xref: /freebsd/usr.bin/truss/syscalls.c (revision 313376588638950ba1e93c403dd8c97bc52fd3a2)
1 /*
2  * Copyright 1997 Sean Eric Fagan
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. All advertising materials mentioning features or use of this software
13  *    must display the following acknowledgement:
14  *	This product includes software developed by Sean Eric Fagan
15  * 4. Neither the name of the author may be used to endorse or promote
16  *    products derived from this software without specific prior written
17  *    permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #ifndef lint
33 static const char rcsid[] =
34   "$FreeBSD$";
35 #endif /* not lint */
36 
37 /*
38  * This file has routines used to print out system calls and their
39  * arguments.
40  */
41 
42 #include <sys/types.h>
43 #include <sys/mman.h>
44 #include <sys/procctl.h>
45 #include <sys/ptrace.h>
46 #include <sys/socket.h>
47 #include <sys/time.h>
48 #include <sys/un.h>
49 #include <sys/wait.h>
50 #include <netinet/in.h>
51 #include <arpa/inet.h>
52 #include <sys/ioccom.h>
53 #include <machine/atomic.h>
54 #include <errno.h>
55 #include <sys/umtx.h>
56 #include <sys/event.h>
57 #include <sys/stat.h>
58 #include <sys/resource.h>
59 
60 #include <ctype.h>
61 #include <err.h>
62 #include <fcntl.h>
63 #include <poll.h>
64 #include <signal.h>
65 #include <stdint.h>
66 #include <stdio.h>
67 #include <stdlib.h>
68 #include <string.h>
69 #include <time.h>
70 #include <unistd.h>
71 #include <vis.h>
72 
73 #include "truss.h"
74 #include "extern.h"
75 #include "syscall.h"
76 
77 /* 64-bit alignment on 32-bit platforms. */
78 #ifdef __powerpc__
79 #define	QUAD_ALIGN	1
80 #else
81 #define	QUAD_ALIGN	0
82 #endif
83 
84 /* Number of slots needed for a 64-bit argument. */
85 #ifdef __LP64__
86 #define	QUAD_SLOTS	1
87 #else
88 #define	QUAD_SLOTS	2
89 #endif
90 
91 /*
92  * This should probably be in its own file, sorted alphabetically.
93  */
94 static struct syscall syscalls[] = {
95 	{ .name = "fcntl", .ret_type = 1, .nargs = 3,
96 	  .args = { { Int, 0 } , { Fcntl, 1 }, { Fcntlflag | OUT, 2 } } },
97 	{ .name = "fork", .ret_type = 1, .nargs = 0 },
98 	{ .name = "vfork", .ret_type = 1, .nargs = 0 },
99 	{ .name = "rfork", .ret_type = 1, .nargs = 1,
100 	  .args = { { Rforkflags, 0 } } },
101 	{ .name = "getegid", .ret_type = 1, .nargs = 0 },
102 	{ .name = "geteuid", .ret_type = 1, .nargs = 0 },
103 	{ .name = "linux_readlink", .ret_type = 1, .nargs = 3,
104 	  .args = { { Name, 0 } , { Name | OUT, 1 }, { Int, 2 }}},
105 	{ .name = "linux_socketcall", .ret_type = 1, .nargs = 2,
106 	  .args = { { Int, 0 } , { LinuxSockArgs, 1 }}},
107 	{ .name = "getgid", .ret_type = 1, .nargs = 0 },
108 	{ .name = "getpid", .ret_type = 1, .nargs = 0 },
109 	{ .name = "getpgid", .ret_type = 1, .nargs = 1,
110 	  .args = { { Int, 0 } } },
111 	{ .name = "getpgrp", .ret_type = 1, .nargs = 0 },
112 	{ .name = "getppid", .ret_type = 1, .nargs = 0 },
113 	{ .name = "getsid", .ret_type = 1, .nargs = 1,
114 	  .args = { { Int, 0 } } },
115 	{ .name = "getuid", .ret_type = 1, .nargs = 0 },
116 	{ .name = "readlink", .ret_type = 1, .nargs = 3,
117 	  .args = { { Name, 0 } , { Readlinkres | OUT, 1 }, { Int, 2 } } },
118 	{ .name = "lseek", .ret_type = 2, .nargs = 3,
119 	  .args = { { Int, 0 }, { Quad, 1 + QUAD_ALIGN }, { Whence, 1 + QUAD_SLOTS + QUAD_ALIGN } } },
120 	{ .name = "linux_lseek", .ret_type = 2, .nargs = 3,
121 	  .args = { { Int, 0 }, { Int, 1 }, { Whence, 2 } } },
122 	{ .name = "mmap", .ret_type = 2, .nargs = 6,
123 	  .args = { { Ptr, 0 }, { Int, 1 }, { Mprot, 2 }, { Mmapflags, 3 }, { Int, 4 }, { Quad, 5 + QUAD_ALIGN } } },
124 	{ .name = "linux_mkdir", .ret_type = 1, .nargs = 2,
125 	  .args = { { Name | IN, 0} , {Int, 1}}},
126 	{ .name = "mprotect", .ret_type = 1, .nargs = 3,
127 	  .args = { { Ptr, 0 }, { Int, 1 }, { Mprot, 2 } } },
128 	{ .name = "open", .ret_type = 1, .nargs = 3,
129 	  .args = { { Name | IN, 0 } , { Open, 1 }, { Octal, 2 } } },
130 	{ .name = "mkdir", .ret_type = 1, .nargs = 2,
131 	  .args = { { Name, 0 } , { Octal, 1 } } },
132 	{ .name = "linux_open", .ret_type = 1, .nargs = 3,
133 	  .args = { { Name, 0 }, { Hex, 1 }, { Octal, 2 } } },
134 	{ .name = "close", .ret_type = 1, .nargs = 1,
135 	  .args = { { Int, 0 } } },
136 	{ .name = "link", .ret_type = 0, .nargs = 2,
137 	  .args = { { Name, 0 }, { Name, 1 } } },
138 	{ .name = "unlink", .ret_type = 0, .nargs = 1,
139 	  .args = { { Name, 0 } } },
140 	{ .name = "chdir", .ret_type = 0, .nargs = 1,
141 	  .args = { { Name, 0 } } },
142 	{ .name = "chroot", .ret_type = 0, .nargs = 1,
143 	  .args = { { Name, 0 } } },
144 	{ .name = "mknod", .ret_type = 0, .nargs = 3,
145 	  .args = { { Name, 0 }, { Octal, 1 }, { Int, 3 } } },
146 	{ .name = "chmod", .ret_type = 0, .nargs = 2,
147 	  .args = { { Name, 0 }, { Octal, 1 } } },
148 	{ .name = "chown", .ret_type = 0, .nargs = 3,
149 	  .args = { { Name, 0 }, { Int, 1 }, { Int, 2 } } },
150 	{ .name = "linux_stat64", .ret_type = 1, .nargs = 3,
151 	  .args = { { Name | IN, 0 }, { Ptr | OUT, 1 }, { Ptr | IN, 1 }}},
152 	{ .name = "mount", .ret_type = 0, .nargs = 4,
153 	  .args = { { Name, 0 }, { Name, 1 }, { Int, 2 }, { Ptr, 3 } } },
154 	{ .name = "umount", .ret_type = 0, .nargs = 2,
155 	  .args = { { Name, 0 }, { Int, 2 } } },
156 	{ .name = "fstat", .ret_type = 1, .nargs = 2,
157 	  .args = { { Int, 0 }, { Stat | OUT , 1 } } },
158 	{ .name = "stat", .ret_type = 1, .nargs = 2,
159 	  .args = { { Name | IN, 0 }, { Stat | OUT, 1 } } },
160 	{ .name = "lstat", .ret_type = 1, .nargs = 2,
161 	  .args = { { Name | IN, 0 }, { Stat | OUT, 1 } } },
162 	{ .name = "linux_newstat", .ret_type = 1, .nargs = 2,
163 	  .args = { { Name | IN, 0 }, { Ptr | OUT, 1 } } },
164 	{ .name = "linux_access", .ret_type = 1, .nargs = 2,
165 	  .args = { { Name, 0 }, { Int, 1 }}},
166 	{ .name = "linux_newfstat", .ret_type = 1, .nargs = 2,
167 	  .args = { { Int, 0 }, { Ptr | OUT, 1 } } },
168 	{ .name = "write", .ret_type = 1, .nargs = 3,
169 	  .args = { { Int, 0 }, { BinString | IN, 1 }, { Int, 2 } } },
170 	{ .name = "ioctl", .ret_type = 1, .nargs = 3,
171 	  .args = { { Int, 0 }, { Ioctl, 1 }, { Hex, 2 } } },
172 	{ .name = "break", .ret_type = 1, .nargs = 1,
173 	  .args = { { Ptr, 0 } } },
174 	{ .name = "exit", .ret_type = 0, .nargs = 1,
175 	  .args = { { Hex, 0 } } },
176 	{ .name = "access", .ret_type = 1, .nargs = 2,
177 	  .args = { { Name | IN, 0 }, { Int, 1 } } },
178 	{ .name = "sigaction", .ret_type = 1, .nargs = 3,
179 	  .args = { { Signal, 0 }, { Sigaction | IN, 1 }, { Sigaction | OUT, 2 } } },
180 	{ .name = "accept", .ret_type = 1, .nargs = 3,
181 	  .args = { { Int, 0 }, { Sockaddr | OUT, 1 }, { Ptr | OUT, 2 } } },
182 	{ .name = "bind", .ret_type = 1, .nargs = 3,
183 	  .args = { { Int, 0 }, { Sockaddr | IN, 1 }, { Int, 2 } } },
184 	{ .name = "connect", .ret_type = 1, .nargs = 3,
185 	  .args = { { Int, 0 }, { Sockaddr | IN, 1 }, { Int, 2 } } },
186 	{ .name = "getpeername", .ret_type = 1, .nargs = 3,
187 	  .args = { { Int, 0 }, { Sockaddr | OUT, 1 }, { Ptr | OUT, 2 } } },
188 	{ .name = "getsockname", .ret_type = 1, .nargs = 3,
189 	  .args = { { Int, 0 }, { Sockaddr | OUT, 1 }, { Ptr | OUT, 2 } } },
190 	{ .name = "recvfrom", .ret_type = 1, .nargs = 6,
191 	  .args = { { Int, 0 }, { BinString | OUT, 1 }, { Int, 2 }, { Hex, 3 }, { Sockaddr | OUT, 4 }, { Ptr | OUT, 5 } } },
192 	{ .name = "sendto", .ret_type = 1, .nargs = 6,
193 	  .args = { { Int, 0 }, { BinString | IN, 1 }, { Int, 2 }, { Hex, 3 }, { Sockaddr | IN, 4 }, { Ptr | IN, 5 } } },
194 	{ .name = "execve", .ret_type = 1, .nargs = 3,
195 	  .args = { { Name | IN, 0 }, { StringArray | IN, 1 }, { StringArray | IN, 2 } } },
196 	{ .name = "linux_execve", .ret_type = 1, .nargs = 3,
197 	  .args = { { Name | IN, 0 }, { StringArray | IN, 1 }, { StringArray | IN, 2 } } },
198 	{ .name = "kldload", .ret_type = 0, .nargs = 1,
199 	  .args = { { Name | IN, 0 } } },
200 	{ .name = "kldunload", .ret_type = 0, .nargs = 1,
201 	  .args = { { Int, 0 } } },
202 	{ .name = "kldfind", .ret_type = 0, .nargs = 1,
203 	  .args = { { Name | IN, 0 } } },
204 	{ .name = "kldnext", .ret_type = 0, .nargs = 1,
205 	  .args = { { Int, 0 } } },
206 	{ .name = "kldstat", .ret_type = 0, .nargs = 2,
207 	  .args = { { Int, 0 }, { Ptr, 1 } } },
208 	{ .name = "kldfirstmod", .ret_type = 0, .nargs = 1,
209 	  .args = { { Int, 0 } } },
210 	{ .name = "nanosleep", .ret_type = 0, .nargs = 1,
211 	  .args = { { Timespec, 0 } } },
212 	{ .name = "select", .ret_type = 1, .nargs = 5,
213 	  .args = { { Int, 0 }, { Fd_set, 1 }, { Fd_set, 2 }, { Fd_set, 3 }, { Timeval, 4 } } },
214 	{ .name = "poll", .ret_type = 1, .nargs = 3,
215 	  .args = { { Pollfd, 0 }, { Int, 1 }, { Int, 2 } } },
216 	{ .name = "gettimeofday", .ret_type = 1, .nargs = 2,
217 	  .args = { { Timeval | OUT, 0 }, { Ptr, 1 } } },
218 	{ .name = "clock_gettime", .ret_type = 1, .nargs = 2,
219 	  .args = { { Int, 0 }, { Timespec | OUT, 1 } } },
220 	{ .name = "getitimer", .ret_type = 1, .nargs = 2,
221 	  .args = { { Int, 0 }, { Itimerval | OUT, 2 } } },
222 	{ .name = "setitimer", .ret_type = 1, .nargs = 3,
223 	  .args = { { Int, 0 }, { Itimerval, 1 } , { Itimerval | OUT, 2 } } },
224 	{ .name = "kse_release", .ret_type = 0, .nargs = 1,
225 	  .args = { { Timespec, 0 } } },
226 	{ .name = "kevent", .ret_type = 0, .nargs = 6,
227 	  .args = { { Int, 0 }, { Kevent, 1 }, { Int, 2 }, { Kevent | OUT, 3 }, { Int, 4 }, { Timespec, 5 } } },
228 	{ .name = "sigprocmask", .ret_type = 0, .nargs = 3,
229 	  .args = { { Sigprocmask, 0 }, { Sigset, 1 }, { Sigset | OUT, 2 } } },
230 	{ .name = "unmount", .ret_type = 1, .nargs = 2,
231 	  .args = { { Name, 0 }, { Int, 1 } } },
232 	{ .name = "socket", .ret_type = 1, .nargs = 3,
233 	  .args = { { Sockdomain, 0 }, { Socktype, 1 }, { Int, 2 } } },
234 	{ .name = "getrusage", .ret_type = 1, .nargs = 2,
235 	  .args = { { Int, 0 }, { Rusage | OUT, 1 } } },
236 	{ .name = "__getcwd", .ret_type = 1, .nargs = 2,
237 	  .args = { { Name | OUT, 0 }, { Int, 1 } } },
238 	{ .name = "shutdown", .ret_type = 1, .nargs = 2,
239 	  .args = { { Int, 0 }, { Shutdown, 1 } } },
240 	{ .name = "getrlimit", .ret_type = 1, .nargs = 2,
241 	  .args = { { Resource, 0 }, { Rlimit | OUT, 1 } } },
242 	{ .name = "setrlimit", .ret_type = 1, .nargs = 2,
243 	  .args = { { Resource, 0 }, { Rlimit | IN, 1 } } },
244 	{ .name = "utimes", .ret_type = 1, .nargs = 2,
245 	  .args = { { Name | IN, 0 }, { Timeval2 | IN, 1 } } },
246 	{ .name = "lutimes", .ret_type = 1, .nargs = 2,
247 	  .args = { { Name | IN, 0 }, { Timeval2 | IN, 1 } } },
248 	{ .name = "futimes", .ret_type = 1, .nargs = 2,
249 	  .args = { { Int, 0 }, { Timeval | IN, 1 } } },
250 	{ .name = "chflags", .ret_type = 1, .nargs = 2,
251 	  .args = { { Name | IN, 0 }, { Hex, 1 } } },
252 	{ .name = "lchflags", .ret_type = 1, .nargs = 2,
253 	  .args = { { Name | IN, 0 }, { Hex, 1 } } },
254 	{ .name = "pathconf", .ret_type = 1, .nargs = 2,
255 	  .args = { { Name | IN, 0 }, { Pathconf, 1 } } },
256 	{ .name = "pipe", .ret_type = 1, .nargs = 1,
257 	  .args = { { Ptr, 0 } } },
258 	{ .name = "truncate", .ret_type = 1, .nargs = 3,
259 	  .args = { { Name | IN, 0 }, { Int | IN, 1 }, { Quad | IN, 2 } } },
260 	{ .name = "ftruncate", .ret_type = 1, .nargs = 3,
261 	  .args = { { Int | IN, 0 }, { Int | IN, 1 }, { Quad | IN, 2 } } },
262 	{ .name = "kill", .ret_type = 1, .nargs = 2,
263 	  .args = { { Int | IN, 0 }, { Signal | IN, 1 } } },
264 	{ .name = "munmap", .ret_type = 1, .nargs = 2,
265 	  .args = { { Ptr, 0 }, { Int, 1 } } },
266 	{ .name = "read", .ret_type = 1, .nargs = 3,
267 	  .args = { { Int, 0 }, { BinString | OUT, 1 }, { Int, 2 } } },
268 	{ .name = "rename", .ret_type = 1, .nargs = 2,
269 	  .args = { { Name , 0 } , { Name, 1 } } },
270 	{ .name = "symlink", .ret_type = 1, .nargs = 2,
271 	  .args = { { Name , 0 } , { Name, 1 } } },
272 	{ .name = "posix_openpt", .ret_type = 1, .nargs = 1,
273 	  .args = { { Open, 0 } } },
274 	{ .name = "wait4", .ret_type = 1, .nargs = 4,
275 	  .args = { { Int, 0 }, { ExitStatus | OUT, 1 }, { Waitoptions, 2 },
276 		    { Rusage | OUT, 3 } } },
277 	{ .name = "wait6", .ret_type = 1, .nargs = 6,
278 	  .args = { { Idtype, 0 }, { Int, 1 }, { ExitStatus | OUT, 2 },
279 		    { Waitoptions, 3 }, { Rusage | OUT, 4 }, { Ptr, 5 } } },
280 	{ .name = "procctl", .ret_type = 1, .nargs = 4,
281 	  .args = { { Idtype, 0 }, { Int, 1 }, { Procctl, 2 }, { Ptr, 3 } } },
282 	{ .name = "_umtx_op", .ret_type = 1, .nargs = 5,
283 	  .args = { { Ptr, 0 }, { Umtxop, 1 }, { LongHex, 2 }, { Ptr, 3 },
284 		    { Ptr, 4 } } },
285 	{ .name = 0 },
286 };
287 
288 /* Xlat idea taken from strace */
289 struct xlat {
290 	int val;
291 	const char *str;
292 };
293 
294 #define	X(a)	{ a, #a },
295 #define	XEND	{ 0, NULL }
296 
297 static struct xlat kevent_filters[] = {
298 	X(EVFILT_READ) X(EVFILT_WRITE) X(EVFILT_AIO) X(EVFILT_VNODE)
299 	X(EVFILT_PROC) X(EVFILT_SIGNAL) X(EVFILT_TIMER)
300 	X(EVFILT_FS) X(EVFILT_READ) XEND
301 };
302 
303 static struct xlat kevent_flags[] = {
304 	X(EV_ADD) X(EV_DELETE) X(EV_ENABLE) X(EV_DISABLE) X(EV_ONESHOT)
305 	X(EV_CLEAR) X(EV_FLAG1) X(EV_ERROR) X(EV_EOF) XEND
306 };
307 
308 static struct xlat poll_flags[] = {
309 	X(POLLSTANDARD) X(POLLIN) X(POLLPRI) X(POLLOUT) X(POLLERR)
310 	X(POLLHUP) X(POLLNVAL) X(POLLRDNORM) X(POLLRDBAND)
311 	X(POLLWRBAND) X(POLLINIGNEOF) XEND
312 };
313 
314 static struct xlat mmap_flags[] = {
315 	X(MAP_SHARED) X(MAP_PRIVATE) X(MAP_FIXED) X(MAP_RESERVED0020)
316 	X(MAP_RESERVED0040) X(MAP_RESERVED0080) X(MAP_RESERVED0100)
317 	X(MAP_HASSEMAPHORE) X(MAP_STACK) X(MAP_NOSYNC) X(MAP_ANON)
318 	X(MAP_NOCORE) X(MAP_PREFAULT_READ)
319 #ifdef MAP_32BIT
320 	X(MAP_32BIT)
321 #endif
322 	XEND
323 };
324 
325 static struct xlat mprot_flags[] = {
326 	X(PROT_NONE) X(PROT_READ) X(PROT_WRITE) X(PROT_EXEC) XEND
327 };
328 
329 static struct xlat whence_arg[] = {
330 	X(SEEK_SET) X(SEEK_CUR) X(SEEK_END) XEND
331 };
332 
333 static struct xlat sigaction_flags[] = {
334 	X(SA_ONSTACK) X(SA_RESTART) X(SA_RESETHAND) X(SA_NOCLDSTOP)
335 	X(SA_NODEFER) X(SA_NOCLDWAIT) X(SA_SIGINFO) XEND
336 };
337 
338 static struct xlat fcntl_arg[] = {
339 	X(F_DUPFD) X(F_GETFD) X(F_SETFD) X(F_GETFL) X(F_SETFL)
340 	X(F_GETOWN) X(F_SETOWN) X(F_GETLK) X(F_SETLK) X(F_SETLKW) XEND
341 };
342 
343 static struct xlat fcntlfd_arg[] = {
344 	X(FD_CLOEXEC) XEND
345 };
346 
347 static struct xlat fcntlfl_arg[] = {
348 	X(O_APPEND) X(O_ASYNC) X(O_FSYNC) X(O_NONBLOCK) X(O_NOFOLLOW)
349 	X(O_DIRECT) XEND
350 };
351 
352 static struct xlat sockdomain_arg[] = {
353 	X(PF_UNSPEC) X(PF_LOCAL) X(PF_UNIX) X(PF_INET) X(PF_IMPLINK)
354 	X(PF_PUP) X(PF_CHAOS) X(PF_NETBIOS) X(PF_ISO) X(PF_OSI)
355 	X(PF_ECMA) X(PF_DATAKIT) X(PF_CCITT) X(PF_SNA) X(PF_DECnet)
356 	X(PF_DLI) X(PF_LAT) X(PF_HYLINK) X(PF_APPLETALK) X(PF_ROUTE)
357 	X(PF_LINK) X(PF_XTP) X(PF_COIP) X(PF_CNT) X(PF_SIP) X(PF_IPX)
358 	X(PF_RTIP) X(PF_PIP) X(PF_ISDN) X(PF_KEY) X(PF_INET6)
359 	X(PF_NATM) X(PF_ATM) X(PF_NETGRAPH) X(PF_SLOW) X(PF_SCLUSTER)
360 	X(PF_ARP) X(PF_BLUETOOTH) XEND
361 };
362 
363 static struct xlat socktype_arg[] = {
364 	X(SOCK_STREAM) X(SOCK_DGRAM) X(SOCK_RAW) X(SOCK_RDM)
365 	X(SOCK_SEQPACKET) XEND
366 };
367 
368 static struct xlat open_flags[] = {
369 	X(O_RDONLY) X(O_WRONLY) X(O_RDWR) X(O_ACCMODE) X(O_NONBLOCK)
370 	X(O_APPEND) X(O_SHLOCK) X(O_EXLOCK) X(O_ASYNC) X(O_FSYNC)
371 	X(O_NOFOLLOW) X(O_CREAT) X(O_TRUNC) X(O_EXCL) X(O_NOCTTY)
372 	X(O_DIRECT) X(O_DIRECTORY) X(O_EXEC) X(O_TTY_INIT) X(O_CLOEXEC) XEND
373 };
374 
375 static struct xlat shutdown_arg[] = {
376 	X(SHUT_RD) X(SHUT_WR) X(SHUT_RDWR) XEND
377 };
378 
379 static struct xlat resource_arg[] = {
380 	X(RLIMIT_CPU) X(RLIMIT_FSIZE) X(RLIMIT_DATA) X(RLIMIT_STACK)
381 	X(RLIMIT_CORE) X(RLIMIT_RSS) X(RLIMIT_MEMLOCK) X(RLIMIT_NPROC)
382 	X(RLIMIT_NOFILE) X(RLIMIT_SBSIZE) X(RLIMIT_VMEM) XEND
383 };
384 
385 static struct xlat pathconf_arg[] = {
386 	X(_PC_LINK_MAX)  X(_PC_MAX_CANON)  X(_PC_MAX_INPUT)
387 	X(_PC_NAME_MAX) X(_PC_PATH_MAX) X(_PC_PIPE_BUF)
388 	X(_PC_CHOWN_RESTRICTED) X(_PC_NO_TRUNC) X(_PC_VDISABLE)
389 	X(_PC_ASYNC_IO) X(_PC_PRIO_IO) X(_PC_SYNC_IO)
390 	X(_PC_ALLOC_SIZE_MIN) X(_PC_FILESIZEBITS)
391 	X(_PC_REC_INCR_XFER_SIZE) X(_PC_REC_MAX_XFER_SIZE)
392 	X(_PC_REC_MIN_XFER_SIZE) X(_PC_REC_XFER_ALIGN)
393 	X(_PC_SYMLINK_MAX) X(_PC_ACL_EXTENDED) X(_PC_ACL_PATH_MAX)
394 	X(_PC_CAP_PRESENT) X(_PC_INF_PRESENT) X(_PC_MAC_PRESENT)
395 	XEND
396 };
397 
398 static struct xlat rfork_flags[] = {
399 	X(RFPROC) X(RFNOWAIT) X(RFFDG) X(RFCFDG) X(RFTHREAD) X(RFMEM)
400 	X(RFSIGSHARE) X(RFTSIGZMB) X(RFLINUXTHPN) XEND
401 };
402 
403 static struct xlat wait_options[] = {
404 	X(WNOHANG) X(WUNTRACED) X(WCONTINUED) X(WNOWAIT) X(WEXITED)
405 	X(WTRAPPED) XEND
406 };
407 
408 static struct xlat idtype_arg[] = {
409 	X(P_PID) X(P_PPID) X(P_PGID) X(P_SID) X(P_CID) X(P_UID) X(P_GID)
410 	X(P_ALL) X(P_LWPID) X(P_TASKID) X(P_PROJID) X(P_POOLID) X(P_JAILID)
411 	X(P_CTID) X(P_CPUID) X(P_PSETID) XEND
412 };
413 
414 static struct xlat procctl_arg[] = {
415 	X(PROC_SPROTECT) XEND
416 };
417 
418 static struct xlat umtx_ops[] = {
419 	X(UMTX_OP_RESERVED0) X(UMTX_OP_RESERVED1) X(UMTX_OP_WAIT)
420 	X(UMTX_OP_WAKE) X(UMTX_OP_MUTEX_TRYLOCK) X(UMTX_OP_MUTEX_LOCK)
421 	X(UMTX_OP_MUTEX_UNLOCK) X(UMTX_OP_SET_CEILING) X(UMTX_OP_CV_WAIT)
422 	X(UMTX_OP_CV_SIGNAL) X(UMTX_OP_CV_BROADCAST) X(UMTX_OP_WAIT_UINT)
423 	X(UMTX_OP_RW_RDLOCK) X(UMTX_OP_RW_WRLOCK) X(UMTX_OP_RW_UNLOCK)
424 	X(UMTX_OP_WAIT_UINT_PRIVATE) X(UMTX_OP_WAKE_PRIVATE)
425 	X(UMTX_OP_MUTEX_WAIT) X(UMTX_OP_MUTEX_WAKE) X(UMTX_OP_SEM_WAIT)
426 	X(UMTX_OP_SEM_WAKE) X(UMTX_OP_NWAKE_PRIVATE) X(UMTX_OP_MUTEX_WAKE2)
427 	XEND
428 };
429 
430 #undef X
431 #undef XEND
432 
433 /*
434  * Searches an xlat array for a value, and returns it if found.  Otherwise
435  * return a string representation.
436  */
437 static const char *
438 lookup(struct xlat *xlat, int val, int base)
439 {
440 	static char tmp[16];
441 
442 	for (; xlat->str != NULL; xlat++)
443 		if (xlat->val == val)
444 			return (xlat->str);
445 	switch (base) {
446 		case 8:
447 			sprintf(tmp, "0%o", val);
448 			break;
449 		case 16:
450 			sprintf(tmp, "0x%x", val);
451 			break;
452 		case 10:
453 			sprintf(tmp, "%u", val);
454 			break;
455 		default:
456 			errx(1,"Unknown lookup base");
457 			break;
458 	}
459 	return (tmp);
460 }
461 
462 static const char *
463 xlookup(struct xlat *xlat, int val)
464 {
465 
466 	return (lookup(xlat, val, 16));
467 }
468 
469 /* Searches an xlat array containing bitfield values.  Remaining bits
470    set after removing the known ones are printed at the end:
471    IN|0x400 */
472 static char *
473 xlookup_bits(struct xlat *xlat, int val)
474 {
475 	int len, rem;
476 	static char str[512];
477 
478 	len = 0;
479 	rem = val;
480 	for (; xlat->str != NULL; xlat++) {
481 		if ((xlat->val & rem) == xlat->val) {
482 			/* don't print the "all-bits-zero" string unless all
483 			   bits are really zero */
484 			if (xlat->val == 0 && val != 0)
485 				continue;
486 			len += sprintf(str + len, "%s|", xlat->str);
487 			rem &= ~(xlat->val);
488 		}
489 	}
490 	/* if we have leftover bits or didn't match anything */
491 	if (rem || len == 0)
492 		len += sprintf(str + len, "0x%x", rem);
493 	if (len && str[len - 1] == '|')
494 		len--;
495 	str[len] = 0;
496 	return (str);
497 }
498 
499 /*
500  * If/when the list gets big, it might be desirable to do it
501  * as a hash table or binary search.
502  */
503 
504 struct syscall *
505 get_syscall(const char *name)
506 {
507 	struct syscall *sc;
508 
509 	sc = syscalls;
510 	if (name == NULL)
511 		return (NULL);
512 	while (sc->name) {
513 		if (strcmp(name, sc->name) == 0)
514 			return (sc);
515 		sc++;
516 	}
517 	return (NULL);
518 }
519 
520 /*
521  * get_struct
522  *
523  * Copy a fixed amount of bytes from the process.
524  */
525 
526 static int
527 get_struct(pid_t pid, void *offset, void *buf, int len)
528 {
529 	struct ptrace_io_desc iorequest;
530 
531 	iorequest.piod_op = PIOD_READ_D;
532 	iorequest.piod_offs = offset;
533 	iorequest.piod_addr = buf;
534 	iorequest.piod_len = len;
535 	if (ptrace(PT_IO, pid, (caddr_t)&iorequest, 0) < 0)
536 		return (-1);
537 	return (0);
538 }
539 
540 #define	MAXSIZE		4096
541 #define	BLOCKSIZE	1024
542 /*
543  * get_string
544  * Copy a string from the process.  Note that it is
545  * expected to be a C string, but if max is set, it will
546  * only get that much.
547  */
548 
549 static char *
550 get_string(pid_t pid, void *offset, int max)
551 {
552 	struct ptrace_io_desc iorequest;
553 	char *buf;
554 	int diff, i, size, totalsize;
555 
556 	diff = 0;
557 	totalsize = size = max ? (max + 1) : BLOCKSIZE;
558 	buf = malloc(totalsize);
559 	if (buf == NULL)
560 		return (NULL);
561 	for (;;) {
562 		diff = totalsize - size;
563 		iorequest.piod_op = PIOD_READ_D;
564 		iorequest.piod_offs = (char *)offset + diff;
565 		iorequest.piod_addr = buf + diff;
566 		iorequest.piod_len = size;
567 		if (ptrace(PT_IO, pid, (caddr_t)&iorequest, 0) < 0) {
568 			free(buf);
569 			return (NULL);
570 		}
571 		for (i = 0 ; i < size; i++) {
572 			if (buf[diff + i] == '\0')
573 				return (buf);
574 		}
575 		if (totalsize < MAXSIZE - BLOCKSIZE && max == 0) {
576 			totalsize += BLOCKSIZE;
577 			buf = realloc(buf, totalsize);
578 			size = BLOCKSIZE;
579 		} else {
580 			buf[totalsize - 1] = '\0';
581 			return (buf);
582 		}
583 	}
584 }
585 
586 static char *
587 strsig2(int sig)
588 {
589 	char *tmp;
590 
591 	tmp = strsig(sig);
592 	if (tmp == NULL)
593 		asprintf(&tmp, "%d", sig);
594 	return (tmp);
595 }
596 
597 /*
598  * print_arg
599  * Converts a syscall argument into a string.  Said string is
600  * allocated via malloc(), so needs to be free()'d.  The file
601  * descriptor is for the process' memory (via /proc), and is used
602  * to get any data (where the argument is a pointer).  sc is
603  * a pointer to the syscall description (see above); args is
604  * an array of all of the system call arguments.
605  */
606 
607 char *
608 print_arg(struct syscall_args *sc, unsigned long *args, long retval,
609     struct trussinfo *trussinfo)
610 {
611 	char *tmp;
612 	pid_t pid;
613 
614 	tmp = NULL;
615 	pid = trussinfo->pid;
616 	switch (sc->type & ARG_MASK) {
617 	case Hex:
618 		asprintf(&tmp, "0x%x", (int)args[sc->offset]);
619 		break;
620 	case Octal:
621 		asprintf(&tmp, "0%o", (int)args[sc->offset]);
622 		break;
623 	case Int:
624 		asprintf(&tmp, "%d", (int)args[sc->offset]);
625 		break;
626 	case LongHex:
627 		asprintf(&tmp, "0x%lx", args[sc->offset]);
628 		break;
629 	case Name: {
630 		/* NULL-terminated string. */
631 		char *tmp2;
632 		tmp2 = get_string(pid, (void*)args[sc->offset], 0);
633 		asprintf(&tmp, "\"%s\"", tmp2);
634 		free(tmp2);
635 		break;
636 	}
637 	case BinString: {
638 		/* Binary block of data that might have printable characters.
639 		   XXX If type|OUT, assume that the length is the syscall's
640 		   return value.  Otherwise, assume that the length of the block
641 		   is in the next syscall argument. */
642 		int max_string = trussinfo->strsize;
643 		char tmp2[max_string+1], *tmp3;
644 		int len;
645 		int truncated = 0;
646 
647 		if (sc->type & OUT)
648 			len = retval;
649 		else
650 			len = args[sc->offset + 1];
651 
652 		/* Don't print more than max_string characters, to avoid word
653 		   wrap.  If we have to truncate put some ... after the string.
654 		*/
655 		if (len > max_string) {
656 			len = max_string;
657 			truncated = 1;
658 		}
659 		if (len && get_struct(pid, (void*)args[sc->offset], &tmp2, len)
660 		    != -1) {
661 			tmp3 = malloc(len * 4 + 1);
662 			while (len) {
663 				if (strvisx(tmp3, tmp2, len,
664 				    VIS_CSTYLE|VIS_TAB|VIS_NL) <= max_string)
665 					break;
666 				len--;
667 				truncated = 1;
668 			};
669 			asprintf(&tmp, "\"%s\"%s", tmp3, truncated ?
670 			    "..." : "");
671 			free(tmp3);
672 		} else {
673 			asprintf(&tmp, "0x%lx", args[sc->offset]);
674 		}
675 		break;
676 	}
677 	case StringArray: {
678 		int num, size, i;
679 		char *tmp2;
680 		char *string;
681 		char *strarray[100];	/* XXX This is ugly. */
682 
683 		if (get_struct(pid, (void *)args[sc->offset],
684 		    (void *)&strarray, sizeof(strarray)) == -1)
685 			err(1, "get_struct %p", (void *)args[sc->offset]);
686 		num = 0;
687 		size = 0;
688 
689 		/* Find out how large of a buffer we'll need. */
690 		while (strarray[num] != NULL) {
691 			string = get_string(pid, (void*)strarray[num], 0);
692 			size += strlen(string);
693 			free(string);
694 			num++;
695 		}
696 		size += 4 + (num * 4);
697 		tmp = (char *)malloc(size);
698 		tmp2 = tmp;
699 
700 		tmp2 += sprintf(tmp2, " [");
701 		for (i = 0; i < num; i++) {
702 			string = get_string(pid, (void*)strarray[i], 0);
703 			tmp2 += sprintf(tmp2, " \"%s\"%c", string,
704 			    (i + 1 == num) ? ' ' : ',');
705 			free(string);
706 		}
707 		tmp2 += sprintf(tmp2, "]");
708 		break;
709 	}
710 #ifdef __LP64__
711 	case Quad:
712 		asprintf(&tmp, "0x%lx", args[sc->offset]);
713 		break;
714 #else
715 	case Quad: {
716 		unsigned long long ll;
717 		ll = *(unsigned long long *)(args + sc->offset);
718 		asprintf(&tmp, "0x%llx", ll);
719 		break;
720 	}
721 #endif
722 	case Ptr:
723 		asprintf(&tmp, "0x%lx", args[sc->offset]);
724 		break;
725 	case Readlinkres: {
726 		char *tmp2;
727 		if (retval == -1) {
728 			tmp = strdup("");
729 			break;
730 		}
731 		tmp2 = get_string(pid, (void*)args[sc->offset], retval);
732 		asprintf(&tmp, "\"%s\"", tmp2);
733 		free(tmp2);
734 		break;
735 	}
736 	case Ioctl: {
737 		const char *temp = ioctlname(args[sc->offset]);
738 		if (temp)
739 			tmp = strdup(temp);
740 		else {
741 			unsigned long arg = args[sc->offset];
742 			asprintf(&tmp, "0x%lx { IO%s%s 0x%lx('%c'), %lu, %lu }",
743 			    arg, arg & IOC_OUT ? "R" : "",
744 			    arg & IOC_IN ? "W" : "", IOCGROUP(arg),
745 			    isprint(IOCGROUP(arg)) ? (char)IOCGROUP(arg) : '?',
746 			    arg & 0xFF, IOCPARM_LEN(arg));
747 		}
748 		break;
749 	}
750 	case Timespec: {
751 		struct timespec ts;
752 		if (get_struct(pid, (void *)args[sc->offset], &ts,
753 		    sizeof(ts)) != -1)
754 			asprintf(&tmp, "{%ld.%09ld }", (long)ts.tv_sec,
755 			    ts.tv_nsec);
756 		else
757 			asprintf(&tmp, "0x%lx", args[sc->offset]);
758 		break;
759 	}
760 	case Timeval: {
761 		struct timeval tv;
762 		if (get_struct(pid, (void *)args[sc->offset], &tv, sizeof(tv))
763 		    != -1)
764 			asprintf(&tmp, "{%ld.%06ld }", (long)tv.tv_sec,
765 			    tv.tv_usec);
766 		else
767 			asprintf(&tmp, "0x%lx", args[sc->offset]);
768 		break;
769 	}
770 	case Timeval2: {
771 		struct timeval tv[2];
772 		if (get_struct(pid, (void *)args[sc->offset], &tv, sizeof(tv))
773 		    != -1)
774 			asprintf(&tmp, "{%ld.%06ld, %ld.%06ld }",
775 			    (long)tv[0].tv_sec, tv[0].tv_usec,
776 			    (long)tv[1].tv_sec, tv[1].tv_usec);
777 		else
778 			asprintf(&tmp, "0x%lx", args[sc->offset]);
779 		break;
780 	}
781 	case Itimerval: {
782 		struct itimerval itv;
783 		if (get_struct(pid, (void *)args[sc->offset], &itv,
784 		    sizeof(itv)) != -1)
785 			asprintf(&tmp, "{%ld.%06ld, %ld.%06ld }",
786 			    (long)itv.it_interval.tv_sec,
787 			    itv.it_interval.tv_usec,
788 			    (long)itv.it_value.tv_sec,
789 			    itv.it_value.tv_usec);
790 		else
791 			asprintf(&tmp, "0x%lx", args[sc->offset]);
792 		break;
793 	}
794 	case LinuxSockArgs:
795 	{
796 		struct linux_socketcall_args largs;
797 		if (get_struct(pid, (void *)args[sc->offset], (void *)&largs,
798 		    sizeof(largs)) == -1) {
799 			err(1, "get_struct %p", (void *)args[sc->offset]);
800 		}
801 		const char *what;
802 		char buf[30];
803 
804 		switch (largs.what) {
805 		case LINUX_SOCKET:
806 			what = "LINUX_SOCKET";
807 			break;
808 		case LINUX_BIND:
809 			what = "LINUX_BIND";
810 			break;
811 		case LINUX_CONNECT:
812 			what = "LINUX_CONNECT";
813 			break;
814 		case LINUX_LISTEN:
815 			what = "LINUX_LISTEN";
816 			break;
817 		case LINUX_ACCEPT:
818 			what = "LINUX_ACCEPT";
819 			break;
820 		case LINUX_GETSOCKNAME:
821 			what = "LINUX_GETSOCKNAME";
822 			break;
823 		case LINUX_GETPEERNAME:
824 			what = "LINUX_GETPEERNAME";
825 			break;
826 		case LINUX_SOCKETPAIR:
827 			what = "LINUX_SOCKETPAIR";
828 			break;
829 		case LINUX_SEND:
830 			what = "LINUX_SEND";
831 			break;
832 		case LINUX_RECV:
833 			what = "LINUX_RECV";
834 			break;
835 		case LINUX_SENDTO:
836 			what = "LINUX_SENDTO";
837 			break;
838 		case LINUX_RECVFROM:
839 			what = "LINUX_RECVFROM";
840 			break;
841 		case LINUX_SHUTDOWN:
842 			what = "LINUX_SHUTDOWN";
843 			break;
844 		case LINUX_SETSOCKOPT:
845 			what = "LINUX_SETSOCKOPT";
846 			break;
847 		case LINUX_GETSOCKOPT:
848 			what = "LINUX_GETSOCKOPT";
849 			break;
850 		case LINUX_SENDMSG:
851 			what = "LINUX_SENDMSG";
852 			break;
853 		case LINUX_RECVMSG:
854 			what = "LINUX_RECVMSG";
855 			break;
856 		default:
857 			sprintf(buf, "%d", largs.what);
858 			what = buf;
859 			break;
860 		}
861 		asprintf(&tmp, "(0x%lx)%s, 0x%lx", args[sc->offset], what, (long unsigned int)largs.args);
862 		break;
863 	}
864 	case Pollfd: {
865 		/*
866 		 * XXX: A Pollfd argument expects the /next/ syscall argument
867 		 * to be the number of fds in the array. This matches the poll
868 		 * syscall.
869 		 */
870 		struct pollfd *pfd;
871 		int numfds = args[sc->offset+1];
872 		int bytes = sizeof(struct pollfd) * numfds;
873 		int i, tmpsize, u, used;
874 		const int per_fd = 100;
875 
876 		if ((pfd = malloc(bytes)) == NULL)
877 			err(1, "Cannot malloc %d bytes for pollfd array",
878 			    bytes);
879 		if (get_struct(pid, (void *)args[sc->offset], pfd, bytes)
880 		    != -1) {
881 			used = 0;
882 			tmpsize = 1 + per_fd * numfds + 2;
883 			if ((tmp = malloc(tmpsize)) == NULL)
884 				err(1, "Cannot alloc %d bytes for poll output",
885 				    tmpsize);
886 
887 			tmp[used++] = '{';
888 			for (i = 0; i < numfds; i++) {
889 
890 				u = snprintf(tmp + used, per_fd, "%s%d/%s",
891 				    i > 0 ? " " : "", pfd[i].fd,
892 				    xlookup_bits(poll_flags, pfd[i].events));
893 				if (u > 0)
894 					used += u < per_fd ? u : per_fd;
895 			}
896 			tmp[used++] = '}';
897 			tmp[used++] = '\0';
898 		} else {
899 			asprintf(&tmp, "0x%lx", args[sc->offset]);
900 		}
901 		free(pfd);
902 		break;
903 	}
904 	case Fd_set: {
905 		/*
906 		 * XXX: A Fd_set argument expects the /first/ syscall argument
907 		 * to be the number of fds in the array.  This matches the
908 		 * select syscall.
909 		 */
910 		fd_set *fds;
911 		int numfds = args[0];
912 		int bytes = _howmany(numfds, _NFDBITS) * _NFDBITS;
913 		int i, tmpsize, u, used;
914 		const int per_fd = 20;
915 
916 		if ((fds = malloc(bytes)) == NULL)
917 			err(1, "Cannot malloc %d bytes for fd_set array",
918 			    bytes);
919 		if (get_struct(pid, (void *)args[sc->offset], fds, bytes)
920 		    != -1) {
921 			used = 0;
922 			tmpsize = 1 + numfds * per_fd + 2;
923 			if ((tmp = malloc(tmpsize)) == NULL)
924 				err(1, "Cannot alloc %d bytes for fd_set "
925 				    "output", tmpsize);
926 
927 			tmp[used++] = '{';
928 			for (i = 0; i < numfds; i++) {
929 				if (FD_ISSET(i, fds)) {
930 					u = snprintf(tmp + used, per_fd, "%d ",
931 					    i);
932 					if (u > 0)
933 						used += u < per_fd ? u : per_fd;
934 				}
935 			}
936 			if (tmp[used-1] == ' ')
937 				used--;
938 			tmp[used++] = '}';
939 			tmp[used++] = '\0';
940 		} else
941 			asprintf(&tmp, "0x%lx", args[sc->offset]);
942 		free(fds);
943 		break;
944 	}
945 	case Signal:
946 		tmp = strsig2(args[sc->offset]);
947 		break;
948 	case Sigset: {
949 		long sig;
950 		sigset_t ss;
951 		int i, used;
952 		char *signame;
953 
954 		sig = args[sc->offset];
955 		if (get_struct(pid, (void *)args[sc->offset], (void *)&ss,
956 		    sizeof(ss)) == -1) {
957 			asprintf(&tmp, "0x%lx", args[sc->offset]);
958 			break;
959 		}
960 		tmp = malloc(sys_nsig * 8); /* 7 bytes avg per signal name */
961 		used = 0;
962 		for (i = 1; i < sys_nsig; i++) {
963 			if (sigismember(&ss, i)) {
964 				signame = strsig(i);
965 				used += sprintf(tmp + used, "%s|", signame);
966 				free(signame);
967 			}
968 		}
969 		if (used)
970 			tmp[used-1] = 0;
971 		else
972 			strcpy(tmp, "0x0");
973 		break;
974 	}
975 	case Sigprocmask: {
976 		switch (args[sc->offset]) {
977 #define	S(a)	case a: tmp = strdup(#a); break;
978 			S(SIG_BLOCK);
979 			S(SIG_UNBLOCK);
980 			S(SIG_SETMASK);
981 #undef S
982 		}
983 		if (tmp == NULL)
984 			asprintf(&tmp, "0x%lx", args[sc->offset]);
985 		break;
986 	}
987 	case Fcntlflag: {
988 		/* XXX output depends on the value of the previous argument */
989 		switch (args[sc->offset-1]) {
990 		case F_SETFD:
991 			tmp = strdup(xlookup_bits(fcntlfd_arg,
992 			    args[sc->offset]));
993 			break;
994 		case F_SETFL:
995 			tmp = strdup(xlookup_bits(fcntlfl_arg,
996 			    args[sc->offset]));
997 			break;
998 		case F_GETFD:
999 		case F_GETFL:
1000 		case F_GETOWN:
1001 			tmp = strdup("");
1002 			break;
1003 		default:
1004 			asprintf(&tmp, "0x%lx", args[sc->offset]);
1005 			break;
1006 		}
1007 		break;
1008 	}
1009 	case Open:
1010 		tmp = strdup(xlookup_bits(open_flags, args[sc->offset]));
1011 		break;
1012 	case Fcntl:
1013 		tmp = strdup(xlookup(fcntl_arg, args[sc->offset]));
1014 		break;
1015 	case Mprot:
1016 		tmp = strdup(xlookup_bits(mprot_flags, args[sc->offset]));
1017 		break;
1018 	case Mmapflags: {
1019 		char *base, *alignstr;
1020 		int align, flags;
1021 
1022 		/*
1023 		 * MAP_ALIGNED can't be handled by xlookup_bits(), so
1024 		 * generate that string manually and prepend it to the
1025 		 * string from xlookup_bits().  Have to be careful to
1026 		 * avoid outputting MAP_ALIGNED|0 if MAP_ALIGNED is
1027 		 * the only flag.
1028 		 */
1029 		flags = args[sc->offset] & ~MAP_ALIGNMENT_MASK;
1030 		align = args[sc->offset] & MAP_ALIGNMENT_MASK;
1031 		if (align != 0) {
1032 			if (align == MAP_ALIGNED_SUPER)
1033 				alignstr = strdup("MAP_ALIGNED_SUPER");
1034 			else
1035 				asprintf(&alignstr, "MAP_ALIGNED(%d)",
1036 				    align >> MAP_ALIGNMENT_SHIFT);
1037 			if (flags == 0) {
1038 				tmp = alignstr;
1039 				break;
1040 			}
1041 		} else
1042 			alignstr = NULL;
1043 		base = strdup(xlookup_bits(mmap_flags, flags));
1044 		if (alignstr == NULL) {
1045 			tmp = base;
1046 			break;
1047 		}
1048 		asprintf(&tmp, "%s|%s", alignstr, base);
1049 		free(alignstr);
1050 		free(base);
1051 		break;
1052 	}
1053 	case Whence:
1054 		tmp = strdup(xlookup(whence_arg, args[sc->offset]));
1055 		break;
1056 	case Sockdomain:
1057 		tmp = strdup(xlookup(sockdomain_arg, args[sc->offset]));
1058 		break;
1059 	case Socktype:
1060 		tmp = strdup(xlookup(socktype_arg, args[sc->offset]));
1061 		break;
1062 	case Shutdown:
1063 		tmp = strdup(xlookup(shutdown_arg, args[sc->offset]));
1064 		break;
1065 	case Resource:
1066 		tmp = strdup(xlookup(resource_arg, args[sc->offset]));
1067 		break;
1068 	case Pathconf:
1069 		tmp = strdup(xlookup(pathconf_arg, args[sc->offset]));
1070 		break;
1071 	case Rforkflags:
1072 		tmp = strdup(xlookup_bits(rfork_flags, args[sc->offset]));
1073 		break;
1074 	case Sockaddr: {
1075 		struct sockaddr_storage ss;
1076 		char addr[64];
1077 		struct sockaddr_in *lsin;
1078 		struct sockaddr_in6 *lsin6;
1079 		struct sockaddr_un *sun;
1080 		struct sockaddr *sa;
1081 		char *p;
1082 		u_char *q;
1083 		int i;
1084 
1085 		if (args[sc->offset] == 0) {
1086 			asprintf(&tmp, "NULL");
1087 			break;
1088 		}
1089 
1090 		/* yuck: get ss_len */
1091 		if (get_struct(pid, (void *)args[sc->offset], (void *)&ss,
1092 		    sizeof(ss.ss_len) + sizeof(ss.ss_family)) == -1)
1093 			err(1, "get_struct %p", (void *)args[sc->offset]);
1094 		/*
1095 		 * If ss_len is 0, then try to guess from the sockaddr type.
1096 		 * AF_UNIX may be initialized incorrectly, so always frob
1097 		 * it by using the "right" size.
1098 		 */
1099 		if (ss.ss_len == 0 || ss.ss_family == AF_UNIX) {
1100 			switch (ss.ss_family) {
1101 			case AF_INET:
1102 				ss.ss_len = sizeof(*lsin);
1103 				break;
1104 			case AF_UNIX:
1105 				ss.ss_len = sizeof(*sun);
1106 				break;
1107 			default:
1108 				/* hurrrr */
1109 				break;
1110 			}
1111 		}
1112 		if (get_struct(pid, (void *)args[sc->offset], (void *)&ss,
1113 		    ss.ss_len) == -1) {
1114 			err(2, "get_struct %p", (void *)args[sc->offset]);
1115 		}
1116 
1117 		switch (ss.ss_family) {
1118 		case AF_INET:
1119 			lsin = (struct sockaddr_in *)&ss;
1120 			inet_ntop(AF_INET, &lsin->sin_addr, addr, sizeof addr);
1121 			asprintf(&tmp, "{ AF_INET %s:%d }", addr,
1122 			    htons(lsin->sin_port));
1123 			break;
1124 		case AF_INET6:
1125 			lsin6 = (struct sockaddr_in6 *)&ss;
1126 			inet_ntop(AF_INET6, &lsin6->sin6_addr, addr,
1127 			    sizeof addr);
1128 			asprintf(&tmp, "{ AF_INET6 [%s]:%d }", addr,
1129 			    htons(lsin6->sin6_port));
1130 			break;
1131 		case AF_UNIX:
1132 			sun = (struct sockaddr_un *)&ss;
1133 			asprintf(&tmp, "{ AF_UNIX \"%s\" }", sun->sun_path);
1134 			break;
1135 		default:
1136 			sa = (struct sockaddr *)&ss;
1137 			asprintf(&tmp, "{ sa_len = %d, sa_family = %d, sa_data "
1138 			    "= {%n%*s } }", (int)sa->sa_len, (int)sa->sa_family,
1139 			    &i, 6 * (int)(sa->sa_len - ((char *)&sa->sa_data -
1140 			    (char *)sa)), "");
1141 			if (tmp != NULL) {
1142 				p = tmp + i;
1143 				for (q = (u_char *)&sa->sa_data;
1144 				    q < (u_char *)sa + sa->sa_len; q++)
1145 					p += sprintf(p, " %#02x,", *q);
1146 			}
1147 		}
1148 		break;
1149 	}
1150 	case Sigaction: {
1151 		struct sigaction sa;
1152 		char *hand;
1153 		const char *h;
1154 
1155 		if (get_struct(pid, (void *)args[sc->offset], &sa, sizeof(sa))
1156 		    != -1) {
1157 			asprintf(&hand, "%p", sa.sa_handler);
1158 			if (sa.sa_handler == SIG_DFL)
1159 				h = "SIG_DFL";
1160 			else if (sa.sa_handler == SIG_IGN)
1161 				h = "SIG_IGN";
1162 			else
1163 				h = hand;
1164 
1165 			asprintf(&tmp, "{ %s %s ss_t }", h,
1166 			    xlookup_bits(sigaction_flags, sa.sa_flags));
1167 			free(hand);
1168 		} else
1169 			asprintf(&tmp, "0x%lx", args[sc->offset]);
1170 		break;
1171 	}
1172 	case Kevent: {
1173 		/*
1174 		 * XXX XXX: the size of the array is determined by either the
1175 		 * next syscall argument, or by the syscall returnvalue,
1176 		 * depending on which argument number we are.  This matches the
1177 		 * kevent syscall, but luckily that's the only syscall that uses
1178 		 * them.
1179 		 */
1180 		struct kevent *ke;
1181 		int numevents = -1;
1182 		int bytes = 0;
1183 		int i, tmpsize, u, used;
1184 		const int per_ke = 100;
1185 
1186 		if (sc->offset == 1)
1187 			numevents = args[sc->offset+1];
1188 		else if (sc->offset == 3 && retval != -1)
1189 			numevents = retval;
1190 
1191 		if (numevents >= 0)
1192 			bytes = sizeof(struct kevent) * numevents;
1193 		if ((ke = malloc(bytes)) == NULL)
1194 			err(1, "Cannot malloc %d bytes for kevent array",
1195 			    bytes);
1196 		if (numevents >= 0 && get_struct(pid, (void *)args[sc->offset],
1197 		    ke, bytes) != -1) {
1198 			used = 0;
1199 			tmpsize = 1 + per_ke * numevents + 2;
1200 			if ((tmp = malloc(tmpsize)) == NULL)
1201 				err(1, "Cannot alloc %d bytes for kevent "
1202 				    "output", tmpsize);
1203 
1204 			tmp[used++] = '{';
1205 			for (i = 0; i < numevents; i++) {
1206 				u = snprintf(tmp + used, per_ke,
1207 				    "%s%p,%s,%s,%d,%p,%p",
1208 				    i > 0 ? " " : "",
1209 				    (void *)ke[i].ident,
1210 				    xlookup(kevent_filters, ke[i].filter),
1211 				    xlookup_bits(kevent_flags, ke[i].flags),
1212 				    ke[i].fflags,
1213 				    (void *)ke[i].data,
1214 				    (void *)ke[i].udata);
1215 				if (u > 0)
1216 					used += u < per_ke ? u : per_ke;
1217 			}
1218 			tmp[used++] = '}';
1219 			tmp[used++] = '\0';
1220 		} else {
1221 			asprintf(&tmp, "0x%lx", args[sc->offset]);
1222 		}
1223 		free(ke);
1224 		break;
1225 	}
1226 	case Stat: {
1227 		struct stat st;
1228 		if (get_struct(pid, (void *)args[sc->offset], &st, sizeof(st))
1229 		    != -1) {
1230 			char mode[12];
1231 			strmode(st.st_mode, mode);
1232 			asprintf(&tmp,
1233 			    "{ mode=%s,inode=%jd,size=%jd,blksize=%ld }", mode,
1234 			    (intmax_t)st.st_ino, (intmax_t)st.st_size,
1235 			    (long)st.st_blksize);
1236 		} else {
1237 			asprintf(&tmp, "0x%lx", args[sc->offset]);
1238 		}
1239 		break;
1240 	}
1241 	case Rusage: {
1242 		struct rusage ru;
1243 		if (get_struct(pid, (void *)args[sc->offset], &ru, sizeof(ru))
1244 		    != -1) {
1245 			asprintf(&tmp,
1246 			    "{ u=%ld.%06ld,s=%ld.%06ld,in=%ld,out=%ld }",
1247 			    (long)ru.ru_utime.tv_sec, ru.ru_utime.tv_usec,
1248 			    (long)ru.ru_stime.tv_sec, ru.ru_stime.tv_usec,
1249 			    ru.ru_inblock, ru.ru_oublock);
1250 		} else
1251 			asprintf(&tmp, "0x%lx", args[sc->offset]);
1252 		break;
1253 	}
1254 	case Rlimit: {
1255 		struct rlimit rl;
1256 		if (get_struct(pid, (void *)args[sc->offset], &rl, sizeof(rl))
1257 		    != -1) {
1258 			asprintf(&tmp, "{ cur=%ju,max=%ju }",
1259 			    rl.rlim_cur, rl.rlim_max);
1260 		} else
1261 			asprintf(&tmp, "0x%lx", args[sc->offset]);
1262 		break;
1263 	}
1264 	case ExitStatus: {
1265 		char *signame;
1266 		int status;
1267 		signame = NULL;
1268 		if (get_struct(pid, (void *)args[sc->offset], &status,
1269 		    sizeof(status)) != -1) {
1270 			if (WIFCONTINUED(status))
1271 				tmp = strdup("{ CONTINUED }");
1272 			else if (WIFEXITED(status))
1273 				asprintf(&tmp, "{ EXITED,val=%d }",
1274 				    WEXITSTATUS(status));
1275 			else if (WIFSIGNALED(status))
1276 				asprintf(&tmp, "{ SIGNALED,sig=%s%s }",
1277 				    signame = strsig2(WTERMSIG(status)),
1278 				    WCOREDUMP(status) ? ",cored" : "");
1279 			else
1280 				asprintf(&tmp, "{ STOPPED,sig=%s }",
1281 				    signame = strsig2(WTERMSIG(status)));
1282 		} else
1283 			asprintf(&tmp, "0x%lx", args[sc->offset]);
1284 		free(signame);
1285 		break;
1286 	}
1287 	case Waitoptions:
1288 		tmp = strdup(xlookup_bits(wait_options, args[sc->offset]));
1289 		break;
1290 	case Idtype:
1291 		tmp = strdup(xlookup(idtype_arg, args[sc->offset]));
1292 		break;
1293 	case Procctl:
1294 		tmp = strdup(xlookup(procctl_arg, args[sc->offset]));
1295 		break;
1296 	case Umtxop:
1297 		tmp = strdup(xlookup(umtx_ops, args[sc->offset]));
1298 		break;
1299 	default:
1300 		errx(1, "Invalid argument type %d\n", sc->type & ARG_MASK);
1301 	}
1302 	return (tmp);
1303 }
1304 
1305 /*
1306  * print_syscall
1307  * Print (to outfile) the system call and its arguments.  Note that
1308  * nargs is the number of arguments (not the number of words; this is
1309  * potentially confusing, I know).
1310  */
1311 
1312 void
1313 print_syscall(struct trussinfo *trussinfo, const char *name, int nargs,
1314     char **s_args)
1315 {
1316 	struct timespec timediff;
1317 	int i, len;
1318 
1319 	len = 0;
1320 	if (trussinfo->flags & FOLLOWFORKS)
1321 		len += fprintf(trussinfo->outfile, "%5d: ", trussinfo->pid);
1322 
1323 	if (name != NULL && (strcmp(name, "execve") == 0 ||
1324 	    strcmp(name, "exit") == 0)) {
1325 		clock_gettime(CLOCK_REALTIME, &trussinfo->curthread->after);
1326 	}
1327 
1328 	if (trussinfo->flags & ABSOLUTETIMESTAMPS) {
1329 		timespecsubt(&trussinfo->curthread->after,
1330 		    &trussinfo->start_time, &timediff);
1331 		len += fprintf(trussinfo->outfile, "%ld.%09ld ",
1332 		    (long)timediff.tv_sec, timediff.tv_nsec);
1333 	}
1334 
1335 	if (trussinfo->flags & RELATIVETIMESTAMPS) {
1336 		timespecsubt(&trussinfo->curthread->after,
1337 		    &trussinfo->curthread->before, &timediff);
1338 		len += fprintf(trussinfo->outfile, "%ld.%09ld ",
1339 		    (long)timediff.tv_sec, timediff.tv_nsec);
1340 	}
1341 
1342 	len += fprintf(trussinfo->outfile, "%s(", name);
1343 
1344 	for (i = 0; i < nargs; i++) {
1345 		if (s_args[i])
1346 			len += fprintf(trussinfo->outfile, "%s", s_args[i]);
1347 		else
1348 			len += fprintf(trussinfo->outfile,
1349 			    "<missing argument>");
1350 		len += fprintf(trussinfo->outfile, "%s", i < (nargs - 1) ?
1351 		    "," : "");
1352 	}
1353 	len += fprintf(trussinfo->outfile, ")");
1354 	for (i = 0; i < 6 - (len / 8); i++)
1355 		fprintf(trussinfo->outfile, "\t");
1356 }
1357 
1358 void
1359 print_syscall_ret(struct trussinfo *trussinfo, const char *name, int nargs,
1360     char **s_args, int errorp, long retval, struct syscall *sc)
1361 {
1362 	struct timespec timediff;
1363 
1364 	if (trussinfo->flags & COUNTONLY) {
1365 		if (!sc)
1366 			return;
1367 		clock_gettime(CLOCK_REALTIME, &trussinfo->curthread->after);
1368 		timespecsubt(&trussinfo->curthread->after,
1369 		    &trussinfo->curthread->before, &timediff);
1370 		timespecadd(&sc->time, &timediff, &sc->time);
1371 		sc->ncalls++;
1372 		if (errorp)
1373 			sc->nerror++;
1374 		return;
1375 	}
1376 
1377 	print_syscall(trussinfo, name, nargs, s_args);
1378 	fflush(trussinfo->outfile);
1379 	if (errorp)
1380 		fprintf(trussinfo->outfile, " ERR#%ld '%s'\n", retval,
1381 		    strerror(retval));
1382 	else {
1383 		/*
1384 		 * Because pipe(2) has a special assembly glue to provide the
1385 		 * libc API, we have to adjust retval.
1386 		 */
1387 		if (name != NULL && strcmp(name, "pipe") == 0)
1388 			retval = 0;
1389 		fprintf(trussinfo->outfile, " = %ld (0x%lx)\n", retval, retval);
1390 	}
1391 }
1392 
1393 void
1394 print_summary(struct trussinfo *trussinfo)
1395 {
1396 	struct timespec total = {0, 0};
1397 	struct syscall *sc;
1398 	int ncall, nerror;
1399 
1400 	fprintf(trussinfo->outfile, "%-20s%15s%8s%8s\n",
1401 	    "syscall", "seconds", "calls", "errors");
1402 	ncall = nerror = 0;
1403 	for (sc = syscalls; sc->name != NULL; sc++)
1404 		if (sc->ncalls) {
1405 			fprintf(trussinfo->outfile, "%-20s%5jd.%09ld%8d%8d\n",
1406 			    sc->name, (intmax_t)sc->time.tv_sec,
1407 			    sc->time.tv_nsec, sc->ncalls, sc->nerror);
1408 			timespecadd(&total, &sc->time, &total);
1409 			ncall += sc->ncalls;
1410 			nerror += sc->nerror;
1411 		}
1412 	fprintf(trussinfo->outfile, "%20s%15s%8s%8s\n",
1413 	    "", "-------------", "-------", "-------");
1414 	fprintf(trussinfo->outfile, "%-20s%5jd.%09ld%8d%8d\n",
1415 	    "", (intmax_t)total.tv_sec, total.tv_nsec, ncall, nerror);
1416 }
1417