1 /* 2 * This program may be freely redistributed, 3 * but this entire comment MUST remain intact. 4 * 5 * Copyright (c) 1984, 1989, William LeFebvre, Rice University 6 * Copyright (c) 1989, 1990, 1992, William LeFebvre, Northwestern University 7 * 8 * $FreeBSD$ 9 */ 10 11 /* 12 * This file contains various handy utilities used by top. 13 */ 14 15 #include "top.h" 16 #include "utils.h" 17 18 #include <sys/param.h> 19 #include <sys/sysctl.h> 20 #include <sys/user.h> 21 22 #include <stdlib.h> 23 #include <stdio.h> 24 #include <string.h> 25 #include <fcntl.h> 26 #include <paths.h> 27 #include <kvm.h> 28 29 int 30 atoiwi(const char *str) 31 { 32 size_t len; 33 34 len = strlen(str); 35 if (len != 0) 36 { 37 if (strncmp(str, "infinity", len) == 0 || 38 strncmp(str, "all", len) == 0 || 39 strncmp(str, "maximum", len) == 0) 40 { 41 return(Infinity); 42 } 43 else if (str[0] == '-') 44 { 45 return(Invalid); 46 } 47 else 48 { 49 return(atoi(str)); 50 } 51 } 52 return(0); 53 } 54 55 /* 56 * itoa - convert integer (decimal) to ascii string for positive numbers 57 * only (we don't bother with negative numbers since we know we 58 * don't use them). 59 */ 60 61 /* 62 * How do we know that 16 will suffice? 63 * Because the biggest number that we will 64 * ever convert will be 2^32-1, which is 10 65 * digits. 66 */ 67 _Static_assert(sizeof(int) <= 4, "buffer too small for this sized int"); 68 69 char *itoa(unsigned int val) 70 { 71 char *ptr; 72 static char buffer[16]; /* result is built here */ 73 /* 16 is sufficient since the largest number 74 we will ever convert will be 2^32-1, 75 which is 10 digits. */ 76 77 ptr = buffer + sizeof(buffer); 78 *--ptr = '\0'; 79 if (val == 0) 80 { 81 *--ptr = '0'; 82 } 83 else while (val != 0) 84 { 85 *--ptr = (val % 10) + '0'; 86 val /= 10; 87 } 88 return(ptr); 89 } 90 91 /* 92 * itoa7(val) - like itoa, except the number is right justified in a 7 93 * character field. This code is a duplication of itoa instead of 94 * a front end to a more general routine for efficiency. 95 */ 96 97 char *itoa7(int val) 98 { 99 char *ptr; 100 static char buffer[16]; /* result is built here */ 101 /* 16 is sufficient since the largest number 102 we will ever convert will be 2^32-1, 103 which is 10 digits. */ 104 105 ptr = buffer + sizeof(buffer); 106 *--ptr = '\0'; 107 if (val == 0) 108 { 109 *--ptr = '0'; 110 } 111 else while (val != 0) 112 { 113 *--ptr = (val % 10) + '0'; 114 val /= 10; 115 } 116 while (ptr > buffer + sizeof(buffer) - 7) 117 { 118 *--ptr = ' '; 119 } 120 return(ptr); 121 } 122 123 /* 124 * digits(val) - return number of decimal digits in val. Only works for 125 * positive numbers. If val <= 0 then digits(val) == 0. 126 */ 127 128 int digits(int val) 129 { 130 int cnt = 0; 131 132 while (val > 0) 133 { 134 cnt++; 135 val /= 10; 136 } 137 return(cnt); 138 } 139 140 /* 141 * string_index(string, array) - find string in array and return index 142 */ 143 144 int 145 string_index(const char *string, const char * const *array) 146 { 147 size_t i = 0; 148 149 while (*array != NULL) 150 { 151 if (strcmp(string, *array) == 0) 152 { 153 return(i); 154 } 155 array++; 156 i++; 157 } 158 return(-1); 159 } 160 161 /* 162 * argparse(line, cntp) - parse arguments in string "line", separating them 163 * out into an argv-like array, and setting *cntp to the number of 164 * arguments encountered. This is a simple parser that doesn't understand 165 * squat about quotes. 166 */ 167 168 const char * const * 169 argparse(const char *line, int *cntp) 170 { 171 const char *from; 172 char *to; 173 int cnt; 174 int ch; 175 int length; 176 int lastch; 177 char **argv; 178 const char * const *argarray; 179 char *args; 180 181 /* unfortunately, the only real way to do this is to go thru the 182 input string twice. */ 183 184 /* step thru the string counting the white space sections */ 185 from = line; 186 lastch = cnt = length = 0; 187 while ((ch = *from++) != '\0') 188 { 189 length++; 190 if (ch == ' ' && lastch != ' ') 191 { 192 cnt++; 193 } 194 lastch = ch; 195 } 196 197 /* add three to the count: one for the initial "dummy" argument, 198 one for the last argument and one for NULL */ 199 cnt += 3; 200 201 /* allocate a char * array to hold the pointers */ 202 argarray = calloc(cnt, sizeof(char *)); 203 204 /* allocate another array to hold the strings themselves */ 205 args = calloc(length+2, 1); 206 207 /* initialization for main loop */ 208 from = line; 209 to = args; 210 argv = argarray; 211 lastch = '\0'; 212 213 /* create a dummy argument to keep getopt happy */ 214 *argv++ = to; 215 *to++ = '\0'; 216 cnt = 2; 217 218 /* now build argv while copying characters */ 219 *argv++ = to; 220 while ((ch = *from++) != '\0') 221 { 222 if (ch != ' ') 223 { 224 if (lastch == ' ') 225 { 226 *to++ = '\0'; 227 *argv++ = to; 228 cnt++; 229 } 230 *to++ = ch; 231 } 232 lastch = ch; 233 } 234 *to++ = '\0'; 235 236 /* set cntp and return the allocated array */ 237 *cntp = cnt; 238 return(argarray); 239 } 240 241 /* 242 * percentages(cnt, out, new, old, diffs) - calculate percentage change 243 * between array "old" and "new", putting the percentages i "out". 244 * "cnt" is size of each array and "diffs" is used for scratch space. 245 * The array "old" is updated on each call. 246 * The routine assumes modulo arithmetic. This function is especially 247 * useful on for calculating cpu state percentages. 248 */ 249 250 long 251 percentages(int cnt, int *out, long *new, long *old, long *diffs) 252 { 253 int i; 254 long change; 255 long total_change; 256 long *dp; 257 long half_total; 258 259 /* initialization */ 260 total_change = 0; 261 dp = diffs; 262 263 /* calculate changes for each state and the overall change */ 264 for (i = 0; i < cnt; i++) 265 { 266 if ((change = *new - *old) < 0) 267 { 268 /* this only happens when the counter wraps */ 269 change = (int) 270 ((unsigned long)*new-(unsigned long)*old); 271 } 272 total_change += (*dp++ = change); 273 *old++ = *new++; 274 } 275 276 /* avoid divide by zero potential */ 277 if (total_change == 0) 278 { 279 total_change = 1; 280 } 281 282 /* calculate percentages based on overall change, rounding up */ 283 half_total = total_change / 2l; 284 285 /* Do not divide by 0. Causes Floating point exception */ 286 if(total_change) { 287 for (i = 0; i < cnt; i++) 288 { 289 *out++ = (int)((*diffs++ * 1000 + half_total) / total_change); 290 } 291 } 292 293 /* return the total in case the caller wants to use it */ 294 return(total_change); 295 } 296 297 /* format_time(seconds) - format number of seconds into a suitable 298 * display that will fit within 6 characters. Note that this 299 * routine builds its string in a static area. If it needs 300 * to be called more than once without overwriting previous data, 301 * then we will need to adopt a technique similar to the 302 * one used for format_k. 303 */ 304 305 /* Explanation: 306 We want to keep the output within 6 characters. For low values we use 307 the format mm:ss. For values that exceed 999:59, we switch to a format 308 that displays hours and fractions: hhh.tH. For values that exceed 309 999.9, we use hhhh.t and drop the "H" designator. For values that 310 exceed 9999.9, we use "???". 311 */ 312 313 char * 314 format_time(long seconds) 315 { 316 static char result[10]; 317 318 /* sanity protection */ 319 if (seconds < 0 || seconds > (99999l * 360l)) 320 { 321 strcpy(result, " ???"); 322 } 323 else if (seconds >= (1000l * 60l)) 324 { 325 /* alternate (slow) method displaying hours and tenths */ 326 sprintf(result, "%5.1fH", (double)seconds / (double)(60l * 60l)); 327 328 /* It is possible that the sprintf took more than 6 characters. 329 If so, then the "H" appears as result[6]. If not, then there 330 is a \0 in result[6]. Either way, it is safe to step on. 331 */ 332 result[6] = '\0'; 333 } 334 else 335 { 336 /* standard method produces MMM:SS */ 337 /* we avoid printf as must as possible to make this quick */ 338 sprintf(result, "%3ld:%02ld", 339 (long)(seconds / 60), (long)(seconds % 60)); 340 } 341 return(result); 342 } 343 344 /* 345 * format_k(amt) - format a kilobyte memory value, returning a string 346 * suitable for display. Returns a pointer to a static 347 * area that changes each call. "amt" is converted to a 348 * string with a trailing "K". If "amt" is 10000 or greater, 349 * then it is formatted as megabytes (rounded) with a 350 * trailing "M". 351 */ 352 353 /* 354 * Compromise time. We need to return a string, but we don't want the 355 * caller to have to worry about freeing a dynamically allocated string. 356 * Unfortunately, we can't just return a pointer to a static area as one 357 * of the common uses of this function is in a large call to sprintf where 358 * it might get invoked several times. Our compromise is to maintain an 359 * array of strings and cycle thru them with each invocation. We make the 360 * array large enough to handle the above mentioned case. The constant 361 * NUM_STRINGS defines the number of strings in this array: we can tolerate 362 * up to NUM_STRINGS calls before we start overwriting old information. 363 * Keeping NUM_STRINGS a power of two will allow an intelligent optimizer 364 * to convert the modulo operation into something quicker. What a hack! 365 */ 366 367 #define NUM_STRINGS 8 368 369 char *format_k(int amt) 370 { 371 static char retarray[NUM_STRINGS][16]; 372 static int index = 0; 373 char *p; 374 char *ret; 375 char tag = 'K'; 376 377 p = ret = retarray[index]; 378 index = (index + 1) % NUM_STRINGS; 379 380 if (amt >= 10000) 381 { 382 amt = (amt + 512) / 1024; 383 tag = 'M'; 384 if (amt >= 10000) 385 { 386 amt = (amt + 512) / 1024; 387 tag = 'G'; 388 } 389 } 390 391 p = stpcpy(p, itoa(amt)); 392 *p++ = tag; 393 *p = '\0'; 394 395 return(ret); 396 } 397 398 char * 399 format_k2(unsigned long long amt) 400 { 401 static char retarray[NUM_STRINGS][16]; 402 static int index = 0; 403 char *p; 404 char *ret; 405 char tag = 'K'; 406 407 p = ret = retarray[index]; 408 index = (index + 1) % NUM_STRINGS; 409 410 if (amt >= 100000) 411 { 412 amt = (amt + 512) / 1024; 413 tag = 'M'; 414 if (amt >= 100000) 415 { 416 amt = (amt + 512) / 1024; 417 tag = 'G'; 418 } 419 } 420 421 p = stpcpy(p, itoa((int)amt)); 422 *p++ = tag; 423 *p = '\0'; 424 425 return(ret); 426 } 427 428 int 429 find_pid(pid_t pid) 430 { 431 kvm_t *kd = NULL; 432 struct kinfo_proc *pbase = NULL; 433 int nproc; 434 int ret = 0; 435 436 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, NULL); 437 if (kd == NULL) { 438 fprintf(stderr, "top: kvm_open() failed.\n"); 439 quit(TOP_EX_SYS_ERROR); 440 } 441 442 pbase = kvm_getprocs(kd, KERN_PROC_PID, pid, &nproc); 443 if (pbase == NULL) { 444 goto done; 445 } 446 447 if ((nproc == 1) && (pbase->ki_pid == pid)) { 448 ret = 1; 449 } 450 451 done: 452 kvm_close(kd); 453 return ret; 454 } 455