xref: /freebsd/usr.bin/truss/syscalls.c (revision 4436b51dff5736e74da464946049ea6899a88938)
1 /*
2  * Copyright 1997 Sean Eric Fagan
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. All advertising materials mentioning features or use of this software
13  *    must display the following acknowledgement:
14  *	This product includes software developed by Sean Eric Fagan
15  * 4. Neither the name of the author may be used to endorse or promote
16  *    products derived from this software without specific prior written
17  *    permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /*
36  * This file has routines used to print out system calls and their
37  * arguments.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/event.h>
42 #include <sys/ioccom.h>
43 #include <sys/mman.h>
44 #include <sys/mount.h>
45 #include <sys/procctl.h>
46 #include <sys/ptrace.h>
47 #include <sys/resource.h>
48 #include <sys/socket.h>
49 #include <sys/stat.h>
50 #include <sys/umtx.h>
51 #include <sys/un.h>
52 #include <sys/wait.h>
53 #include <machine/sysarch.h>
54 #include <netinet/in.h>
55 #include <arpa/inet.h>
56 
57 #include <ctype.h>
58 #include <err.h>
59 #include <fcntl.h>
60 #include <poll.h>
61 #include <signal.h>
62 #include <stddef.h>
63 #include <stdint.h>
64 #include <stdio.h>
65 #include <stdlib.h>
66 #include <string.h>
67 #include <time.h>
68 #include <unistd.h>
69 #include <vis.h>
70 
71 #include "truss.h"
72 #include "extern.h"
73 #include "syscall.h"
74 
75 /* 64-bit alignment on 32-bit platforms. */
76 #if !defined(__LP64__) && defined(__powerpc__)
77 #define	QUAD_ALIGN	1
78 #else
79 #define	QUAD_ALIGN	0
80 #endif
81 
82 /* Number of slots needed for a 64-bit argument. */
83 #ifdef __LP64__
84 #define	QUAD_SLOTS	1
85 #else
86 #define	QUAD_SLOTS	2
87 #endif
88 
89 /*
90  * This should probably be in its own file, sorted alphabetically.
91  */
92 static struct syscall decoded_syscalls[] = {
93 	{ .name = "fcntl", .ret_type = 1, .nargs = 3,
94 	  .args = { { Int, 0 }, { Fcntl, 1 }, { Fcntlflag, 2 } } },
95 	{ .name = "rfork", .ret_type = 1, .nargs = 1,
96 	  .args = { { Rforkflags, 0 } } },
97 	{ .name = "linux_readlink", .ret_type = 1, .nargs = 3,
98 	  .args = { { Name, 0 }, { Name | OUT, 1 }, { Int, 2 } } },
99 	{ .name = "linux_socketcall", .ret_type = 1, .nargs = 2,
100 	  .args = { { Int, 0 }, { LinuxSockArgs, 1 } } },
101 	{ .name = "getpgid", .ret_type = 1, .nargs = 1,
102 	  .args = { { Int, 0 } } },
103 	{ .name = "getsid", .ret_type = 1, .nargs = 1,
104 	  .args = { { Int, 0 } } },
105 	{ .name = "readlink", .ret_type = 1, .nargs = 3,
106 	  .args = { { Name, 0 }, { Readlinkres | OUT, 1 }, { Int, 2 } } },
107 	{ .name = "readlinkat", .ret_type = 1, .nargs = 4,
108 	  .args = { { Atfd, 0 }, { Name, 1 }, { Readlinkres | OUT, 2 },
109 		    { Int, 3 } } },
110 	{ .name = "lseek", .ret_type = 2, .nargs = 3,
111 	  .args = { { Int, 0 }, { QuadHex, 1 + QUAD_ALIGN },
112 		    { Whence, 1 + QUAD_SLOTS + QUAD_ALIGN } } },
113 	{ .name = "linux_lseek", .ret_type = 2, .nargs = 3,
114 	  .args = { { Int, 0 }, { Int, 1 }, { Whence, 2 } } },
115 	{ .name = "mmap", .ret_type = 1, .nargs = 6,
116 	  .args = { { Ptr, 0 }, { Int, 1 }, { Mprot, 2 }, { Mmapflags, 3 },
117 		    { Int, 4 }, { QuadHex, 5 + QUAD_ALIGN } } },
118 	{ .name = "linux_mkdir", .ret_type = 1, .nargs = 2,
119 	  .args = { { Name | IN, 0 }, { Int, 1 } } },
120 	{ .name = "mprotect", .ret_type = 1, .nargs = 3,
121 	  .args = { { Ptr, 0 }, { Int, 1 }, { Mprot, 2 } } },
122 	{ .name = "open", .ret_type = 1, .nargs = 3,
123 	  .args = { { Name | IN, 0 }, { Open, 1 }, { Octal, 2 } } },
124 	{ .name = "openat", .ret_type = 1, .nargs = 4,
125 	  .args = { { Atfd, 0 }, { Name | IN, 1 }, { Open, 2 },
126 		    { Octal, 3 } } },
127 	{ .name = "mkdir", .ret_type = 1, .nargs = 2,
128 	  .args = { { Name, 0 }, { Octal, 1 } } },
129 	{ .name = "mkdirat", .ret_type = 1, .nargs = 3,
130 	  .args = { { Atfd, 0 }, { Name, 1 }, { Octal, 2 } } },
131 	{ .name = "linux_open", .ret_type = 1, .nargs = 3,
132 	  .args = { { Name, 0 }, { Hex, 1 }, { Octal, 2 } } },
133 	{ .name = "close", .ret_type = 1, .nargs = 1,
134 	  .args = { { Int, 0 } } },
135 	{ .name = "link", .ret_type = 1, .nargs = 2,
136 	  .args = { { Name, 0 }, { Name, 1 } } },
137 	{ .name = "linkat", .ret_type = 1, .nargs = 5,
138 	  .args = { { Atfd, 0 }, { Name, 1 }, { Atfd, 2 }, { Name, 3 },
139 		    { Atflags, 4 } } },
140 	{ .name = "unlink", .ret_type = 1, .nargs = 1,
141 	  .args = { { Name, 0 } } },
142 	{ .name = "unlinkat", .ret_type = 1, .nargs = 3,
143 	  .args = { { Atfd, 0 }, { Name, 1 }, { Atflags, 2 } } },
144 	{ .name = "chdir", .ret_type = 1, .nargs = 1,
145 	  .args = { { Name, 0 } } },
146 	{ .name = "chroot", .ret_type = 1, .nargs = 1,
147 	  .args = { { Name, 0 } } },
148 	{ .name = "mkfifo", .ret_type = 1, .nargs = 2,
149 	  .args = { { Name, 0 }, { Octal, 1 } } },
150 	{ .name = "mkfifoat", .ret_type = 1, .nargs = 3,
151 	  .args = { { Atfd, 0 }, { Name, 1 }, { Octal, 2 } } },
152 	{ .name = "mknod", .ret_type = 1, .nargs = 3,
153 	  .args = { { Name, 0 }, { Octal, 1 }, { Int, 2 } } },
154 	{ .name = "mknodat", .ret_type = 1, .nargs = 4,
155 	  .args = { { Atfd, 0 }, { Name, 1 }, { Octal, 2 }, { Int, 3 } } },
156 	{ .name = "chmod", .ret_type = 1, .nargs = 2,
157 	  .args = { { Name, 0 }, { Octal, 1 } } },
158 	{ .name = "fchmod", .ret_type = 1, .nargs = 2,
159 	  .args = { { Int, 0 }, { Octal, 1 } } },
160 	{ .name = "lchmod", .ret_type = 1, .nargs = 2,
161 	  .args = { { Name, 0 }, { Octal, 1 } } },
162 	{ .name = "fchmodat", .ret_type = 1, .nargs = 4,
163 	  .args = { { Atfd, 0 }, { Name, 1 }, { Octal, 2 }, { Atflags, 3 } } },
164 	{ .name = "chown", .ret_type = 1, .nargs = 3,
165 	  .args = { { Name, 0 }, { Int, 1 }, { Int, 2 } } },
166 	{ .name = "fchown", .ret_type = 1, .nargs = 3,
167 	  .args = { { Int, 0 }, { Int, 1 }, { Int, 2 } } },
168 	{ .name = "lchown", .ret_type = 1, .nargs = 3,
169 	  .args = { { Name, 0 }, { Int, 1 }, { Int, 2 } } },
170 	{ .name = "fchownat", .ret_type = 1, .nargs = 5,
171 	  .args = { { Atfd, 0 }, { Name, 1 }, { Int, 2 }, { Int, 3 },
172 		    { Atflags, 4 } } },
173 	{ .name = "linux_stat64", .ret_type = 1, .nargs = 3,
174 	  .args = { { Name | IN, 0 }, { Ptr | OUT, 1 }, { Ptr | IN, 1 } } },
175 	{ .name = "mount", .ret_type = 1, .nargs = 4,
176 	  .args = { { Name, 0 }, { Name, 1 }, { Int, 2 }, { Ptr, 3 } } },
177 	{ .name = "umount", .ret_type = 1, .nargs = 2,
178 	  .args = { { Name, 0 }, { Int, 2 } } },
179 	{ .name = "fstat", .ret_type = 1, .nargs = 2,
180 	  .args = { { Int, 0 }, { Stat | OUT, 1 } } },
181 	{ .name = "fstatat", .ret_type = 1, .nargs = 4,
182 	  .args = { { Atfd, 0 }, { Name | IN, 1 }, { Stat | OUT, 2 },
183 		    { Atflags, 3 } } },
184 	{ .name = "stat", .ret_type = 1, .nargs = 2,
185 	  .args = { { Name | IN, 0 }, { Stat | OUT, 1 } } },
186 	{ .name = "statfs", .ret_type = 1, .nargs = 2,
187 	  .args = { { Name | IN, 0 }, { StatFs | OUT, 1 } } },
188 	{ .name = "fstatfs", .ret_type = 1, .nargs = 2,
189 	  .args = { { Int, 0 }, { StatFs | OUT, 1 } } },
190 	{ .name = "lstat", .ret_type = 1, .nargs = 2,
191 	  .args = { { Name | IN, 0 }, { Stat | OUT, 1 } } },
192 	{ .name = "linux_newstat", .ret_type = 1, .nargs = 2,
193 	  .args = { { Name | IN, 0 }, { Ptr | OUT, 1 } } },
194 	{ .name = "linux_access", .ret_type = 1, .nargs = 2,
195 	  .args = { { Name, 0 }, { Accessmode, 1 } } },
196 	{ .name = "linux_newfstat", .ret_type = 1, .nargs = 2,
197 	  .args = { { Int, 0 }, { Ptr | OUT, 1 } } },
198 	{ .name = "write", .ret_type = 1, .nargs = 3,
199 	  .args = { { Int, 0 }, { BinString | IN, 1 }, { Int, 2 } } },
200 	{ .name = "ioctl", .ret_type = 1, .nargs = 3,
201 	  .args = { { Int, 0 }, { Ioctl, 1 }, { Hex, 2 } } },
202 	{ .name = "break", .ret_type = 1, .nargs = 1,
203 	  .args = { { Ptr, 0 } } },
204 	{ .name = "exit", .ret_type = 0, .nargs = 1,
205 	  .args = { { Hex, 0 } } },
206 	{ .name = "access", .ret_type = 1, .nargs = 2,
207 	  .args = { { Name | IN, 0 }, { Accessmode, 1 } } },
208 	{ .name = "eaccess", .ret_type = 1, .nargs = 2,
209 	  .args = { { Name | IN, 0 }, { Accessmode, 1 } } },
210 	{ .name = "faccessat", .ret_type = 1, .nargs = 4,
211 	  .args = { { Atfd, 0 }, { Name | IN, 1 }, { Accessmode, 2 },
212 		    { Atflags, 3 } } },
213 	{ .name = "sigaction", .ret_type = 1, .nargs = 3,
214 	  .args = { { Signal, 0 }, { Sigaction | IN, 1 },
215 		    { Sigaction | OUT, 2 } } },
216 	{ .name = "accept", .ret_type = 1, .nargs = 3,
217 	  .args = { { Int, 0 }, { Sockaddr | OUT, 1 }, { Ptr | OUT, 2 } } },
218 	{ .name = "bind", .ret_type = 1, .nargs = 3,
219 	  .args = { { Int, 0 }, { Sockaddr | IN, 1 }, { Int, 2 } } },
220 	{ .name = "bindat", .ret_type = 1, .nargs = 4,
221 	  .args = { { Atfd, 0 }, { Int, 1 }, { Sockaddr | IN, 2 },
222 		    { Int, 3 } } },
223 	{ .name = "connect", .ret_type = 1, .nargs = 3,
224 	  .args = { { Int, 0 }, { Sockaddr | IN, 1 }, { Int, 2 } } },
225 	{ .name = "connectat", .ret_type = 1, .nargs = 4,
226 	  .args = { { Atfd, 0 }, { Int, 1 }, { Sockaddr | IN, 2 },
227 		    { Int, 3 } } },
228 	{ .name = "getpeername", .ret_type = 1, .nargs = 3,
229 	  .args = { { Int, 0 }, { Sockaddr | OUT, 1 }, { Ptr | OUT, 2 } } },
230 	{ .name = "getsockname", .ret_type = 1, .nargs = 3,
231 	  .args = { { Int, 0 }, { Sockaddr | OUT, 1 }, { Ptr | OUT, 2 } } },
232 	{ .name = "recvfrom", .ret_type = 1, .nargs = 6,
233 	  .args = { { Int, 0 }, { BinString | OUT, 1 }, { Int, 2 }, { Hex, 3 },
234 		    { Sockaddr | OUT, 4 }, { Ptr | OUT, 5 } } },
235 	{ .name = "sendto", .ret_type = 1, .nargs = 6,
236 	  .args = { { Int, 0 }, { BinString | IN, 1 }, { Int, 2 }, { Hex, 3 },
237 		    { Sockaddr | IN, 4 }, { Ptr | IN, 5 } } },
238 	{ .name = "execve", .ret_type = 1, .nargs = 3,
239 	  .args = { { Name | IN, 0 }, { ExecArgs | IN, 1 },
240 		    { ExecEnv | IN, 2 } } },
241 	{ .name = "linux_execve", .ret_type = 1, .nargs = 3,
242 	  .args = { { Name | IN, 0 }, { ExecArgs | IN, 1 },
243 		    { ExecEnv | IN, 2 } } },
244 	{ .name = "kldload", .ret_type = 1, .nargs = 1,
245 	  .args = { { Name | IN, 0 } } },
246 	{ .name = "kldunload", .ret_type = 1, .nargs = 1,
247 	  .args = { { Int, 0 } } },
248 	{ .name = "kldfind", .ret_type = 1, .nargs = 1,
249 	  .args = { { Name | IN, 0 } } },
250 	{ .name = "kldnext", .ret_type = 1, .nargs = 1,
251 	  .args = { { Int, 0 } } },
252 	{ .name = "kldstat", .ret_type = 1, .nargs = 2,
253 	  .args = { { Int, 0 }, { Ptr, 1 } } },
254 	{ .name = "kldfirstmod", .ret_type = 1, .nargs = 1,
255 	  .args = { { Int, 0 } } },
256 	{ .name = "modfind", .ret_type = 1, .nargs = 1,
257 	  .args = { { Name | IN, 0 } } },
258 	{ .name = "nanosleep", .ret_type = 1, .nargs = 1,
259 	  .args = { { Timespec, 0 } } },
260 	{ .name = "select", .ret_type = 1, .nargs = 5,
261 	  .args = { { Int, 0 }, { Fd_set, 1 }, { Fd_set, 2 }, { Fd_set, 3 },
262 		    { Timeval, 4 } } },
263 	{ .name = "poll", .ret_type = 1, .nargs = 3,
264 	  .args = { { Pollfd, 0 }, { Int, 1 }, { Int, 2 } } },
265 	{ .name = "gettimeofday", .ret_type = 1, .nargs = 2,
266 	  .args = { { Timeval | OUT, 0 }, { Ptr, 1 } } },
267 	{ .name = "clock_gettime", .ret_type = 1, .nargs = 2,
268 	  .args = { { Int, 0 }, { Timespec | OUT, 1 } } },
269 	{ .name = "getitimer", .ret_type = 1, .nargs = 2,
270 	  .args = { { Int, 0 }, { Itimerval | OUT, 2 } } },
271 	{ .name = "setitimer", .ret_type = 1, .nargs = 3,
272 	  .args = { { Int, 0 }, { Itimerval, 1 }, { Itimerval | OUT, 2 } } },
273 	{ .name = "kse_release", .ret_type = 0, .nargs = 1,
274 	  .args = { { Timespec, 0 } } },
275 	{ .name = "kevent", .ret_type = 1, .nargs = 6,
276 	  .args = { { Int, 0 }, { Kevent, 1 }, { Int, 2 }, { Kevent | OUT, 3 },
277 		    { Int, 4 }, { Timespec, 5 } } },
278 	{ .name = "sigpending", .ret_type = 1, .nargs = 1,
279 	  .args = { { Sigset | OUT, 0 } } },
280 	{ .name = "sigprocmask", .ret_type = 1, .nargs = 3,
281 	  .args = { { Sigprocmask, 0 }, { Sigset, 1 }, { Sigset | OUT, 2 } } },
282 	{ .name = "sigqueue", .ret_type = 1, .nargs = 3,
283 	  .args = { { Int, 0 }, { Signal, 1 }, { LongHex, 2 } } },
284 	{ .name = "sigreturn", .ret_type = 1, .nargs = 1,
285 	  .args = { { Ptr, 0 } } },
286 	{ .name = "sigsuspend", .ret_type = 1, .nargs = 1,
287 	  .args = { { Sigset | IN, 0 } } },
288 	{ .name = "sigtimedwait", .ret_type = 1, .nargs = 3,
289 	  .args = { { Sigset | IN, 0 }, { Ptr, 1 }, { Timespec | IN, 2 } } },
290 	{ .name = "sigwait", .ret_type = 1, .nargs = 2,
291 	  .args = { { Sigset | IN, 0 }, { Ptr, 1 } } },
292 	{ .name = "sigwaitinfo", .ret_type = 1, .nargs = 2,
293 	  .args = { { Sigset | IN, 0 }, { Ptr, 1 } } },
294 	{ .name = "unmount", .ret_type = 1, .nargs = 2,
295 	  .args = { { Name, 0 }, { Int, 1 } } },
296 	{ .name = "socket", .ret_type = 1, .nargs = 3,
297 	  .args = { { Sockdomain, 0 }, { Socktype, 1 }, { Int, 2 } } },
298 	{ .name = "getrusage", .ret_type = 1, .nargs = 2,
299 	  .args = { { Int, 0 }, { Rusage | OUT, 1 } } },
300 	{ .name = "__getcwd", .ret_type = 1, .nargs = 2,
301 	  .args = { { Name | OUT, 0 }, { Int, 1 } } },
302 	{ .name = "shutdown", .ret_type = 1, .nargs = 2,
303 	  .args = { { Int, 0 }, { Shutdown, 1 } } },
304 	{ .name = "getrlimit", .ret_type = 1, .nargs = 2,
305 	  .args = { { Resource, 0 }, { Rlimit | OUT, 1 } } },
306 	{ .name = "setrlimit", .ret_type = 1, .nargs = 2,
307 	  .args = { { Resource, 0 }, { Rlimit | IN, 1 } } },
308 	{ .name = "utimes", .ret_type = 1, .nargs = 2,
309 	  .args = { { Name | IN, 0 }, { Timeval2 | IN, 1 } } },
310 	{ .name = "lutimes", .ret_type = 1, .nargs = 2,
311 	  .args = { { Name | IN, 0 }, { Timeval2 | IN, 1 } } },
312 	{ .name = "futimes", .ret_type = 1, .nargs = 2,
313 	  .args = { { Int, 0 }, { Timeval2 | IN, 1 } } },
314 	{ .name = "futimesat", .ret_type = 1, .nargs = 3,
315 	  .args = { { Atfd, 0 }, { Name | IN, 1 }, { Timeval2 | IN, 2 } } },
316 	{ .name = "futimens", .ret_type = 1, .nargs = 2,
317 	  .args = { { Int, 0 }, { Timespec2 | IN, 1 } } },
318 	{ .name = "utimensat", .ret_type = 1, .nargs = 4,
319 	  .args = { { Atfd, 0 }, { Name | IN, 1 }, { Timespec2 | IN, 2 },
320 		    { Atflags, 3 } } },
321 	{ .name = "chflags", .ret_type = 1, .nargs = 2,
322 	  .args = { { Name | IN, 0 }, { Hex, 1 } } },
323 	{ .name = "lchflags", .ret_type = 1, .nargs = 2,
324 	  .args = { { Name | IN, 0 }, { Hex, 1 } } },
325 	{ .name = "pathconf", .ret_type = 1, .nargs = 2,
326 	  .args = { { Name | IN, 0 }, { Pathconf, 1 } } },
327 	{ .name = "pipe", .ret_type = 1, .nargs = 1,
328 	  .args = { { PipeFds | OUT, 0 } } },
329 	{ .name = "pipe2", .ret_type = 1, .nargs = 2,
330 	  .args = { { Ptr, 0 }, { Open, 1 } } },
331 	{ .name = "truncate", .ret_type = 1, .nargs = 2,
332 	  .args = { { Name | IN, 0 }, { QuadHex | IN, 1 + QUAD_ALIGN } } },
333 	{ .name = "ftruncate", .ret_type = 1, .nargs = 2,
334 	  .args = { { Int | IN, 0 }, { QuadHex | IN, 1 + QUAD_ALIGN } } },
335 	{ .name = "kill", .ret_type = 1, .nargs = 2,
336 	  .args = { { Int | IN, 0 }, { Signal | IN, 1 } } },
337 	{ .name = "munmap", .ret_type = 1, .nargs = 2,
338 	  .args = { { Ptr, 0 }, { Int, 1 } } },
339 	{ .name = "read", .ret_type = 1, .nargs = 3,
340 	  .args = { { Int, 0 }, { BinString | OUT, 1 }, { Int, 2 } } },
341 	{ .name = "rename", .ret_type = 1, .nargs = 2,
342 	  .args = { { Name, 0 }, { Name, 1 } } },
343 	{ .name = "renameat", .ret_type = 1, .nargs = 4,
344 	  .args = { { Atfd, 0 }, { Name, 1 }, { Atfd, 2 }, { Name, 3 } } },
345 	{ .name = "symlink", .ret_type = 1, .nargs = 2,
346 	  .args = { { Name, 0 }, { Name, 1 } } },
347 	{ .name = "symlinkat", .ret_type = 1, .nargs = 3,
348 	  .args = { { Name, 0 }, { Atfd, 1 }, { Name, 2 } } },
349 	{ .name = "posix_openpt", .ret_type = 1, .nargs = 1,
350 	  .args = { { Open, 0 } } },
351 	{ .name = "wait4", .ret_type = 1, .nargs = 4,
352 	  .args = { { Int, 0 }, { ExitStatus | OUT, 1 }, { Waitoptions, 2 },
353 		    { Rusage | OUT, 3 } } },
354 	{ .name = "wait6", .ret_type = 1, .nargs = 6,
355 	  .args = { { Idtype, 0 }, { Quad, 1 + QUAD_ALIGN },
356 		    { ExitStatus | OUT, 1 + QUAD_ALIGN + QUAD_SLOTS },
357 		    { Waitoptions, 2 + QUAD_ALIGN + QUAD_SLOTS },
358 		    { Rusage | OUT, 3 + QUAD_ALIGN + QUAD_SLOTS },
359 		    { Ptr, 4 + QUAD_ALIGN + QUAD_SLOTS } } },
360 	{ .name = "procctl", .ret_type = 1, .nargs = 4,
361 	  .args = { { Idtype, 0 }, { Quad, 1 + QUAD_ALIGN },
362 		    { Procctl, 1 + QUAD_ALIGN + QUAD_SLOTS },
363 		    { Ptr, 2 + QUAD_ALIGN + QUAD_SLOTS } } },
364 	{ .name = "sysarch", .ret_type = 1, .nargs = 2,
365 	  .args = { { Sysarch, 0 }, { Ptr, 1 } } },
366 	{ .name = "_umtx_op", .ret_type = 1, .nargs = 5,
367 	  .args = { { Ptr, 0 }, { Umtxop, 1 }, { LongHex, 2 }, { Ptr, 3 },
368 		    { Ptr, 4 } } },
369 	{ .name = "thr_kill", .ret_type = 1, .nargs = 2,
370 	  .args = { { Long, 0 }, { Signal, 1 } } },
371 	{ .name = "thr_self", .ret_type = 1, .nargs = 1,
372 	  .args = { { Ptr, 0 } } },
373 	{ .name = 0 },
374 };
375 static STAILQ_HEAD(, syscall) syscalls;
376 
377 /* Xlat idea taken from strace */
378 struct xlat {
379 	int val;
380 	const char *str;
381 };
382 
383 #define	X(a)	{ a, #a },
384 #define	XEND	{ 0, NULL }
385 
386 static struct xlat kevent_filters[] = {
387 	X(EVFILT_READ) X(EVFILT_WRITE) X(EVFILT_AIO) X(EVFILT_VNODE)
388 	X(EVFILT_PROC) X(EVFILT_SIGNAL) X(EVFILT_TIMER)
389 	X(EVFILT_PROCDESC) X(EVFILT_FS) X(EVFILT_LIO) X(EVFILT_USER)
390 	X(EVFILT_SENDFILE) XEND
391 };
392 
393 static struct xlat kevent_flags[] = {
394 	X(EV_ADD) X(EV_DELETE) X(EV_ENABLE) X(EV_DISABLE) X(EV_ONESHOT)
395 	X(EV_CLEAR) X(EV_RECEIPT) X(EV_DISPATCH) X(EV_FORCEONESHOT)
396 	X(EV_DROP) X(EV_FLAG1) X(EV_ERROR) X(EV_EOF) XEND
397 };
398 
399 static struct xlat kevent_user_ffctrl[] = {
400 	X(NOTE_FFNOP) X(NOTE_FFAND) X(NOTE_FFOR) X(NOTE_FFCOPY)
401 	XEND
402 };
403 
404 static struct xlat kevent_rdwr_fflags[] = {
405 	X(NOTE_LOWAT) X(NOTE_FILE_POLL) XEND
406 };
407 
408 static struct xlat kevent_vnode_fflags[] = {
409 	X(NOTE_DELETE) X(NOTE_WRITE) X(NOTE_EXTEND) X(NOTE_ATTRIB)
410 	X(NOTE_LINK) X(NOTE_RENAME) X(NOTE_REVOKE) XEND
411 };
412 
413 static struct xlat kevent_proc_fflags[] = {
414 	X(NOTE_EXIT) X(NOTE_FORK) X(NOTE_EXEC) X(NOTE_TRACK) X(NOTE_TRACKERR)
415 	X(NOTE_CHILD) XEND
416 };
417 
418 static struct xlat kevent_timer_fflags[] = {
419 	X(NOTE_SECONDS) X(NOTE_MSECONDS) X(NOTE_USECONDS) X(NOTE_NSECONDS)
420 	XEND
421 };
422 
423 static struct xlat poll_flags[] = {
424 	X(POLLSTANDARD) X(POLLIN) X(POLLPRI) X(POLLOUT) X(POLLERR)
425 	X(POLLHUP) X(POLLNVAL) X(POLLRDNORM) X(POLLRDBAND)
426 	X(POLLWRBAND) X(POLLINIGNEOF) XEND
427 };
428 
429 static struct xlat mmap_flags[] = {
430 	X(MAP_SHARED) X(MAP_PRIVATE) X(MAP_FIXED) X(MAP_RESERVED0020)
431 	X(MAP_RESERVED0040) X(MAP_RESERVED0080) X(MAP_RESERVED0100)
432 	X(MAP_HASSEMAPHORE) X(MAP_STACK) X(MAP_NOSYNC) X(MAP_ANON)
433 	X(MAP_EXCL) X(MAP_NOCORE) X(MAP_PREFAULT_READ)
434 #ifdef MAP_32BIT
435 	X(MAP_32BIT)
436 #endif
437 	XEND
438 };
439 
440 static struct xlat mprot_flags[] = {
441 	X(PROT_NONE) X(PROT_READ) X(PROT_WRITE) X(PROT_EXEC) XEND
442 };
443 
444 static struct xlat whence_arg[] = {
445 	X(SEEK_SET) X(SEEK_CUR) X(SEEK_END) X(SEEK_DATA) X(SEEK_HOLE) XEND
446 };
447 
448 static struct xlat sigaction_flags[] = {
449 	X(SA_ONSTACK) X(SA_RESTART) X(SA_RESETHAND) X(SA_NOCLDSTOP)
450 	X(SA_NODEFER) X(SA_NOCLDWAIT) X(SA_SIGINFO) XEND
451 };
452 
453 static struct xlat fcntl_arg[] = {
454 	X(F_DUPFD) X(F_GETFD) X(F_SETFD) X(F_GETFL) X(F_SETFL)
455 	X(F_GETOWN) X(F_SETOWN) X(F_OGETLK) X(F_OSETLK) X(F_OSETLKW)
456 	X(F_DUP2FD) X(F_GETLK) X(F_SETLK) X(F_SETLKW) X(F_SETLK_REMOTE)
457 	X(F_READAHEAD) X(F_RDAHEAD) X(F_DUPFD_CLOEXEC) X(F_DUP2FD_CLOEXEC)
458 	XEND
459 };
460 
461 static struct xlat fcntlfd_arg[] = {
462 	X(FD_CLOEXEC) XEND
463 };
464 
465 static struct xlat fcntlfl_arg[] = {
466 	X(O_APPEND) X(O_ASYNC) X(O_FSYNC) X(O_NONBLOCK) X(O_NOFOLLOW)
467 	X(FRDAHEAD) X(O_DIRECT) XEND
468 };
469 
470 static struct xlat sockdomain_arg[] = {
471 	X(PF_UNSPEC) X(PF_LOCAL) X(PF_UNIX) X(PF_INET) X(PF_IMPLINK)
472 	X(PF_PUP) X(PF_CHAOS) X(PF_NETBIOS) X(PF_ISO) X(PF_OSI)
473 	X(PF_ECMA) X(PF_DATAKIT) X(PF_CCITT) X(PF_SNA) X(PF_DECnet)
474 	X(PF_DLI) X(PF_LAT) X(PF_HYLINK) X(PF_APPLETALK) X(PF_ROUTE)
475 	X(PF_LINK) X(PF_XTP) X(PF_COIP) X(PF_CNT) X(PF_SIP) X(PF_IPX)
476 	X(PF_RTIP) X(PF_PIP) X(PF_ISDN) X(PF_KEY) X(PF_INET6)
477 	X(PF_NATM) X(PF_ATM) X(PF_NETGRAPH) X(PF_SLOW) X(PF_SCLUSTER)
478 	X(PF_ARP) X(PF_BLUETOOTH) X(PF_IEEE80211) X(PF_INET_SDP)
479 	X(PF_INET6_SDP) XEND
480 };
481 
482 static struct xlat socktype_arg[] = {
483 	X(SOCK_STREAM) X(SOCK_DGRAM) X(SOCK_RAW) X(SOCK_RDM)
484 	X(SOCK_SEQPACKET) XEND
485 };
486 
487 static struct xlat open_flags[] = {
488 	X(O_RDONLY) X(O_WRONLY) X(O_RDWR) X(O_ACCMODE) X(O_NONBLOCK)
489 	X(O_APPEND) X(O_SHLOCK) X(O_EXLOCK) X(O_ASYNC) X(O_FSYNC)
490 	X(O_NOFOLLOW) X(O_CREAT) X(O_TRUNC) X(O_EXCL) X(O_NOCTTY)
491 	X(O_DIRECT) X(O_DIRECTORY) X(O_EXEC) X(O_TTY_INIT) X(O_CLOEXEC)
492 	X(O_VERIFY) XEND
493 };
494 
495 static struct xlat shutdown_arg[] = {
496 	X(SHUT_RD) X(SHUT_WR) X(SHUT_RDWR) XEND
497 };
498 
499 static struct xlat resource_arg[] = {
500 	X(RLIMIT_CPU) X(RLIMIT_FSIZE) X(RLIMIT_DATA) X(RLIMIT_STACK)
501 	X(RLIMIT_CORE) X(RLIMIT_RSS) X(RLIMIT_MEMLOCK) X(RLIMIT_NPROC)
502 	X(RLIMIT_NOFILE) X(RLIMIT_SBSIZE) X(RLIMIT_VMEM) X(RLIMIT_NPTS)
503 	X(RLIMIT_SWAP) X(RLIMIT_KQUEUES) XEND
504 };
505 
506 static struct xlat pathconf_arg[] = {
507 	X(_PC_LINK_MAX)  X(_PC_MAX_CANON)  X(_PC_MAX_INPUT)
508 	X(_PC_NAME_MAX) X(_PC_PATH_MAX) X(_PC_PIPE_BUF)
509 	X(_PC_CHOWN_RESTRICTED) X(_PC_NO_TRUNC) X(_PC_VDISABLE)
510 	X(_PC_ASYNC_IO) X(_PC_PRIO_IO) X(_PC_SYNC_IO)
511 	X(_PC_ALLOC_SIZE_MIN) X(_PC_FILESIZEBITS)
512 	X(_PC_REC_INCR_XFER_SIZE) X(_PC_REC_MAX_XFER_SIZE)
513 	X(_PC_REC_MIN_XFER_SIZE) X(_PC_REC_XFER_ALIGN)
514 	X(_PC_SYMLINK_MAX) X(_PC_ACL_EXTENDED) X(_PC_ACL_PATH_MAX)
515 	X(_PC_CAP_PRESENT) X(_PC_INF_PRESENT) X(_PC_MAC_PRESENT)
516 	X(_PC_ACL_NFS4) X(_PC_MIN_HOLE_SIZE) XEND
517 };
518 
519 static struct xlat rfork_flags[] = {
520 	X(RFFDG) X(RFPROC) X(RFMEM) X(RFNOWAIT) X(RFCFDG) X(RFTHREAD)
521 	X(RFSIGSHARE) X(RFLINUXTHPN) X(RFTSIGZMB) X(RFPPWAIT) XEND
522 };
523 
524 static struct xlat wait_options[] = {
525 	X(WNOHANG) X(WUNTRACED) X(WCONTINUED) X(WNOWAIT) X(WEXITED)
526 	X(WTRAPPED) XEND
527 };
528 
529 static struct xlat idtype_arg[] = {
530 	X(P_PID) X(P_PPID) X(P_PGID) X(P_SID) X(P_CID) X(P_UID) X(P_GID)
531 	X(P_ALL) X(P_LWPID) X(P_TASKID) X(P_PROJID) X(P_POOLID) X(P_JAILID)
532 	X(P_CTID) X(P_CPUID) X(P_PSETID) XEND
533 };
534 
535 static struct xlat procctl_arg[] = {
536 	X(PROC_SPROTECT) X(PROC_REAP_ACQUIRE) X(PROC_REAP_RELEASE)
537 	X(PROC_REAP_STATUS) X(PROC_REAP_GETPIDS) X(PROC_REAP_KILL)
538 	X(PROC_TRACE_CTL) X(PROC_TRACE_STATUS) XEND
539 };
540 
541 static struct xlat umtx_ops[] = {
542 	X(UMTX_OP_RESERVED0) X(UMTX_OP_RESERVED1) X(UMTX_OP_WAIT)
543 	X(UMTX_OP_WAKE) X(UMTX_OP_MUTEX_TRYLOCK) X(UMTX_OP_MUTEX_LOCK)
544 	X(UMTX_OP_MUTEX_UNLOCK) X(UMTX_OP_SET_CEILING) X(UMTX_OP_CV_WAIT)
545 	X(UMTX_OP_CV_SIGNAL) X(UMTX_OP_CV_BROADCAST) X(UMTX_OP_WAIT_UINT)
546 	X(UMTX_OP_RW_RDLOCK) X(UMTX_OP_RW_WRLOCK) X(UMTX_OP_RW_UNLOCK)
547 	X(UMTX_OP_WAIT_UINT_PRIVATE) X(UMTX_OP_WAKE_PRIVATE)
548 	X(UMTX_OP_MUTEX_WAIT) X(UMTX_OP_MUTEX_WAKE) X(UMTX_OP_SEM_WAIT)
549 	X(UMTX_OP_SEM_WAKE) X(UMTX_OP_NWAKE_PRIVATE) X(UMTX_OP_MUTEX_WAKE2)
550 	X(UMTX_OP_SEM2_WAIT) X(UMTX_OP_SEM2_WAKE)
551 	XEND
552 };
553 
554 static struct xlat at_flags[] = {
555 	X(AT_EACCESS) X(AT_SYMLINK_NOFOLLOW) X(AT_SYMLINK_FOLLOW)
556 	X(AT_REMOVEDIR) XEND
557 };
558 
559 static struct xlat access_modes[] = {
560 	X(R_OK) X(W_OK) X(X_OK) XEND
561 };
562 
563 static struct xlat sysarch_ops[] = {
564 #if defined(__i386__) || defined(__amd64__)
565 	X(I386_GET_LDT) X(I386_SET_LDT) X(I386_GET_IOPERM) X(I386_SET_IOPERM)
566 	X(I386_VM86) X(I386_GET_FSBASE) X(I386_SET_FSBASE) X(I386_GET_GSBASE)
567 	X(I386_SET_GSBASE) X(I386_GET_XFPUSTATE) X(AMD64_GET_FSBASE)
568 	X(AMD64_SET_FSBASE) X(AMD64_GET_GSBASE) X(AMD64_SET_GSBASE)
569 	X(AMD64_GET_XFPUSTATE)
570 #endif
571 	XEND
572 };
573 
574 static struct xlat linux_socketcall_ops[] = {
575 	X(LINUX_SOCKET) X(LINUX_BIND) X(LINUX_CONNECT) X(LINUX_LISTEN)
576 	X(LINUX_ACCEPT) X(LINUX_GETSOCKNAME) X(LINUX_GETPEERNAME)
577 	X(LINUX_SOCKETPAIR) X(LINUX_SEND) X(LINUX_RECV) X(LINUX_SENDTO)
578 	X(LINUX_RECVFROM) X(LINUX_SHUTDOWN) X(LINUX_SETSOCKOPT)
579 	X(LINUX_GETSOCKOPT) X(LINUX_SENDMSG) X(LINUX_RECVMSG)
580 	XEND
581 };
582 
583 static struct xlat sigprocmask_ops[] = {
584 	X(SIG_BLOCK) X(SIG_UNBLOCK) X(SIG_SETMASK)
585 	XEND
586 };
587 
588 #undef X
589 #undef XEND
590 
591 /*
592  * Searches an xlat array for a value, and returns it if found.  Otherwise
593  * return a string representation.
594  */
595 static const char *
596 lookup(struct xlat *xlat, int val, int base)
597 {
598 	static char tmp[16];
599 
600 	for (; xlat->str != NULL; xlat++)
601 		if (xlat->val == val)
602 			return (xlat->str);
603 	switch (base) {
604 		case 8:
605 			sprintf(tmp, "0%o", val);
606 			break;
607 		case 16:
608 			sprintf(tmp, "0x%x", val);
609 			break;
610 		case 10:
611 			sprintf(tmp, "%u", val);
612 			break;
613 		default:
614 			errx(1,"Unknown lookup base");
615 			break;
616 	}
617 	return (tmp);
618 }
619 
620 static const char *
621 xlookup(struct xlat *xlat, int val)
622 {
623 
624 	return (lookup(xlat, val, 16));
625 }
626 
627 /*
628  * Searches an xlat array containing bitfield values.  Remaining bits
629  * set after removing the known ones are printed at the end:
630  * IN|0x400.
631  */
632 static char *
633 xlookup_bits(struct xlat *xlat, int val)
634 {
635 	int len, rem;
636 	static char str[512];
637 
638 	len = 0;
639 	rem = val;
640 	for (; xlat->str != NULL; xlat++) {
641 		if ((xlat->val & rem) == xlat->val) {
642 			/*
643 			 * Don't print the "all-bits-zero" string unless all
644 			 * bits are really zero.
645 			 */
646 			if (xlat->val == 0 && val != 0)
647 				continue;
648 			len += sprintf(str + len, "%s|", xlat->str);
649 			rem &= ~(xlat->val);
650 		}
651 	}
652 
653 	/*
654 	 * If we have leftover bits or didn't match anything, print
655 	 * the remainder.
656 	 */
657 	if (rem || len == 0)
658 		len += sprintf(str + len, "0x%x", rem);
659 	if (len && str[len - 1] == '|')
660 		len--;
661 	str[len] = 0;
662 	return (str);
663 }
664 
665 void
666 init_syscalls(void)
667 {
668 	struct syscall *sc;
669 
670 	STAILQ_INIT(&syscalls);
671 	for (sc = decoded_syscalls; sc->name != NULL; sc++)
672 		STAILQ_INSERT_HEAD(&syscalls, sc, entries);
673 }
674 /*
675  * If/when the list gets big, it might be desirable to do it
676  * as a hash table or binary search.
677  */
678 struct syscall *
679 get_syscall(const char *name, int nargs)
680 {
681 	struct syscall *sc;
682 	int i;
683 
684 	if (name == NULL)
685 		return (NULL);
686 	STAILQ_FOREACH(sc, &syscalls, entries)
687 		if (strcmp(name, sc->name) == 0)
688 			return (sc);
689 
690 	/* It is unknown.  Add it into the list. */
691 #if DEBUG
692 	fprintf(stderr, "unknown syscall %s -- setting args to %d\n", name,
693 	    nargs);
694 #endif
695 
696 	sc = calloc(1, sizeof(struct syscall));
697 	sc->name = strdup(name);
698 	sc->ret_type = 1;
699 	sc->nargs = nargs;
700 	for (i = 0; i < nargs; i++) {
701 		sc->args[i].offset = i;
702 		/* Treat all unknown arguments as LongHex. */
703 		sc->args[i].type = LongHex;
704 	}
705 	STAILQ_INSERT_HEAD(&syscalls, sc, entries);
706 
707 	return (sc);
708 }
709 
710 /*
711  * Copy a fixed amount of bytes from the process.
712  */
713 static int
714 get_struct(pid_t pid, void *offset, void *buf, int len)
715 {
716 	struct ptrace_io_desc iorequest;
717 
718 	iorequest.piod_op = PIOD_READ_D;
719 	iorequest.piod_offs = offset;
720 	iorequest.piod_addr = buf;
721 	iorequest.piod_len = len;
722 	if (ptrace(PT_IO, pid, (caddr_t)&iorequest, 0) < 0)
723 		return (-1);
724 	return (0);
725 }
726 
727 #define	MAXSIZE		4096
728 
729 /*
730  * Copy a string from the process.  Note that it is
731  * expected to be a C string, but if max is set, it will
732  * only get that much.
733  */
734 static char *
735 get_string(pid_t pid, void *addr, int max)
736 {
737 	struct ptrace_io_desc iorequest;
738 	char *buf, *nbuf;
739 	size_t offset, size, totalsize;
740 
741 	offset = 0;
742 	if (max)
743 		size = max + 1;
744 	else {
745 		/* Read up to the end of the current page. */
746 		size = PAGE_SIZE - ((uintptr_t)addr % PAGE_SIZE);
747 		if (size > MAXSIZE)
748 			size = MAXSIZE;
749 	}
750 	totalsize = size;
751 	buf = malloc(totalsize);
752 	if (buf == NULL)
753 		return (NULL);
754 	for (;;) {
755 		iorequest.piod_op = PIOD_READ_D;
756 		iorequest.piod_offs = (char *)addr + offset;
757 		iorequest.piod_addr = buf + offset;
758 		iorequest.piod_len = size;
759 		if (ptrace(PT_IO, pid, (caddr_t)&iorequest, 0) < 0) {
760 			free(buf);
761 			return (NULL);
762 		}
763 		if (memchr(buf + offset, '\0', size) != NULL)
764 			return (buf);
765 		offset += size;
766 		if (totalsize < MAXSIZE && max == 0) {
767 			size = MAXSIZE - totalsize;
768 			if (size > PAGE_SIZE)
769 				size = PAGE_SIZE;
770 			nbuf = realloc(buf, totalsize + size);
771 			if (nbuf == NULL) {
772 				buf[totalsize - 1] = '\0';
773 				return (buf);
774 			}
775 			buf = nbuf;
776 			totalsize += size;
777 		} else {
778 			buf[totalsize - 1] = '\0';
779 			return (buf);
780 		}
781 	}
782 }
783 
784 static char *
785 strsig2(int sig)
786 {
787 	static char tmp[sizeof(int) * 3 + 1];
788 	char *ret;
789 
790 	ret = strsig(sig);
791 	if (ret == NULL) {
792 		snprintf(tmp, sizeof(tmp), "%d", sig);
793 		ret = tmp;
794 	}
795 	return (ret);
796 }
797 
798 static void
799 print_kevent(FILE *fp, struct kevent *ke, int input)
800 {
801 
802 	switch (ke->filter) {
803 	case EVFILT_READ:
804 	case EVFILT_WRITE:
805 	case EVFILT_VNODE:
806 	case EVFILT_PROC:
807 	case EVFILT_TIMER:
808 	case EVFILT_PROCDESC:
809 		fprintf(fp, "%ju", (uintmax_t)ke->ident);
810 		break;
811 	case EVFILT_SIGNAL:
812 		fputs(strsig2(ke->ident), fp);
813 		break;
814 	default:
815 		fprintf(fp, "%p", (void *)ke->ident);
816 	}
817 	fprintf(fp, ",%s,%s,", xlookup(kevent_filters, ke->filter),
818 	    xlookup_bits(kevent_flags, ke->flags));
819 	switch (ke->filter) {
820 	case EVFILT_READ:
821 	case EVFILT_WRITE:
822 		fputs(xlookup_bits(kevent_rdwr_fflags, ke->fflags), fp);
823 		break;
824 	case EVFILT_VNODE:
825 		fputs(xlookup_bits(kevent_vnode_fflags, ke->fflags), fp);
826 		break;
827 	case EVFILT_PROC:
828 	case EVFILT_PROCDESC:
829 		fputs(xlookup_bits(kevent_proc_fflags, ke->fflags), fp);
830 		break;
831 	case EVFILT_TIMER:
832 		fputs(xlookup_bits(kevent_timer_fflags, ke->fflags), fp);
833 		break;
834 	case EVFILT_USER: {
835 		int ctrl, data;
836 
837 		ctrl = ke->fflags & NOTE_FFCTRLMASK;
838 		data = ke->fflags & NOTE_FFLAGSMASK;
839 		if (input) {
840 			fputs(xlookup(kevent_user_ffctrl, ctrl), fp);
841 			if (ke->fflags & NOTE_TRIGGER)
842 				fputs("|NOTE_TRIGGER", fp);
843 			if (data != 0)
844 				fprintf(fp, "|%#x", data);
845 		} else {
846 			fprintf(fp, "%#x", data);
847 		}
848 		break;
849 	}
850 	default:
851 		fprintf(fp, "%#x", ke->fflags);
852 	}
853 	fprintf(fp, ",%p,%p", (void *)ke->data, (void *)ke->udata);
854 }
855 
856 /*
857  * Converts a syscall argument into a string.  Said string is
858  * allocated via malloc(), so needs to be free()'d.  sc is
859  * a pointer to the syscall description (see above); args is
860  * an array of all of the system call arguments.
861  */
862 char *
863 print_arg(struct syscall_args *sc, unsigned long *args, long *retval,
864     struct trussinfo *trussinfo)
865 {
866 	FILE *fp;
867 	char *tmp;
868 	size_t tmplen;
869 	pid_t pid;
870 
871 	fp = open_memstream(&tmp, &tmplen);
872 	pid = trussinfo->curthread->proc->pid;
873 	switch (sc->type & ARG_MASK) {
874 	case Hex:
875 		fprintf(fp, "0x%x", (int)args[sc->offset]);
876 		break;
877 	case Octal:
878 		fprintf(fp, "0%o", (int)args[sc->offset]);
879 		break;
880 	case Int:
881 		fprintf(fp, "%d", (int)args[sc->offset]);
882 		break;
883 	case LongHex:
884 		fprintf(fp, "0x%lx", args[sc->offset]);
885 		break;
886 	case Long:
887 		fprintf(fp, "%ld", args[sc->offset]);
888 		break;
889 	case Name: {
890 		/* NULL-terminated string. */
891 		char *tmp2;
892 
893 		tmp2 = get_string(pid, (void*)args[sc->offset], 0);
894 		fprintf(fp, "\"%s\"", tmp2);
895 		free(tmp2);
896 		break;
897 	}
898 	case BinString: {
899 		/*
900 		 * Binary block of data that might have printable characters.
901 		 * XXX If type|OUT, assume that the length is the syscall's
902 		 * return value.  Otherwise, assume that the length of the block
903 		 * is in the next syscall argument.
904 		 */
905 		int max_string = trussinfo->strsize;
906 		char tmp2[max_string + 1], *tmp3;
907 		int len;
908 		int truncated = 0;
909 
910 		if (sc->type & OUT)
911 			len = retval[0];
912 		else
913 			len = args[sc->offset + 1];
914 
915 		/*
916 		 * Don't print more than max_string characters, to avoid word
917 		 * wrap.  If we have to truncate put some ... after the string.
918 		 */
919 		if (len > max_string) {
920 			len = max_string;
921 			truncated = 1;
922 		}
923 		if (len && get_struct(pid, (void*)args[sc->offset], &tmp2, len)
924 		    != -1) {
925 			tmp3 = malloc(len * 4 + 1);
926 			while (len) {
927 				if (strvisx(tmp3, tmp2, len,
928 				    VIS_CSTYLE|VIS_TAB|VIS_NL) <= max_string)
929 					break;
930 				len--;
931 				truncated = 1;
932 			};
933 			fprintf(fp, "\"%s\"%s", tmp3, truncated ?
934 			    "..." : "");
935 			free(tmp3);
936 		} else {
937 			fprintf(fp, "0x%lx", args[sc->offset]);
938 		}
939 		break;
940 	}
941 	case ExecArgs:
942 	case ExecEnv:
943 	case StringArray: {
944 		uintptr_t addr;
945 		union {
946 			char *strarray[0];
947 			char buf[PAGE_SIZE];
948 		} u;
949 		char *string;
950 		size_t len;
951 		u_int first, i;
952 
953 		/*
954 		 * Only parse argv[] and environment arrays from exec calls
955 		 * if requested.
956 		 */
957 		if (((sc->type & ARG_MASK) == ExecArgs &&
958 		    (trussinfo->flags & EXECVEARGS) == 0) ||
959 		    ((sc->type & ARG_MASK) == ExecEnv &&
960 		    (trussinfo->flags & EXECVEENVS) == 0)) {
961 			fprintf(fp, "0x%lx", args[sc->offset]);
962 			break;
963 		}
964 
965 		/*
966 		 * Read a page of pointers at a time.  Punt if the top-level
967 		 * pointer is not aligned.  Note that the first read is of
968 		 * a partial page.
969 		 */
970 		addr = args[sc->offset];
971 		if (addr % sizeof(char *) != 0) {
972 			fprintf(fp, "0x%lx", args[sc->offset]);
973 			break;
974 		}
975 
976 		len = PAGE_SIZE - (addr & PAGE_MASK);
977 		if (get_struct(pid, (void *)addr, u.buf, len) == -1) {
978 			fprintf(fp, "0x%lx", args[sc->offset]);
979 			break;
980 		}
981 
982 		fputc('[', fp);
983 		first = 1;
984 		i = 0;
985 		while (u.strarray[i] != NULL) {
986 			string = get_string(pid, u.strarray[i], 0);
987 			fprintf(fp, "%s \"%s\"", first ? "" : ",", string);
988 			free(string);
989 			first = 0;
990 
991 			i++;
992 			if (i == len / sizeof(char *)) {
993 				addr += len;
994 				len = PAGE_SIZE;
995 				if (get_struct(pid, (void *)addr, u.buf, len) ==
996 				    -1) {
997 					fprintf(fp, ", <inval>");
998 					break;
999 				}
1000 				i = 0;
1001 			}
1002 		}
1003 		fputs(" ]", fp);
1004 		break;
1005 	}
1006 #ifdef __LP64__
1007 	case Quad:
1008 		fprintf(fp, "%ld", args[sc->offset]);
1009 		break;
1010 	case QuadHex:
1011 		fprintf(fp, "0x%lx", args[sc->offset]);
1012 		break;
1013 #else
1014 	case Quad:
1015 	case QuadHex: {
1016 		unsigned long long ll;
1017 
1018 #if _BYTE_ORDER == _LITTLE_ENDIAN
1019 		ll = (unsigned long long)args[sc->offset + 1] << 32 |
1020 		    args[sc->offset];
1021 #else
1022 		ll = (unsigned long long)args[sc->offset] << 32 |
1023 		    args[sc->offset + 1];
1024 #endif
1025 		if ((sc->type & ARG_MASK) == Quad)
1026 			fprintf(fp, "%lld", ll);
1027 		else
1028 			fprintf(fp, "0x%llx", ll);
1029 		break;
1030 	}
1031 #endif
1032 	case Ptr:
1033 		fprintf(fp, "0x%lx", args[sc->offset]);
1034 		break;
1035 	case Readlinkres: {
1036 		char *tmp2;
1037 
1038 		if (retval[0] == -1)
1039 			break;
1040 		tmp2 = get_string(pid, (void*)args[sc->offset], retval[0]);
1041 		fprintf(fp, "\"%s\"", tmp2);
1042 		free(tmp2);
1043 		break;
1044 	}
1045 	case Ioctl: {
1046 		const char *temp;
1047 		unsigned long cmd;
1048 
1049 		cmd = args[sc->offset];
1050 		temp = ioctlname(cmd);
1051 		if (temp)
1052 			fputs(temp, fp);
1053 		else {
1054 			fprintf(fp, "0x%lx { IO%s%s 0x%lx('%c'), %lu, %lu }",
1055 			    cmd, cmd & IOC_OUT ? "R" : "",
1056 			    cmd & IOC_IN ? "W" : "", IOCGROUP(cmd),
1057 			    isprint(IOCGROUP(cmd)) ? (char)IOCGROUP(cmd) : '?',
1058 			    cmd & 0xFF, IOCPARM_LEN(cmd));
1059 		}
1060 		break;
1061 	}
1062 	case Timespec: {
1063 		struct timespec ts;
1064 
1065 		if (get_struct(pid, (void *)args[sc->offset], &ts,
1066 		    sizeof(ts)) != -1)
1067 			fprintf(fp, "{ %jd.%09ld }", (intmax_t)ts.tv_sec,
1068 			    ts.tv_nsec);
1069 		else
1070 			fprintf(fp, "0x%lx", args[sc->offset]);
1071 		break;
1072 	}
1073 	case Timespec2: {
1074 		struct timespec ts[2];
1075 		const char *sep;
1076 		unsigned int i;
1077 
1078 		if (get_struct(pid, (void *)args[sc->offset], &ts, sizeof(ts))
1079 		    != -1) {
1080 			fputs("{ ", fp);
1081 			sep = "";
1082 			for (i = 0; i < nitems(ts); i++) {
1083 				fputs(sep, fp);
1084 				sep = ", ";
1085 				switch (ts[i].tv_nsec) {
1086 				case UTIME_NOW:
1087 					fprintf(fp, "UTIME_NOW");
1088 					break;
1089 				case UTIME_OMIT:
1090 					fprintf(fp, "UTIME_OMIT");
1091 					break;
1092 				default:
1093 					fprintf(fp, "%jd.%09ld",
1094 					    (intmax_t)ts[i].tv_sec,
1095 					    ts[i].tv_nsec);
1096 					break;
1097 				}
1098 			}
1099 			fputs(" }", fp);
1100 		} else
1101 			fprintf(fp, "0x%lx", args[sc->offset]);
1102 		break;
1103 	}
1104 	case Timeval: {
1105 		struct timeval tv;
1106 
1107 		if (get_struct(pid, (void *)args[sc->offset], &tv, sizeof(tv))
1108 		    != -1)
1109 			fprintf(fp, "{ %jd.%06ld }", (intmax_t)tv.tv_sec,
1110 			    tv.tv_usec);
1111 		else
1112 			fprintf(fp, "0x%lx", args[sc->offset]);
1113 		break;
1114 	}
1115 	case Timeval2: {
1116 		struct timeval tv[2];
1117 
1118 		if (get_struct(pid, (void *)args[sc->offset], &tv, sizeof(tv))
1119 		    != -1)
1120 			fprintf(fp, "{ %jd.%06ld, %jd.%06ld }",
1121 			    (intmax_t)tv[0].tv_sec, tv[0].tv_usec,
1122 			    (intmax_t)tv[1].tv_sec, tv[1].tv_usec);
1123 		else
1124 			fprintf(fp, "0x%lx", args[sc->offset]);
1125 		break;
1126 	}
1127 	case Itimerval: {
1128 		struct itimerval itv;
1129 
1130 		if (get_struct(pid, (void *)args[sc->offset], &itv,
1131 		    sizeof(itv)) != -1)
1132 			fprintf(fp, "{ %jd.%06ld, %jd.%06ld }",
1133 			    (intmax_t)itv.it_interval.tv_sec,
1134 			    itv.it_interval.tv_usec,
1135 			    (intmax_t)itv.it_value.tv_sec,
1136 			    itv.it_value.tv_usec);
1137 		else
1138 			fprintf(fp, "0x%lx", args[sc->offset]);
1139 		break;
1140 	}
1141 	case LinuxSockArgs:
1142 	{
1143 		struct linux_socketcall_args largs;
1144 
1145 		if (get_struct(pid, (void *)args[sc->offset], (void *)&largs,
1146 		    sizeof(largs)) != -1)
1147 			fprintf(fp, "{ %s, 0x%lx }",
1148 			    lookup(linux_socketcall_ops, largs.what, 10),
1149 			    (long unsigned int)largs.args);
1150 		else
1151 			fprintf(fp, "0x%lx", args[sc->offset]);
1152 		break;
1153 	}
1154 	case Pollfd: {
1155 		/*
1156 		 * XXX: A Pollfd argument expects the /next/ syscall argument
1157 		 * to be the number of fds in the array. This matches the poll
1158 		 * syscall.
1159 		 */
1160 		struct pollfd *pfd;
1161 		int numfds = args[sc->offset + 1];
1162 		size_t bytes = sizeof(struct pollfd) * numfds;
1163 		int i;
1164 
1165 		if ((pfd = malloc(bytes)) == NULL)
1166 			err(1, "Cannot malloc %zu bytes for pollfd array",
1167 			    bytes);
1168 		if (get_struct(pid, (void *)args[sc->offset], pfd, bytes)
1169 		    != -1) {
1170 			fputs("{", fp);
1171 			for (i = 0; i < numfds; i++) {
1172 				fprintf(fp, " %d/%s", pfd[i].fd,
1173 				    xlookup_bits(poll_flags, pfd[i].events));
1174 			}
1175 			fputs(" }", fp);
1176 		} else {
1177 			fprintf(fp, "0x%lx", args[sc->offset]);
1178 		}
1179 		free(pfd);
1180 		break;
1181 	}
1182 	case Fd_set: {
1183 		/*
1184 		 * XXX: A Fd_set argument expects the /first/ syscall argument
1185 		 * to be the number of fds in the array.  This matches the
1186 		 * select syscall.
1187 		 */
1188 		fd_set *fds;
1189 		int numfds = args[0];
1190 		size_t bytes = _howmany(numfds, _NFDBITS) * _NFDBITS;
1191 		int i;
1192 
1193 		if ((fds = malloc(bytes)) == NULL)
1194 			err(1, "Cannot malloc %zu bytes for fd_set array",
1195 			    bytes);
1196 		if (get_struct(pid, (void *)args[sc->offset], fds, bytes)
1197 		    != -1) {
1198 			fputs("{", fp);
1199 			for (i = 0; i < numfds; i++) {
1200 				if (FD_ISSET(i, fds))
1201 					fprintf(fp, " %d", i);
1202 			}
1203 			fputs(" }", fp);
1204 		} else
1205 			fprintf(fp, "0x%lx", args[sc->offset]);
1206 		free(fds);
1207 		break;
1208 	}
1209 	case Signal:
1210 		fputs(strsig2(args[sc->offset]), fp);
1211 		break;
1212 	case Sigset: {
1213 		long sig;
1214 		sigset_t ss;
1215 		int i, first;
1216 
1217 		sig = args[sc->offset];
1218 		if (get_struct(pid, (void *)args[sc->offset], (void *)&ss,
1219 		    sizeof(ss)) == -1) {
1220 			fprintf(fp, "0x%lx", args[sc->offset]);
1221 			break;
1222 		}
1223 		fputs("{ ", fp);
1224 		first = 1;
1225 		for (i = 1; i < sys_nsig; i++) {
1226 			if (sigismember(&ss, i)) {
1227 				fprintf(fp, "%s%s", !first ? "|" : "",
1228 				    strsig(i));
1229 				first = 0;
1230 			}
1231 		}
1232 		if (!first)
1233 			fputc(' ', fp);
1234 		fputc('}', fp);
1235 		break;
1236 	}
1237 	case Sigprocmask: {
1238 		fputs(xlookup(sigprocmask_ops, args[sc->offset]), fp);
1239 		break;
1240 	}
1241 	case Fcntlflag: {
1242 		/* XXX: Output depends on the value of the previous argument. */
1243 		switch (args[sc->offset - 1]) {
1244 		case F_SETFD:
1245 			fputs(xlookup_bits(fcntlfd_arg, args[sc->offset]), fp);
1246 			break;
1247 		case F_SETFL:
1248 			fputs(xlookup_bits(fcntlfl_arg, args[sc->offset]), fp);
1249 			break;
1250 		case F_GETFD:
1251 		case F_GETFL:
1252 		case F_GETOWN:
1253 			break;
1254 		default:
1255 			fprintf(fp, "0x%lx", args[sc->offset]);
1256 			break;
1257 		}
1258 		break;
1259 	}
1260 	case Open:
1261 		fputs(xlookup_bits(open_flags, args[sc->offset]), fp);
1262 		break;
1263 	case Fcntl:
1264 		fputs(xlookup(fcntl_arg, args[sc->offset]), fp);
1265 		break;
1266 	case Mprot:
1267 		fputs(xlookup_bits(mprot_flags, args[sc->offset]), fp);
1268 		break;
1269 	case Mmapflags: {
1270 		int align, flags;
1271 
1272 		/*
1273 		 * MAP_ALIGNED can't be handled by xlookup_bits(), so
1274 		 * generate that string manually and prepend it to the
1275 		 * string from xlookup_bits().  Have to be careful to
1276 		 * avoid outputting MAP_ALIGNED|0 if MAP_ALIGNED is
1277 		 * the only flag.
1278 		 */
1279 		flags = args[sc->offset] & ~MAP_ALIGNMENT_MASK;
1280 		align = args[sc->offset] & MAP_ALIGNMENT_MASK;
1281 		if (align != 0) {
1282 			if (align == MAP_ALIGNED_SUPER)
1283 				fputs("MAP_ALIGNED_SUPER", fp);
1284 			else
1285 				fprintf(fp, "MAP_ALIGNED(%d)",
1286 				    align >> MAP_ALIGNMENT_SHIFT);
1287 			if (flags == 0)
1288 				break;
1289 			fputc('|', fp);
1290 		}
1291 		fputs(xlookup_bits(mmap_flags, flags), fp);
1292 		break;
1293 	}
1294 	case Whence:
1295 		fputs(xlookup(whence_arg, args[sc->offset]), fp);
1296 		break;
1297 	case Sockdomain:
1298 		fputs(xlookup(sockdomain_arg, args[sc->offset]), fp);
1299 		break;
1300 	case Socktype: {
1301 		int type, flags;
1302 
1303 		flags = args[sc->offset] & (SOCK_CLOEXEC | SOCK_NONBLOCK);
1304 		type = args[sc->offset] & ~flags;
1305 		fputs(xlookup(socktype_arg, type), fp);
1306 		if (flags & SOCK_CLOEXEC)
1307 			fprintf(fp, "|SOCK_CLOEXEC");
1308 		if (flags & SOCK_NONBLOCK)
1309 			fprintf(fp, "|SOCK_NONBLOCK");
1310 		break;
1311 	}
1312 	case Shutdown:
1313 		fputs(xlookup(shutdown_arg, args[sc->offset]), fp);
1314 		break;
1315 	case Resource:
1316 		fputs(xlookup(resource_arg, args[sc->offset]), fp);
1317 		break;
1318 	case Pathconf:
1319 		fputs(xlookup(pathconf_arg, args[sc->offset]), fp);
1320 		break;
1321 	case Rforkflags:
1322 		fputs(xlookup_bits(rfork_flags, args[sc->offset]), fp);
1323 		break;
1324 	case Sockaddr: {
1325 		char addr[64];
1326 		struct sockaddr_in *lsin;
1327 		struct sockaddr_in6 *lsin6;
1328 		struct sockaddr_un *sun;
1329 		struct sockaddr *sa;
1330 		socklen_t len;
1331 		u_char *q;
1332 
1333 		if (args[sc->offset] == 0) {
1334 			fputs("NULL", fp);
1335 			break;
1336 		}
1337 
1338 		/*
1339 		 * Extract the address length from the next argument.  If
1340 		 * this is an output sockaddr (OUT is set), then the
1341 		 * next argument is a pointer to a socklen_t.  Otherwise
1342 		 * the next argument contains a socklen_t by value.
1343 		 */
1344 		if (sc->type & OUT) {
1345 			if (get_struct(pid, (void *)args[sc->offset + 1],
1346 			    &len, sizeof(len)) == -1) {
1347 				fprintf(fp, "0x%lx", args[sc->offset]);
1348 				break;
1349 			}
1350 		} else
1351 			len = args[sc->offset + 1];
1352 
1353 		/* If the length is too small, just bail. */
1354 		if (len < sizeof(*sa)) {
1355 			fprintf(fp, "0x%lx", args[sc->offset]);
1356 			break;
1357 		}
1358 
1359 		sa = calloc(1, len);
1360 		if (get_struct(pid, (void *)args[sc->offset], sa, len) == -1) {
1361 			free(sa);
1362 			fprintf(fp, "0x%lx", args[sc->offset]);
1363 			break;
1364 		}
1365 
1366 		switch (sa->sa_family) {
1367 		case AF_INET:
1368 			if (len < sizeof(*lsin))
1369 				goto sockaddr_short;
1370 			lsin = (struct sockaddr_in *)(void *)sa;
1371 			inet_ntop(AF_INET, &lsin->sin_addr, addr, sizeof(addr));
1372 			fprintf(fp, "{ AF_INET %s:%d }", addr,
1373 			    htons(lsin->sin_port));
1374 			break;
1375 		case AF_INET6:
1376 			if (len < sizeof(*lsin6))
1377 				goto sockaddr_short;
1378 			lsin6 = (struct sockaddr_in6 *)(void *)sa;
1379 			inet_ntop(AF_INET6, &lsin6->sin6_addr, addr,
1380 			    sizeof(addr));
1381 			fprintf(fp, "{ AF_INET6 [%s]:%d }", addr,
1382 			    htons(lsin6->sin6_port));
1383 			break;
1384 		case AF_UNIX:
1385 			sun = (struct sockaddr_un *)sa;
1386 			fprintf(fp, "{ AF_UNIX \"%.*s\" }",
1387 			    (int)(len - offsetof(struct sockaddr_un, sun_path)),
1388 			    sun->sun_path);
1389 			break;
1390 		default:
1391 		sockaddr_short:
1392 			fprintf(fp,
1393 			    "{ sa_len = %d, sa_family = %d, sa_data = {",
1394 			    (int)sa->sa_len, (int)sa->sa_family);
1395 			for (q = (u_char *)sa->sa_data;
1396 			     q < (u_char *)sa + len; q++)
1397 				fprintf(fp, "%s 0x%02x",
1398 				    q == (u_char *)sa->sa_data ? "" : ",",
1399 				    *q);
1400 			fputs(" } }", fp);
1401 		}
1402 		free(sa);
1403 		break;
1404 	}
1405 	case Sigaction: {
1406 		struct sigaction sa;
1407 
1408 		if (get_struct(pid, (void *)args[sc->offset], &sa, sizeof(sa))
1409 		    != -1) {
1410 			fputs("{ ", fp);
1411 			if (sa.sa_handler == SIG_DFL)
1412 				fputs("SIG_DFL", fp);
1413 			else if (sa.sa_handler == SIG_IGN)
1414 				fputs("SIG_IGN", fp);
1415 			else
1416 				fprintf(fp, "%p", sa.sa_handler);
1417 			fprintf(fp, " %s ss_t }",
1418 			    xlookup_bits(sigaction_flags, sa.sa_flags));
1419 		} else
1420 			fprintf(fp, "0x%lx", args[sc->offset]);
1421 		break;
1422 	}
1423 	case Kevent: {
1424 		/*
1425 		 * XXX XXX: The size of the array is determined by either the
1426 		 * next syscall argument, or by the syscall return value,
1427 		 * depending on which argument number we are.  This matches the
1428 		 * kevent syscall, but luckily that's the only syscall that uses
1429 		 * them.
1430 		 */
1431 		struct kevent *ke;
1432 		int numevents = -1;
1433 		size_t bytes;
1434 		int i;
1435 
1436 		if (sc->offset == 1)
1437 			numevents = args[sc->offset+1];
1438 		else if (sc->offset == 3 && retval[0] != -1)
1439 			numevents = retval[0];
1440 
1441 		if (numevents >= 0) {
1442 			bytes = sizeof(struct kevent) * numevents;
1443 			if ((ke = malloc(bytes)) == NULL)
1444 				err(1,
1445 				    "Cannot malloc %zu bytes for kevent array",
1446 				    bytes);
1447 		} else
1448 			ke = NULL;
1449 		if (numevents >= 0 && get_struct(pid, (void *)args[sc->offset],
1450 		    ke, bytes) != -1) {
1451 			fputc('{', fp);
1452 			for (i = 0; i < numevents; i++) {
1453 				fputc(' ', fp);
1454 				print_kevent(fp, &ke[i], sc->offset == 1);
1455 			}
1456 			fputs(" }", fp);
1457 		} else {
1458 			fprintf(fp, "0x%lx", args[sc->offset]);
1459 		}
1460 		free(ke);
1461 		break;
1462 	}
1463 	case Stat: {
1464 		struct stat st;
1465 
1466 		if (get_struct(pid, (void *)args[sc->offset], &st, sizeof(st))
1467 		    != -1) {
1468 			char mode[12];
1469 
1470 			strmode(st.st_mode, mode);
1471 			fprintf(fp,
1472 			    "{ mode=%s,inode=%ju,size=%jd,blksize=%ld }", mode,
1473 			    (uintmax_t)st.st_ino, (intmax_t)st.st_size,
1474 			    (long)st.st_blksize);
1475 		} else {
1476 			fprintf(fp, "0x%lx", args[sc->offset]);
1477 		}
1478 		break;
1479 	}
1480 	case StatFs: {
1481 		unsigned int i;
1482 		struct statfs buf;
1483 
1484 		if (get_struct(pid, (void *)args[sc->offset], &buf,
1485 		    sizeof(buf)) != -1) {
1486 			char fsid[17];
1487 
1488 			bzero(fsid, sizeof(fsid));
1489 			if (buf.f_fsid.val[0] != 0 || buf.f_fsid.val[1] != 0) {
1490 			        for (i = 0; i < sizeof(buf.f_fsid); i++)
1491 					snprintf(&fsid[i*2],
1492 					    sizeof(fsid) - (i*2), "%02x",
1493 					    ((u_char *)&buf.f_fsid)[i]);
1494 			}
1495 			fprintf(fp,
1496 			    "{ fstypename=%s,mntonname=%s,mntfromname=%s,"
1497 			    "fsid=%s }", buf.f_fstypename, buf.f_mntonname,
1498 			    buf.f_mntfromname, fsid);
1499 		} else
1500 			fprintf(fp, "0x%lx", args[sc->offset]);
1501 		break;
1502 	}
1503 
1504 	case Rusage: {
1505 		struct rusage ru;
1506 
1507 		if (get_struct(pid, (void *)args[sc->offset], &ru, sizeof(ru))
1508 		    != -1) {
1509 			fprintf(fp,
1510 			    "{ u=%jd.%06ld,s=%jd.%06ld,in=%ld,out=%ld }",
1511 			    (intmax_t)ru.ru_utime.tv_sec, ru.ru_utime.tv_usec,
1512 			    (intmax_t)ru.ru_stime.tv_sec, ru.ru_stime.tv_usec,
1513 			    ru.ru_inblock, ru.ru_oublock);
1514 		} else
1515 			fprintf(fp, "0x%lx", args[sc->offset]);
1516 		break;
1517 	}
1518 	case Rlimit: {
1519 		struct rlimit rl;
1520 
1521 		if (get_struct(pid, (void *)args[sc->offset], &rl, sizeof(rl))
1522 		    != -1) {
1523 			fprintf(fp, "{ cur=%ju,max=%ju }",
1524 			    rl.rlim_cur, rl.rlim_max);
1525 		} else
1526 			fprintf(fp, "0x%lx", args[sc->offset]);
1527 		break;
1528 	}
1529 	case ExitStatus: {
1530 		int status;
1531 
1532 		if (get_struct(pid, (void *)args[sc->offset], &status,
1533 		    sizeof(status)) != -1) {
1534 			fputs("{ ", fp);
1535 			if (WIFCONTINUED(status))
1536 				fputs("CONTINUED", fp);
1537 			else if (WIFEXITED(status))
1538 				fprintf(fp, "EXITED,val=%d",
1539 				    WEXITSTATUS(status));
1540 			else if (WIFSIGNALED(status))
1541 				fprintf(fp, "SIGNALED,sig=%s%s",
1542 				    strsig2(WTERMSIG(status)),
1543 				    WCOREDUMP(status) ? ",cored" : "");
1544 			else
1545 				fprintf(fp, "STOPPED,sig=%s",
1546 				    strsig2(WTERMSIG(status)));
1547 			fputs(" }", fp);
1548 		} else
1549 			fprintf(fp, "0x%lx", args[sc->offset]);
1550 		break;
1551 	}
1552 	case Waitoptions:
1553 		fputs(xlookup_bits(wait_options, args[sc->offset]), fp);
1554 		break;
1555 	case Idtype:
1556 		fputs(xlookup(idtype_arg, args[sc->offset]), fp);
1557 		break;
1558 	case Procctl:
1559 		fputs(xlookup(procctl_arg, args[sc->offset]), fp);
1560 		break;
1561 	case Umtxop:
1562 		fputs(xlookup(umtx_ops, args[sc->offset]), fp);
1563 		break;
1564 	case Atfd:
1565 		if ((int)args[sc->offset] == AT_FDCWD)
1566 			fputs("AT_FDCWD", fp);
1567 		else
1568 			fprintf(fp, "%d", (int)args[sc->offset]);
1569 		break;
1570 	case Atflags:
1571 		fputs(xlookup_bits(at_flags, args[sc->offset]), fp);
1572 		break;
1573 	case Accessmode:
1574 		if (args[sc->offset] == F_OK)
1575 			fputs("F_OK", fp);
1576 		else
1577 			fputs(xlookup_bits(access_modes, args[sc->offset]), fp);
1578 		break;
1579 	case Sysarch:
1580 		fputs(xlookup(sysarch_ops, args[sc->offset]), fp);
1581 		break;
1582 	case PipeFds:
1583 		/*
1584 		 * The pipe() system call in the kernel returns its
1585 		 * two file descriptors via return values.  However,
1586 		 * the interface exposed by libc is that pipe()
1587 		 * accepts a pointer to an array of descriptors.
1588 		 * Format the output to match the libc API by printing
1589 		 * the returned file descriptors as a fake argument.
1590 		 *
1591 		 * Overwrite the first retval to signal a successful
1592 		 * return as well.
1593 		 */
1594 		fprintf(fp, "{ %ld, %ld }", retval[0], retval[1]);
1595 		retval[0] = 0;
1596 		break;
1597 	default:
1598 		errx(1, "Invalid argument type %d\n", sc->type & ARG_MASK);
1599 	}
1600 	fclose(fp);
1601 	return (tmp);
1602 }
1603 
1604 /*
1605  * Print (to outfile) the system call and its arguments.  Note that
1606  * nargs is the number of arguments (not the number of words; this is
1607  * potentially confusing, I know).
1608  */
1609 void
1610 print_syscall(struct trussinfo *trussinfo, const char *name, int nargs,
1611     char **s_args)
1612 {
1613 	struct timespec timediff;
1614 	int i, len;
1615 
1616 	len = 0;
1617 	if (trussinfo->flags & FOLLOWFORKS)
1618 		len += fprintf(trussinfo->outfile, "%5d: ",
1619 		    trussinfo->curthread->proc->pid);
1620 
1621 	if (name != NULL && (strcmp(name, "execve") == 0 ||
1622 	    strcmp(name, "exit") == 0)) {
1623 		clock_gettime(CLOCK_REALTIME, &trussinfo->curthread->after);
1624 	}
1625 
1626 	if (trussinfo->flags & ABSOLUTETIMESTAMPS) {
1627 		timespecsubt(&trussinfo->curthread->after,
1628 		    &trussinfo->start_time, &timediff);
1629 		len += fprintf(trussinfo->outfile, "%jd.%09ld ",
1630 		    (intmax_t)timediff.tv_sec, timediff.tv_nsec);
1631 	}
1632 
1633 	if (trussinfo->flags & RELATIVETIMESTAMPS) {
1634 		timespecsubt(&trussinfo->curthread->after,
1635 		    &trussinfo->curthread->before, &timediff);
1636 		len += fprintf(trussinfo->outfile, "%jd.%09ld ",
1637 		    (intmax_t)timediff.tv_sec, timediff.tv_nsec);
1638 	}
1639 
1640 	len += fprintf(trussinfo->outfile, "%s(", name);
1641 
1642 	for (i = 0; i < nargs; i++) {
1643 		if (s_args[i])
1644 			len += fprintf(trussinfo->outfile, "%s", s_args[i]);
1645 		else
1646 			len += fprintf(trussinfo->outfile,
1647 			    "<missing argument>");
1648 		len += fprintf(trussinfo->outfile, "%s", i < (nargs - 1) ?
1649 		    "," : "");
1650 	}
1651 	len += fprintf(trussinfo->outfile, ")");
1652 	for (i = 0; i < 6 - (len / 8); i++)
1653 		fprintf(trussinfo->outfile, "\t");
1654 }
1655 
1656 void
1657 print_syscall_ret(struct trussinfo *trussinfo, const char *name, int nargs,
1658     char **s_args, int errorp, long *retval, struct syscall *sc)
1659 {
1660 	struct timespec timediff;
1661 
1662 	if (trussinfo->flags & COUNTONLY) {
1663 		clock_gettime(CLOCK_REALTIME, &trussinfo->curthread->after);
1664 		timespecsubt(&trussinfo->curthread->after,
1665 		    &trussinfo->curthread->before, &timediff);
1666 		timespecadd(&sc->time, &timediff, &sc->time);
1667 		sc->ncalls++;
1668 		if (errorp)
1669 			sc->nerror++;
1670 		return;
1671 	}
1672 
1673 	print_syscall(trussinfo, name, nargs, s_args);
1674 	fflush(trussinfo->outfile);
1675 	if (errorp)
1676 		fprintf(trussinfo->outfile, " ERR#%ld '%s'\n", retval[0],
1677 		    strerror(retval[0]));
1678 #ifndef __LP64__
1679 	else if (sc->ret_type == 2) {
1680 		off_t off;
1681 
1682 #if _BYTE_ORDER == _LITTLE_ENDIAN
1683 		off = (off_t)retval[1] << 32 | retval[0];
1684 #else
1685 		off = (off_t)retval[0] << 32 | retval[1];
1686 #endif
1687 		fprintf(trussinfo->outfile, " = %jd (0x%jx)\n", (intmax_t)off,
1688 		    (intmax_t)off);
1689 	}
1690 #endif
1691 	else
1692 		fprintf(trussinfo->outfile, " = %ld (0x%lx)\n", retval[0],
1693 		    retval[0]);
1694 }
1695 
1696 void
1697 print_summary(struct trussinfo *trussinfo)
1698 {
1699 	struct timespec total = {0, 0};
1700 	struct syscall *sc;
1701 	int ncall, nerror;
1702 
1703 	fprintf(trussinfo->outfile, "%-20s%15s%8s%8s\n",
1704 	    "syscall", "seconds", "calls", "errors");
1705 	ncall = nerror = 0;
1706 	STAILQ_FOREACH(sc, &syscalls, entries)
1707 		if (sc->ncalls) {
1708 			fprintf(trussinfo->outfile, "%-20s%5jd.%09ld%8d%8d\n",
1709 			    sc->name, (intmax_t)sc->time.tv_sec,
1710 			    sc->time.tv_nsec, sc->ncalls, sc->nerror);
1711 			timespecadd(&total, &sc->time, &total);
1712 			ncall += sc->ncalls;
1713 			nerror += sc->nerror;
1714 		}
1715 	fprintf(trussinfo->outfile, "%20s%15s%8s%8s\n",
1716 	    "", "-------------", "-------", "-------");
1717 	fprintf(trussinfo->outfile, "%-20s%5jd.%09ld%8d%8d\n",
1718 	    "", (intmax_t)total.tv_sec, total.tv_nsec, ncall, nerror);
1719 }
1720