  Copied from virtio-net, slightly modified.
2330 	 */
2331 	mac_provided = 0;
2332 	sc->esc_tapfd = -1;
2333 	if (opts != NULL) {
2334 		int err;
2335 
2336 		devname = vtopts = strdup(opts);
2337 		(void) strsep(&vtopts, ",");
2338 
2339 		if (vtopts != NULL) {
2340 			err = e82545_parsemac(vtopts, sc->esc_mac.octet);
2341 			if (err != 0) {
2342 				free(devname);
2343 				return (err);
2344 			}
2345 			mac_provided = 1;
2346 		}
2347 
2348 		if (strncmp(devname, "tap", 3) == 0 ||
2349 		    strncmp(devname, "vmnet", 5) == 0)
2350 			e82545_open_tap(sc, devname);
2351 
2352 		free(devname);
2353 	}
2354 
2355 	/*
2356 	 * The default MAC address is the standard NetApp OUI of 00-a0-98,
2357 	 * followed by an MD5 of the PCI slot/func number and dev name
2358 	 */
2359 	if (!mac_provided) {
2360 		snprintf(nstr, sizeof(nstr), "%d-%d-%s", pi->pi_slot,
2361 		    pi->pi_func, vmname);
2362 
2363 		MD5Init(&mdctx);
2364 		MD5Update(&mdctx, nstr, strlen(nstr));
2365 		MD5Final(digest, &mdctx);
2366 
2367 		sc->esc_mac.octet[0] = 0x00;
2368 		sc->esc_mac.octet[1] = 0xa0;
2369 		sc->esc_mac.octet[2] = 0x98;
2370 		sc->esc_mac.octet[3] = digest[0];
2371 		sc->esc_mac.octet[4] = digest[1];
2372 		sc->esc_mac.octet[5] = digest[2];
2373 	}
2374 
2375 	/* H/w initiated reset */
2376 	e82545_reset(sc, 0);
2377 
2378 	return (0);
2379 }
2380 
2381 struct pci_devemu pci_de_e82545 = {
2382 	.pe_emu = 	"e1000",
2383 	.pe_init =	e82545_init,
2384 	.pe_barwrite =	e82545_write,
2385 	.pe_barread =	e82545_read
2386 };
2387 PCI_EMUL_SET(pci_de_e82545);
2388 
2389