xref: /freebsd/usr.sbin/bhyve/pci_e82545.c (revision 36d7818975359fd2aacb19e4f9442a841dc954bb)
1 /*
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2016 Alexander Motin <mav@FreeBSD.org>
5  * Copyright (c) 2015 Peter Grehan <grehan@freebsd.org>
6  * Copyright (c) 2013 Jeremiah Lott, Avere Systems
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer
14  *    in this position and unchanged.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/types.h>
36 #ifndef WITHOUT_CAPSICUM
37 #include <sys/capsicum.h>
38 #endif
39 #include <sys/limits.h>
40 #include <sys/ioctl.h>
41 #include <sys/uio.h>
42 #include <net/ethernet.h>
43 #include <netinet/in.h>
44 #include <netinet/tcp.h>
45 
46 #ifndef WITHOUT_CAPSICUM
47 #include <capsicum_helpers.h>
48 #endif
49 #include <err.h>
50 #include <errno.h>
51 #include <fcntl.h>
52 #include <md5.h>
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <string.h>
56 #include <sysexits.h>
57 #include <unistd.h>
58 #include <pthread.h>
59 #include <pthread_np.h>
60 
61 #include "e1000_regs.h"
62 #include "e1000_defines.h"
63 #include "mii.h"
64 
65 #include "bhyverun.h"
66 #include "pci_emul.h"
67 #include "mevent.h"
68 #include "net_utils.h"
69 #include "net_backends.h"
70 
71 /* Hardware/register definitions XXX: move some to common code. */
72 #define E82545_VENDOR_ID_INTEL			0x8086
73 #define E82545_DEV_ID_82545EM_COPPER		0x100F
74 #define E82545_SUBDEV_ID			0x1008
75 
76 #define E82545_REVISION_4			4
77 
78 #define E82545_MDIC_DATA_MASK			0x0000FFFF
79 #define E82545_MDIC_OP_MASK			0x0c000000
80 #define E82545_MDIC_IE				0x20000000
81 
82 #define E82545_EECD_FWE_DIS	0x00000010 /* Flash writes disabled */
83 #define E82545_EECD_FWE_EN	0x00000020 /* Flash writes enabled */
84 #define E82545_EECD_FWE_MASK	0x00000030 /* Flash writes mask */
85 
86 #define E82545_BAR_REGISTER			0
87 #define E82545_BAR_REGISTER_LEN			(128*1024)
88 #define E82545_BAR_FLASH			1
89 #define E82545_BAR_FLASH_LEN			(64*1024)
90 #define E82545_BAR_IO				2
91 #define E82545_BAR_IO_LEN			8
92 
93 #define E82545_IOADDR				0x00000000
94 #define E82545_IODATA				0x00000004
95 #define E82545_IO_REGISTER_MAX			0x0001FFFF
96 #define E82545_IO_FLASH_BASE			0x00080000
97 #define E82545_IO_FLASH_MAX			0x000FFFFF
98 
99 #define E82545_ARRAY_ENTRY(reg, offset)		(reg + (offset<<2))
100 #define E82545_RAR_MAX				15
101 #define E82545_MTA_MAX				127
102 #define E82545_VFTA_MAX				127
103 
104 /* Slightly modified from the driver versions, hardcoded for 3 opcode bits,
105  * followed by 6 address bits.
106  * TODO: make opcode bits and addr bits configurable?
107  * NVM Commands - Microwire */
108 #define E82545_NVM_OPCODE_BITS	3
109 #define E82545_NVM_ADDR_BITS	6
110 #define E82545_NVM_DATA_BITS	16
111 #define E82545_NVM_OPADDR_BITS	(E82545_NVM_OPCODE_BITS + E82545_NVM_ADDR_BITS)
112 #define E82545_NVM_ADDR_MASK	((1 << E82545_NVM_ADDR_BITS)-1)
113 #define E82545_NVM_OPCODE_MASK	\
114     (((1 << E82545_NVM_OPCODE_BITS) - 1) << E82545_NVM_ADDR_BITS)
115 #define E82545_NVM_OPCODE_READ	(0x6 << E82545_NVM_ADDR_BITS)	/* read */
116 #define E82545_NVM_OPCODE_WRITE	(0x5 << E82545_NVM_ADDR_BITS)	/* write */
117 #define E82545_NVM_OPCODE_ERASE	(0x7 << E82545_NVM_ADDR_BITS)	/* erase */
118 #define	E82545_NVM_OPCODE_EWEN	(0x4 << E82545_NVM_ADDR_BITS)	/* wr-enable */
119 
120 #define	E82545_NVM_EEPROM_SIZE	64 /* 64 * 16-bit values == 128K */
121 
122 #define E1000_ICR_SRPD		0x00010000
123 
124 /* This is an arbitrary number.  There is no hard limit on the chip. */
125 #define I82545_MAX_TXSEGS	64
126 
127 /* Legacy receive descriptor */
128 struct e1000_rx_desc {
129 	uint64_t buffer_addr;	/* Address of the descriptor's data buffer */
130 	uint16_t length;	/* Length of data DMAed into data buffer */
131 	uint16_t csum;		/* Packet checksum */
132 	uint8_t	 status;       	/* Descriptor status */
133 	uint8_t  errors;	/* Descriptor Errors */
134 	uint16_t special;
135 };
136 
137 /* Transmit descriptor types */
138 #define	E1000_TXD_MASK		(E1000_TXD_CMD_DEXT | 0x00F00000)
139 #define E1000_TXD_TYP_L		(0)
140 #define E1000_TXD_TYP_C		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C)
141 #define E1000_TXD_TYP_D		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)
142 
143 /* Legacy transmit descriptor */
144 struct e1000_tx_desc {
145 	uint64_t buffer_addr;   /* Address of the descriptor's data buffer */
146 	union {
147 		uint32_t data;
148 		struct {
149 			uint16_t length;  /* Data buffer length */
150 			uint8_t  cso;  /* Checksum offset */
151 			uint8_t  cmd;  /* Descriptor control */
152 		} flags;
153 	} lower;
154 	union {
155 		uint32_t data;
156 		struct {
157 			uint8_t status; /* Descriptor status */
158 			uint8_t css;  /* Checksum start */
159 			uint16_t special;
160 		} fields;
161 	} upper;
162 };
163 
164 /* Context descriptor */
165 struct e1000_context_desc {
166 	union {
167 		uint32_t ip_config;
168 		struct {
169 			uint8_t ipcss;  /* IP checksum start */
170 			uint8_t ipcso;  /* IP checksum offset */
171 			uint16_t ipcse;  /* IP checksum end */
172 		} ip_fields;
173 	} lower_setup;
174 	union {
175 		uint32_t tcp_config;
176 		struct {
177 			uint8_t tucss;  /* TCP checksum start */
178 			uint8_t tucso;  /* TCP checksum offset */
179 			uint16_t tucse;  /* TCP checksum end */
180 		} tcp_fields;
181 	} upper_setup;
182 	uint32_t cmd_and_length;
183 	union {
184 		uint32_t data;
185 		struct {
186 			uint8_t status;  /* Descriptor status */
187 			uint8_t hdr_len;  /* Header length */
188 			uint16_t mss;  /* Maximum segment size */
189 		} fields;
190 	} tcp_seg_setup;
191 };
192 
193 /* Data descriptor */
194 struct e1000_data_desc {
195 	uint64_t buffer_addr;  /* Address of the descriptor's buffer address */
196 	union {
197 		uint32_t data;
198 		struct {
199 			uint16_t length;  /* Data buffer length */
200 			uint8_t typ_len_ext;
201 			uint8_t cmd;
202 		} flags;
203 	} lower;
204 	union {
205 		uint32_t data;
206 		struct {
207 			uint8_t status;  /* Descriptor status */
208 			uint8_t popts;  /* Packet Options */
209 			uint16_t special;
210 		} fields;
211 	} upper;
212 };
213 
214 union e1000_tx_udesc {
215 	struct e1000_tx_desc td;
216 	struct e1000_context_desc cd;
217 	struct e1000_data_desc dd;
218 };
219 
220 /* Tx checksum info for a packet. */
221 struct ck_info {
222 	int	ck_valid;	/* ck_info is valid */
223 	uint8_t	ck_start;	/* start byte of cksum calcuation */
224 	uint8_t	ck_off;		/* offset of cksum insertion */
225 	uint16_t ck_len;	/* length of cksum calc: 0 is to packet-end */
226 };
227 
228 /*
229  * Debug printf
230  */
231 static int e82545_debug = 0;
232 #define DPRINTF(msg,params...) if (e82545_debug) fprintf(stderr, "e82545: " msg, params)
233 #define WPRINTF(msg,params...) fprintf(stderr, "e82545: " msg, params)
234 
235 #define	MIN(a,b) (((a)<(b))?(a):(b))
236 #define	MAX(a,b) (((a)>(b))?(a):(b))
237 
238 /* s/w representation of the RAL/RAH regs */
239 struct  eth_uni {
240 	int		eu_valid;
241 	int		eu_addrsel;
242 	struct ether_addr eu_eth;
243 };
244 
245 
246 struct e82545_softc {
247 	struct pci_devinst *esc_pi;
248 	struct vmctx	*esc_ctx;
249 	struct mevent   *esc_mevpitr;
250 	pthread_mutex_t	esc_mtx;
251 	struct ether_addr esc_mac;
252 	net_backend_t	*esc_be;
253 
254 	/* General */
255 	uint32_t	esc_CTRL;	/* x0000 device ctl */
256 	uint32_t	esc_FCAL;	/* x0028 flow ctl addr lo */
257 	uint32_t	esc_FCAH;	/* x002C flow ctl addr hi */
258 	uint32_t	esc_FCT;	/* x0030 flow ctl type */
259 	uint32_t	esc_VET;	/* x0038 VLAN eth type */
260 	uint32_t	esc_FCTTV;	/* x0170 flow ctl tx timer */
261 	uint32_t	esc_LEDCTL;	/* x0E00 LED control */
262 	uint32_t	esc_PBA;	/* x1000 pkt buffer allocation */
263 
264 	/* Interrupt control */
265 	int		esc_irq_asserted;
266 	uint32_t	esc_ICR;	/* x00C0 cause read/clear */
267 	uint32_t	esc_ITR;	/* x00C4 intr throttling */
268 	uint32_t	esc_ICS;	/* x00C8 cause set */
269 	uint32_t	esc_IMS;	/* x00D0 mask set/read */
270 	uint32_t	esc_IMC;	/* x00D8 mask clear */
271 
272 	/* Transmit */
273 	union e1000_tx_udesc *esc_txdesc;
274 	struct e1000_context_desc esc_txctx;
275 	pthread_t	esc_tx_tid;
276 	pthread_cond_t	esc_tx_cond;
277 	int		esc_tx_enabled;
278 	int		esc_tx_active;
279 	uint32_t	esc_TXCW;	/* x0178 transmit config */
280 	uint32_t	esc_TCTL;	/* x0400 transmit ctl */
281 	uint32_t	esc_TIPG;	/* x0410 inter-packet gap */
282 	uint16_t	esc_AIT;	/* x0458 Adaptive Interframe Throttle */
283 	uint64_t	esc_tdba;      	/* verified 64-bit desc table addr */
284 	uint32_t	esc_TDBAL;	/* x3800 desc table addr, low bits */
285 	uint32_t	esc_TDBAH;	/* x3804 desc table addr, hi 32-bits */
286 	uint32_t	esc_TDLEN;	/* x3808 # descriptors in bytes */
287 	uint16_t	esc_TDH;	/* x3810 desc table head idx */
288 	uint16_t	esc_TDHr;	/* internal read version of TDH */
289 	uint16_t	esc_TDT;	/* x3818 desc table tail idx */
290 	uint32_t	esc_TIDV;	/* x3820 intr delay */
291 	uint32_t	esc_TXDCTL;	/* x3828 desc control */
292 	uint32_t	esc_TADV;	/* x382C intr absolute delay */
293 
294 	/* L2 frame acceptance */
295 	struct eth_uni	esc_uni[16];	/* 16 x unicast MAC addresses */
296 	uint32_t	esc_fmcast[128]; /* Multicast filter bit-match */
297 	uint32_t	esc_fvlan[128]; /* VLAN 4096-bit filter */
298 
299 	/* Receive */
300 	struct e1000_rx_desc *esc_rxdesc;
301 	pthread_cond_t	esc_rx_cond;
302 	int		esc_rx_enabled;
303 	int		esc_rx_active;
304 	int		esc_rx_loopback;
305 	uint32_t	esc_RCTL;	/* x0100 receive ctl */
306 	uint32_t	esc_FCRTL;	/* x2160 flow cntl thresh, low */
307 	uint32_t	esc_FCRTH;	/* x2168 flow cntl thresh, hi */
308 	uint64_t	esc_rdba;	/* verified 64-bit desc table addr */
309 	uint32_t	esc_RDBAL;	/* x2800 desc table addr, low bits */
310 	uint32_t	esc_RDBAH;	/* x2804 desc table addr, hi 32-bits*/
311 	uint32_t	esc_RDLEN;	/* x2808 #descriptors */
312 	uint16_t	esc_RDH;	/* x2810 desc table head idx */
313 	uint16_t	esc_RDT;	/* x2818 desc table tail idx */
314 	uint32_t	esc_RDTR;	/* x2820 intr delay */
315 	uint32_t	esc_RXDCTL;	/* x2828 desc control */
316 	uint32_t	esc_RADV;	/* x282C intr absolute delay */
317 	uint32_t	esc_RSRPD;	/* x2C00 recv small packet detect */
318 	uint32_t	esc_RXCSUM;     /* x5000 receive cksum ctl */
319 
320 	/* IO Port register access */
321 	uint32_t io_addr;
322 
323 	/* Shadow copy of MDIC */
324 	uint32_t mdi_control;
325 	/* Shadow copy of EECD */
326 	uint32_t eeprom_control;
327 	/* Latest NVM in/out */
328 	uint16_t nvm_data;
329 	uint16_t nvm_opaddr;
330 	/* stats */
331 	uint32_t missed_pkt_count; /* dropped for no room in rx queue */
332 	uint32_t pkt_rx_by_size[6];
333 	uint32_t pkt_tx_by_size[6];
334 	uint32_t good_pkt_rx_count;
335 	uint32_t bcast_pkt_rx_count;
336 	uint32_t mcast_pkt_rx_count;
337 	uint32_t good_pkt_tx_count;
338 	uint32_t bcast_pkt_tx_count;
339 	uint32_t mcast_pkt_tx_count;
340 	uint32_t oversize_rx_count;
341 	uint32_t tso_tx_count;
342 	uint64_t good_octets_rx;
343 	uint64_t good_octets_tx;
344 	uint64_t missed_octets; /* counts missed and oversized */
345 
346 	uint8_t nvm_bits:6; /* number of bits remaining in/out */
347 	uint8_t nvm_mode:2;
348 #define E82545_NVM_MODE_OPADDR  0x0
349 #define E82545_NVM_MODE_DATAIN  0x1
350 #define E82545_NVM_MODE_DATAOUT 0x2
351 	/* EEPROM data */
352 	uint16_t eeprom_data[E82545_NVM_EEPROM_SIZE];
353 };
354 
355 static void e82545_reset(struct e82545_softc *sc, int dev);
356 static void e82545_rx_enable(struct e82545_softc *sc);
357 static void e82545_rx_disable(struct e82545_softc *sc);
358 static void e82545_rx_callback(int fd, enum ev_type type, void *param);
359 static void e82545_tx_start(struct e82545_softc *sc);
360 static void e82545_tx_enable(struct e82545_softc *sc);
361 static void e82545_tx_disable(struct e82545_softc *sc);
362 
363 static inline int
364 e82545_size_stat_index(uint32_t size)
365 {
366 	if (size <= 64) {
367 		return 0;
368 	} else if (size >= 1024) {
369 		return 5;
370 	} else {
371 		/* should be 1-4 */
372 		return (ffs(size) - 6);
373 	}
374 }
375 
376 static void
377 e82545_init_eeprom(struct e82545_softc *sc)
378 {
379 	uint16_t checksum, i;
380 
381         /* mac addr */
382 	sc->eeprom_data[NVM_MAC_ADDR] = ((uint16_t)sc->esc_mac.octet[0]) |
383 		(((uint16_t)sc->esc_mac.octet[1]) << 8);
384 	sc->eeprom_data[NVM_MAC_ADDR+1] = ((uint16_t)sc->esc_mac.octet[2]) |
385 		(((uint16_t)sc->esc_mac.octet[3]) << 8);
386 	sc->eeprom_data[NVM_MAC_ADDR+2] = ((uint16_t)sc->esc_mac.octet[4]) |
387 		(((uint16_t)sc->esc_mac.octet[5]) << 8);
388 
389 	/* pci ids */
390 	sc->eeprom_data[NVM_SUB_DEV_ID] = E82545_SUBDEV_ID;
391 	sc->eeprom_data[NVM_SUB_VEN_ID] = E82545_VENDOR_ID_INTEL;
392 	sc->eeprom_data[NVM_DEV_ID] = E82545_DEV_ID_82545EM_COPPER;
393 	sc->eeprom_data[NVM_VEN_ID] = E82545_VENDOR_ID_INTEL;
394 
395 	/* fill in the checksum */
396         checksum = 0;
397 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
398 		checksum += sc->eeprom_data[i];
399 	}
400 	checksum = NVM_SUM - checksum;
401 	sc->eeprom_data[NVM_CHECKSUM_REG] = checksum;
402 	DPRINTF("eeprom checksum: 0x%x\r\n", checksum);
403 }
404 
405 static void
406 e82545_write_mdi(struct e82545_softc *sc, uint8_t reg_addr,
407 			uint8_t phy_addr, uint32_t data)
408 {
409 	DPRINTF("Write mdi reg:0x%x phy:0x%x data: 0x%x\r\n", reg_addr, phy_addr, data);
410 }
411 
412 static uint32_t
413 e82545_read_mdi(struct e82545_softc *sc, uint8_t reg_addr,
414 			uint8_t phy_addr)
415 {
416 	//DPRINTF("Read mdi reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
417 	switch (reg_addr) {
418 	case PHY_STATUS:
419 		return (MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS |
420 			MII_SR_AUTONEG_COMPLETE);
421 	case PHY_AUTONEG_ADV:
422 		return NWAY_AR_SELECTOR_FIELD;
423 	case PHY_LP_ABILITY:
424 		return 0;
425 	case PHY_1000T_STATUS:
426 		return (SR_1000T_LP_FD_CAPS | SR_1000T_REMOTE_RX_STATUS |
427 			SR_1000T_LOCAL_RX_STATUS);
428 	case PHY_ID1:
429 		return (M88E1011_I_PHY_ID >> 16) & 0xFFFF;
430 	case PHY_ID2:
431 		return (M88E1011_I_PHY_ID | E82545_REVISION_4) & 0xFFFF;
432 	default:
433 		DPRINTF("Unknown mdi read reg:0x%x phy:0x%x\r\n", reg_addr, phy_addr);
434 		return 0;
435 	}
436 	/* not reached */
437 }
438 
439 static void
440 e82545_eecd_strobe(struct e82545_softc *sc)
441 {
442 	/* Microwire state machine */
443 	/*
444 	DPRINTF("eeprom state machine srtobe "
445 		"0x%x 0x%x 0x%x 0x%x\r\n",
446 		sc->nvm_mode, sc->nvm_bits,
447 		sc->nvm_opaddr, sc->nvm_data);*/
448 
449 	if (sc->nvm_bits == 0) {
450 		DPRINTF("eeprom state machine not expecting data! "
451 			"0x%x 0x%x 0x%x 0x%x\r\n",
452 			sc->nvm_mode, sc->nvm_bits,
453 			sc->nvm_opaddr, sc->nvm_data);
454 		return;
455 	}
456 	sc->nvm_bits--;
457 	if (sc->nvm_mode == E82545_NVM_MODE_DATAOUT) {
458 		/* shifting out */
459 		if (sc->nvm_data & 0x8000) {
460 			sc->eeprom_control |= E1000_EECD_DO;
461 		} else {
462 			sc->eeprom_control &= ~E1000_EECD_DO;
463 		}
464 		sc->nvm_data <<= 1;
465 		if (sc->nvm_bits == 0) {
466 			/* read done, back to opcode mode. */
467 			sc->nvm_opaddr = 0;
468 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
469 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
470 		}
471 	} else if (sc->nvm_mode == E82545_NVM_MODE_DATAIN) {
472 		/* shifting in */
473 		sc->nvm_data <<= 1;
474 		if (sc->eeprom_control & E1000_EECD_DI) {
475 			sc->nvm_data |= 1;
476 		}
477 		if (sc->nvm_bits == 0) {
478 			/* eeprom write */
479 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
480 			uint16_t addr = sc->nvm_opaddr & E82545_NVM_ADDR_MASK;
481 			if (op != E82545_NVM_OPCODE_WRITE) {
482 				DPRINTF("Illegal eeprom write op 0x%x\r\n",
483 					sc->nvm_opaddr);
484 			} else if (addr >= E82545_NVM_EEPROM_SIZE) {
485 				DPRINTF("Illegal eeprom write addr 0x%x\r\n",
486 					sc->nvm_opaddr);
487 			} else {
488 				DPRINTF("eeprom write eeprom[0x%x] = 0x%x\r\n",
489 				addr, sc->nvm_data);
490 				sc->eeprom_data[addr] = sc->nvm_data;
491 			}
492 			/* back to opcode mode */
493 			sc->nvm_opaddr = 0;
494 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
495 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
496 		}
497 	} else if (sc->nvm_mode == E82545_NVM_MODE_OPADDR) {
498 		sc->nvm_opaddr <<= 1;
499 		if (sc->eeprom_control & E1000_EECD_DI) {
500 			sc->nvm_opaddr |= 1;
501 		}
502 		if (sc->nvm_bits == 0) {
503 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
504 			switch (op) {
505 			case E82545_NVM_OPCODE_EWEN:
506 				DPRINTF("eeprom write enable: 0x%x\r\n",
507 					sc->nvm_opaddr);
508 				/* back to opcode mode */
509 				sc->nvm_opaddr = 0;
510 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
511 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
512 				break;
513 			case E82545_NVM_OPCODE_READ:
514 			{
515 				uint16_t addr = sc->nvm_opaddr &
516 					E82545_NVM_ADDR_MASK;
517 				sc->nvm_mode = E82545_NVM_MODE_DATAOUT;
518 				sc->nvm_bits = E82545_NVM_DATA_BITS;
519 				if (addr < E82545_NVM_EEPROM_SIZE) {
520 					sc->nvm_data = sc->eeprom_data[addr];
521 					DPRINTF("eeprom read: eeprom[0x%x] = 0x%x\r\n",
522 						addr, sc->nvm_data);
523 				} else {
524 					DPRINTF("eeprom illegal read: 0x%x\r\n",
525 						sc->nvm_opaddr);
526 					sc->nvm_data = 0;
527 				}
528 				break;
529 			}
530 			case E82545_NVM_OPCODE_WRITE:
531 				sc->nvm_mode = E82545_NVM_MODE_DATAIN;
532 				sc->nvm_bits = E82545_NVM_DATA_BITS;
533 				sc->nvm_data = 0;
534 				break;
535 			default:
536 				DPRINTF("eeprom unknown op: 0x%x\r\r",
537 					sc->nvm_opaddr);
538 				/* back to opcode mode */
539 				sc->nvm_opaddr = 0;
540 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
541 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
542 			}
543 		}
544 	} else {
545 		DPRINTF("eeprom state machine wrong state! "
546 			"0x%x 0x%x 0x%x 0x%x\r\n",
547 			sc->nvm_mode, sc->nvm_bits,
548 			sc->nvm_opaddr, sc->nvm_data);
549 	}
550 }
551 
552 static void
553 e82545_itr_callback(int fd, enum ev_type type, void *param)
554 {
555 	uint32_t new;
556 	struct e82545_softc *sc = param;
557 
558 	pthread_mutex_lock(&sc->esc_mtx);
559 	new = sc->esc_ICR & sc->esc_IMS;
560 	if (new && !sc->esc_irq_asserted) {
561 		DPRINTF("itr callback: lintr assert %x\r\n", new);
562 		sc->esc_irq_asserted = 1;
563 		pci_lintr_assert(sc->esc_pi);
564 	} else {
565 		mevent_delete(sc->esc_mevpitr);
566 		sc->esc_mevpitr = NULL;
567 	}
568 	pthread_mutex_unlock(&sc->esc_mtx);
569 }
570 
571 static void
572 e82545_icr_assert(struct e82545_softc *sc, uint32_t bits)
573 {
574 	uint32_t new;
575 
576 	DPRINTF("icr assert: 0x%x\r\n", bits);
577 
578 	/*
579 	 * An interrupt is only generated if bits are set that
580 	 * aren't already in the ICR, these bits are unmasked,
581 	 * and there isn't an interrupt already pending.
582 	 */
583 	new = bits & ~sc->esc_ICR & sc->esc_IMS;
584 	sc->esc_ICR |= bits;
585 
586 	if (new == 0) {
587 		DPRINTF("icr assert: masked %x, ims %x\r\n", new, sc->esc_IMS);
588 	} else if (sc->esc_mevpitr != NULL) {
589 		DPRINTF("icr assert: throttled %x, ims %x\r\n", new, sc->esc_IMS);
590 	} else if (!sc->esc_irq_asserted) {
591 		DPRINTF("icr assert: lintr assert %x\r\n", new);
592 		sc->esc_irq_asserted = 1;
593 		pci_lintr_assert(sc->esc_pi);
594 		if (sc->esc_ITR != 0) {
595 			sc->esc_mevpitr = mevent_add(
596 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
597 			    EVF_TIMER, e82545_itr_callback, sc);
598 		}
599 	}
600 }
601 
602 static void
603 e82545_ims_change(struct e82545_softc *sc, uint32_t bits)
604 {
605 	uint32_t new;
606 
607 	/*
608 	 * Changing the mask may allow previously asserted
609 	 * but masked interrupt requests to generate an interrupt.
610 	 */
611 	new = bits & sc->esc_ICR & ~sc->esc_IMS;
612 	sc->esc_IMS |= bits;
613 
614 	if (new == 0) {
615 		DPRINTF("ims change: masked %x, ims %x\r\n", new, sc->esc_IMS);
616 	} else if (sc->esc_mevpitr != NULL) {
617 		DPRINTF("ims change: throttled %x, ims %x\r\n", new, sc->esc_IMS);
618 	} else if (!sc->esc_irq_asserted) {
619 		DPRINTF("ims change: lintr assert %x\n\r", new);
620 		sc->esc_irq_asserted = 1;
621 		pci_lintr_assert(sc->esc_pi);
622 		if (sc->esc_ITR != 0) {
623 			sc->esc_mevpitr = mevent_add(
624 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
625 			    EVF_TIMER, e82545_itr_callback, sc);
626 		}
627 	}
628 }
629 
630 static void
631 e82545_icr_deassert(struct e82545_softc *sc, uint32_t bits)
632 {
633 
634 	DPRINTF("icr deassert: 0x%x\r\n", bits);
635 	sc->esc_ICR &= ~bits;
636 
637 	/*
638 	 * If there are no longer any interrupt sources and there
639 	 * was an asserted interrupt, clear it
640 	 */
641 	if (sc->esc_irq_asserted && !(sc->esc_ICR & sc->esc_IMS)) {
642 		DPRINTF("icr deassert: lintr deassert %x\r\n", bits);
643 		pci_lintr_deassert(sc->esc_pi);
644 		sc->esc_irq_asserted = 0;
645 	}
646 }
647 
648 static void
649 e82545_intr_write(struct e82545_softc *sc, uint32_t offset, uint32_t value)
650 {
651 
652 	DPRINTF("intr_write: off %x, val %x\n\r", offset, value);
653 
654 	switch (offset) {
655 	case E1000_ICR:
656 		e82545_icr_deassert(sc, value);
657 		break;
658 	case E1000_ITR:
659 		sc->esc_ITR = value;
660 		break;
661 	case E1000_ICS:
662 		sc->esc_ICS = value;	/* not used: store for debug */
663 		e82545_icr_assert(sc, value);
664 		break;
665 	case E1000_IMS:
666 		e82545_ims_change(sc, value);
667 		break;
668 	case E1000_IMC:
669 		sc->esc_IMC = value;	/* for debug */
670 		sc->esc_IMS &= ~value;
671 		// XXX clear interrupts if all ICR bits now masked
672 		// and interrupt was pending ?
673 		break;
674 	default:
675 		break;
676 	}
677 }
678 
679 static uint32_t
680 e82545_intr_read(struct e82545_softc *sc, uint32_t offset)
681 {
682 	uint32_t retval;
683 
684 	retval = 0;
685 
686 	DPRINTF("intr_read: off %x\n\r", offset);
687 
688 	switch (offset) {
689 	case E1000_ICR:
690 		retval = sc->esc_ICR;
691 		sc->esc_ICR = 0;
692 		e82545_icr_deassert(sc, ~0);
693 		break;
694 	case E1000_ITR:
695 		retval = sc->esc_ITR;
696 		break;
697 	case E1000_ICS:
698 		/* write-only register */
699 		break;
700 	case E1000_IMS:
701 		retval = sc->esc_IMS;
702 		break;
703 	case E1000_IMC:
704 		/* write-only register */
705 		break;
706 	default:
707 		break;
708 	}
709 
710 	return (retval);
711 }
712 
713 static void
714 e82545_devctl(struct e82545_softc *sc, uint32_t val)
715 {
716 
717 	sc->esc_CTRL = val & ~E1000_CTRL_RST;
718 
719 	if (val & E1000_CTRL_RST) {
720 		DPRINTF("e1k: s/w reset, ctl %x\n", val);
721 		e82545_reset(sc, 1);
722 	}
723 	/* XXX check for phy reset ? */
724 }
725 
726 static void
727 e82545_rx_update_rdba(struct e82545_softc *sc)
728 {
729 
730 	/* XXX verify desc base/len within phys mem range */
731 	sc->esc_rdba = (uint64_t)sc->esc_RDBAH << 32 |
732 	    sc->esc_RDBAL;
733 
734 	/* Cache host mapping of guest descriptor array */
735 	sc->esc_rxdesc = paddr_guest2host(sc->esc_ctx,
736 	    sc->esc_rdba, sc->esc_RDLEN);
737 }
738 
739 static void
740 e82545_rx_ctl(struct e82545_softc *sc, uint32_t val)
741 {
742 	int on;
743 
744 	on = ((val & E1000_RCTL_EN) == E1000_RCTL_EN);
745 
746 	/* Save RCTL after stripping reserved bits 31:27,24,21,14,11:10,0 */
747 	sc->esc_RCTL = val & ~0xF9204c01;
748 
749 	DPRINTF("rx_ctl - %s RCTL %x, val %x\n",
750 		on ? "on" : "off", sc->esc_RCTL, val);
751 
752 	/* state change requested */
753 	if (on != sc->esc_rx_enabled) {
754 		if (on) {
755 			/* Catch disallowed/unimplemented settings */
756 			//assert(!(val & E1000_RCTL_LBM_TCVR));
757 
758 			if (sc->esc_RCTL & E1000_RCTL_LBM_TCVR) {
759 				sc->esc_rx_loopback = 1;
760 			} else {
761 				sc->esc_rx_loopback = 0;
762 			}
763 
764 			e82545_rx_update_rdba(sc);
765 			e82545_rx_enable(sc);
766 		} else {
767 			e82545_rx_disable(sc);
768 			sc->esc_rx_loopback = 0;
769 			sc->esc_rdba = 0;
770 			sc->esc_rxdesc = NULL;
771 		}
772 	}
773 }
774 
775 static void
776 e82545_tx_update_tdba(struct e82545_softc *sc)
777 {
778 
779 	/* XXX verify desc base/len within phys mem range */
780 	sc->esc_tdba = (uint64_t)sc->esc_TDBAH << 32 | sc->esc_TDBAL;
781 
782 	/* Cache host mapping of guest descriptor array */
783 	sc->esc_txdesc = paddr_guest2host(sc->esc_ctx, sc->esc_tdba,
784             sc->esc_TDLEN);
785 }
786 
787 static void
788 e82545_tx_ctl(struct e82545_softc *sc, uint32_t val)
789 {
790 	int on;
791 
792 	on = ((val & E1000_TCTL_EN) == E1000_TCTL_EN);
793 
794 	/* ignore TCTL_EN settings that don't change state */
795 	if (on == sc->esc_tx_enabled)
796 		return;
797 
798 	if (on) {
799 		e82545_tx_update_tdba(sc);
800 		e82545_tx_enable(sc);
801 	} else {
802 		e82545_tx_disable(sc);
803 		sc->esc_tdba = 0;
804 		sc->esc_txdesc = NULL;
805 	}
806 
807 	/* Save TCTL value after stripping reserved bits 31:25,23,2,0 */
808 	sc->esc_TCTL = val & ~0xFE800005;
809 }
810 
811 int
812 e82545_bufsz(uint32_t rctl)
813 {
814 
815 	switch (rctl & (E1000_RCTL_BSEX | E1000_RCTL_SZ_256)) {
816 	case (E1000_RCTL_SZ_2048): return (2048);
817 	case (E1000_RCTL_SZ_1024): return (1024);
818 	case (E1000_RCTL_SZ_512): return (512);
819 	case (E1000_RCTL_SZ_256): return (256);
820 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_16384): return (16384);
821 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_8192): return (8192);
822 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_4096): return (4096);
823 	}
824 	return (256);	/* Forbidden value. */
825 }
826 
827 /* XXX one packet at a time until this is debugged */
828 static void
829 e82545_rx_callback(int fd, enum ev_type type, void *param)
830 {
831 	struct e82545_softc *sc = param;
832 	struct e1000_rx_desc *rxd;
833 	struct iovec vec[64];
834 	int left, len, lim, maxpktsz, maxpktdesc, bufsz, i, n, size;
835 	uint32_t cause = 0;
836 	uint16_t *tp, tag, head;
837 
838 	pthread_mutex_lock(&sc->esc_mtx);
839 	DPRINTF("rx_run: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
840 
841 	if (!sc->esc_rx_enabled || sc->esc_rx_loopback) {
842 		DPRINTF("rx disabled (!%d || %d) -- packet(s) dropped\r\n",
843 		    sc->esc_rx_enabled, sc->esc_rx_loopback);
844 		while (netbe_rx_discard(sc->esc_be) > 0) {
845 		}
846 		goto done1;
847 	}
848 	bufsz = e82545_bufsz(sc->esc_RCTL);
849 	maxpktsz = (sc->esc_RCTL & E1000_RCTL_LPE) ? 16384 : 1522;
850 	maxpktdesc = (maxpktsz + bufsz - 1) / bufsz;
851 	size = sc->esc_RDLEN / 16;
852 	head = sc->esc_RDH;
853 	left = (size + sc->esc_RDT - head) % size;
854 	if (left < maxpktdesc) {
855 		DPRINTF("rx overflow (%d < %d) -- packet(s) dropped\r\n",
856 		    left, maxpktdesc);
857 		while (netbe_rx_discard(sc->esc_be) > 0) {
858 		}
859 		goto done1;
860 	}
861 
862 	sc->esc_rx_active = 1;
863 	pthread_mutex_unlock(&sc->esc_mtx);
864 
865 	for (lim = size / 4; lim > 0 && left >= maxpktdesc; lim -= n) {
866 
867 		/* Grab rx descriptor pointed to by the head pointer */
868 		for (i = 0; i < maxpktdesc; i++) {
869 			rxd = &sc->esc_rxdesc[(head + i) % size];
870 			vec[i].iov_base = paddr_guest2host(sc->esc_ctx,
871 			    rxd->buffer_addr, bufsz);
872 			vec[i].iov_len = bufsz;
873 		}
874 		len = netbe_recv(sc->esc_be, vec, maxpktdesc);
875 		if (len <= 0) {
876 			DPRINTF("netbe_recv() returned %d\n", len);
877 			goto done;
878 		}
879 
880 		/*
881 		 * Adjust the packet length based on whether the CRC needs
882 		 * to be stripped or if the packet is less than the minimum
883 		 * eth packet size.
884 		 */
885 		if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
886 			len = ETHER_MIN_LEN - ETHER_CRC_LEN;
887 		if (!(sc->esc_RCTL & E1000_RCTL_SECRC))
888 			len += ETHER_CRC_LEN;
889 		n = (len + bufsz - 1) / bufsz;
890 
891 		DPRINTF("packet read %d bytes, %d segs, head %d\r\n",
892 		    len, n, head);
893 
894 		/* Apply VLAN filter. */
895 		tp = (uint16_t *)vec[0].iov_base + 6;
896 		if ((sc->esc_RCTL & E1000_RCTL_VFE) &&
897 		    (ntohs(tp[0]) == sc->esc_VET)) {
898 			tag = ntohs(tp[1]) & 0x0fff;
899 			if ((sc->esc_fvlan[tag >> 5] &
900 			    (1 << (tag & 0x1f))) != 0) {
901 				DPRINTF("known VLAN %d\r\n", tag);
902 			} else {
903 				DPRINTF("unknown VLAN %d\r\n", tag);
904 				n = 0;
905 				continue;
906 			}
907 		}
908 
909 		/* Update all consumed descriptors. */
910 		for (i = 0; i < n - 1; i++) {
911 			rxd = &sc->esc_rxdesc[(head + i) % size];
912 			rxd->length = bufsz;
913 			rxd->csum = 0;
914 			rxd->errors = 0;
915 			rxd->special = 0;
916 			rxd->status = E1000_RXD_STAT_DD;
917 		}
918 		rxd = &sc->esc_rxdesc[(head + i) % size];
919 		rxd->length = len % bufsz;
920 		rxd->csum = 0;
921 		rxd->errors = 0;
922 		rxd->special = 0;
923 		/* XXX signal no checksum for now */
924 		rxd->status = E1000_RXD_STAT_PIF | E1000_RXD_STAT_IXSM |
925 		    E1000_RXD_STAT_EOP | E1000_RXD_STAT_DD;
926 
927 		/* Schedule receive interrupts. */
928 		if (len <= sc->esc_RSRPD) {
929 			cause |= E1000_ICR_SRPD | E1000_ICR_RXT0;
930 		} else {
931 			/* XXX: RDRT and RADV timers should be here. */
932 			cause |= E1000_ICR_RXT0;
933 		}
934 
935 		head = (head + n) % size;
936 		left -= n;
937 	}
938 
939 done:
940 	pthread_mutex_lock(&sc->esc_mtx);
941 	sc->esc_rx_active = 0;
942 	if (sc->esc_rx_enabled == 0)
943 		pthread_cond_signal(&sc->esc_rx_cond);
944 
945 	sc->esc_RDH = head;
946 	/* Respect E1000_RCTL_RDMTS */
947 	left = (size + sc->esc_RDT - head) % size;
948 	if (left < (size >> (((sc->esc_RCTL >> 8) & 3) + 1)))
949 		cause |= E1000_ICR_RXDMT0;
950 	/* Assert all accumulated interrupts. */
951 	if (cause != 0)
952 		e82545_icr_assert(sc, cause);
953 done1:
954 	DPRINTF("rx_run done: head %x, tail %x\r\n", sc->esc_RDH, sc->esc_RDT);
955 	pthread_mutex_unlock(&sc->esc_mtx);
956 }
957 
958 static uint16_t
959 e82545_carry(uint32_t sum)
960 {
961 
962 	sum = (sum & 0xFFFF) + (sum >> 16);
963 	if (sum > 0xFFFF)
964 		sum -= 0xFFFF;
965 	return (sum);
966 }
967 
968 static uint16_t
969 e82545_buf_checksum(uint8_t *buf, int len)
970 {
971 	int i;
972 	uint32_t sum = 0;
973 
974 	/* Checksum all the pairs of bytes first... */
975 	for (i = 0; i < (len & ~1U); i += 2)
976 		sum += *((u_int16_t *)(buf + i));
977 
978 	/*
979 	 * If there's a single byte left over, checksum it, too.
980 	 * Network byte order is big-endian, so the remaining byte is
981 	 * the high byte.
982 	 */
983 	if (i < len)
984 		sum += htons(buf[i] << 8);
985 
986 	return (e82545_carry(sum));
987 }
988 
989 static uint16_t
990 e82545_iov_checksum(struct iovec *iov, int iovcnt, int off, int len)
991 {
992 	int now, odd;
993 	uint32_t sum = 0, s;
994 
995 	/* Skip completely unneeded vectors. */
996 	while (iovcnt > 0 && iov->iov_len <= off && off > 0) {
997 		off -= iov->iov_len;
998 		iov++;
999 		iovcnt--;
1000 	}
1001 
1002 	/* Calculate checksum of requested range. */
1003 	odd = 0;
1004 	while (len > 0 && iovcnt > 0) {
1005 		now = MIN(len, iov->iov_len - off);
1006 		s = e82545_buf_checksum(iov->iov_base + off, now);
1007 		sum += odd ? (s << 8) : s;
1008 		odd ^= (now & 1);
1009 		len -= now;
1010 		off = 0;
1011 		iov++;
1012 		iovcnt--;
1013 	}
1014 
1015 	return (e82545_carry(sum));
1016 }
1017 
1018 /*
1019  * Return the transmit descriptor type.
1020  */
1021 int
1022 e82545_txdesc_type(uint32_t lower)
1023 {
1024 	int type;
1025 
1026 	type = 0;
1027 
1028 	if (lower & E1000_TXD_CMD_DEXT)
1029 		type = lower & E1000_TXD_MASK;
1030 
1031 	return (type);
1032 }
1033 
1034 static void
1035 e82545_transmit_checksum(struct iovec *iov, int iovcnt, struct ck_info *ck)
1036 {
1037 	uint16_t cksum;
1038 	int cklen;
1039 
1040 	DPRINTF("tx cksum: iovcnt/s/off/len %d/%d/%d/%d\r\n",
1041 	    iovcnt, ck->ck_start, ck->ck_off, ck->ck_len);
1042 	cklen = ck->ck_len ? ck->ck_len - ck->ck_start + 1 : INT_MAX;
1043 	cksum = e82545_iov_checksum(iov, iovcnt, ck->ck_start, cklen);
1044 	*(uint16_t *)((uint8_t *)iov[0].iov_base + ck->ck_off) = ~cksum;
1045 }
1046 
1047 static void
1048 e82545_transmit_backend(struct e82545_softc *sc, struct iovec *iov, int iovcnt)
1049 {
1050 
1051 	if (sc->esc_be == NULL)
1052 		return;
1053 
1054 	(void) netbe_send(sc->esc_be, iov, iovcnt);
1055 }
1056 
1057 static void
1058 e82545_transmit_done(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1059     uint16_t dsize, int *tdwb)
1060 {
1061 	union e1000_tx_udesc *dsc;
1062 
1063 	for ( ; head != tail; head = (head + 1) % dsize) {
1064 		dsc = &sc->esc_txdesc[head];
1065 		if (dsc->td.lower.data & E1000_TXD_CMD_RS) {
1066 			dsc->td.upper.data |= E1000_TXD_STAT_DD;
1067 			*tdwb = 1;
1068 		}
1069 	}
1070 }
1071 
1072 static int
1073 e82545_transmit(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1074     uint16_t dsize, uint16_t *rhead, int *tdwb)
1075 {
1076 	uint8_t *hdr, *hdrp;
1077 	struct iovec iovb[I82545_MAX_TXSEGS + 2];
1078 	struct iovec tiov[I82545_MAX_TXSEGS + 2];
1079 	struct e1000_context_desc *cd;
1080 	struct ck_info ckinfo[2];
1081 	struct iovec *iov;
1082 	union  e1000_tx_udesc *dsc;
1083 	int desc, dtype, len, ntype, iovcnt, tlen, hdrlen, vlen, tcp, tso;
1084 	int mss, paylen, seg, tiovcnt, left, now, nleft, nnow, pv, pvoff;
1085 	uint32_t tcpsum, tcpseq;
1086 	uint16_t ipcs, tcpcs, ipid, ohead;
1087 
1088 	ckinfo[0].ck_valid = ckinfo[1].ck_valid = 0;
1089 	iovcnt = 0;
1090 	tlen = 0;
1091 	ntype = 0;
1092 	tso = 0;
1093 	ohead = head;
1094 
1095 	/* iovb[0/1] may be used for writable copy of headers. */
1096 	iov = &iovb[2];
1097 
1098 	for (desc = 0; ; desc++, head = (head + 1) % dsize) {
1099 		if (head == tail) {
1100 			*rhead = head;
1101 			return (0);
1102 		}
1103 		dsc = &sc->esc_txdesc[head];
1104 		dtype = e82545_txdesc_type(dsc->td.lower.data);
1105 
1106 		if (desc == 0) {
1107 			switch (dtype) {
1108 			case E1000_TXD_TYP_C:
1109 				DPRINTF("tx ctxt desc idx %d: %016jx "
1110 				    "%08x%08x\r\n",
1111 				    head, dsc->td.buffer_addr,
1112 				    dsc->td.upper.data, dsc->td.lower.data);
1113 				/* Save context and return */
1114 				sc->esc_txctx = dsc->cd;
1115 				goto done;
1116 			case E1000_TXD_TYP_L:
1117 				DPRINTF("tx legacy desc idx %d: %08x%08x\r\n",
1118 				    head, dsc->td.upper.data, dsc->td.lower.data);
1119 				/*
1120 				 * legacy cksum start valid in first descriptor
1121 				 */
1122 				ntype = dtype;
1123 				ckinfo[0].ck_start = dsc->td.upper.fields.css;
1124 				break;
1125 			case E1000_TXD_TYP_D:
1126 				DPRINTF("tx data desc idx %d: %08x%08x\r\n",
1127 				    head, dsc->td.upper.data, dsc->td.lower.data);
1128 				ntype = dtype;
1129 				break;
1130 			default:
1131 				break;
1132 			}
1133 		} else {
1134 			/* Descriptor type must be consistent */
1135 			assert(dtype == ntype);
1136 			DPRINTF("tx next desc idx %d: %08x%08x\r\n",
1137 			    head, dsc->td.upper.data, dsc->td.lower.data);
1138 		}
1139 
1140 		len = (dtype == E1000_TXD_TYP_L) ? dsc->td.lower.flags.length :
1141 		    dsc->dd.lower.data & 0xFFFFF;
1142 
1143 		if (len > 0) {
1144 			/* Strip checksum supplied by guest. */
1145 			if ((dsc->td.lower.data & E1000_TXD_CMD_EOP) != 0 &&
1146 			    (dsc->td.lower.data & E1000_TXD_CMD_IFCS) == 0)
1147 				len -= 2;
1148 			tlen += len;
1149 			if (iovcnt < I82545_MAX_TXSEGS) {
1150 				iov[iovcnt].iov_base = paddr_guest2host(
1151 				    sc->esc_ctx, dsc->td.buffer_addr, len);
1152 				iov[iovcnt].iov_len = len;
1153 			}
1154 			iovcnt++;
1155 		}
1156 
1157 		/*
1158 		 * Pull out info that is valid in the final descriptor
1159 		 * and exit descriptor loop.
1160 		 */
1161 		if (dsc->td.lower.data & E1000_TXD_CMD_EOP) {
1162 			if (dtype == E1000_TXD_TYP_L) {
1163 				if (dsc->td.lower.data & E1000_TXD_CMD_IC) {
1164 					ckinfo[0].ck_valid = 1;
1165 					ckinfo[0].ck_off =
1166 					    dsc->td.lower.flags.cso;
1167 					ckinfo[0].ck_len = 0;
1168 				}
1169 			} else {
1170 				cd = &sc->esc_txctx;
1171 				if (dsc->dd.lower.data & E1000_TXD_CMD_TSE)
1172 					tso = 1;
1173 				if (dsc->dd.upper.fields.popts &
1174 				    E1000_TXD_POPTS_IXSM)
1175 					ckinfo[0].ck_valid = 1;
1176 				if (dsc->dd.upper.fields.popts &
1177 				    E1000_TXD_POPTS_IXSM || tso) {
1178 					ckinfo[0].ck_start =
1179 					    cd->lower_setup.ip_fields.ipcss;
1180 					ckinfo[0].ck_off =
1181 					    cd->lower_setup.ip_fields.ipcso;
1182 					ckinfo[0].ck_len =
1183 					    cd->lower_setup.ip_fields.ipcse;
1184 				}
1185 				if (dsc->dd.upper.fields.popts &
1186 				    E1000_TXD_POPTS_TXSM)
1187 					ckinfo[1].ck_valid = 1;
1188 				if (dsc->dd.upper.fields.popts &
1189 				    E1000_TXD_POPTS_TXSM || tso) {
1190 					ckinfo[1].ck_start =
1191 					    cd->upper_setup.tcp_fields.tucss;
1192 					ckinfo[1].ck_off =
1193 					    cd->upper_setup.tcp_fields.tucso;
1194 					ckinfo[1].ck_len =
1195 					    cd->upper_setup.tcp_fields.tucse;
1196 				}
1197 			}
1198 			break;
1199 		}
1200 	}
1201 
1202 	if (iovcnt > I82545_MAX_TXSEGS) {
1203 		WPRINTF("tx too many descriptors (%d > %d) -- dropped\r\n",
1204 		    iovcnt, I82545_MAX_TXSEGS);
1205 		goto done;
1206 	}
1207 
1208 	hdrlen = vlen = 0;
1209 	/* Estimate writable space for VLAN header insertion. */
1210 	if ((sc->esc_CTRL & E1000_CTRL_VME) &&
1211 	    (dsc->td.lower.data & E1000_TXD_CMD_VLE)) {
1212 		hdrlen = ETHER_ADDR_LEN*2;
1213 		vlen = ETHER_VLAN_ENCAP_LEN;
1214 	}
1215 	if (!tso) {
1216 		/* Estimate required writable space for checksums. */
1217 		if (ckinfo[0].ck_valid)
1218 			hdrlen = MAX(hdrlen, ckinfo[0].ck_off + 2);
1219 		if (ckinfo[1].ck_valid)
1220 			hdrlen = MAX(hdrlen, ckinfo[1].ck_off + 2);
1221 		/* Round up writable space to the first vector. */
1222 		if (hdrlen != 0 && iov[0].iov_len > hdrlen &&
1223 		    iov[0].iov_len < hdrlen + 100)
1224 			hdrlen = iov[0].iov_len;
1225 	} else {
1226 		/* In case of TSO header length provided by software. */
1227 		hdrlen = sc->esc_txctx.tcp_seg_setup.fields.hdr_len;
1228 	}
1229 
1230 	/* Allocate, fill and prepend writable header vector. */
1231 	if (hdrlen != 0) {
1232 		hdr = __builtin_alloca(hdrlen + vlen);
1233 		hdr += vlen;
1234 		for (left = hdrlen, hdrp = hdr; left > 0;
1235 		    left -= now, hdrp += now) {
1236 			now = MIN(left, iov->iov_len);
1237 			memcpy(hdrp, iov->iov_base, now);
1238 			iov->iov_base += now;
1239 			iov->iov_len -= now;
1240 			if (iov->iov_len == 0) {
1241 				iov++;
1242 				iovcnt--;
1243 			}
1244 		}
1245 		iov--;
1246 		iovcnt++;
1247 		iov->iov_base = hdr;
1248 		iov->iov_len = hdrlen;
1249 	}
1250 
1251 	/* Insert VLAN tag. */
1252 	if (vlen != 0) {
1253 		hdr -= ETHER_VLAN_ENCAP_LEN;
1254 		memmove(hdr, hdr + ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN*2);
1255 		hdrlen += ETHER_VLAN_ENCAP_LEN;
1256 		hdr[ETHER_ADDR_LEN*2 + 0] = sc->esc_VET >> 8;
1257 		hdr[ETHER_ADDR_LEN*2 + 1] = sc->esc_VET & 0xff;
1258 		hdr[ETHER_ADDR_LEN*2 + 2] = dsc->td.upper.fields.special >> 8;
1259 		hdr[ETHER_ADDR_LEN*2 + 3] = dsc->td.upper.fields.special & 0xff;
1260 		iov->iov_base = hdr;
1261 		iov->iov_len += ETHER_VLAN_ENCAP_LEN;
1262 		/* Correct checksum offsets after VLAN tag insertion. */
1263 		ckinfo[0].ck_start += ETHER_VLAN_ENCAP_LEN;
1264 		ckinfo[0].ck_off += ETHER_VLAN_ENCAP_LEN;
1265 		if (ckinfo[0].ck_len != 0)
1266 			ckinfo[0].ck_len += ETHER_VLAN_ENCAP_LEN;
1267 		ckinfo[1].ck_start += ETHER_VLAN_ENCAP_LEN;
1268 		ckinfo[1].ck_off += ETHER_VLAN_ENCAP_LEN;
1269 		if (ckinfo[1].ck_len != 0)
1270 			ckinfo[1].ck_len += ETHER_VLAN_ENCAP_LEN;
1271 	}
1272 
1273 	/* Simple non-TSO case. */
1274 	if (!tso) {
1275 		/* Calculate checksums and transmit. */
1276 		if (ckinfo[0].ck_valid)
1277 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[0]);
1278 		if (ckinfo[1].ck_valid)
1279 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[1]);
1280 		e82545_transmit_backend(sc, iov, iovcnt);
1281 		goto done;
1282 	}
1283 
1284 	/* Doing TSO. */
1285 	tcp = (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) != 0;
1286 	mss = sc->esc_txctx.tcp_seg_setup.fields.mss;
1287 	paylen = (sc->esc_txctx.cmd_and_length & 0x000fffff);
1288 	DPRINTF("tx %s segmentation offload %d+%d/%d bytes %d iovs\r\n",
1289 	    tcp ? "TCP" : "UDP", hdrlen, paylen, mss, iovcnt);
1290 	ipid = ntohs(*(uint16_t *)&hdr[ckinfo[0].ck_start + 4]);
1291 	tcpseq = ntohl(*(uint32_t *)&hdr[ckinfo[1].ck_start + 4]);
1292 	ipcs = *(uint16_t *)&hdr[ckinfo[0].ck_off];
1293 	tcpcs = 0;
1294 	if (ckinfo[1].ck_valid)	/* Save partial pseudo-header checksum. */
1295 		tcpcs = *(uint16_t *)&hdr[ckinfo[1].ck_off];
1296 	pv = 1;
1297 	pvoff = 0;
1298 	for (seg = 0, left = paylen; left > 0; seg++, left -= now) {
1299 		now = MIN(left, mss);
1300 
1301 		/* Construct IOVs for the segment. */
1302 		/* Include whole original header. */
1303 		tiov[0].iov_base = hdr;
1304 		tiov[0].iov_len = hdrlen;
1305 		tiovcnt = 1;
1306 		/* Include respective part of payload IOV. */
1307 		for (nleft = now; pv < iovcnt && nleft > 0; nleft -= nnow) {
1308 			nnow = MIN(nleft, iov[pv].iov_len - pvoff);
1309 			tiov[tiovcnt].iov_base = iov[pv].iov_base + pvoff;
1310 			tiov[tiovcnt++].iov_len = nnow;
1311 			if (pvoff + nnow == iov[pv].iov_len) {
1312 				pv++;
1313 				pvoff = 0;
1314 			} else
1315 				pvoff += nnow;
1316 		}
1317 		DPRINTF("tx segment %d %d+%d bytes %d iovs\r\n",
1318 		    seg, hdrlen, now, tiovcnt);
1319 
1320 		/* Update IP header. */
1321 		if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_IP) {
1322 			/* IPv4 -- set length and ID */
1323 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 2] =
1324 			    htons(hdrlen - ckinfo[0].ck_start + now);
1325 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1326 			    htons(ipid + seg);
1327 		} else {
1328 			/* IPv6 -- set length */
1329 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1330 			    htons(hdrlen - ckinfo[0].ck_start - 40 +
1331 				  now);
1332 		}
1333 
1334 		/* Update pseudo-header checksum. */
1335 		tcpsum = tcpcs;
1336 		tcpsum += htons(hdrlen - ckinfo[1].ck_start + now);
1337 
1338 		/* Update TCP/UDP headers. */
1339 		if (tcp) {
1340 			/* Update sequence number and FIN/PUSH flags. */
1341 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1342 			    htonl(tcpseq + paylen - left);
1343 			if (now < left) {
1344 				hdr[ckinfo[1].ck_start + 13] &=
1345 				    ~(TH_FIN | TH_PUSH);
1346 			}
1347 		} else {
1348 			/* Update payload length. */
1349 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1350 			    hdrlen - ckinfo[1].ck_start + now;
1351 		}
1352 
1353 		/* Calculate checksums and transmit. */
1354 		if (ckinfo[0].ck_valid) {
1355 			*(uint16_t *)&hdr[ckinfo[0].ck_off] = ipcs;
1356 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[0]);
1357 		}
1358 		if (ckinfo[1].ck_valid) {
1359 			*(uint16_t *)&hdr[ckinfo[1].ck_off] =
1360 			    e82545_carry(tcpsum);
1361 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[1]);
1362 		}
1363 		e82545_transmit_backend(sc, tiov, tiovcnt);
1364 	}
1365 
1366 done:
1367 	head = (head + 1) % dsize;
1368 	e82545_transmit_done(sc, ohead, head, dsize, tdwb);
1369 
1370 	*rhead = head;
1371 	return (desc + 1);
1372 }
1373 
1374 static void
1375 e82545_tx_run(struct e82545_softc *sc)
1376 {
1377 	uint32_t cause;
1378 	uint16_t head, rhead, tail, size;
1379 	int lim, tdwb, sent;
1380 
1381 	head = sc->esc_TDH;
1382 	tail = sc->esc_TDT;
1383 	size = sc->esc_TDLEN / 16;
1384 	DPRINTF("tx_run: head %x, rhead %x, tail %x\r\n",
1385 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1386 
1387 	pthread_mutex_unlock(&sc->esc_mtx);
1388 	rhead = head;
1389 	tdwb = 0;
1390 	for (lim = size / 4; sc->esc_tx_enabled && lim > 0; lim -= sent) {
1391 		sent = e82545_transmit(sc, head, tail, size, &rhead, &tdwb);
1392 		if (sent == 0)
1393 			break;
1394 		head = rhead;
1395 	}
1396 	pthread_mutex_lock(&sc->esc_mtx);
1397 
1398 	sc->esc_TDH = head;
1399 	sc->esc_TDHr = rhead;
1400 	cause = 0;
1401 	if (tdwb)
1402 		cause |= E1000_ICR_TXDW;
1403 	if (lim != size / 4 && sc->esc_TDH == sc->esc_TDT)
1404 		cause |= E1000_ICR_TXQE;
1405 	if (cause)
1406 		e82545_icr_assert(sc, cause);
1407 
1408 	DPRINTF("tx_run done: head %x, rhead %x, tail %x\r\n",
1409 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1410 }
1411 
1412 static _Noreturn void *
1413 e82545_tx_thread(void *param)
1414 {
1415 	struct e82545_softc *sc = param;
1416 
1417 	pthread_mutex_lock(&sc->esc_mtx);
1418 	for (;;) {
1419 		while (!sc->esc_tx_enabled || sc->esc_TDHr == sc->esc_TDT) {
1420 			if (sc->esc_tx_enabled && sc->esc_TDHr != sc->esc_TDT)
1421 				break;
1422 			sc->esc_tx_active = 0;
1423 			if (sc->esc_tx_enabled == 0)
1424 				pthread_cond_signal(&sc->esc_tx_cond);
1425 			pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1426 		}
1427 		sc->esc_tx_active = 1;
1428 
1429 		/* Process some tx descriptors.  Lock dropped inside. */
1430 		e82545_tx_run(sc);
1431 	}
1432 }
1433 
1434 static void
1435 e82545_tx_start(struct e82545_softc *sc)
1436 {
1437 
1438 	if (sc->esc_tx_active == 0)
1439 		pthread_cond_signal(&sc->esc_tx_cond);
1440 }
1441 
1442 static void
1443 e82545_tx_enable(struct e82545_softc *sc)
1444 {
1445 
1446 	sc->esc_tx_enabled = 1;
1447 }
1448 
1449 static void
1450 e82545_tx_disable(struct e82545_softc *sc)
1451 {
1452 
1453 	sc->esc_tx_enabled = 0;
1454 	while (sc->esc_tx_active)
1455 		pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1456 }
1457 
1458 static void
1459 e82545_rx_enable(struct e82545_softc *sc)
1460 {
1461 
1462 	sc->esc_rx_enabled = 1;
1463 }
1464 
1465 static void
1466 e82545_rx_disable(struct e82545_softc *sc)
1467 {
1468 
1469 	sc->esc_rx_enabled = 0;
1470 	while (sc->esc_rx_active)
1471 		pthread_cond_wait(&sc->esc_rx_cond, &sc->esc_mtx);
1472 }
1473 
1474 static void
1475 e82545_write_ra(struct e82545_softc *sc, int reg, uint32_t wval)
1476 {
1477 	struct eth_uni *eu;
1478 	int idx;
1479 
1480 	idx = reg >> 1;
1481 	assert(idx < 15);
1482 
1483 	eu = &sc->esc_uni[idx];
1484 
1485 	if (reg & 0x1) {
1486 		/* RAH */
1487 		eu->eu_valid = ((wval & E1000_RAH_AV) == E1000_RAH_AV);
1488 		eu->eu_addrsel = (wval >> 16) & 0x3;
1489 		eu->eu_eth.octet[5] = wval >> 8;
1490 		eu->eu_eth.octet[4] = wval;
1491 	} else {
1492 		/* RAL */
1493 		eu->eu_eth.octet[3] = wval >> 24;
1494 		eu->eu_eth.octet[2] = wval >> 16;
1495 		eu->eu_eth.octet[1] = wval >> 8;
1496 		eu->eu_eth.octet[0] = wval;
1497 	}
1498 }
1499 
1500 static uint32_t
1501 e82545_read_ra(struct e82545_softc *sc, int reg)
1502 {
1503 	struct eth_uni *eu;
1504 	uint32_t retval;
1505 	int idx;
1506 
1507 	idx = reg >> 1;
1508 	assert(idx < 15);
1509 
1510 	eu = &sc->esc_uni[idx];
1511 
1512 	if (reg & 0x1) {
1513 		/* RAH */
1514 		retval = (eu->eu_valid << 31) |
1515 			 (eu->eu_addrsel << 16) |
1516 			 (eu->eu_eth.octet[5] << 8) |
1517 			 eu->eu_eth.octet[4];
1518 	} else {
1519 		/* RAL */
1520 		retval = (eu->eu_eth.octet[3] << 24) |
1521 			 (eu->eu_eth.octet[2] << 16) |
1522 			 (eu->eu_eth.octet[1] << 8) |
1523 			 eu->eu_eth.octet[0];
1524 	}
1525 
1526 	return (retval);
1527 }
1528 
1529 static void
1530 e82545_write_register(struct e82545_softc *sc, uint32_t offset, uint32_t value)
1531 {
1532 	int ridx;
1533 
1534 	if (offset & 0x3) {
1535 		DPRINTF("Unaligned register write offset:0x%x value:0x%x\r\n", offset, value);
1536 		return;
1537 	}
1538 	DPRINTF("Register write: 0x%x value: 0x%x\r\n", offset, value);
1539 
1540 	switch (offset) {
1541 	case E1000_CTRL:
1542 	case E1000_CTRL_DUP:
1543 		e82545_devctl(sc, value);
1544 		break;
1545 	case E1000_FCAL:
1546 		sc->esc_FCAL = value;
1547 		break;
1548 	case E1000_FCAH:
1549 		sc->esc_FCAH = value & ~0xFFFF0000;
1550 		break;
1551 	case E1000_FCT:
1552 		sc->esc_FCT = value & ~0xFFFF0000;
1553 		break;
1554 	case E1000_VET:
1555 		sc->esc_VET = value & ~0xFFFF0000;
1556 		break;
1557 	case E1000_FCTTV:
1558 		sc->esc_FCTTV = value & ~0xFFFF0000;
1559 		break;
1560 	case E1000_LEDCTL:
1561 		sc->esc_LEDCTL = value & ~0x30303000;
1562 		break;
1563 	case E1000_PBA:
1564 		sc->esc_PBA = value & 0x0000FF80;
1565 		break;
1566 	case E1000_ICR:
1567 	case E1000_ITR:
1568 	case E1000_ICS:
1569 	case E1000_IMS:
1570 	case E1000_IMC:
1571 		e82545_intr_write(sc, offset, value);
1572 		break;
1573 	case E1000_RCTL:
1574 		e82545_rx_ctl(sc, value);
1575 		break;
1576 	case E1000_FCRTL:
1577 		sc->esc_FCRTL = value & ~0xFFFF0007;
1578 		break;
1579 	case E1000_FCRTH:
1580 		sc->esc_FCRTH = value & ~0xFFFF0007;
1581 		break;
1582 	case E1000_RDBAL(0):
1583 		sc->esc_RDBAL = value & ~0xF;
1584 		if (sc->esc_rx_enabled) {
1585 			/* Apparently legal: update cached address */
1586 			e82545_rx_update_rdba(sc);
1587 		}
1588 		break;
1589 	case E1000_RDBAH(0):
1590 		assert(!sc->esc_rx_enabled);
1591 		sc->esc_RDBAH = value;
1592 		break;
1593 	case E1000_RDLEN(0):
1594 		assert(!sc->esc_rx_enabled);
1595 		sc->esc_RDLEN = value & ~0xFFF0007F;
1596 		break;
1597 	case E1000_RDH(0):
1598 		/* XXX should only ever be zero ? Range check ? */
1599 		sc->esc_RDH = value;
1600 		break;
1601 	case E1000_RDT(0):
1602 		/* XXX if this opens up the rx ring, do something ? */
1603 		sc->esc_RDT = value;
1604 		break;
1605 	case E1000_RDTR:
1606 		/* ignore FPD bit 31 */
1607 		sc->esc_RDTR = value & ~0xFFFF0000;
1608 		break;
1609 	case E1000_RXDCTL(0):
1610 		sc->esc_RXDCTL = value & ~0xFEC0C0C0;
1611 		break;
1612 	case E1000_RADV:
1613 		sc->esc_RADV = value & ~0xFFFF0000;
1614 		break;
1615 	case E1000_RSRPD:
1616 		sc->esc_RSRPD = value & ~0xFFFFF000;
1617 		break;
1618 	case E1000_RXCSUM:
1619 		sc->esc_RXCSUM = value & ~0xFFFFF800;
1620 		break;
1621 	case E1000_TXCW:
1622 		sc->esc_TXCW = value & ~0x3FFF0000;
1623 		break;
1624 	case E1000_TCTL:
1625 		e82545_tx_ctl(sc, value);
1626 		break;
1627 	case E1000_TIPG:
1628 		sc->esc_TIPG = value;
1629 		break;
1630 	case E1000_AIT:
1631 		sc->esc_AIT = value;
1632 		break;
1633 	case E1000_TDBAL(0):
1634 		sc->esc_TDBAL = value & ~0xF;
1635 		if (sc->esc_tx_enabled) {
1636 			/* Apparently legal */
1637 			e82545_tx_update_tdba(sc);
1638 		}
1639 		break;
1640 	case E1000_TDBAH(0):
1641 		//assert(!sc->esc_tx_enabled);
1642 		sc->esc_TDBAH = value;
1643 		break;
1644 	case E1000_TDLEN(0):
1645 		//assert(!sc->esc_tx_enabled);
1646 		sc->esc_TDLEN = value & ~0xFFF0007F;
1647 		break;
1648 	case E1000_TDH(0):
1649 		//assert(!sc->esc_tx_enabled);
1650 		/* XXX should only ever be zero ? Range check ? */
1651 		sc->esc_TDHr = sc->esc_TDH = value;
1652 		break;
1653 	case E1000_TDT(0):
1654 		/* XXX range check ? */
1655 		sc->esc_TDT = value;
1656 		if (sc->esc_tx_enabled)
1657 			e82545_tx_start(sc);
1658 		break;
1659 	case E1000_TIDV:
1660 		sc->esc_TIDV = value & ~0xFFFF0000;
1661 		break;
1662 	case E1000_TXDCTL(0):
1663 		//assert(!sc->esc_tx_enabled);
1664 		sc->esc_TXDCTL = value & ~0xC0C0C0;
1665 		break;
1666 	case E1000_TADV:
1667 		sc->esc_TADV = value & ~0xFFFF0000;
1668 		break;
1669 	case E1000_RAL(0) ... E1000_RAH(15):
1670 		/* convert to u32 offset */
1671 		ridx = (offset - E1000_RAL(0)) >> 2;
1672 		e82545_write_ra(sc, ridx, value);
1673 		break;
1674 	case E1000_MTA ... (E1000_MTA + (127*4)):
1675 		sc->esc_fmcast[(offset - E1000_MTA) >> 2] = value;
1676 		break;
1677 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1678 		sc->esc_fvlan[(offset - E1000_VFTA) >> 2] = value;
1679 		break;
1680 	case E1000_EECD:
1681 	{
1682 		//DPRINTF("EECD write 0x%x -> 0x%x\r\n", sc->eeprom_control, value);
1683 		/* edge triggered low->high */
1684 		uint32_t eecd_strobe = ((sc->eeprom_control & E1000_EECD_SK) ?
1685 			0 : (value & E1000_EECD_SK));
1686 		uint32_t eecd_mask = (E1000_EECD_SK|E1000_EECD_CS|
1687 					E1000_EECD_DI|E1000_EECD_REQ);
1688 		sc->eeprom_control &= ~eecd_mask;
1689 		sc->eeprom_control |= (value & eecd_mask);
1690 		/* grant/revoke immediately */
1691 		if (value & E1000_EECD_REQ) {
1692 			sc->eeprom_control |= E1000_EECD_GNT;
1693 		} else {
1694                         sc->eeprom_control &= ~E1000_EECD_GNT;
1695 		}
1696 		if (eecd_strobe && (sc->eeprom_control & E1000_EECD_CS)) {
1697 			e82545_eecd_strobe(sc);
1698 		}
1699 		return;
1700 	}
1701 	case E1000_MDIC:
1702 	{
1703 		uint8_t reg_addr = (uint8_t)((value & E1000_MDIC_REG_MASK) >>
1704 						E1000_MDIC_REG_SHIFT);
1705 		uint8_t phy_addr = (uint8_t)((value & E1000_MDIC_PHY_MASK) >>
1706 						E1000_MDIC_PHY_SHIFT);
1707 		sc->mdi_control =
1708 			(value & ~(E1000_MDIC_ERROR|E1000_MDIC_DEST));
1709 		if ((value & E1000_MDIC_READY) != 0) {
1710 			DPRINTF("Incorrect MDIC ready bit: 0x%x\r\n", value);
1711 			return;
1712 		}
1713 		switch (value & E82545_MDIC_OP_MASK) {
1714 		case E1000_MDIC_OP_READ:
1715 			sc->mdi_control &= ~E82545_MDIC_DATA_MASK;
1716 			sc->mdi_control |= e82545_read_mdi(sc, reg_addr, phy_addr);
1717 			break;
1718 		case E1000_MDIC_OP_WRITE:
1719 			e82545_write_mdi(sc, reg_addr, phy_addr,
1720 				value & E82545_MDIC_DATA_MASK);
1721 			break;
1722 		default:
1723 			DPRINTF("Unknown MDIC op: 0x%x\r\n", value);
1724 			return;
1725 		}
1726 		/* TODO: barrier? */
1727 		sc->mdi_control |= E1000_MDIC_READY;
1728 		if (value & E82545_MDIC_IE) {
1729 			// TODO: generate interrupt
1730 		}
1731 		return;
1732 	}
1733 	case E1000_MANC:
1734 	case E1000_STATUS:
1735 		return;
1736 	default:
1737 		DPRINTF("Unknown write register: 0x%x value:%x\r\n", offset, value);
1738 		return;
1739 	}
1740 }
1741 
1742 static uint32_t
1743 e82545_read_register(struct e82545_softc *sc, uint32_t offset)
1744 {
1745 	uint32_t retval;
1746 	int ridx;
1747 
1748 	if (offset & 0x3) {
1749 		DPRINTF("Unaligned register read offset:0x%x\r\n", offset);
1750 		return 0;
1751 	}
1752 
1753 	DPRINTF("Register read: 0x%x\r\n", offset);
1754 
1755 	switch (offset) {
1756 	case E1000_CTRL:
1757 		retval = sc->esc_CTRL;
1758 		break;
1759 	case E1000_STATUS:
1760 		retval = E1000_STATUS_FD | E1000_STATUS_LU |
1761 		    E1000_STATUS_SPEED_1000;
1762 		break;
1763 	case E1000_FCAL:
1764 		retval = sc->esc_FCAL;
1765 		break;
1766 	case E1000_FCAH:
1767 		retval = sc->esc_FCAH;
1768 		break;
1769 	case E1000_FCT:
1770 		retval = sc->esc_FCT;
1771 		break;
1772 	case E1000_VET:
1773 		retval = sc->esc_VET;
1774 		break;
1775 	case E1000_FCTTV:
1776 		retval = sc->esc_FCTTV;
1777 		break;
1778 	case E1000_LEDCTL:
1779 		retval = sc->esc_LEDCTL;
1780 		break;
1781 	case E1000_PBA:
1782 		retval = sc->esc_PBA;
1783 		break;
1784 	case E1000_ICR:
1785 	case E1000_ITR:
1786 	case E1000_ICS:
1787 	case E1000_IMS:
1788 	case E1000_IMC:
1789 		retval = e82545_intr_read(sc, offset);
1790 		break;
1791 	case E1000_RCTL:
1792 		retval = sc->esc_RCTL;
1793 		break;
1794 	case E1000_FCRTL:
1795 		retval = sc->esc_FCRTL;
1796 		break;
1797 	case E1000_FCRTH:
1798 		retval = sc->esc_FCRTH;
1799 		break;
1800 	case E1000_RDBAL(0):
1801 		retval = sc->esc_RDBAL;
1802 		break;
1803 	case E1000_RDBAH(0):
1804 		retval = sc->esc_RDBAH;
1805 		break;
1806 	case E1000_RDLEN(0):
1807 		retval = sc->esc_RDLEN;
1808 		break;
1809 	case E1000_RDH(0):
1810 		retval = sc->esc_RDH;
1811 		break;
1812 	case E1000_RDT(0):
1813 		retval = sc->esc_RDT;
1814 		break;
1815 	case E1000_RDTR:
1816 		retval = sc->esc_RDTR;
1817 		break;
1818 	case E1000_RXDCTL(0):
1819 		retval = sc->esc_RXDCTL;
1820 		break;
1821 	case E1000_RADV:
1822 		retval = sc->esc_RADV;
1823 		break;
1824 	case E1000_RSRPD:
1825 		retval = sc->esc_RSRPD;
1826 		break;
1827 	case E1000_RXCSUM:
1828 		retval = sc->esc_RXCSUM;
1829 		break;
1830 	case E1000_TXCW:
1831 		retval = sc->esc_TXCW;
1832 		break;
1833 	case E1000_TCTL:
1834 		retval = sc->esc_TCTL;
1835 		break;
1836 	case E1000_TIPG:
1837 		retval = sc->esc_TIPG;
1838 		break;
1839 	case E1000_AIT:
1840 		retval = sc->esc_AIT;
1841 		break;
1842 	case E1000_TDBAL(0):
1843 		retval = sc->esc_TDBAL;
1844 		break;
1845 	case E1000_TDBAH(0):
1846 		retval = sc->esc_TDBAH;
1847 		break;
1848 	case E1000_TDLEN(0):
1849 		retval = sc->esc_TDLEN;
1850 		break;
1851 	case E1000_TDH(0):
1852 		retval = sc->esc_TDH;
1853 		break;
1854 	case E1000_TDT(0):
1855 		retval = sc->esc_TDT;
1856 		break;
1857 	case E1000_TIDV:
1858 		retval = sc->esc_TIDV;
1859 		break;
1860 	case E1000_TXDCTL(0):
1861 		retval = sc->esc_TXDCTL;
1862 		break;
1863 	case E1000_TADV:
1864 		retval = sc->esc_TADV;
1865 		break;
1866 	case E1000_RAL(0) ... E1000_RAH(15):
1867 		/* convert to u32 offset */
1868 		ridx = (offset - E1000_RAL(0)) >> 2;
1869 		retval = e82545_read_ra(sc, ridx);
1870 		break;
1871 	case E1000_MTA ... (E1000_MTA + (127*4)):
1872 		retval = sc->esc_fmcast[(offset - E1000_MTA) >> 2];
1873 		break;
1874 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1875 		retval = sc->esc_fvlan[(offset - E1000_VFTA) >> 2];
1876 		break;
1877 	case E1000_EECD:
1878 		//DPRINTF("EECD read %x\r\n", sc->eeprom_control);
1879 		retval = sc->eeprom_control;
1880 		break;
1881 	case E1000_MDIC:
1882 		retval = sc->mdi_control;
1883 		break;
1884 	case E1000_MANC:
1885 		retval = 0;
1886 		break;
1887 	/* stats that we emulate. */
1888 	case E1000_MPC:
1889 		retval = sc->missed_pkt_count;
1890 		break;
1891 	case E1000_PRC64:
1892 		retval = sc->pkt_rx_by_size[0];
1893 		break;
1894 	case E1000_PRC127:
1895 		retval = sc->pkt_rx_by_size[1];
1896 		break;
1897 	case E1000_PRC255:
1898 		retval = sc->pkt_rx_by_size[2];
1899 		break;
1900 	case E1000_PRC511:
1901 		retval = sc->pkt_rx_by_size[3];
1902 		break;
1903 	case E1000_PRC1023:
1904 		retval = sc->pkt_rx_by_size[4];
1905 		break;
1906 	case E1000_PRC1522:
1907 		retval = sc->pkt_rx_by_size[5];
1908 		break;
1909 	case E1000_GPRC:
1910 		retval = sc->good_pkt_rx_count;
1911 		break;
1912 	case E1000_BPRC:
1913 		retval = sc->bcast_pkt_rx_count;
1914 		break;
1915 	case E1000_MPRC:
1916 		retval = sc->mcast_pkt_rx_count;
1917 		break;
1918 	case E1000_GPTC:
1919 	case E1000_TPT:
1920 		retval = sc->good_pkt_tx_count;
1921 		break;
1922 	case E1000_GORCL:
1923 		retval = (uint32_t)sc->good_octets_rx;
1924 		break;
1925 	case E1000_GORCH:
1926 		retval = (uint32_t)(sc->good_octets_rx >> 32);
1927 		break;
1928 	case E1000_TOTL:
1929 	case E1000_GOTCL:
1930 		retval = (uint32_t)sc->good_octets_tx;
1931 		break;
1932 	case E1000_TOTH:
1933 	case E1000_GOTCH:
1934 		retval = (uint32_t)(sc->good_octets_tx >> 32);
1935 		break;
1936 	case E1000_ROC:
1937 		retval = sc->oversize_rx_count;
1938 		break;
1939 	case E1000_TORL:
1940 		retval = (uint32_t)(sc->good_octets_rx + sc->missed_octets);
1941 		break;
1942 	case E1000_TORH:
1943 		retval = (uint32_t)((sc->good_octets_rx +
1944 		    sc->missed_octets) >> 32);
1945 		break;
1946 	case E1000_TPR:
1947 		retval = sc->good_pkt_rx_count + sc->missed_pkt_count +
1948 		    sc->oversize_rx_count;
1949 		break;
1950 	case E1000_PTC64:
1951 		retval = sc->pkt_tx_by_size[0];
1952 		break;
1953 	case E1000_PTC127:
1954 		retval = sc->pkt_tx_by_size[1];
1955 		break;
1956 	case E1000_PTC255:
1957 		retval = sc->pkt_tx_by_size[2];
1958 		break;
1959 	case E1000_PTC511:
1960 		retval = sc->pkt_tx_by_size[3];
1961 		break;
1962 	case E1000_PTC1023:
1963 		retval = sc->pkt_tx_by_size[4];
1964 		break;
1965 	case E1000_PTC1522:
1966 		retval = sc->pkt_tx_by_size[5];
1967 		break;
1968 	case E1000_MPTC:
1969 		retval = sc->mcast_pkt_tx_count;
1970 		break;
1971 	case E1000_BPTC:
1972 		retval = sc->bcast_pkt_tx_count;
1973 		break;
1974 	case E1000_TSCTC:
1975 		retval = sc->tso_tx_count;
1976 		break;
1977 	/* stats that are always 0. */
1978 	case E1000_CRCERRS:
1979 	case E1000_ALGNERRC:
1980 	case E1000_SYMERRS:
1981 	case E1000_RXERRC:
1982 	case E1000_SCC:
1983 	case E1000_ECOL:
1984 	case E1000_MCC:
1985 	case E1000_LATECOL:
1986 	case E1000_COLC:
1987 	case E1000_DC:
1988 	case E1000_TNCRS:
1989 	case E1000_SEC:
1990 	case E1000_CEXTERR:
1991 	case E1000_RLEC:
1992 	case E1000_XONRXC:
1993 	case E1000_XONTXC:
1994 	case E1000_XOFFRXC:
1995 	case E1000_XOFFTXC:
1996 	case E1000_FCRUC:
1997 	case E1000_RNBC:
1998 	case E1000_RUC:
1999 	case E1000_RFC:
2000 	case E1000_RJC:
2001 	case E1000_MGTPRC:
2002 	case E1000_MGTPDC:
2003 	case E1000_MGTPTC:
2004 	case E1000_TSCTFC:
2005 		retval = 0;
2006 		break;
2007 	default:
2008 		DPRINTF("Unknown read register: 0x%x\r\n", offset);
2009 		retval = 0;
2010 		break;
2011 	}
2012 
2013 	return (retval);
2014 }
2015 
2016 static void
2017 e82545_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2018 	     uint64_t offset, int size, uint64_t value)
2019 {
2020 	struct e82545_softc *sc;
2021 
2022 	//DPRINTF("Write bar:%d offset:0x%lx value:0x%lx size:%d\r\n", baridx, offset, value, size);
2023 
2024 	sc = pi->pi_arg;
2025 
2026 	pthread_mutex_lock(&sc->esc_mtx);
2027 
2028 	switch (baridx) {
2029 	case E82545_BAR_IO:
2030 		switch (offset) {
2031 		case E82545_IOADDR:
2032 			if (size != 4) {
2033 				DPRINTF("Wrong io addr write sz:%d value:0x%lx\r\n", size, value);
2034 			} else
2035 				sc->io_addr = (uint32_t)value;
2036 			break;
2037 		case E82545_IODATA:
2038 			if (size != 4) {
2039 				DPRINTF("Wrong io data write size:%d value:0x%lx\r\n", size, value);
2040 			} else if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2041 				DPRINTF("Non-register io write addr:0x%x value:0x%lx\r\n", sc->io_addr, value);
2042 			} else
2043 				e82545_write_register(sc, sc->io_addr,
2044 						      (uint32_t)value);
2045 			break;
2046 		default:
2047 			DPRINTF("Unknown io bar write offset:0x%lx value:0x%lx size:%d\r\n", offset, value, size);
2048 			break;
2049 		}
2050 		break;
2051 	case E82545_BAR_REGISTER:
2052 		if (size != 4) {
2053 			DPRINTF("Wrong register write size:%d offset:0x%lx value:0x%lx\r\n", size, offset, value);
2054 		} else
2055 			e82545_write_register(sc, (uint32_t)offset,
2056 					      (uint32_t)value);
2057 		break;
2058 	default:
2059 		DPRINTF("Unknown write bar:%d off:0x%lx val:0x%lx size:%d\r\n",
2060 			baridx, offset, value, size);
2061 	}
2062 
2063 	pthread_mutex_unlock(&sc->esc_mtx);
2064 }
2065 
2066 static uint64_t
2067 e82545_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2068 	    uint64_t offset, int size)
2069 {
2070 	struct e82545_softc *sc;
2071 	uint64_t retval;
2072 
2073 	//DPRINTF("Read  bar:%d offset:0x%lx size:%d\r\n", baridx, offset, size);
2074 	sc = pi->pi_arg;
2075 	retval = 0;
2076 
2077 	pthread_mutex_lock(&sc->esc_mtx);
2078 
2079 	switch (baridx) {
2080 	case E82545_BAR_IO:
2081 		switch (offset) {
2082 		case E82545_IOADDR:
2083 			if (size != 4) {
2084 				DPRINTF("Wrong io addr read sz:%d\r\n", size);
2085 			} else
2086 				retval = sc->io_addr;
2087 			break;
2088 		case E82545_IODATA:
2089 			if (size != 4) {
2090 				DPRINTF("Wrong io data read sz:%d\r\n", size);
2091 			}
2092 			if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2093 				DPRINTF("Non-register io read addr:0x%x\r\n",
2094 					sc->io_addr);
2095 			} else
2096 				retval = e82545_read_register(sc, sc->io_addr);
2097 			break;
2098 		default:
2099 			DPRINTF("Unknown io bar read offset:0x%lx size:%d\r\n",
2100 				offset, size);
2101 			break;
2102 		}
2103 		break;
2104 	case E82545_BAR_REGISTER:
2105 		if (size != 4) {
2106 			DPRINTF("Wrong register read size:%d offset:0x%lx\r\n",
2107 				size, offset);
2108 		} else
2109 			retval = e82545_read_register(sc, (uint32_t)offset);
2110 		break;
2111 	default:
2112 		DPRINTF("Unknown read bar:%d offset:0x%lx size:%d\r\n",
2113 			baridx, offset, size);
2114 		break;
2115 	}
2116 
2117 	pthread_mutex_unlock(&sc->esc_mtx);
2118 
2119 	return (retval);
2120 }
2121 
2122 static void
2123 e82545_reset(struct e82545_softc *sc, int drvr)
2124 {
2125 	int i;
2126 
2127 	e82545_rx_disable(sc);
2128 	e82545_tx_disable(sc);
2129 
2130 	/* clear outstanding interrupts */
2131 	if (sc->esc_irq_asserted)
2132 		pci_lintr_deassert(sc->esc_pi);
2133 
2134 	/* misc */
2135 	if (!drvr) {
2136 		sc->esc_FCAL = 0;
2137 		sc->esc_FCAH = 0;
2138 		sc->esc_FCT = 0;
2139 		sc->esc_VET = 0;
2140 		sc->esc_FCTTV = 0;
2141 	}
2142 	sc->esc_LEDCTL = 0x07061302;
2143 	sc->esc_PBA = 0x00100030;
2144 
2145 	/* start nvm in opcode mode. */
2146 	sc->nvm_opaddr = 0;
2147 	sc->nvm_mode = E82545_NVM_MODE_OPADDR;
2148 	sc->nvm_bits = E82545_NVM_OPADDR_BITS;
2149 	sc->eeprom_control = E1000_EECD_PRES | E82545_EECD_FWE_EN;
2150 	e82545_init_eeprom(sc);
2151 
2152 	/* interrupt */
2153 	sc->esc_ICR = 0;
2154 	sc->esc_ITR = 250;
2155 	sc->esc_ICS = 0;
2156 	sc->esc_IMS = 0;
2157 	sc->esc_IMC = 0;
2158 
2159 	/* L2 filters */
2160 	if (!drvr) {
2161 		memset(sc->esc_fvlan, 0, sizeof(sc->esc_fvlan));
2162 		memset(sc->esc_fmcast, 0, sizeof(sc->esc_fmcast));
2163 		memset(sc->esc_uni, 0, sizeof(sc->esc_uni));
2164 
2165 		/* XXX not necessary on 82545 ?? */
2166 		sc->esc_uni[0].eu_valid = 1;
2167 		memcpy(sc->esc_uni[0].eu_eth.octet, sc->esc_mac.octet,
2168 		    ETHER_ADDR_LEN);
2169 	} else {
2170 		/* Clear RAH valid bits */
2171 		for (i = 0; i < 16; i++)
2172 			sc->esc_uni[i].eu_valid = 0;
2173 	}
2174 
2175 	/* receive */
2176 	if (!drvr) {
2177 		sc->esc_RDBAL = 0;
2178 		sc->esc_RDBAH = 0;
2179 	}
2180 	sc->esc_RCTL = 0;
2181 	sc->esc_FCRTL = 0;
2182 	sc->esc_FCRTH = 0;
2183 	sc->esc_RDLEN = 0;
2184 	sc->esc_RDH = 0;
2185 	sc->esc_RDT = 0;
2186 	sc->esc_RDTR = 0;
2187 	sc->esc_RXDCTL = (1 << 24) | (1 << 16); /* default GRAN/WTHRESH */
2188 	sc->esc_RADV = 0;
2189 	sc->esc_RXCSUM = 0;
2190 
2191 	/* transmit */
2192 	if (!drvr) {
2193 		sc->esc_TDBAL = 0;
2194 		sc->esc_TDBAH = 0;
2195 		sc->esc_TIPG = 0;
2196 		sc->esc_AIT = 0;
2197 		sc->esc_TIDV = 0;
2198 		sc->esc_TADV = 0;
2199 	}
2200 	sc->esc_tdba = 0;
2201 	sc->esc_txdesc = NULL;
2202 	sc->esc_TXCW = 0;
2203 	sc->esc_TCTL = 0;
2204 	sc->esc_TDLEN = 0;
2205 	sc->esc_TDT = 0;
2206 	sc->esc_TDHr = sc->esc_TDH = 0;
2207 	sc->esc_TXDCTL = 0;
2208 }
2209 
2210 static int
2211 e82545_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
2212 {
2213 	char nstr[80];
2214 	struct e82545_softc *sc;
2215 	char *devname;
2216 	char *vtopts;
2217 	int mac_provided;
2218 
2219 	DPRINTF("Loading with options: %s\r\n", opts);
2220 
2221 	/* Setup our softc */
2222 	sc = calloc(1, sizeof(*sc));
2223 
2224 	pi->pi_arg = sc;
2225 	sc->esc_pi = pi;
2226 	sc->esc_ctx = ctx;
2227 
2228 	pthread_mutex_init(&sc->esc_mtx, NULL);
2229 	pthread_cond_init(&sc->esc_rx_cond, NULL);
2230 	pthread_cond_init(&sc->esc_tx_cond, NULL);
2231 	pthread_create(&sc->esc_tx_tid, NULL, e82545_tx_thread, sc);
2232 	snprintf(nstr, sizeof(nstr), "e82545-%d:%d tx", pi->pi_slot,
2233 	    pi->pi_func);
2234         pthread_set_name_np(sc->esc_tx_tid, nstr);
2235 
2236 	pci_set_cfgdata16(pi, PCIR_DEVICE, E82545_DEV_ID_82545EM_COPPER);
2237 	pci_set_cfgdata16(pi, PCIR_VENDOR, E82545_VENDOR_ID_INTEL);
2238 	pci_set_cfgdata8(pi,  PCIR_CLASS, PCIC_NETWORK);
2239 	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_NETWORK_ETHERNET);
2240 	pci_set_cfgdata16(pi, PCIR_SUBDEV_0, E82545_SUBDEV_ID);
2241 	pci_set_cfgdata16(pi, PCIR_SUBVEND_0, E82545_VENDOR_ID_INTEL);
2242 
2243 	pci_set_cfgdata8(pi,  PCIR_HDRTYPE, PCIM_HDRTYPE_NORMAL);
2244 	pci_set_cfgdata8(pi,  PCIR_INTPIN, 0x1);
2245 
2246 	/* TODO: this card also supports msi, but the freebsd driver for it
2247 	 * does not, so I have not implemented it. */
2248 	pci_lintr_request(pi);
2249 
2250 	pci_emul_alloc_bar(pi, E82545_BAR_REGISTER, PCIBAR_MEM32,
2251 		E82545_BAR_REGISTER_LEN);
2252 	pci_emul_alloc_bar(pi, E82545_BAR_FLASH, PCIBAR_MEM32,
2253 		E82545_BAR_FLASH_LEN);
2254 	pci_emul_alloc_bar(pi, E82545_BAR_IO, PCIBAR_IO,
2255 		E82545_BAR_IO_LEN);
2256 
2257 	/*
2258 	 * Attempt to open the net backend and read the MAC address
2259 	 * if specified.  Copied from virtio-net, slightly modified.
2260 	 */
2261 	mac_provided = 0;
2262 	sc->esc_be = NULL;
2263 	if (opts != NULL) {
2264 		int err;
2265 
2266 		devname = vtopts = strdup(opts);
2267 		(void) strsep(&vtopts, ",");
2268 
2269 		if (vtopts != NULL) {
2270 			err = net_parsemac(vtopts, sc->esc_mac.octet);
2271 			if (err != 0) {
2272 				free(devname);
2273 				return (err);
2274 			}
2275 			mac_provided = 1;
2276 		}
2277 
2278 		err = netbe_init(&sc->esc_be, devname, e82545_rx_callback, sc);
2279 		free(devname);
2280 		if (err)
2281 			return (err);
2282 	}
2283 
2284 	if (!mac_provided) {
2285 		net_genmac(pi, sc->esc_mac.octet);
2286 	}
2287 
2288 	/* H/w initiated reset */
2289 	e82545_reset(sc, 0);
2290 
2291 	return (0);
2292 }
2293 
2294 struct pci_devemu pci_de_e82545 = {
2295 	.pe_emu = 	"e1000",
2296 	.pe_init =	e82545_init,
2297 	.pe_barwrite =	e82545_write,
2298 	.pe_barread =	e82545_read
2299 };
2300 PCI_EMUL_SET(pci_de_e82545);
2301 
2302