xref: /freebsd/usr.bin/top/utils.c (revision e08e9e999091f86081377b7cedc3fd2fe2ab70fc)
1 /*
2  *  This program may be freely redistributed,
3  *  but this entire comment MUST remain intact.
4  *
5  *  Copyright (c) 1984, 1989, William LeFebvre, Rice University
6  *  Copyright (c) 1989, 1990, 1992, William LeFebvre, Northwestern University
7  *
8  * $FreeBSD$
9  */
10 
11 /*
12  *  This file contains various handy utilities used by top.
13  */
14 
15 #include "top.h"
16 #include "utils.h"
17 
18 #include <stdlib.h>
19 #include <stdio.h>
20 #include <string.h>
21 
22 int
23 atoiwi(char *str)
24 {
25     int len;
26 
27     len = strlen(str);
28     if (len != 0)
29     {
30 	if (strncmp(str, "infinity", len) == 0 ||
31 	    strncmp(str, "all",      len) == 0 ||
32 	    strncmp(str, "maximum",  len) == 0)
33 	{
34 	    return(Infinity);
35 	}
36 	else if (str[0] == '-')
37 	{
38 	    return(Invalid);
39 	}
40 	else
41 	{
42 	    return(atoi(str));
43 	}
44     }
45     return(0);
46 }
47 
48 /*
49  *  itoa - convert integer (decimal) to ascii string for positive numbers
50  *  	   only (we don't bother with negative numbers since we know we
51  *	   don't use them).
52  */
53 
54 				/*
55 				 * How do we know that 16 will suffice?
56 				 * Because the biggest number that we will
57 				 * ever convert will be 2^32-1, which is 10
58 				 * digits.
59 				 */
60 _Static_assert(sizeof(int) <= 4, "buffer too small for this sized int");
61 
62 char *itoa(val)
63 
64 int val;
65 
66 {
67     char *ptr;
68     static char buffer[16];	/* result is built here */
69     				/* 16 is sufficient since the largest number
70 				   we will ever convert will be 2^32-1,
71 				   which is 10 digits. */
72 
73     ptr = buffer + sizeof(buffer);
74     *--ptr = '\0';
75     if (val == 0)
76     {
77 	*--ptr = '0';
78     }
79     else while (val != 0)
80     {
81 	*--ptr = (val % 10) + '0';
82 	val /= 10;
83     }
84     return(ptr);
85 }
86 
87 /*
88  *  itoa7(val) - like itoa, except the number is right justified in a 7
89  *	character field.  This code is a duplication of itoa instead of
90  *	a front end to a more general routine for efficiency.
91  */
92 
93 char *itoa7(val)
94 
95 int val;
96 
97 {
98     char *ptr;
99     static char buffer[16];	/* result is built here */
100     				/* 16 is sufficient since the largest number
101 				   we will ever convert will be 2^32-1,
102 				   which is 10 digits. */
103 
104     ptr = buffer + sizeof(buffer);
105     *--ptr = '\0';
106     if (val == 0)
107     {
108 	*--ptr = '0';
109     }
110     else while (val != 0)
111     {
112 	*--ptr = (val % 10) + '0';
113 	val /= 10;
114     }
115     while (ptr > buffer + sizeof(buffer) - 7)
116     {
117 	*--ptr = ' ';
118     }
119     return(ptr);
120 }
121 
122 /*
123  *  digits(val) - return number of decimal digits in val.  Only works for
124  *	positive numbers.  If val <= 0 then digits(val) == 0.
125  */
126 
127 int digits(val)
128 
129 int val;
130 
131 {
132     int cnt = 0;
133 
134     while (val > 0)
135     {
136 	cnt++;
137 	val /= 10;
138     }
139     return(cnt);
140 }
141 
142 /*
143  *  strecpy(to, from) - copy string "from" into "to" and return a pointer
144  *	to the END of the string "to".
145  */
146 
147 char *
148 strecpy(char *to, char *from)
149 {
150     while ((*to++ = *from++) != '\0');
151     return(--to);
152 }
153 
154 /*
155  * string_index(string, array) - find string in array and return index
156  */
157 
158 int string_index(string, array)
159 
160 char *string;
161 char **array;
162 
163 {
164     int i = 0;
165 
166     while (*array != NULL)
167     {
168 	if (strcmp(string, *array) == 0)
169 	{
170 	    return(i);
171 	}
172 	array++;
173 	i++;
174     }
175     return(-1);
176 }
177 
178 /*
179  * argparse(line, cntp) - parse arguments in string "line", separating them
180  *	out into an argv-like array, and setting *cntp to the number of
181  *	arguments encountered.  This is a simple parser that doesn't understand
182  *	squat about quotes.
183  */
184 
185 char **argparse(line, cntp)
186 
187 char *line;
188 int *cntp;
189 
190 {
191     char *from;
192     char *to;
193     int cnt;
194     int ch;
195     int length;
196     int lastch;
197     char **argv;
198     char **argarray;
199     char *args;
200 
201     /* unfortunately, the only real way to do this is to go thru the
202        input string twice. */
203 
204     /* step thru the string counting the white space sections */
205     from = line;
206     lastch = cnt = length = 0;
207     while ((ch = *from++) != '\0')
208     {
209 	length++;
210 	if (ch == ' ' && lastch != ' ')
211 	{
212 	    cnt++;
213 	}
214 	lastch = ch;
215     }
216 
217     /* add three to the count:  one for the initial "dummy" argument,
218        one for the last argument and one for NULL */
219     cnt += 3;
220 
221     /* allocate a char * array to hold the pointers */
222     argarray = (char **)malloc(cnt * sizeof(char *));
223 
224     /* allocate another array to hold the strings themselves */
225     args = (char *)malloc(length+2);
226 
227     /* initialization for main loop */
228     from = line;
229     to = args;
230     argv = argarray;
231     lastch = '\0';
232 
233     /* create a dummy argument to keep getopt happy */
234     *argv++ = to;
235     *to++ = '\0';
236     cnt = 2;
237 
238     /* now build argv while copying characters */
239     *argv++ = to;
240     while ((ch = *from++) != '\0')
241     {
242 	if (ch != ' ')
243 	{
244 	    if (lastch == ' ')
245 	    {
246 		*to++ = '\0';
247 		*argv++ = to;
248 		cnt++;
249 	    }
250 	    *to++ = ch;
251 	}
252 	lastch = ch;
253     }
254     *to++ = '\0';
255 
256     /* set cntp and return the allocated array */
257     *cntp = cnt;
258     return(argarray);
259 }
260 
261 /*
262  *  percentages(cnt, out, new, old, diffs) - calculate percentage change
263  *	between array "old" and "new", putting the percentages i "out".
264  *	"cnt" is size of each array and "diffs" is used for scratch space.
265  *	The array "old" is updated on each call.
266  *	The routine assumes modulo arithmetic.  This function is especially
267  *	useful on BSD mchines for calculating cpu state percentages.
268  */
269 
270 long percentages(cnt, out, new, old, diffs)
271 
272 int cnt;
273 int *out;
274 long *new;
275 long *old;
276 long *diffs;
277 
278 {
279     int i;
280     long change;
281     long total_change;
282     long *dp;
283     long half_total;
284 
285     /* initialization */
286     total_change = 0;
287     dp = diffs;
288 
289     /* calculate changes for each state and the overall change */
290     for (i = 0; i < cnt; i++)
291     {
292 	if ((change = *new - *old) < 0)
293 	{
294 	    /* this only happens when the counter wraps */
295 	    change = (int)
296 		((unsigned long)*new-(unsigned long)*old);
297 	}
298 	total_change += (*dp++ = change);
299 	*old++ = *new++;
300     }
301 
302     /* avoid divide by zero potential */
303     if (total_change == 0)
304     {
305 	total_change = 1;
306     }
307 
308     /* calculate percentages based on overall change, rounding up */
309     half_total = total_change / 2l;
310 
311     /* Do not divide by 0. Causes Floating point exception */
312     if(total_change) {
313         for (i = 0; i < cnt; i++)
314         {
315           *out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
316         }
317     }
318 
319     /* return the total in case the caller wants to use it */
320     return(total_change);
321 }
322 
323 /* format_time(seconds) - format number of seconds into a suitable
324  *		display that will fit within 6 characters.  Note that this
325  *		routine builds its string in a static area.  If it needs
326  *		to be called more than once without overwriting previous data,
327  *		then we will need to adopt a technique similar to the
328  *		one used for format_k.
329  */
330 
331 /* Explanation:
332    We want to keep the output within 6 characters.  For low values we use
333    the format mm:ss.  For values that exceed 999:59, we switch to a format
334    that displays hours and fractions:  hhh.tH.  For values that exceed
335    999.9, we use hhhh.t and drop the "H" designator.  For values that
336    exceed 9999.9, we use "???".
337  */
338 
339 char *format_time(seconds)
340 
341 long seconds;
342 
343 {
344     static char result[10];
345 
346     /* sanity protection */
347     if (seconds < 0 || seconds > (99999l * 360l))
348     {
349 	strcpy(result, "   ???");
350     }
351     else if (seconds >= (1000l * 60l))
352     {
353 	/* alternate (slow) method displaying hours and tenths */
354 	sprintf(result, "%5.1fH", (double)seconds / (double)(60l * 60l));
355 
356 	/* It is possible that the sprintf took more than 6 characters.
357 	   If so, then the "H" appears as result[6].  If not, then there
358 	   is a \0 in result[6].  Either way, it is safe to step on.
359 	 */
360 	result[6] = '\0';
361     }
362     else
363     {
364 	/* standard method produces MMM:SS */
365 	/* we avoid printf as must as possible to make this quick */
366 	sprintf(result, "%3ld:%02ld",
367 	    (long)(seconds / 60), (long)(seconds % 60));
368     }
369     return(result);
370 }
371 
372 /*
373  * format_k(amt) - format a kilobyte memory value, returning a string
374  *		suitable for display.  Returns a pointer to a static
375  *		area that changes each call.  "amt" is converted to a
376  *		string with a trailing "K".  If "amt" is 10000 or greater,
377  *		then it is formatted as megabytes (rounded) with a
378  *		trailing "M".
379  */
380 
381 /*
382  * Compromise time.  We need to return a string, but we don't want the
383  * caller to have to worry about freeing a dynamically allocated string.
384  * Unfortunately, we can't just return a pointer to a static area as one
385  * of the common uses of this function is in a large call to sprintf where
386  * it might get invoked several times.  Our compromise is to maintain an
387  * array of strings and cycle thru them with each invocation.  We make the
388  * array large enough to handle the above mentioned case.  The constant
389  * NUM_STRINGS defines the number of strings in this array:  we can tolerate
390  * up to NUM_STRINGS calls before we start overwriting old information.
391  * Keeping NUM_STRINGS a power of two will allow an intelligent optimizer
392  * to convert the modulo operation into something quicker.  What a hack!
393  */
394 
395 #define NUM_STRINGS 8
396 
397 char *format_k(int amt)
398 {
399     static char retarray[NUM_STRINGS][16];
400     static int index = 0;
401     char *p;
402     char *ret;
403     char tag = 'K';
404 
405     p = ret = retarray[index];
406     index = (index + 1) % NUM_STRINGS;
407 
408     if (amt >= 10000)
409     {
410 	amt = (amt + 512) / 1024;
411 	tag = 'M';
412 	if (amt >= 10000)
413 	{
414 	    amt = (amt + 512) / 1024;
415 	    tag = 'G';
416 	}
417     }
418 
419     p = strecpy(p, itoa(amt));
420     *p++ = tag;
421     *p = '\0';
422 
423     return(ret);
424 }
425 
426 char *
427 format_k2(unsigned long long amt)
428 {
429     static char retarray[NUM_STRINGS][16];
430     static int index = 0;
431     char *p;
432     char *ret;
433     char tag = 'K';
434 
435     p = ret = retarray[index];
436     index = (index + 1) % NUM_STRINGS;
437 
438     if (amt >= 100000)
439     {
440 	amt = (amt + 512) / 1024;
441 	tag = 'M';
442 	if (amt >= 100000)
443 	{
444 	    amt = (amt + 512) / 1024;
445 	    tag = 'G';
446 	}
447     }
448 
449     p = strecpy(p, itoa((int)amt));
450     *p++ = tag;
451     *p = '\0';
452 
453     return(ret);
454 }
455