xref: /freebsd/usr.sbin/bhyve/pci_e82545.c (revision 162ae9c834f6d9f9cb443bd62cceb23e0b5fef48)
1 /*
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2016 Alexander Motin <mav@FreeBSD.org>
5  * Copyright (c) 2015 Peter Grehan <grehan@freebsd.org>
6  * Copyright (c) 2013 Jeremiah Lott, Avere Systems
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer
14  *    in this position and unchanged.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/types.h>
36 #ifndef WITHOUT_CAPSICUM
37 #include <sys/capsicum.h>
38 #endif
39 #include <sys/limits.h>
40 #include <sys/ioctl.h>
41 #include <sys/uio.h>
42 #include <net/ethernet.h>
43 #include <netinet/in.h>
44 #include <netinet/tcp.h>
45 
46 #ifndef WITHOUT_CAPSICUM
47 #include <capsicum_helpers.h>
48 #endif
49 #include <err.h>
50 #include <errno.h>
51 #include <fcntl.h>
52 #include <md5.h>
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <string.h>
56 #include <sysexits.h>
57 #include <unistd.h>
58 #include <pthread.h>
59 #include <pthread_np.h>
60 
61 #include "e1000_regs.h"
62 #include "e1000_defines.h"
63 #include "mii.h"
64 
65 #include "bhyverun.h"
66 #include "debug.h"
67 #include "pci_emul.h"
68 #include "mevent.h"
69 #include "net_utils.h"
70 #include "net_backends.h"
71 
72 /* Hardware/register definitions XXX: move some to common code. */
73 #define E82545_VENDOR_ID_INTEL			0x8086
74 #define E82545_DEV_ID_82545EM_COPPER		0x100F
75 #define E82545_SUBDEV_ID			0x1008
76 
77 #define E82545_REVISION_4			4
78 
79 #define E82545_MDIC_DATA_MASK			0x0000FFFF
80 #define E82545_MDIC_OP_MASK			0x0c000000
81 #define E82545_MDIC_IE				0x20000000
82 
83 #define E82545_EECD_FWE_DIS	0x00000010 /* Flash writes disabled */
84 #define E82545_EECD_FWE_EN	0x00000020 /* Flash writes enabled */
85 #define E82545_EECD_FWE_MASK	0x00000030 /* Flash writes mask */
86 
87 #define E82545_BAR_REGISTER			0
88 #define E82545_BAR_REGISTER_LEN			(128*1024)
89 #define E82545_BAR_FLASH			1
90 #define E82545_BAR_FLASH_LEN			(64*1024)
91 #define E82545_BAR_IO				2
92 #define E82545_BAR_IO_LEN			8
93 
94 #define E82545_IOADDR				0x00000000
95 #define E82545_IODATA				0x00000004
96 #define E82545_IO_REGISTER_MAX			0x0001FFFF
97 #define E82545_IO_FLASH_BASE			0x00080000
98 #define E82545_IO_FLASH_MAX			0x000FFFFF
99 
100 #define E82545_ARRAY_ENTRY(reg, offset)		(reg + (offset<<2))
101 #define E82545_RAR_MAX				15
102 #define E82545_MTA_MAX				127
103 #define E82545_VFTA_MAX				127
104 
105 /* Slightly modified from the driver versions, hardcoded for 3 opcode bits,
106  * followed by 6 address bits.
107  * TODO: make opcode bits and addr bits configurable?
108  * NVM Commands - Microwire */
109 #define E82545_NVM_OPCODE_BITS	3
110 #define E82545_NVM_ADDR_BITS	6
111 #define E82545_NVM_DATA_BITS	16
112 #define E82545_NVM_OPADDR_BITS	(E82545_NVM_OPCODE_BITS + E82545_NVM_ADDR_BITS)
113 #define E82545_NVM_ADDR_MASK	((1 << E82545_NVM_ADDR_BITS)-1)
114 #define E82545_NVM_OPCODE_MASK	\
115     (((1 << E82545_NVM_OPCODE_BITS) - 1) << E82545_NVM_ADDR_BITS)
116 #define E82545_NVM_OPCODE_READ	(0x6 << E82545_NVM_ADDR_BITS)	/* read */
117 #define E82545_NVM_OPCODE_WRITE	(0x5 << E82545_NVM_ADDR_BITS)	/* write */
118 #define E82545_NVM_OPCODE_ERASE	(0x7 << E82545_NVM_ADDR_BITS)	/* erase */
119 #define	E82545_NVM_OPCODE_EWEN	(0x4 << E82545_NVM_ADDR_BITS)	/* wr-enable */
120 
121 #define	E82545_NVM_EEPROM_SIZE	64 /* 64 * 16-bit values == 128K */
122 
123 #define E1000_ICR_SRPD		0x00010000
124 
125 /* This is an arbitrary number.  There is no hard limit on the chip. */
126 #define I82545_MAX_TXSEGS	64
127 
128 /* Legacy receive descriptor */
129 struct e1000_rx_desc {
130 	uint64_t buffer_addr;	/* Address of the descriptor's data buffer */
131 	uint16_t length;	/* Length of data DMAed into data buffer */
132 	uint16_t csum;		/* Packet checksum */
133 	uint8_t	 status;       	/* Descriptor status */
134 	uint8_t  errors;	/* Descriptor Errors */
135 	uint16_t special;
136 };
137 
138 /* Transmit descriptor types */
139 #define	E1000_TXD_MASK		(E1000_TXD_CMD_DEXT | 0x00F00000)
140 #define E1000_TXD_TYP_L		(0)
141 #define E1000_TXD_TYP_C		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C)
142 #define E1000_TXD_TYP_D		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)
143 
144 /* Legacy transmit descriptor */
145 struct e1000_tx_desc {
146 	uint64_t buffer_addr;   /* Address of the descriptor's data buffer */
147 	union {
148 		uint32_t data;
149 		struct {
150 			uint16_t length;  /* Data buffer length */
151 			uint8_t  cso;  /* Checksum offset */
152 			uint8_t  cmd;  /* Descriptor control */
153 		} flags;
154 	} lower;
155 	union {
156 		uint32_t data;
157 		struct {
158 			uint8_t status; /* Descriptor status */
159 			uint8_t css;  /* Checksum start */
160 			uint16_t special;
161 		} fields;
162 	} upper;
163 };
164 
165 /* Context descriptor */
166 struct e1000_context_desc {
167 	union {
168 		uint32_t ip_config;
169 		struct {
170 			uint8_t ipcss;  /* IP checksum start */
171 			uint8_t ipcso;  /* IP checksum offset */
172 			uint16_t ipcse;  /* IP checksum end */
173 		} ip_fields;
174 	} lower_setup;
175 	union {
176 		uint32_t tcp_config;
177 		struct {
178 			uint8_t tucss;  /* TCP checksum start */
179 			uint8_t tucso;  /* TCP checksum offset */
180 			uint16_t tucse;  /* TCP checksum end */
181 		} tcp_fields;
182 	} upper_setup;
183 	uint32_t cmd_and_length;
184 	union {
185 		uint32_t data;
186 		struct {
187 			uint8_t status;  /* Descriptor status */
188 			uint8_t hdr_len;  /* Header length */
189 			uint16_t mss;  /* Maximum segment size */
190 		} fields;
191 	} tcp_seg_setup;
192 };
193 
194 /* Data descriptor */
195 struct e1000_data_desc {
196 	uint64_t buffer_addr;  /* Address of the descriptor's buffer address */
197 	union {
198 		uint32_t data;
199 		struct {
200 			uint16_t length;  /* Data buffer length */
201 			uint8_t typ_len_ext;
202 			uint8_t cmd;
203 		} flags;
204 	} lower;
205 	union {
206 		uint32_t data;
207 		struct {
208 			uint8_t status;  /* Descriptor status */
209 			uint8_t popts;  /* Packet Options */
210 			uint16_t special;
211 		} fields;
212 	} upper;
213 };
214 
215 union e1000_tx_udesc {
216 	struct e1000_tx_desc td;
217 	struct e1000_context_desc cd;
218 	struct e1000_data_desc dd;
219 };
220 
221 /* Tx checksum info for a packet. */
222 struct ck_info {
223 	int	ck_valid;	/* ck_info is valid */
224 	uint8_t	ck_start;	/* start byte of cksum calcuation */
225 	uint8_t	ck_off;		/* offset of cksum insertion */
226 	uint16_t ck_len;	/* length of cksum calc: 0 is to packet-end */
227 };
228 
229 /*
230  * Debug printf
231  */
232 static int e82545_debug = 0;
233 #define WPRINTF(msg,params...) PRINTLN("e82545: " msg, params)
234 #define DPRINTF(msg,params...) if (e82545_debug) WPRINTF(msg, params)
235 
236 #define	MIN(a,b) (((a)<(b))?(a):(b))
237 #define	MAX(a,b) (((a)>(b))?(a):(b))
238 
239 /* s/w representation of the RAL/RAH regs */
240 struct  eth_uni {
241 	int		eu_valid;
242 	int		eu_addrsel;
243 	struct ether_addr eu_eth;
244 };
245 
246 
247 struct e82545_softc {
248 	struct pci_devinst *esc_pi;
249 	struct vmctx	*esc_ctx;
250 	struct mevent   *esc_mevpitr;
251 	pthread_mutex_t	esc_mtx;
252 	struct ether_addr esc_mac;
253 	net_backend_t	*esc_be;
254 
255 	/* General */
256 	uint32_t	esc_CTRL;	/* x0000 device ctl */
257 	uint32_t	esc_FCAL;	/* x0028 flow ctl addr lo */
258 	uint32_t	esc_FCAH;	/* x002C flow ctl addr hi */
259 	uint32_t	esc_FCT;	/* x0030 flow ctl type */
260 	uint32_t	esc_VET;	/* x0038 VLAN eth type */
261 	uint32_t	esc_FCTTV;	/* x0170 flow ctl tx timer */
262 	uint32_t	esc_LEDCTL;	/* x0E00 LED control */
263 	uint32_t	esc_PBA;	/* x1000 pkt buffer allocation */
264 
265 	/* Interrupt control */
266 	int		esc_irq_asserted;
267 	uint32_t	esc_ICR;	/* x00C0 cause read/clear */
268 	uint32_t	esc_ITR;	/* x00C4 intr throttling */
269 	uint32_t	esc_ICS;	/* x00C8 cause set */
270 	uint32_t	esc_IMS;	/* x00D0 mask set/read */
271 	uint32_t	esc_IMC;	/* x00D8 mask clear */
272 
273 	/* Transmit */
274 	union e1000_tx_udesc *esc_txdesc;
275 	struct e1000_context_desc esc_txctx;
276 	pthread_t	esc_tx_tid;
277 	pthread_cond_t	esc_tx_cond;
278 	int		esc_tx_enabled;
279 	int		esc_tx_active;
280 	uint32_t	esc_TXCW;	/* x0178 transmit config */
281 	uint32_t	esc_TCTL;	/* x0400 transmit ctl */
282 	uint32_t	esc_TIPG;	/* x0410 inter-packet gap */
283 	uint16_t	esc_AIT;	/* x0458 Adaptive Interframe Throttle */
284 	uint64_t	esc_tdba;      	/* verified 64-bit desc table addr */
285 	uint32_t	esc_TDBAL;	/* x3800 desc table addr, low bits */
286 	uint32_t	esc_TDBAH;	/* x3804 desc table addr, hi 32-bits */
287 	uint32_t	esc_TDLEN;	/* x3808 # descriptors in bytes */
288 	uint16_t	esc_TDH;	/* x3810 desc table head idx */
289 	uint16_t	esc_TDHr;	/* internal read version of TDH */
290 	uint16_t	esc_TDT;	/* x3818 desc table tail idx */
291 	uint32_t	esc_TIDV;	/* x3820 intr delay */
292 	uint32_t	esc_TXDCTL;	/* x3828 desc control */
293 	uint32_t	esc_TADV;	/* x382C intr absolute delay */
294 
295 	/* L2 frame acceptance */
296 	struct eth_uni	esc_uni[16];	/* 16 x unicast MAC addresses */
297 	uint32_t	esc_fmcast[128]; /* Multicast filter bit-match */
298 	uint32_t	esc_fvlan[128]; /* VLAN 4096-bit filter */
299 
300 	/* Receive */
301 	struct e1000_rx_desc *esc_rxdesc;
302 	pthread_cond_t	esc_rx_cond;
303 	int		esc_rx_enabled;
304 	int		esc_rx_active;
305 	int		esc_rx_loopback;
306 	uint32_t	esc_RCTL;	/* x0100 receive ctl */
307 	uint32_t	esc_FCRTL;	/* x2160 flow cntl thresh, low */
308 	uint32_t	esc_FCRTH;	/* x2168 flow cntl thresh, hi */
309 	uint64_t	esc_rdba;	/* verified 64-bit desc table addr */
310 	uint32_t	esc_RDBAL;	/* x2800 desc table addr, low bits */
311 	uint32_t	esc_RDBAH;	/* x2804 desc table addr, hi 32-bits*/
312 	uint32_t	esc_RDLEN;	/* x2808 #descriptors */
313 	uint16_t	esc_RDH;	/* x2810 desc table head idx */
314 	uint16_t	esc_RDT;	/* x2818 desc table tail idx */
315 	uint32_t	esc_RDTR;	/* x2820 intr delay */
316 	uint32_t	esc_RXDCTL;	/* x2828 desc control */
317 	uint32_t	esc_RADV;	/* x282C intr absolute delay */
318 	uint32_t	esc_RSRPD;	/* x2C00 recv small packet detect */
319 	uint32_t	esc_RXCSUM;     /* x5000 receive cksum ctl */
320 
321 	/* IO Port register access */
322 	uint32_t io_addr;
323 
324 	/* Shadow copy of MDIC */
325 	uint32_t mdi_control;
326 	/* Shadow copy of EECD */
327 	uint32_t eeprom_control;
328 	/* Latest NVM in/out */
329 	uint16_t nvm_data;
330 	uint16_t nvm_opaddr;
331 	/* stats */
332 	uint32_t missed_pkt_count; /* dropped for no room in rx queue */
333 	uint32_t pkt_rx_by_size[6];
334 	uint32_t pkt_tx_by_size[6];
335 	uint32_t good_pkt_rx_count;
336 	uint32_t bcast_pkt_rx_count;
337 	uint32_t mcast_pkt_rx_count;
338 	uint32_t good_pkt_tx_count;
339 	uint32_t bcast_pkt_tx_count;
340 	uint32_t mcast_pkt_tx_count;
341 	uint32_t oversize_rx_count;
342 	uint32_t tso_tx_count;
343 	uint64_t good_octets_rx;
344 	uint64_t good_octets_tx;
345 	uint64_t missed_octets; /* counts missed and oversized */
346 
347 	uint8_t nvm_bits:6; /* number of bits remaining in/out */
348 	uint8_t nvm_mode:2;
349 #define E82545_NVM_MODE_OPADDR  0x0
350 #define E82545_NVM_MODE_DATAIN  0x1
351 #define E82545_NVM_MODE_DATAOUT 0x2
352 	/* EEPROM data */
353 	uint16_t eeprom_data[E82545_NVM_EEPROM_SIZE];
354 };
355 
356 static void e82545_reset(struct e82545_softc *sc, int dev);
357 static void e82545_rx_enable(struct e82545_softc *sc);
358 static void e82545_rx_disable(struct e82545_softc *sc);
359 static void e82545_rx_callback(int fd, enum ev_type type, void *param);
360 static void e82545_tx_start(struct e82545_softc *sc);
361 static void e82545_tx_enable(struct e82545_softc *sc);
362 static void e82545_tx_disable(struct e82545_softc *sc);
363 
364 static inline int
365 e82545_size_stat_index(uint32_t size)
366 {
367 	if (size <= 64) {
368 		return 0;
369 	} else if (size >= 1024) {
370 		return 5;
371 	} else {
372 		/* should be 1-4 */
373 		return (ffs(size) - 6);
374 	}
375 }
376 
377 static void
378 e82545_init_eeprom(struct e82545_softc *sc)
379 {
380 	uint16_t checksum, i;
381 
382         /* mac addr */
383 	sc->eeprom_data[NVM_MAC_ADDR] = ((uint16_t)sc->esc_mac.octet[0]) |
384 		(((uint16_t)sc->esc_mac.octet[1]) << 8);
385 	sc->eeprom_data[NVM_MAC_ADDR+1] = ((uint16_t)sc->esc_mac.octet[2]) |
386 		(((uint16_t)sc->esc_mac.octet[3]) << 8);
387 	sc->eeprom_data[NVM_MAC_ADDR+2] = ((uint16_t)sc->esc_mac.octet[4]) |
388 		(((uint16_t)sc->esc_mac.octet[5]) << 8);
389 
390 	/* pci ids */
391 	sc->eeprom_data[NVM_SUB_DEV_ID] = E82545_SUBDEV_ID;
392 	sc->eeprom_data[NVM_SUB_VEN_ID] = E82545_VENDOR_ID_INTEL;
393 	sc->eeprom_data[NVM_DEV_ID] = E82545_DEV_ID_82545EM_COPPER;
394 	sc->eeprom_data[NVM_VEN_ID] = E82545_VENDOR_ID_INTEL;
395 
396 	/* fill in the checksum */
397         checksum = 0;
398 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
399 		checksum += sc->eeprom_data[i];
400 	}
401 	checksum = NVM_SUM - checksum;
402 	sc->eeprom_data[NVM_CHECKSUM_REG] = checksum;
403 	DPRINTF("eeprom checksum: 0x%x", checksum);
404 }
405 
406 static void
407 e82545_write_mdi(struct e82545_softc *sc, uint8_t reg_addr,
408 			uint8_t phy_addr, uint32_t data)
409 {
410 	DPRINTF("Write mdi reg:0x%x phy:0x%x data: 0x%x", reg_addr, phy_addr, data);
411 }
412 
413 static uint32_t
414 e82545_read_mdi(struct e82545_softc *sc, uint8_t reg_addr,
415 			uint8_t phy_addr)
416 {
417 	//DPRINTF("Read mdi reg:0x%x phy:0x%x", reg_addr, phy_addr);
418 	switch (reg_addr) {
419 	case PHY_STATUS:
420 		return (MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS |
421 			MII_SR_AUTONEG_COMPLETE);
422 	case PHY_AUTONEG_ADV:
423 		return NWAY_AR_SELECTOR_FIELD;
424 	case PHY_LP_ABILITY:
425 		return 0;
426 	case PHY_1000T_STATUS:
427 		return (SR_1000T_LP_FD_CAPS | SR_1000T_REMOTE_RX_STATUS |
428 			SR_1000T_LOCAL_RX_STATUS);
429 	case PHY_ID1:
430 		return (M88E1011_I_PHY_ID >> 16) & 0xFFFF;
431 	case PHY_ID2:
432 		return (M88E1011_I_PHY_ID | E82545_REVISION_4) & 0xFFFF;
433 	default:
434 		DPRINTF("Unknown mdi read reg:0x%x phy:0x%x", reg_addr, phy_addr);
435 		return 0;
436 	}
437 	/* not reached */
438 }
439 
440 static void
441 e82545_eecd_strobe(struct e82545_softc *sc)
442 {
443 	/* Microwire state machine */
444 	/*
445 	DPRINTF("eeprom state machine srtobe "
446 		"0x%x 0x%x 0x%x 0x%x",
447 		sc->nvm_mode, sc->nvm_bits,
448 		sc->nvm_opaddr, sc->nvm_data);*/
449 
450 	if (sc->nvm_bits == 0) {
451 		DPRINTF("eeprom state machine not expecting data! "
452 			"0x%x 0x%x 0x%x 0x%x",
453 			sc->nvm_mode, sc->nvm_bits,
454 			sc->nvm_opaddr, sc->nvm_data);
455 		return;
456 	}
457 	sc->nvm_bits--;
458 	if (sc->nvm_mode == E82545_NVM_MODE_DATAOUT) {
459 		/* shifting out */
460 		if (sc->nvm_data & 0x8000) {
461 			sc->eeprom_control |= E1000_EECD_DO;
462 		} else {
463 			sc->eeprom_control &= ~E1000_EECD_DO;
464 		}
465 		sc->nvm_data <<= 1;
466 		if (sc->nvm_bits == 0) {
467 			/* read done, back to opcode mode. */
468 			sc->nvm_opaddr = 0;
469 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
470 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
471 		}
472 	} else if (sc->nvm_mode == E82545_NVM_MODE_DATAIN) {
473 		/* shifting in */
474 		sc->nvm_data <<= 1;
475 		if (sc->eeprom_control & E1000_EECD_DI) {
476 			sc->nvm_data |= 1;
477 		}
478 		if (sc->nvm_bits == 0) {
479 			/* eeprom write */
480 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
481 			uint16_t addr = sc->nvm_opaddr & E82545_NVM_ADDR_MASK;
482 			if (op != E82545_NVM_OPCODE_WRITE) {
483 				DPRINTF("Illegal eeprom write op 0x%x",
484 					sc->nvm_opaddr);
485 			} else if (addr >= E82545_NVM_EEPROM_SIZE) {
486 				DPRINTF("Illegal eeprom write addr 0x%x",
487 					sc->nvm_opaddr);
488 			} else {
489 				DPRINTF("eeprom write eeprom[0x%x] = 0x%x",
490 				addr, sc->nvm_data);
491 				sc->eeprom_data[addr] = sc->nvm_data;
492 			}
493 			/* back to opcode mode */
494 			sc->nvm_opaddr = 0;
495 			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
496 			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
497 		}
498 	} else if (sc->nvm_mode == E82545_NVM_MODE_OPADDR) {
499 		sc->nvm_opaddr <<= 1;
500 		if (sc->eeprom_control & E1000_EECD_DI) {
501 			sc->nvm_opaddr |= 1;
502 		}
503 		if (sc->nvm_bits == 0) {
504 			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
505 			switch (op) {
506 			case E82545_NVM_OPCODE_EWEN:
507 				DPRINTF("eeprom write enable: 0x%x",
508 					sc->nvm_opaddr);
509 				/* back to opcode mode */
510 				sc->nvm_opaddr = 0;
511 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
512 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
513 				break;
514 			case E82545_NVM_OPCODE_READ:
515 			{
516 				uint16_t addr = sc->nvm_opaddr &
517 					E82545_NVM_ADDR_MASK;
518 				sc->nvm_mode = E82545_NVM_MODE_DATAOUT;
519 				sc->nvm_bits = E82545_NVM_DATA_BITS;
520 				if (addr < E82545_NVM_EEPROM_SIZE) {
521 					sc->nvm_data = sc->eeprom_data[addr];
522 					DPRINTF("eeprom read: eeprom[0x%x] = 0x%x",
523 						addr, sc->nvm_data);
524 				} else {
525 					DPRINTF("eeprom illegal read: 0x%x",
526 						sc->nvm_opaddr);
527 					sc->nvm_data = 0;
528 				}
529 				break;
530 			}
531 			case E82545_NVM_OPCODE_WRITE:
532 				sc->nvm_mode = E82545_NVM_MODE_DATAIN;
533 				sc->nvm_bits = E82545_NVM_DATA_BITS;
534 				sc->nvm_data = 0;
535 				break;
536 			default:
537 				DPRINTF("eeprom unknown op: 0x%x",
538 					sc->nvm_opaddr);
539 				/* back to opcode mode */
540 				sc->nvm_opaddr = 0;
541 				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
542 				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
543 			}
544 		}
545 	} else {
546 		DPRINTF("eeprom state machine wrong state! "
547 			"0x%x 0x%x 0x%x 0x%x",
548 			sc->nvm_mode, sc->nvm_bits,
549 			sc->nvm_opaddr, sc->nvm_data);
550 	}
551 }
552 
553 static void
554 e82545_itr_callback(int fd, enum ev_type type, void *param)
555 {
556 	uint32_t new;
557 	struct e82545_softc *sc = param;
558 
559 	pthread_mutex_lock(&sc->esc_mtx);
560 	new = sc->esc_ICR & sc->esc_IMS;
561 	if (new && !sc->esc_irq_asserted) {
562 		DPRINTF("itr callback: lintr assert %x", new);
563 		sc->esc_irq_asserted = 1;
564 		pci_lintr_assert(sc->esc_pi);
565 	} else {
566 		mevent_delete(sc->esc_mevpitr);
567 		sc->esc_mevpitr = NULL;
568 	}
569 	pthread_mutex_unlock(&sc->esc_mtx);
570 }
571 
572 static void
573 e82545_icr_assert(struct e82545_softc *sc, uint32_t bits)
574 {
575 	uint32_t new;
576 
577 	DPRINTF("icr assert: 0x%x", bits);
578 
579 	/*
580 	 * An interrupt is only generated if bits are set that
581 	 * aren't already in the ICR, these bits are unmasked,
582 	 * and there isn't an interrupt already pending.
583 	 */
584 	new = bits & ~sc->esc_ICR & sc->esc_IMS;
585 	sc->esc_ICR |= bits;
586 
587 	if (new == 0) {
588 		DPRINTF("icr assert: masked %x, ims %x", new, sc->esc_IMS);
589 	} else if (sc->esc_mevpitr != NULL) {
590 		DPRINTF("icr assert: throttled %x, ims %x", new, sc->esc_IMS);
591 	} else if (!sc->esc_irq_asserted) {
592 		DPRINTF("icr assert: lintr assert %x", new);
593 		sc->esc_irq_asserted = 1;
594 		pci_lintr_assert(sc->esc_pi);
595 		if (sc->esc_ITR != 0) {
596 			sc->esc_mevpitr = mevent_add(
597 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
598 			    EVF_TIMER, e82545_itr_callback, sc);
599 		}
600 	}
601 }
602 
603 static void
604 e82545_ims_change(struct e82545_softc *sc, uint32_t bits)
605 {
606 	uint32_t new;
607 
608 	/*
609 	 * Changing the mask may allow previously asserted
610 	 * but masked interrupt requests to generate an interrupt.
611 	 */
612 	new = bits & sc->esc_ICR & ~sc->esc_IMS;
613 	sc->esc_IMS |= bits;
614 
615 	if (new == 0) {
616 		DPRINTF("ims change: masked %x, ims %x", new, sc->esc_IMS);
617 	} else if (sc->esc_mevpitr != NULL) {
618 		DPRINTF("ims change: throttled %x, ims %x", new, sc->esc_IMS);
619 	} else if (!sc->esc_irq_asserted) {
620 		DPRINTF("ims change: lintr assert %x", new);
621 		sc->esc_irq_asserted = 1;
622 		pci_lintr_assert(sc->esc_pi);
623 		if (sc->esc_ITR != 0) {
624 			sc->esc_mevpitr = mevent_add(
625 			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
626 			    EVF_TIMER, e82545_itr_callback, sc);
627 		}
628 	}
629 }
630 
631 static void
632 e82545_icr_deassert(struct e82545_softc *sc, uint32_t bits)
633 {
634 
635 	DPRINTF("icr deassert: 0x%x", bits);
636 	sc->esc_ICR &= ~bits;
637 
638 	/*
639 	 * If there are no longer any interrupt sources and there
640 	 * was an asserted interrupt, clear it
641 	 */
642 	if (sc->esc_irq_asserted && !(sc->esc_ICR & sc->esc_IMS)) {
643 		DPRINTF("icr deassert: lintr deassert %x", bits);
644 		pci_lintr_deassert(sc->esc_pi);
645 		sc->esc_irq_asserted = 0;
646 	}
647 }
648 
649 static void
650 e82545_intr_write(struct e82545_softc *sc, uint32_t offset, uint32_t value)
651 {
652 
653 	DPRINTF("intr_write: off %x, val %x", offset, value);
654 
655 	switch (offset) {
656 	case E1000_ICR:
657 		e82545_icr_deassert(sc, value);
658 		break;
659 	case E1000_ITR:
660 		sc->esc_ITR = value;
661 		break;
662 	case E1000_ICS:
663 		sc->esc_ICS = value;	/* not used: store for debug */
664 		e82545_icr_assert(sc, value);
665 		break;
666 	case E1000_IMS:
667 		e82545_ims_change(sc, value);
668 		break;
669 	case E1000_IMC:
670 		sc->esc_IMC = value;	/* for debug */
671 		sc->esc_IMS &= ~value;
672 		// XXX clear interrupts if all ICR bits now masked
673 		// and interrupt was pending ?
674 		break;
675 	default:
676 		break;
677 	}
678 }
679 
680 static uint32_t
681 e82545_intr_read(struct e82545_softc *sc, uint32_t offset)
682 {
683 	uint32_t retval;
684 
685 	retval = 0;
686 
687 	DPRINTF("intr_read: off %x", offset);
688 
689 	switch (offset) {
690 	case E1000_ICR:
691 		retval = sc->esc_ICR;
692 		sc->esc_ICR = 0;
693 		e82545_icr_deassert(sc, ~0);
694 		break;
695 	case E1000_ITR:
696 		retval = sc->esc_ITR;
697 		break;
698 	case E1000_ICS:
699 		/* write-only register */
700 		break;
701 	case E1000_IMS:
702 		retval = sc->esc_IMS;
703 		break;
704 	case E1000_IMC:
705 		/* write-only register */
706 		break;
707 	default:
708 		break;
709 	}
710 
711 	return (retval);
712 }
713 
714 static void
715 e82545_devctl(struct e82545_softc *sc, uint32_t val)
716 {
717 
718 	sc->esc_CTRL = val & ~E1000_CTRL_RST;
719 
720 	if (val & E1000_CTRL_RST) {
721 		DPRINTF("e1k: s/w reset, ctl %x", val);
722 		e82545_reset(sc, 1);
723 	}
724 	/* XXX check for phy reset ? */
725 }
726 
727 static void
728 e82545_rx_update_rdba(struct e82545_softc *sc)
729 {
730 
731 	/* XXX verify desc base/len within phys mem range */
732 	sc->esc_rdba = (uint64_t)sc->esc_RDBAH << 32 |
733 	    sc->esc_RDBAL;
734 
735 	/* Cache host mapping of guest descriptor array */
736 	sc->esc_rxdesc = paddr_guest2host(sc->esc_ctx,
737 	    sc->esc_rdba, sc->esc_RDLEN);
738 }
739 
740 static void
741 e82545_rx_ctl(struct e82545_softc *sc, uint32_t val)
742 {
743 	int on;
744 
745 	on = ((val & E1000_RCTL_EN) == E1000_RCTL_EN);
746 
747 	/* Save RCTL after stripping reserved bits 31:27,24,21,14,11:10,0 */
748 	sc->esc_RCTL = val & ~0xF9204c01;
749 
750 	DPRINTF("rx_ctl - %s RCTL %x, val %x",
751 		on ? "on" : "off", sc->esc_RCTL, val);
752 
753 	/* state change requested */
754 	if (on != sc->esc_rx_enabled) {
755 		if (on) {
756 			/* Catch disallowed/unimplemented settings */
757 			//assert(!(val & E1000_RCTL_LBM_TCVR));
758 
759 			if (sc->esc_RCTL & E1000_RCTL_LBM_TCVR) {
760 				sc->esc_rx_loopback = 1;
761 			} else {
762 				sc->esc_rx_loopback = 0;
763 			}
764 
765 			e82545_rx_update_rdba(sc);
766 			e82545_rx_enable(sc);
767 		} else {
768 			e82545_rx_disable(sc);
769 			sc->esc_rx_loopback = 0;
770 			sc->esc_rdba = 0;
771 			sc->esc_rxdesc = NULL;
772 		}
773 	}
774 }
775 
776 static void
777 e82545_tx_update_tdba(struct e82545_softc *sc)
778 {
779 
780 	/* XXX verify desc base/len within phys mem range */
781 	sc->esc_tdba = (uint64_t)sc->esc_TDBAH << 32 | sc->esc_TDBAL;
782 
783 	/* Cache host mapping of guest descriptor array */
784 	sc->esc_txdesc = paddr_guest2host(sc->esc_ctx, sc->esc_tdba,
785             sc->esc_TDLEN);
786 }
787 
788 static void
789 e82545_tx_ctl(struct e82545_softc *sc, uint32_t val)
790 {
791 	int on;
792 
793 	on = ((val & E1000_TCTL_EN) == E1000_TCTL_EN);
794 
795 	/* ignore TCTL_EN settings that don't change state */
796 	if (on == sc->esc_tx_enabled)
797 		return;
798 
799 	if (on) {
800 		e82545_tx_update_tdba(sc);
801 		e82545_tx_enable(sc);
802 	} else {
803 		e82545_tx_disable(sc);
804 		sc->esc_tdba = 0;
805 		sc->esc_txdesc = NULL;
806 	}
807 
808 	/* Save TCTL value after stripping reserved bits 31:25,23,2,0 */
809 	sc->esc_TCTL = val & ~0xFE800005;
810 }
811 
812 int
813 e82545_bufsz(uint32_t rctl)
814 {
815 
816 	switch (rctl & (E1000_RCTL_BSEX | E1000_RCTL_SZ_256)) {
817 	case (E1000_RCTL_SZ_2048): return (2048);
818 	case (E1000_RCTL_SZ_1024): return (1024);
819 	case (E1000_RCTL_SZ_512): return (512);
820 	case (E1000_RCTL_SZ_256): return (256);
821 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_16384): return (16384);
822 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_8192): return (8192);
823 	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_4096): return (4096);
824 	}
825 	return (256);	/* Forbidden value. */
826 }
827 
828 /* XXX one packet at a time until this is debugged */
829 static void
830 e82545_rx_callback(int fd, enum ev_type type, void *param)
831 {
832 	struct e82545_softc *sc = param;
833 	struct e1000_rx_desc *rxd;
834 	struct iovec vec[64];
835 	int left, len, lim, maxpktsz, maxpktdesc, bufsz, i, n, size;
836 	uint32_t cause = 0;
837 	uint16_t *tp, tag, head;
838 
839 	pthread_mutex_lock(&sc->esc_mtx);
840 	DPRINTF("rx_run: head %x, tail %x", sc->esc_RDH, sc->esc_RDT);
841 
842 	if (!sc->esc_rx_enabled || sc->esc_rx_loopback) {
843 		DPRINTF("rx disabled (!%d || %d) -- packet(s) dropped",
844 		    sc->esc_rx_enabled, sc->esc_rx_loopback);
845 		while (netbe_rx_discard(sc->esc_be) > 0) {
846 		}
847 		goto done1;
848 	}
849 	bufsz = e82545_bufsz(sc->esc_RCTL);
850 	maxpktsz = (sc->esc_RCTL & E1000_RCTL_LPE) ? 16384 : 1522;
851 	maxpktdesc = (maxpktsz + bufsz - 1) / bufsz;
852 	size = sc->esc_RDLEN / 16;
853 	head = sc->esc_RDH;
854 	left = (size + sc->esc_RDT - head) % size;
855 	if (left < maxpktdesc) {
856 		DPRINTF("rx overflow (%d < %d) -- packet(s) dropped",
857 		    left, maxpktdesc);
858 		while (netbe_rx_discard(sc->esc_be) > 0) {
859 		}
860 		goto done1;
861 	}
862 
863 	sc->esc_rx_active = 1;
864 	pthread_mutex_unlock(&sc->esc_mtx);
865 
866 	for (lim = size / 4; lim > 0 && left >= maxpktdesc; lim -= n) {
867 
868 		/* Grab rx descriptor pointed to by the head pointer */
869 		for (i = 0; i < maxpktdesc; i++) {
870 			rxd = &sc->esc_rxdesc[(head + i) % size];
871 			vec[i].iov_base = paddr_guest2host(sc->esc_ctx,
872 			    rxd->buffer_addr, bufsz);
873 			vec[i].iov_len = bufsz;
874 		}
875 		len = netbe_recv(sc->esc_be, vec, maxpktdesc);
876 		if (len <= 0) {
877 			DPRINTF("netbe_recv() returned %d", len);
878 			goto done;
879 		}
880 
881 		/*
882 		 * Adjust the packet length based on whether the CRC needs
883 		 * to be stripped or if the packet is less than the minimum
884 		 * eth packet size.
885 		 */
886 		if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
887 			len = ETHER_MIN_LEN - ETHER_CRC_LEN;
888 		if (!(sc->esc_RCTL & E1000_RCTL_SECRC))
889 			len += ETHER_CRC_LEN;
890 		n = (len + bufsz - 1) / bufsz;
891 
892 		DPRINTF("packet read %d bytes, %d segs, head %d",
893 		    len, n, head);
894 
895 		/* Apply VLAN filter. */
896 		tp = (uint16_t *)vec[0].iov_base + 6;
897 		if ((sc->esc_RCTL & E1000_RCTL_VFE) &&
898 		    (ntohs(tp[0]) == sc->esc_VET)) {
899 			tag = ntohs(tp[1]) & 0x0fff;
900 			if ((sc->esc_fvlan[tag >> 5] &
901 			    (1 << (tag & 0x1f))) != 0) {
902 				DPRINTF("known VLAN %d", tag);
903 			} else {
904 				DPRINTF("unknown VLAN %d", tag);
905 				n = 0;
906 				continue;
907 			}
908 		}
909 
910 		/* Update all consumed descriptors. */
911 		for (i = 0; i < n - 1; i++) {
912 			rxd = &sc->esc_rxdesc[(head + i) % size];
913 			rxd->length = bufsz;
914 			rxd->csum = 0;
915 			rxd->errors = 0;
916 			rxd->special = 0;
917 			rxd->status = E1000_RXD_STAT_DD;
918 		}
919 		rxd = &sc->esc_rxdesc[(head + i) % size];
920 		rxd->length = len % bufsz;
921 		rxd->csum = 0;
922 		rxd->errors = 0;
923 		rxd->special = 0;
924 		/* XXX signal no checksum for now */
925 		rxd->status = E1000_RXD_STAT_PIF | E1000_RXD_STAT_IXSM |
926 		    E1000_RXD_STAT_EOP | E1000_RXD_STAT_DD;
927 
928 		/* Schedule receive interrupts. */
929 		if (len <= sc->esc_RSRPD) {
930 			cause |= E1000_ICR_SRPD | E1000_ICR_RXT0;
931 		} else {
932 			/* XXX: RDRT and RADV timers should be here. */
933 			cause |= E1000_ICR_RXT0;
934 		}
935 
936 		head = (head + n) % size;
937 		left -= n;
938 	}
939 
940 done:
941 	pthread_mutex_lock(&sc->esc_mtx);
942 	sc->esc_rx_active = 0;
943 	if (sc->esc_rx_enabled == 0)
944 		pthread_cond_signal(&sc->esc_rx_cond);
945 
946 	sc->esc_RDH = head;
947 	/* Respect E1000_RCTL_RDMTS */
948 	left = (size + sc->esc_RDT - head) % size;
949 	if (left < (size >> (((sc->esc_RCTL >> 8) & 3) + 1)))
950 		cause |= E1000_ICR_RXDMT0;
951 	/* Assert all accumulated interrupts. */
952 	if (cause != 0)
953 		e82545_icr_assert(sc, cause);
954 done1:
955 	DPRINTF("rx_run done: head %x, tail %x", sc->esc_RDH, sc->esc_RDT);
956 	pthread_mutex_unlock(&sc->esc_mtx);
957 }
958 
959 static uint16_t
960 e82545_carry(uint32_t sum)
961 {
962 
963 	sum = (sum & 0xFFFF) + (sum >> 16);
964 	if (sum > 0xFFFF)
965 		sum -= 0xFFFF;
966 	return (sum);
967 }
968 
969 static uint16_t
970 e82545_buf_checksum(uint8_t *buf, int len)
971 {
972 	int i;
973 	uint32_t sum = 0;
974 
975 	/* Checksum all the pairs of bytes first... */
976 	for (i = 0; i < (len & ~1U); i += 2)
977 		sum += *((u_int16_t *)(buf + i));
978 
979 	/*
980 	 * If there's a single byte left over, checksum it, too.
981 	 * Network byte order is big-endian, so the remaining byte is
982 	 * the high byte.
983 	 */
984 	if (i < len)
985 		sum += htons(buf[i] << 8);
986 
987 	return (e82545_carry(sum));
988 }
989 
990 static uint16_t
991 e82545_iov_checksum(struct iovec *iov, int iovcnt, int off, int len)
992 {
993 	int now, odd;
994 	uint32_t sum = 0, s;
995 
996 	/* Skip completely unneeded vectors. */
997 	while (iovcnt > 0 && iov->iov_len <= off && off > 0) {
998 		off -= iov->iov_len;
999 		iov++;
1000 		iovcnt--;
1001 	}
1002 
1003 	/* Calculate checksum of requested range. */
1004 	odd = 0;
1005 	while (len > 0 && iovcnt > 0) {
1006 		now = MIN(len, iov->iov_len - off);
1007 		s = e82545_buf_checksum(iov->iov_base + off, now);
1008 		sum += odd ? (s << 8) : s;
1009 		odd ^= (now & 1);
1010 		len -= now;
1011 		off = 0;
1012 		iov++;
1013 		iovcnt--;
1014 	}
1015 
1016 	return (e82545_carry(sum));
1017 }
1018 
1019 /*
1020  * Return the transmit descriptor type.
1021  */
1022 int
1023 e82545_txdesc_type(uint32_t lower)
1024 {
1025 	int type;
1026 
1027 	type = 0;
1028 
1029 	if (lower & E1000_TXD_CMD_DEXT)
1030 		type = lower & E1000_TXD_MASK;
1031 
1032 	return (type);
1033 }
1034 
1035 static void
1036 e82545_transmit_checksum(struct iovec *iov, int iovcnt, struct ck_info *ck)
1037 {
1038 	uint16_t cksum;
1039 	int cklen;
1040 
1041 	DPRINTF("tx cksum: iovcnt/s/off/len %d/%d/%d/%d",
1042 	    iovcnt, ck->ck_start, ck->ck_off, ck->ck_len);
1043 	cklen = ck->ck_len ? ck->ck_len - ck->ck_start + 1 : INT_MAX;
1044 	cksum = e82545_iov_checksum(iov, iovcnt, ck->ck_start, cklen);
1045 	*(uint16_t *)((uint8_t *)iov[0].iov_base + ck->ck_off) = ~cksum;
1046 }
1047 
1048 static void
1049 e82545_transmit_backend(struct e82545_softc *sc, struct iovec *iov, int iovcnt)
1050 {
1051 
1052 	if (sc->esc_be == NULL)
1053 		return;
1054 
1055 	(void) netbe_send(sc->esc_be, iov, iovcnt);
1056 }
1057 
1058 static void
1059 e82545_transmit_done(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1060     uint16_t dsize, int *tdwb)
1061 {
1062 	union e1000_tx_udesc *dsc;
1063 
1064 	for ( ; head != tail; head = (head + 1) % dsize) {
1065 		dsc = &sc->esc_txdesc[head];
1066 		if (dsc->td.lower.data & E1000_TXD_CMD_RS) {
1067 			dsc->td.upper.data |= E1000_TXD_STAT_DD;
1068 			*tdwb = 1;
1069 		}
1070 	}
1071 }
1072 
1073 static int
1074 e82545_transmit(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1075     uint16_t dsize, uint16_t *rhead, int *tdwb)
1076 {
1077 	uint8_t *hdr, *hdrp;
1078 	struct iovec iovb[I82545_MAX_TXSEGS + 2];
1079 	struct iovec tiov[I82545_MAX_TXSEGS + 2];
1080 	struct e1000_context_desc *cd;
1081 	struct ck_info ckinfo[2];
1082 	struct iovec *iov;
1083 	union  e1000_tx_udesc *dsc;
1084 	int desc, dtype, len, ntype, iovcnt, tlen, tcp, tso;
1085 	int mss, paylen, seg, tiovcnt, left, now, nleft, nnow, pv, pvoff;
1086 	unsigned hdrlen, vlen;
1087 	uint32_t tcpsum, tcpseq;
1088 	uint16_t ipcs, tcpcs, ipid, ohead;
1089 
1090 	ckinfo[0].ck_valid = ckinfo[1].ck_valid = 0;
1091 	iovcnt = 0;
1092 	tlen = 0;
1093 	ntype = 0;
1094 	tso = 0;
1095 	ohead = head;
1096 
1097 	/* iovb[0/1] may be used for writable copy of headers. */
1098 	iov = &iovb[2];
1099 
1100 	for (desc = 0; ; desc++, head = (head + 1) % dsize) {
1101 		if (head == tail) {
1102 			*rhead = head;
1103 			return (0);
1104 		}
1105 		dsc = &sc->esc_txdesc[head];
1106 		dtype = e82545_txdesc_type(dsc->td.lower.data);
1107 
1108 		if (desc == 0) {
1109 			switch (dtype) {
1110 			case E1000_TXD_TYP_C:
1111 				DPRINTF("tx ctxt desc idx %d: %016jx "
1112 				    "%08x%08x",
1113 				    head, dsc->td.buffer_addr,
1114 				    dsc->td.upper.data, dsc->td.lower.data);
1115 				/* Save context and return */
1116 				sc->esc_txctx = dsc->cd;
1117 				goto done;
1118 			case E1000_TXD_TYP_L:
1119 				DPRINTF("tx legacy desc idx %d: %08x%08x",
1120 				    head, dsc->td.upper.data, dsc->td.lower.data);
1121 				/*
1122 				 * legacy cksum start valid in first descriptor
1123 				 */
1124 				ntype = dtype;
1125 				ckinfo[0].ck_start = dsc->td.upper.fields.css;
1126 				break;
1127 			case E1000_TXD_TYP_D:
1128 				DPRINTF("tx data desc idx %d: %08x%08x",
1129 				    head, dsc->td.upper.data, dsc->td.lower.data);
1130 				ntype = dtype;
1131 				break;
1132 			default:
1133 				break;
1134 			}
1135 		} else {
1136 			/* Descriptor type must be consistent */
1137 			assert(dtype == ntype);
1138 			DPRINTF("tx next desc idx %d: %08x%08x",
1139 			    head, dsc->td.upper.data, dsc->td.lower.data);
1140 		}
1141 
1142 		len = (dtype == E1000_TXD_TYP_L) ? dsc->td.lower.flags.length :
1143 		    dsc->dd.lower.data & 0xFFFFF;
1144 
1145 		if (len > 0) {
1146 			/* Strip checksum supplied by guest. */
1147 			if ((dsc->td.lower.data & E1000_TXD_CMD_EOP) != 0 &&
1148 			    (dsc->td.lower.data & E1000_TXD_CMD_IFCS) == 0)
1149 				len -= 2;
1150 			tlen += len;
1151 			if (iovcnt < I82545_MAX_TXSEGS) {
1152 				iov[iovcnt].iov_base = paddr_guest2host(
1153 				    sc->esc_ctx, dsc->td.buffer_addr, len);
1154 				iov[iovcnt].iov_len = len;
1155 			}
1156 			iovcnt++;
1157 		}
1158 
1159 		/*
1160 		 * Pull out info that is valid in the final descriptor
1161 		 * and exit descriptor loop.
1162 		 */
1163 		if (dsc->td.lower.data & E1000_TXD_CMD_EOP) {
1164 			if (dtype == E1000_TXD_TYP_L) {
1165 				if (dsc->td.lower.data & E1000_TXD_CMD_IC) {
1166 					ckinfo[0].ck_valid = 1;
1167 					ckinfo[0].ck_off =
1168 					    dsc->td.lower.flags.cso;
1169 					ckinfo[0].ck_len = 0;
1170 				}
1171 			} else {
1172 				cd = &sc->esc_txctx;
1173 				if (dsc->dd.lower.data & E1000_TXD_CMD_TSE)
1174 					tso = 1;
1175 				if (dsc->dd.upper.fields.popts &
1176 				    E1000_TXD_POPTS_IXSM)
1177 					ckinfo[0].ck_valid = 1;
1178 				if (dsc->dd.upper.fields.popts &
1179 				    E1000_TXD_POPTS_IXSM || tso) {
1180 					ckinfo[0].ck_start =
1181 					    cd->lower_setup.ip_fields.ipcss;
1182 					ckinfo[0].ck_off =
1183 					    cd->lower_setup.ip_fields.ipcso;
1184 					ckinfo[0].ck_len =
1185 					    cd->lower_setup.ip_fields.ipcse;
1186 				}
1187 				if (dsc->dd.upper.fields.popts &
1188 				    E1000_TXD_POPTS_TXSM)
1189 					ckinfo[1].ck_valid = 1;
1190 				if (dsc->dd.upper.fields.popts &
1191 				    E1000_TXD_POPTS_TXSM || tso) {
1192 					ckinfo[1].ck_start =
1193 					    cd->upper_setup.tcp_fields.tucss;
1194 					ckinfo[1].ck_off =
1195 					    cd->upper_setup.tcp_fields.tucso;
1196 					ckinfo[1].ck_len =
1197 					    cd->upper_setup.tcp_fields.tucse;
1198 				}
1199 			}
1200 			break;
1201 		}
1202 	}
1203 
1204 	if (iovcnt > I82545_MAX_TXSEGS) {
1205 		WPRINTF("tx too many descriptors (%d > %d) -- dropped",
1206 		    iovcnt, I82545_MAX_TXSEGS);
1207 		goto done;
1208 	}
1209 
1210 	hdrlen = vlen = 0;
1211 	/* Estimate writable space for VLAN header insertion. */
1212 	if ((sc->esc_CTRL & E1000_CTRL_VME) &&
1213 	    (dsc->td.lower.data & E1000_TXD_CMD_VLE)) {
1214 		hdrlen = ETHER_ADDR_LEN*2;
1215 		vlen = ETHER_VLAN_ENCAP_LEN;
1216 	}
1217 	if (!tso) {
1218 		/* Estimate required writable space for checksums. */
1219 		if (ckinfo[0].ck_valid)
1220 			hdrlen = MAX(hdrlen, ckinfo[0].ck_off + 2);
1221 		if (ckinfo[1].ck_valid)
1222 			hdrlen = MAX(hdrlen, ckinfo[1].ck_off + 2);
1223 		/* Round up writable space to the first vector. */
1224 		if (hdrlen != 0 && iov[0].iov_len > hdrlen &&
1225 		    iov[0].iov_len < hdrlen + 100)
1226 			hdrlen = iov[0].iov_len;
1227 	} else {
1228 		/* In case of TSO header length provided by software. */
1229 		hdrlen = sc->esc_txctx.tcp_seg_setup.fields.hdr_len;
1230 
1231 		/*
1232 		 * Cap the header length at 240 based on 7.2.4.5 of
1233 		 * the Intel 82576EB (Rev 2.63) datasheet.
1234 		 */
1235 		if (hdrlen > 240) {
1236 			WPRINTF("TSO hdrlen too large: %d", hdrlen);
1237 			goto done;
1238 		}
1239 
1240 		/*
1241 		 * If VLAN insertion is requested, ensure the header
1242 		 * at least holds the amount of data copied during
1243 		 * VLAN insertion below.
1244 		 *
1245 		 * XXX: Realistic packets will include a full Ethernet
1246 		 * header before the IP header at ckinfo[0].ck_start,
1247 		 * but this check is sufficient to prevent
1248 		 * out-of-bounds access below.
1249 		 */
1250 		if (vlen != 0 && hdrlen < ETHER_ADDR_LEN*2) {
1251 			WPRINTF("TSO hdrlen too small for vlan insertion "
1252 			    "(%d vs %d) -- dropped", hdrlen,
1253 			    ETHER_ADDR_LEN*2);
1254 			goto done;
1255 		}
1256 
1257 		/*
1258 		 * Ensure that the header length covers the used fields
1259 		 * in the IP and TCP headers as well as the IP and TCP
1260 		 * checksums.  The following fields are accessed below:
1261 		 *
1262 		 * Header | Field | Offset | Length
1263 		 * -------+-------+--------+-------
1264 		 * IPv4   | len   | 2      | 2
1265 		 * IPv4   | ID    | 4      | 2
1266 		 * IPv6   | len   | 4      | 2
1267 		 * TCP    | seq # | 4      | 4
1268 		 * TCP    | flags | 13     | 1
1269 		 * UDP    | len   | 4      | 4
1270 		 */
1271 		if (hdrlen < ckinfo[0].ck_start + 6 ||
1272 		    hdrlen < ckinfo[0].ck_off + 2) {
1273 			WPRINTF("TSO hdrlen too small for IP fields (%d) "
1274 			    "-- dropped", hdrlen);
1275 			goto done;
1276 		}
1277 		if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) {
1278 			if (hdrlen < ckinfo[1].ck_start + 14 ||
1279 			    (ckinfo[1].ck_valid &&
1280 			    hdrlen < ckinfo[1].ck_off + 2)) {
1281 				WPRINTF("TSO hdrlen too small for TCP fields "
1282 				    "(%d) -- dropped", hdrlen);
1283 				goto done;
1284 			}
1285 		} else {
1286 			if (hdrlen < ckinfo[1].ck_start + 8) {
1287 				WPRINTF("TSO hdrlen too small for UDP fields "
1288 				    "(%d) -- dropped", hdrlen);
1289 				goto done;
1290 			}
1291 		}
1292 	}
1293 
1294 	/* Allocate, fill and prepend writable header vector. */
1295 	if (hdrlen != 0) {
1296 		hdr = __builtin_alloca(hdrlen + vlen);
1297 		hdr += vlen;
1298 		for (left = hdrlen, hdrp = hdr; left > 0;
1299 		    left -= now, hdrp += now) {
1300 			now = MIN(left, iov->iov_len);
1301 			memcpy(hdrp, iov->iov_base, now);
1302 			iov->iov_base += now;
1303 			iov->iov_len -= now;
1304 			if (iov->iov_len == 0) {
1305 				iov++;
1306 				iovcnt--;
1307 			}
1308 		}
1309 		iov--;
1310 		iovcnt++;
1311 		iov->iov_base = hdr;
1312 		iov->iov_len = hdrlen;
1313 	} else
1314 		hdr = NULL;
1315 
1316 	/* Insert VLAN tag. */
1317 	if (vlen != 0) {
1318 		hdr -= ETHER_VLAN_ENCAP_LEN;
1319 		memmove(hdr, hdr + ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN*2);
1320 		hdrlen += ETHER_VLAN_ENCAP_LEN;
1321 		hdr[ETHER_ADDR_LEN*2 + 0] = sc->esc_VET >> 8;
1322 		hdr[ETHER_ADDR_LEN*2 + 1] = sc->esc_VET & 0xff;
1323 		hdr[ETHER_ADDR_LEN*2 + 2] = dsc->td.upper.fields.special >> 8;
1324 		hdr[ETHER_ADDR_LEN*2 + 3] = dsc->td.upper.fields.special & 0xff;
1325 		iov->iov_base = hdr;
1326 		iov->iov_len += ETHER_VLAN_ENCAP_LEN;
1327 		/* Correct checksum offsets after VLAN tag insertion. */
1328 		ckinfo[0].ck_start += ETHER_VLAN_ENCAP_LEN;
1329 		ckinfo[0].ck_off += ETHER_VLAN_ENCAP_LEN;
1330 		if (ckinfo[0].ck_len != 0)
1331 			ckinfo[0].ck_len += ETHER_VLAN_ENCAP_LEN;
1332 		ckinfo[1].ck_start += ETHER_VLAN_ENCAP_LEN;
1333 		ckinfo[1].ck_off += ETHER_VLAN_ENCAP_LEN;
1334 		if (ckinfo[1].ck_len != 0)
1335 			ckinfo[1].ck_len += ETHER_VLAN_ENCAP_LEN;
1336 	}
1337 
1338 	/* Simple non-TSO case. */
1339 	if (!tso) {
1340 		/* Calculate checksums and transmit. */
1341 		if (ckinfo[0].ck_valid)
1342 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[0]);
1343 		if (ckinfo[1].ck_valid)
1344 			e82545_transmit_checksum(iov, iovcnt, &ckinfo[1]);
1345 		e82545_transmit_backend(sc, iov, iovcnt);
1346 		goto done;
1347 	}
1348 
1349 	/* Doing TSO. */
1350 	tcp = (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) != 0;
1351 	mss = sc->esc_txctx.tcp_seg_setup.fields.mss;
1352 	paylen = (sc->esc_txctx.cmd_and_length & 0x000fffff);
1353 	DPRINTF("tx %s segmentation offload %d+%d/%d bytes %d iovs",
1354 	    tcp ? "TCP" : "UDP", hdrlen, paylen, mss, iovcnt);
1355 	ipid = ntohs(*(uint16_t *)&hdr[ckinfo[0].ck_start + 4]);
1356 	tcpseq = 0;
1357 	if (tcp)
1358 		tcpseq = ntohl(*(uint32_t *)&hdr[ckinfo[1].ck_start + 4]);
1359 	ipcs = *(uint16_t *)&hdr[ckinfo[0].ck_off];
1360 	tcpcs = 0;
1361 	if (ckinfo[1].ck_valid)	/* Save partial pseudo-header checksum. */
1362 		tcpcs = *(uint16_t *)&hdr[ckinfo[1].ck_off];
1363 	pv = 1;
1364 	pvoff = 0;
1365 	for (seg = 0, left = paylen; left > 0; seg++, left -= now) {
1366 		now = MIN(left, mss);
1367 
1368 		/* Construct IOVs for the segment. */
1369 		/* Include whole original header. */
1370 		tiov[0].iov_base = hdr;
1371 		tiov[0].iov_len = hdrlen;
1372 		tiovcnt = 1;
1373 		/* Include respective part of payload IOV. */
1374 		for (nleft = now; pv < iovcnt && nleft > 0; nleft -= nnow) {
1375 			nnow = MIN(nleft, iov[pv].iov_len - pvoff);
1376 			tiov[tiovcnt].iov_base = iov[pv].iov_base + pvoff;
1377 			tiov[tiovcnt++].iov_len = nnow;
1378 			if (pvoff + nnow == iov[pv].iov_len) {
1379 				pv++;
1380 				pvoff = 0;
1381 			} else
1382 				pvoff += nnow;
1383 		}
1384 		DPRINTF("tx segment %d %d+%d bytes %d iovs",
1385 		    seg, hdrlen, now, tiovcnt);
1386 
1387 		/* Update IP header. */
1388 		if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_IP) {
1389 			/* IPv4 -- set length and ID */
1390 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 2] =
1391 			    htons(hdrlen - ckinfo[0].ck_start + now);
1392 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1393 			    htons(ipid + seg);
1394 		} else {
1395 			/* IPv6 -- set length */
1396 			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1397 			    htons(hdrlen - ckinfo[0].ck_start - 40 +
1398 				  now);
1399 		}
1400 
1401 		/* Update pseudo-header checksum. */
1402 		tcpsum = tcpcs;
1403 		tcpsum += htons(hdrlen - ckinfo[1].ck_start + now);
1404 
1405 		/* Update TCP/UDP headers. */
1406 		if (tcp) {
1407 			/* Update sequence number and FIN/PUSH flags. */
1408 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1409 			    htonl(tcpseq + paylen - left);
1410 			if (now < left) {
1411 				hdr[ckinfo[1].ck_start + 13] &=
1412 				    ~(TH_FIN | TH_PUSH);
1413 			}
1414 		} else {
1415 			/* Update payload length. */
1416 			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1417 			    hdrlen - ckinfo[1].ck_start + now;
1418 		}
1419 
1420 		/* Calculate checksums and transmit. */
1421 		if (ckinfo[0].ck_valid) {
1422 			*(uint16_t *)&hdr[ckinfo[0].ck_off] = ipcs;
1423 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[0]);
1424 		}
1425 		if (ckinfo[1].ck_valid) {
1426 			*(uint16_t *)&hdr[ckinfo[1].ck_off] =
1427 			    e82545_carry(tcpsum);
1428 			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[1]);
1429 		}
1430 		e82545_transmit_backend(sc, tiov, tiovcnt);
1431 	}
1432 
1433 done:
1434 	head = (head + 1) % dsize;
1435 	e82545_transmit_done(sc, ohead, head, dsize, tdwb);
1436 
1437 	*rhead = head;
1438 	return (desc + 1);
1439 }
1440 
1441 static void
1442 e82545_tx_run(struct e82545_softc *sc)
1443 {
1444 	uint32_t cause;
1445 	uint16_t head, rhead, tail, size;
1446 	int lim, tdwb, sent;
1447 
1448 	head = sc->esc_TDH;
1449 	tail = sc->esc_TDT;
1450 	size = sc->esc_TDLEN / 16;
1451 	DPRINTF("tx_run: head %x, rhead %x, tail %x",
1452 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1453 
1454 	pthread_mutex_unlock(&sc->esc_mtx);
1455 	rhead = head;
1456 	tdwb = 0;
1457 	for (lim = size / 4; sc->esc_tx_enabled && lim > 0; lim -= sent) {
1458 		sent = e82545_transmit(sc, head, tail, size, &rhead, &tdwb);
1459 		if (sent == 0)
1460 			break;
1461 		head = rhead;
1462 	}
1463 	pthread_mutex_lock(&sc->esc_mtx);
1464 
1465 	sc->esc_TDH = head;
1466 	sc->esc_TDHr = rhead;
1467 	cause = 0;
1468 	if (tdwb)
1469 		cause |= E1000_ICR_TXDW;
1470 	if (lim != size / 4 && sc->esc_TDH == sc->esc_TDT)
1471 		cause |= E1000_ICR_TXQE;
1472 	if (cause)
1473 		e82545_icr_assert(sc, cause);
1474 
1475 	DPRINTF("tx_run done: head %x, rhead %x, tail %x",
1476 	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1477 }
1478 
1479 static _Noreturn void *
1480 e82545_tx_thread(void *param)
1481 {
1482 	struct e82545_softc *sc = param;
1483 
1484 	pthread_mutex_lock(&sc->esc_mtx);
1485 	for (;;) {
1486 		while (!sc->esc_tx_enabled || sc->esc_TDHr == sc->esc_TDT) {
1487 			if (sc->esc_tx_enabled && sc->esc_TDHr != sc->esc_TDT)
1488 				break;
1489 			sc->esc_tx_active = 0;
1490 			if (sc->esc_tx_enabled == 0)
1491 				pthread_cond_signal(&sc->esc_tx_cond);
1492 			pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1493 		}
1494 		sc->esc_tx_active = 1;
1495 
1496 		/* Process some tx descriptors.  Lock dropped inside. */
1497 		e82545_tx_run(sc);
1498 	}
1499 }
1500 
1501 static void
1502 e82545_tx_start(struct e82545_softc *sc)
1503 {
1504 
1505 	if (sc->esc_tx_active == 0)
1506 		pthread_cond_signal(&sc->esc_tx_cond);
1507 }
1508 
1509 static void
1510 e82545_tx_enable(struct e82545_softc *sc)
1511 {
1512 
1513 	sc->esc_tx_enabled = 1;
1514 }
1515 
1516 static void
1517 e82545_tx_disable(struct e82545_softc *sc)
1518 {
1519 
1520 	sc->esc_tx_enabled = 0;
1521 	while (sc->esc_tx_active)
1522 		pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1523 }
1524 
1525 static void
1526 e82545_rx_enable(struct e82545_softc *sc)
1527 {
1528 
1529 	sc->esc_rx_enabled = 1;
1530 }
1531 
1532 static void
1533 e82545_rx_disable(struct e82545_softc *sc)
1534 {
1535 
1536 	sc->esc_rx_enabled = 0;
1537 	while (sc->esc_rx_active)
1538 		pthread_cond_wait(&sc->esc_rx_cond, &sc->esc_mtx);
1539 }
1540 
1541 static void
1542 e82545_write_ra(struct e82545_softc *sc, int reg, uint32_t wval)
1543 {
1544 	struct eth_uni *eu;
1545 	int idx;
1546 
1547 	idx = reg >> 1;
1548 	assert(idx < 15);
1549 
1550 	eu = &sc->esc_uni[idx];
1551 
1552 	if (reg & 0x1) {
1553 		/* RAH */
1554 		eu->eu_valid = ((wval & E1000_RAH_AV) == E1000_RAH_AV);
1555 		eu->eu_addrsel = (wval >> 16) & 0x3;
1556 		eu->eu_eth.octet[5] = wval >> 8;
1557 		eu->eu_eth.octet[4] = wval;
1558 	} else {
1559 		/* RAL */
1560 		eu->eu_eth.octet[3] = wval >> 24;
1561 		eu->eu_eth.octet[2] = wval >> 16;
1562 		eu->eu_eth.octet[1] = wval >> 8;
1563 		eu->eu_eth.octet[0] = wval;
1564 	}
1565 }
1566 
1567 static uint32_t
1568 e82545_read_ra(struct e82545_softc *sc, int reg)
1569 {
1570 	struct eth_uni *eu;
1571 	uint32_t retval;
1572 	int idx;
1573 
1574 	idx = reg >> 1;
1575 	assert(idx < 15);
1576 
1577 	eu = &sc->esc_uni[idx];
1578 
1579 	if (reg & 0x1) {
1580 		/* RAH */
1581 		retval = (eu->eu_valid << 31) |
1582 			 (eu->eu_addrsel << 16) |
1583 			 (eu->eu_eth.octet[5] << 8) |
1584 			 eu->eu_eth.octet[4];
1585 	} else {
1586 		/* RAL */
1587 		retval = (eu->eu_eth.octet[3] << 24) |
1588 			 (eu->eu_eth.octet[2] << 16) |
1589 			 (eu->eu_eth.octet[1] << 8) |
1590 			 eu->eu_eth.octet[0];
1591 	}
1592 
1593 	return (retval);
1594 }
1595 
1596 static void
1597 e82545_write_register(struct e82545_softc *sc, uint32_t offset, uint32_t value)
1598 {
1599 	int ridx;
1600 
1601 	if (offset & 0x3) {
1602 		DPRINTF("Unaligned register write offset:0x%x value:0x%x", offset, value);
1603 		return;
1604 	}
1605 	DPRINTF("Register write: 0x%x value: 0x%x", offset, value);
1606 
1607 	switch (offset) {
1608 	case E1000_CTRL:
1609 	case E1000_CTRL_DUP:
1610 		e82545_devctl(sc, value);
1611 		break;
1612 	case E1000_FCAL:
1613 		sc->esc_FCAL = value;
1614 		break;
1615 	case E1000_FCAH:
1616 		sc->esc_FCAH = value & ~0xFFFF0000;
1617 		break;
1618 	case E1000_FCT:
1619 		sc->esc_FCT = value & ~0xFFFF0000;
1620 		break;
1621 	case E1000_VET:
1622 		sc->esc_VET = value & ~0xFFFF0000;
1623 		break;
1624 	case E1000_FCTTV:
1625 		sc->esc_FCTTV = value & ~0xFFFF0000;
1626 		break;
1627 	case E1000_LEDCTL:
1628 		sc->esc_LEDCTL = value & ~0x30303000;
1629 		break;
1630 	case E1000_PBA:
1631 		sc->esc_PBA = value & 0x0000FF80;
1632 		break;
1633 	case E1000_ICR:
1634 	case E1000_ITR:
1635 	case E1000_ICS:
1636 	case E1000_IMS:
1637 	case E1000_IMC:
1638 		e82545_intr_write(sc, offset, value);
1639 		break;
1640 	case E1000_RCTL:
1641 		e82545_rx_ctl(sc, value);
1642 		break;
1643 	case E1000_FCRTL:
1644 		sc->esc_FCRTL = value & ~0xFFFF0007;
1645 		break;
1646 	case E1000_FCRTH:
1647 		sc->esc_FCRTH = value & ~0xFFFF0007;
1648 		break;
1649 	case E1000_RDBAL(0):
1650 		sc->esc_RDBAL = value & ~0xF;
1651 		if (sc->esc_rx_enabled) {
1652 			/* Apparently legal: update cached address */
1653 			e82545_rx_update_rdba(sc);
1654 		}
1655 		break;
1656 	case E1000_RDBAH(0):
1657 		assert(!sc->esc_rx_enabled);
1658 		sc->esc_RDBAH = value;
1659 		break;
1660 	case E1000_RDLEN(0):
1661 		assert(!sc->esc_rx_enabled);
1662 		sc->esc_RDLEN = value & ~0xFFF0007F;
1663 		break;
1664 	case E1000_RDH(0):
1665 		/* XXX should only ever be zero ? Range check ? */
1666 		sc->esc_RDH = value;
1667 		break;
1668 	case E1000_RDT(0):
1669 		/* XXX if this opens up the rx ring, do something ? */
1670 		sc->esc_RDT = value;
1671 		break;
1672 	case E1000_RDTR:
1673 		/* ignore FPD bit 31 */
1674 		sc->esc_RDTR = value & ~0xFFFF0000;
1675 		break;
1676 	case E1000_RXDCTL(0):
1677 		sc->esc_RXDCTL = value & ~0xFEC0C0C0;
1678 		break;
1679 	case E1000_RADV:
1680 		sc->esc_RADV = value & ~0xFFFF0000;
1681 		break;
1682 	case E1000_RSRPD:
1683 		sc->esc_RSRPD = value & ~0xFFFFF000;
1684 		break;
1685 	case E1000_RXCSUM:
1686 		sc->esc_RXCSUM = value & ~0xFFFFF800;
1687 		break;
1688 	case E1000_TXCW:
1689 		sc->esc_TXCW = value & ~0x3FFF0000;
1690 		break;
1691 	case E1000_TCTL:
1692 		e82545_tx_ctl(sc, value);
1693 		break;
1694 	case E1000_TIPG:
1695 		sc->esc_TIPG = value;
1696 		break;
1697 	case E1000_AIT:
1698 		sc->esc_AIT = value;
1699 		break;
1700 	case E1000_TDBAL(0):
1701 		sc->esc_TDBAL = value & ~0xF;
1702 		if (sc->esc_tx_enabled) {
1703 			/* Apparently legal */
1704 			e82545_tx_update_tdba(sc);
1705 		}
1706 		break;
1707 	case E1000_TDBAH(0):
1708 		//assert(!sc->esc_tx_enabled);
1709 		sc->esc_TDBAH = value;
1710 		break;
1711 	case E1000_TDLEN(0):
1712 		//assert(!sc->esc_tx_enabled);
1713 		sc->esc_TDLEN = value & ~0xFFF0007F;
1714 		break;
1715 	case E1000_TDH(0):
1716 		//assert(!sc->esc_tx_enabled);
1717 		/* XXX should only ever be zero ? Range check ? */
1718 		sc->esc_TDHr = sc->esc_TDH = value;
1719 		break;
1720 	case E1000_TDT(0):
1721 		/* XXX range check ? */
1722 		sc->esc_TDT = value;
1723 		if (sc->esc_tx_enabled)
1724 			e82545_tx_start(sc);
1725 		break;
1726 	case E1000_TIDV:
1727 		sc->esc_TIDV = value & ~0xFFFF0000;
1728 		break;
1729 	case E1000_TXDCTL(0):
1730 		//assert(!sc->esc_tx_enabled);
1731 		sc->esc_TXDCTL = value & ~0xC0C0C0;
1732 		break;
1733 	case E1000_TADV:
1734 		sc->esc_TADV = value & ~0xFFFF0000;
1735 		break;
1736 	case E1000_RAL(0) ... E1000_RAH(15):
1737 		/* convert to u32 offset */
1738 		ridx = (offset - E1000_RAL(0)) >> 2;
1739 		e82545_write_ra(sc, ridx, value);
1740 		break;
1741 	case E1000_MTA ... (E1000_MTA + (127*4)):
1742 		sc->esc_fmcast[(offset - E1000_MTA) >> 2] = value;
1743 		break;
1744 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1745 		sc->esc_fvlan[(offset - E1000_VFTA) >> 2] = value;
1746 		break;
1747 	case E1000_EECD:
1748 	{
1749 		//DPRINTF("EECD write 0x%x -> 0x%x", sc->eeprom_control, value);
1750 		/* edge triggered low->high */
1751 		uint32_t eecd_strobe = ((sc->eeprom_control & E1000_EECD_SK) ?
1752 			0 : (value & E1000_EECD_SK));
1753 		uint32_t eecd_mask = (E1000_EECD_SK|E1000_EECD_CS|
1754 					E1000_EECD_DI|E1000_EECD_REQ);
1755 		sc->eeprom_control &= ~eecd_mask;
1756 		sc->eeprom_control |= (value & eecd_mask);
1757 		/* grant/revoke immediately */
1758 		if (value & E1000_EECD_REQ) {
1759 			sc->eeprom_control |= E1000_EECD_GNT;
1760 		} else {
1761                         sc->eeprom_control &= ~E1000_EECD_GNT;
1762 		}
1763 		if (eecd_strobe && (sc->eeprom_control & E1000_EECD_CS)) {
1764 			e82545_eecd_strobe(sc);
1765 		}
1766 		return;
1767 	}
1768 	case E1000_MDIC:
1769 	{
1770 		uint8_t reg_addr = (uint8_t)((value & E1000_MDIC_REG_MASK) >>
1771 						E1000_MDIC_REG_SHIFT);
1772 		uint8_t phy_addr = (uint8_t)((value & E1000_MDIC_PHY_MASK) >>
1773 						E1000_MDIC_PHY_SHIFT);
1774 		sc->mdi_control =
1775 			(value & ~(E1000_MDIC_ERROR|E1000_MDIC_DEST));
1776 		if ((value & E1000_MDIC_READY) != 0) {
1777 			DPRINTF("Incorrect MDIC ready bit: 0x%x", value);
1778 			return;
1779 		}
1780 		switch (value & E82545_MDIC_OP_MASK) {
1781 		case E1000_MDIC_OP_READ:
1782 			sc->mdi_control &= ~E82545_MDIC_DATA_MASK;
1783 			sc->mdi_control |= e82545_read_mdi(sc, reg_addr, phy_addr);
1784 			break;
1785 		case E1000_MDIC_OP_WRITE:
1786 			e82545_write_mdi(sc, reg_addr, phy_addr,
1787 				value & E82545_MDIC_DATA_MASK);
1788 			break;
1789 		default:
1790 			DPRINTF("Unknown MDIC op: 0x%x", value);
1791 			return;
1792 		}
1793 		/* TODO: barrier? */
1794 		sc->mdi_control |= E1000_MDIC_READY;
1795 		if (value & E82545_MDIC_IE) {
1796 			// TODO: generate interrupt
1797 		}
1798 		return;
1799 	}
1800 	case E1000_MANC:
1801 	case E1000_STATUS:
1802 		return;
1803 	default:
1804 		DPRINTF("Unknown write register: 0x%x value:%x", offset, value);
1805 		return;
1806 	}
1807 }
1808 
1809 static uint32_t
1810 e82545_read_register(struct e82545_softc *sc, uint32_t offset)
1811 {
1812 	uint32_t retval;
1813 	int ridx;
1814 
1815 	if (offset & 0x3) {
1816 		DPRINTF("Unaligned register read offset:0x%x", offset);
1817 		return 0;
1818 	}
1819 
1820 	DPRINTF("Register read: 0x%x", offset);
1821 
1822 	switch (offset) {
1823 	case E1000_CTRL:
1824 		retval = sc->esc_CTRL;
1825 		break;
1826 	case E1000_STATUS:
1827 		retval = E1000_STATUS_FD | E1000_STATUS_LU |
1828 		    E1000_STATUS_SPEED_1000;
1829 		break;
1830 	case E1000_FCAL:
1831 		retval = sc->esc_FCAL;
1832 		break;
1833 	case E1000_FCAH:
1834 		retval = sc->esc_FCAH;
1835 		break;
1836 	case E1000_FCT:
1837 		retval = sc->esc_FCT;
1838 		break;
1839 	case E1000_VET:
1840 		retval = sc->esc_VET;
1841 		break;
1842 	case E1000_FCTTV:
1843 		retval = sc->esc_FCTTV;
1844 		break;
1845 	case E1000_LEDCTL:
1846 		retval = sc->esc_LEDCTL;
1847 		break;
1848 	case E1000_PBA:
1849 		retval = sc->esc_PBA;
1850 		break;
1851 	case E1000_ICR:
1852 	case E1000_ITR:
1853 	case E1000_ICS:
1854 	case E1000_IMS:
1855 	case E1000_IMC:
1856 		retval = e82545_intr_read(sc, offset);
1857 		break;
1858 	case E1000_RCTL:
1859 		retval = sc->esc_RCTL;
1860 		break;
1861 	case E1000_FCRTL:
1862 		retval = sc->esc_FCRTL;
1863 		break;
1864 	case E1000_FCRTH:
1865 		retval = sc->esc_FCRTH;
1866 		break;
1867 	case E1000_RDBAL(0):
1868 		retval = sc->esc_RDBAL;
1869 		break;
1870 	case E1000_RDBAH(0):
1871 		retval = sc->esc_RDBAH;
1872 		break;
1873 	case E1000_RDLEN(0):
1874 		retval = sc->esc_RDLEN;
1875 		break;
1876 	case E1000_RDH(0):
1877 		retval = sc->esc_RDH;
1878 		break;
1879 	case E1000_RDT(0):
1880 		retval = sc->esc_RDT;
1881 		break;
1882 	case E1000_RDTR:
1883 		retval = sc->esc_RDTR;
1884 		break;
1885 	case E1000_RXDCTL(0):
1886 		retval = sc->esc_RXDCTL;
1887 		break;
1888 	case E1000_RADV:
1889 		retval = sc->esc_RADV;
1890 		break;
1891 	case E1000_RSRPD:
1892 		retval = sc->esc_RSRPD;
1893 		break;
1894 	case E1000_RXCSUM:
1895 		retval = sc->esc_RXCSUM;
1896 		break;
1897 	case E1000_TXCW:
1898 		retval = sc->esc_TXCW;
1899 		break;
1900 	case E1000_TCTL:
1901 		retval = sc->esc_TCTL;
1902 		break;
1903 	case E1000_TIPG:
1904 		retval = sc->esc_TIPG;
1905 		break;
1906 	case E1000_AIT:
1907 		retval = sc->esc_AIT;
1908 		break;
1909 	case E1000_TDBAL(0):
1910 		retval = sc->esc_TDBAL;
1911 		break;
1912 	case E1000_TDBAH(0):
1913 		retval = sc->esc_TDBAH;
1914 		break;
1915 	case E1000_TDLEN(0):
1916 		retval = sc->esc_TDLEN;
1917 		break;
1918 	case E1000_TDH(0):
1919 		retval = sc->esc_TDH;
1920 		break;
1921 	case E1000_TDT(0):
1922 		retval = sc->esc_TDT;
1923 		break;
1924 	case E1000_TIDV:
1925 		retval = sc->esc_TIDV;
1926 		break;
1927 	case E1000_TXDCTL(0):
1928 		retval = sc->esc_TXDCTL;
1929 		break;
1930 	case E1000_TADV:
1931 		retval = sc->esc_TADV;
1932 		break;
1933 	case E1000_RAL(0) ... E1000_RAH(15):
1934 		/* convert to u32 offset */
1935 		ridx = (offset - E1000_RAL(0)) >> 2;
1936 		retval = e82545_read_ra(sc, ridx);
1937 		break;
1938 	case E1000_MTA ... (E1000_MTA + (127*4)):
1939 		retval = sc->esc_fmcast[(offset - E1000_MTA) >> 2];
1940 		break;
1941 	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1942 		retval = sc->esc_fvlan[(offset - E1000_VFTA) >> 2];
1943 		break;
1944 	case E1000_EECD:
1945 		//DPRINTF("EECD read %x", sc->eeprom_control);
1946 		retval = sc->eeprom_control;
1947 		break;
1948 	case E1000_MDIC:
1949 		retval = sc->mdi_control;
1950 		break;
1951 	case E1000_MANC:
1952 		retval = 0;
1953 		break;
1954 	/* stats that we emulate. */
1955 	case E1000_MPC:
1956 		retval = sc->missed_pkt_count;
1957 		break;
1958 	case E1000_PRC64:
1959 		retval = sc->pkt_rx_by_size[0];
1960 		break;
1961 	case E1000_PRC127:
1962 		retval = sc->pkt_rx_by_size[1];
1963 		break;
1964 	case E1000_PRC255:
1965 		retval = sc->pkt_rx_by_size[2];
1966 		break;
1967 	case E1000_PRC511:
1968 		retval = sc->pkt_rx_by_size[3];
1969 		break;
1970 	case E1000_PRC1023:
1971 		retval = sc->pkt_rx_by_size[4];
1972 		break;
1973 	case E1000_PRC1522:
1974 		retval = sc->pkt_rx_by_size[5];
1975 		break;
1976 	case E1000_GPRC:
1977 		retval = sc->good_pkt_rx_count;
1978 		break;
1979 	case E1000_BPRC:
1980 		retval = sc->bcast_pkt_rx_count;
1981 		break;
1982 	case E1000_MPRC:
1983 		retval = sc->mcast_pkt_rx_count;
1984 		break;
1985 	case E1000_GPTC:
1986 	case E1000_TPT:
1987 		retval = sc->good_pkt_tx_count;
1988 		break;
1989 	case E1000_GORCL:
1990 		retval = (uint32_t)sc->good_octets_rx;
1991 		break;
1992 	case E1000_GORCH:
1993 		retval = (uint32_t)(sc->good_octets_rx >> 32);
1994 		break;
1995 	case E1000_TOTL:
1996 	case E1000_GOTCL:
1997 		retval = (uint32_t)sc->good_octets_tx;
1998 		break;
1999 	case E1000_TOTH:
2000 	case E1000_GOTCH:
2001 		retval = (uint32_t)(sc->good_octets_tx >> 32);
2002 		break;
2003 	case E1000_ROC:
2004 		retval = sc->oversize_rx_count;
2005 		break;
2006 	case E1000_TORL:
2007 		retval = (uint32_t)(sc->good_octets_rx + sc->missed_octets);
2008 		break;
2009 	case E1000_TORH:
2010 		retval = (uint32_t)((sc->good_octets_rx +
2011 		    sc->missed_octets) >> 32);
2012 		break;
2013 	case E1000_TPR:
2014 		retval = sc->good_pkt_rx_count + sc->missed_pkt_count +
2015 		    sc->oversize_rx_count;
2016 		break;
2017 	case E1000_PTC64:
2018 		retval = sc->pkt_tx_by_size[0];
2019 		break;
2020 	case E1000_PTC127:
2021 		retval = sc->pkt_tx_by_size[1];
2022 		break;
2023 	case E1000_PTC255:
2024 		retval = sc->pkt_tx_by_size[2];
2025 		break;
2026 	case E1000_PTC511:
2027 		retval = sc->pkt_tx_by_size[3];
2028 		break;
2029 	case E1000_PTC1023:
2030 		retval = sc->pkt_tx_by_size[4];
2031 		break;
2032 	case E1000_PTC1522:
2033 		retval = sc->pkt_tx_by_size[5];
2034 		break;
2035 	case E1000_MPTC:
2036 		retval = sc->mcast_pkt_tx_count;
2037 		break;
2038 	case E1000_BPTC:
2039 		retval = sc->bcast_pkt_tx_count;
2040 		break;
2041 	case E1000_TSCTC:
2042 		retval = sc->tso_tx_count;
2043 		break;
2044 	/* stats that are always 0. */
2045 	case E1000_CRCERRS:
2046 	case E1000_ALGNERRC:
2047 	case E1000_SYMERRS:
2048 	case E1000_RXERRC:
2049 	case E1000_SCC:
2050 	case E1000_ECOL:
2051 	case E1000_MCC:
2052 	case E1000_LATECOL:
2053 	case E1000_COLC:
2054 	case E1000_DC:
2055 	case E1000_TNCRS:
2056 	case E1000_SEC:
2057 	case E1000_CEXTERR:
2058 	case E1000_RLEC:
2059 	case E1000_XONRXC:
2060 	case E1000_XONTXC:
2061 	case E1000_XOFFRXC:
2062 	case E1000_XOFFTXC:
2063 	case E1000_FCRUC:
2064 	case E1000_RNBC:
2065 	case E1000_RUC:
2066 	case E1000_RFC:
2067 	case E1000_RJC:
2068 	case E1000_MGTPRC:
2069 	case E1000_MGTPDC:
2070 	case E1000_MGTPTC:
2071 	case E1000_TSCTFC:
2072 		retval = 0;
2073 		break;
2074 	default:
2075 		DPRINTF("Unknown read register: 0x%x", offset);
2076 		retval = 0;
2077 		break;
2078 	}
2079 
2080 	return (retval);
2081 }
2082 
2083 static void
2084 e82545_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2085 	     uint64_t offset, int size, uint64_t value)
2086 {
2087 	struct e82545_softc *sc;
2088 
2089 	//DPRINTF("Write bar:%d offset:0x%lx value:0x%lx size:%d", baridx, offset, value, size);
2090 
2091 	sc = pi->pi_arg;
2092 
2093 	pthread_mutex_lock(&sc->esc_mtx);
2094 
2095 	switch (baridx) {
2096 	case E82545_BAR_IO:
2097 		switch (offset) {
2098 		case E82545_IOADDR:
2099 			if (size != 4) {
2100 				DPRINTF("Wrong io addr write sz:%d value:0x%lx", size, value);
2101 			} else
2102 				sc->io_addr = (uint32_t)value;
2103 			break;
2104 		case E82545_IODATA:
2105 			if (size != 4) {
2106 				DPRINTF("Wrong io data write size:%d value:0x%lx", size, value);
2107 			} else if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2108 				DPRINTF("Non-register io write addr:0x%x value:0x%lx", sc->io_addr, value);
2109 			} else
2110 				e82545_write_register(sc, sc->io_addr,
2111 						      (uint32_t)value);
2112 			break;
2113 		default:
2114 			DPRINTF("Unknown io bar write offset:0x%lx value:0x%lx size:%d", offset, value, size);
2115 			break;
2116 		}
2117 		break;
2118 	case E82545_BAR_REGISTER:
2119 		if (size != 4) {
2120 			DPRINTF("Wrong register write size:%d offset:0x%lx value:0x%lx", size, offset, value);
2121 		} else
2122 			e82545_write_register(sc, (uint32_t)offset,
2123 					      (uint32_t)value);
2124 		break;
2125 	default:
2126 		DPRINTF("Unknown write bar:%d off:0x%lx val:0x%lx size:%d",
2127 			baridx, offset, value, size);
2128 	}
2129 
2130 	pthread_mutex_unlock(&sc->esc_mtx);
2131 }
2132 
2133 static uint64_t
2134 e82545_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
2135 	    uint64_t offset, int size)
2136 {
2137 	struct e82545_softc *sc;
2138 	uint64_t retval;
2139 
2140 	//DPRINTF("Read  bar:%d offset:0x%lx size:%d", baridx, offset, size);
2141 	sc = pi->pi_arg;
2142 	retval = 0;
2143 
2144 	pthread_mutex_lock(&sc->esc_mtx);
2145 
2146 	switch (baridx) {
2147 	case E82545_BAR_IO:
2148 		switch (offset) {
2149 		case E82545_IOADDR:
2150 			if (size != 4) {
2151 				DPRINTF("Wrong io addr read sz:%d", size);
2152 			} else
2153 				retval = sc->io_addr;
2154 			break;
2155 		case E82545_IODATA:
2156 			if (size != 4) {
2157 				DPRINTF("Wrong io data read sz:%d", size);
2158 			}
2159 			if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2160 				DPRINTF("Non-register io read addr:0x%x",
2161 					sc->io_addr);
2162 			} else
2163 				retval = e82545_read_register(sc, sc->io_addr);
2164 			break;
2165 		default:
2166 			DPRINTF("Unknown io bar read offset:0x%lx size:%d",
2167 				offset, size);
2168 			break;
2169 		}
2170 		break;
2171 	case E82545_BAR_REGISTER:
2172 		if (size != 4) {
2173 			DPRINTF("Wrong register read size:%d offset:0x%lx",
2174 				size, offset);
2175 		} else
2176 			retval = e82545_read_register(sc, (uint32_t)offset);
2177 		break;
2178 	default:
2179 		DPRINTF("Unknown read bar:%d offset:0x%lx size:%d",
2180 			baridx, offset, size);
2181 		break;
2182 	}
2183 
2184 	pthread_mutex_unlock(&sc->esc_mtx);
2185 
2186 	return (retval);
2187 }
2188 
2189 static void
2190 e82545_reset(struct e82545_softc *sc, int drvr)
2191 {
2192 	int i;
2193 
2194 	e82545_rx_disable(sc);
2195 	e82545_tx_disable(sc);
2196 
2197 	/* clear outstanding interrupts */
2198 	if (sc->esc_irq_asserted)
2199 		pci_lintr_deassert(sc->esc_pi);
2200 
2201 	/* misc */
2202 	if (!drvr) {
2203 		sc->esc_FCAL = 0;
2204 		sc->esc_FCAH = 0;
2205 		sc->esc_FCT = 0;
2206 		sc->esc_VET = 0;
2207 		sc->esc_FCTTV = 0;
2208 	}
2209 	sc->esc_LEDCTL = 0x07061302;
2210 	sc->esc_PBA = 0x00100030;
2211 
2212 	/* start nvm in opcode mode. */
2213 	sc->nvm_opaddr = 0;
2214 	sc->nvm_mode = E82545_NVM_MODE_OPADDR;
2215 	sc->nvm_bits = E82545_NVM_OPADDR_BITS;
2216 	sc->eeprom_control = E1000_EECD_PRES | E82545_EECD_FWE_EN;
2217 	e82545_init_eeprom(sc);
2218 
2219 	/* interrupt */
2220 	sc->esc_ICR = 0;
2221 	sc->esc_ITR = 250;
2222 	sc->esc_ICS = 0;
2223 	sc->esc_IMS = 0;
2224 	sc->esc_IMC = 0;
2225 
2226 	/* L2 filters */
2227 	if (!drvr) {
2228 		memset(sc->esc_fvlan, 0, sizeof(sc->esc_fvlan));
2229 		memset(sc->esc_fmcast, 0, sizeof(sc->esc_fmcast));
2230 		memset(sc->esc_uni, 0, sizeof(sc->esc_uni));
2231 
2232 		/* XXX not necessary on 82545 ?? */
2233 		sc->esc_uni[0].eu_valid = 1;
2234 		memcpy(sc->esc_uni[0].eu_eth.octet, sc->esc_mac.octet,
2235 		    ETHER_ADDR_LEN);
2236 	} else {
2237 		/* Clear RAH valid bits */
2238 		for (i = 0; i < 16; i++)
2239 			sc->esc_uni[i].eu_valid = 0;
2240 	}
2241 
2242 	/* receive */
2243 	if (!drvr) {
2244 		sc->esc_RDBAL = 0;
2245 		sc->esc_RDBAH = 0;
2246 	}
2247 	sc->esc_RCTL = 0;
2248 	sc->esc_FCRTL = 0;
2249 	sc->esc_FCRTH = 0;
2250 	sc->esc_RDLEN = 0;
2251 	sc->esc_RDH = 0;
2252 	sc->esc_RDT = 0;
2253 	sc->esc_RDTR = 0;
2254 	sc->esc_RXDCTL = (1 << 24) | (1 << 16); /* default GRAN/WTHRESH */
2255 	sc->esc_RADV = 0;
2256 	sc->esc_RXCSUM = 0;
2257 
2258 	/* transmit */
2259 	if (!drvr) {
2260 		sc->esc_TDBAL = 0;
2261 		sc->esc_TDBAH = 0;
2262 		sc->esc_TIPG = 0;
2263 		sc->esc_AIT = 0;
2264 		sc->esc_TIDV = 0;
2265 		sc->esc_TADV = 0;
2266 	}
2267 	sc->esc_tdba = 0;
2268 	sc->esc_txdesc = NULL;
2269 	sc->esc_TXCW = 0;
2270 	sc->esc_TCTL = 0;
2271 	sc->esc_TDLEN = 0;
2272 	sc->esc_TDT = 0;
2273 	sc->esc_TDHr = sc->esc_TDH = 0;
2274 	sc->esc_TXDCTL = 0;
2275 }
2276 
2277 static int
2278 e82545_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
2279 {
2280 	char nstr[80];
2281 	struct e82545_softc *sc;
2282 	char *devname;
2283 	char *vtopts;
2284 	int mac_provided;
2285 
2286 	DPRINTF("Loading with options: %s", opts);
2287 
2288 	/* Setup our softc */
2289 	sc = calloc(1, sizeof(*sc));
2290 
2291 	pi->pi_arg = sc;
2292 	sc->esc_pi = pi;
2293 	sc->esc_ctx = ctx;
2294 
2295 	pthread_mutex_init(&sc->esc_mtx, NULL);
2296 	pthread_cond_init(&sc->esc_rx_cond, NULL);
2297 	pthread_cond_init(&sc->esc_tx_cond, NULL);
2298 	pthread_create(&sc->esc_tx_tid, NULL, e82545_tx_thread, sc);
2299 	snprintf(nstr, sizeof(nstr), "e82545-%d:%d tx", pi->pi_slot,
2300 	    pi->pi_func);
2301         pthread_set_name_np(sc->esc_tx_tid, nstr);
2302 
2303 	pci_set_cfgdata16(pi, PCIR_DEVICE, E82545_DEV_ID_82545EM_COPPER);
2304 	pci_set_cfgdata16(pi, PCIR_VENDOR, E82545_VENDOR_ID_INTEL);
2305 	pci_set_cfgdata8(pi,  PCIR_CLASS, PCIC_NETWORK);
2306 	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_NETWORK_ETHERNET);
2307 	pci_set_cfgdata16(pi, PCIR_SUBDEV_0, E82545_SUBDEV_ID);
2308 	pci_set_cfgdata16(pi, PCIR_SUBVEND_0, E82545_VENDOR_ID_INTEL);
2309 
2310 	pci_set_cfgdata8(pi,  PCIR_HDRTYPE, PCIM_HDRTYPE_NORMAL);
2311 	pci_set_cfgdata8(pi,  PCIR_INTPIN, 0x1);
2312 
2313 	/* TODO: this card also supports msi, but the freebsd driver for it
2314 	 * does not, so I have not implemented it. */
2315 	pci_lintr_request(pi);
2316 
2317 	pci_emul_alloc_bar(pi, E82545_BAR_REGISTER, PCIBAR_MEM32,
2318 		E82545_BAR_REGISTER_LEN);
2319 	pci_emul_alloc_bar(pi, E82545_BAR_FLASH, PCIBAR_MEM32,
2320 		E82545_BAR_FLASH_LEN);
2321 	pci_emul_alloc_bar(pi, E82545_BAR_IO, PCIBAR_IO,
2322 		E82545_BAR_IO_LEN);
2323 
2324 	/*
2325 	 * Attempt to open the net backend and read the MAC address
2326 	 * if specified.  Copied from virtio-net, slightly modified.
2327 	 */
2328 	mac_provided = 0;
2329 	sc->esc_be = NULL;
2330 	if (opts != NULL) {
2331 		int err;
2332 
2333 		devname = vtopts = strdup(opts);
2334 		(void) strsep(&vtopts, ",");
2335 
2336 		if (vtopts != NULL) {
2337 			err = net_parsemac(vtopts, sc->esc_mac.octet);
2338 			if (err != 0) {
2339 				free(devname);
2340 				return (err);
2341 			}
2342 			mac_provided = 1;
2343 		}
2344 
2345 		err = netbe_init(&sc->esc_be, devname, e82545_rx_callback, sc);
2346 		free(devname);
2347 		if (err)
2348 			return (err);
2349 	}
2350 
2351 	if (!mac_provided) {
2352 		net_genmac(pi, sc->esc_mac.octet);
2353 	}
2354 
2355 	netbe_rx_enable(sc->esc_be);
2356 
2357 	/* H/w initiated reset */
2358 	e82545_reset(sc, 0);
2359 
2360 	return (0);
2361 }
2362 
2363 struct pci_devemu pci_de_e82545 = {
2364 	.pe_emu = 	"e1000",
2365 	.pe_init =	e82545_init,
2366 	.pe_barwrite =	e82545_write,
2367 	.pe_barread =	e82545_read
2368 };
2369 PCI_EMUL_SET(pci_de_e82545);
2370 
2371