1 /* 2 * This program may be freely redistributed, 3 * but this entire comment MUST remain intact. 4 * 5 * Copyright (c) 1984, 1989, William LeFebvre, Rice University 6 * Copyright (c) 1989, 1990, 1992, William LeFebvre, Northwestern University 7 * 8 * $FreeBSD$ 9 */ 10 11 /* 12 * This file contains various handy utilities used by top. 13 */ 14 15 #include "top.h" 16 #include "utils.h" 17 18 #include <sys/param.h> 19 #include <sys/sysctl.h> 20 #include <sys/user.h> 21 22 #include <stdlib.h> 23 #include <stdio.h> 24 #include <string.h> 25 #include <fcntl.h> 26 #include <paths.h> 27 #include <kvm.h> 28 29 int 30 atoiwi(const char *str) 31 { 32 size_t len; 33 34 len = strlen(str); 35 if (len != 0) 36 { 37 if (strncmp(str, "infinity", len) == 0 || 38 strncmp(str, "all", len) == 0 || 39 strncmp(str, "maximum", len) == 0) 40 { 41 return(Infinity); 42 } 43 else if (str[0] == '-') 44 { 45 return(Invalid); 46 } 47 else 48 { 49 return(atoi(str)); 50 } 51 } 52 return(0); 53 } 54 55 /* 56 * itoa - convert integer (decimal) to ascii string for positive numbers 57 * only (we don't bother with negative numbers since we know we 58 * don't use them). 59 */ 60 61 /* 62 * How do we know that 16 will suffice? 63 * Because the biggest number that we will 64 * ever convert will be 2^32-1, which is 10 65 * digits. 66 */ 67 _Static_assert(sizeof(int) <= 4, "buffer too small for this sized int"); 68 69 char *itoa(unsigned int val) 70 { 71 char *ptr; 72 static char buffer[16]; /* result is built here */ 73 /* 16 is sufficient since the largest number 74 we will ever convert will be 2^32-1, 75 which is 10 digits. */ 76 77 ptr = buffer + sizeof(buffer); 78 *--ptr = '\0'; 79 if (val == 0) 80 { 81 *--ptr = '0'; 82 } 83 else while (val != 0) 84 { 85 *--ptr = (val % 10) + '0'; 86 val /= 10; 87 } 88 return(ptr); 89 } 90 91 /* 92 * itoa7(val) - like itoa, except the number is right justified in a 7 93 * character field. This code is a duplication of itoa instead of 94 * a front end to a more general routine for efficiency. 95 */ 96 97 char *itoa7(int val) 98 { 99 char *ptr; 100 static char buffer[16]; /* result is built here */ 101 /* 16 is sufficient since the largest number 102 we will ever convert will be 2^32-1, 103 which is 10 digits. */ 104 105 ptr = buffer + sizeof(buffer); 106 *--ptr = '\0'; 107 if (val == 0) 108 { 109 *--ptr = '0'; 110 } 111 else while (val != 0) 112 { 113 *--ptr = (val % 10) + '0'; 114 val /= 10; 115 } 116 while (ptr > buffer + sizeof(buffer) - 7) 117 { 118 *--ptr = ' '; 119 } 120 return(ptr); 121 } 122 123 /* 124 * digits(val) - return number of decimal digits in val. Only works for 125 * positive numbers. If val <= 0 then digits(val) == 0. 126 */ 127 128 int digits(int val) 129 { 130 int cnt = 0; 131 132 while (val > 0) 133 { 134 cnt++; 135 val /= 10; 136 } 137 return(cnt); 138 } 139 140 /* 141 * string_index(string, array) - find string in array and return index 142 */ 143 144 int 145 string_index(const char *string, const char * const *array) 146 { 147 size_t i = 0; 148 149 while (*array != NULL) 150 { 151 if (strcmp(string, *array) == 0) 152 { 153 return(i); 154 } 155 array++; 156 i++; 157 } 158 return(-1); 159 } 160 161 /* 162 * argparse(line, cntp) - parse arguments in string "line", separating them 163 * out into an argv-like array, and setting *cntp to the number of 164 * arguments encountered. This is a simple parser that doesn't understand 165 * squat about quotes. 166 */ 167 168 const char * const * 169 argparse(char *line, int *cntp) 170 { 171 const char **ap; 172 static const char *argv[1024] = {0}; 173 174 *cntp = 1; 175 ap = &argv[1]; 176 while ((*ap = strsep(&line, " ")) != NULL) { 177 if (**ap != '\0') { 178 (*cntp)++; 179 if (*cntp >= (int)nitems(argv)) { 180 break; 181 } 182 ap++; 183 } 184 } 185 return argv; 186 } 187 188 /* 189 * percentages(cnt, out, new, old, diffs) - calculate percentage change 190 * between array "old" and "new", putting the percentages i "out". 191 * "cnt" is size of each array and "diffs" is used for scratch space. 192 * The array "old" is updated on each call. 193 * The routine assumes modulo arithmetic. This function is especially 194 * useful on for calculating cpu state percentages. 195 */ 196 197 long 198 percentages(int cnt, int *out, long *new, long *old, long *diffs) 199 { 200 int i; 201 long change; 202 long total_change; 203 long *dp; 204 long half_total; 205 206 /* initialization */ 207 total_change = 0; 208 dp = diffs; 209 210 /* calculate changes for each state and the overall change */ 211 for (i = 0; i < cnt; i++) 212 { 213 if ((change = *new - *old) < 0) 214 { 215 /* this only happens when the counter wraps */ 216 change = (int) 217 ((unsigned long)*new-(unsigned long)*old); 218 } 219 total_change += (*dp++ = change); 220 *old++ = *new++; 221 } 222 223 /* avoid divide by zero potential */ 224 if (total_change == 0) 225 { 226 total_change = 1; 227 } 228 229 /* calculate percentages based on overall change, rounding up */ 230 half_total = total_change / 2l; 231 232 /* Do not divide by 0. Causes Floating point exception */ 233 if(total_change) { 234 for (i = 0; i < cnt; i++) 235 { 236 *out++ = (int)((*diffs++ * 1000 + half_total) / total_change); 237 } 238 } 239 240 /* return the total in case the caller wants to use it */ 241 return(total_change); 242 } 243 244 /* format_time(seconds) - format number of seconds into a suitable 245 * display that will fit within 6 characters. Note that this 246 * routine builds its string in a static area. If it needs 247 * to be called more than once without overwriting previous data, 248 * then we will need to adopt a technique similar to the 249 * one used for format_k. 250 */ 251 252 /* Explanation: 253 We want to keep the output within 6 characters. For low values we use 254 the format mm:ss. For values that exceed 999:59, we switch to a format 255 that displays hours and fractions: hhh.tH. For values that exceed 256 999.9, we use hhhh.t and drop the "H" designator. For values that 257 exceed 9999.9, we use "???". 258 */ 259 260 char * 261 format_time(long seconds) 262 { 263 static char result[10]; 264 265 /* sanity protection */ 266 if (seconds < 0 || seconds > (99999l * 360l)) 267 { 268 strcpy(result, " ???"); 269 } 270 else if (seconds >= (1000l * 60l)) 271 { 272 /* alternate (slow) method displaying hours and tenths */ 273 sprintf(result, "%5.1fH", (double)seconds / (double)(60l * 60l)); 274 275 /* It is possible that the sprintf took more than 6 characters. 276 If so, then the "H" appears as result[6]. If not, then there 277 is a \0 in result[6]. Either way, it is safe to step on. 278 */ 279 result[6] = '\0'; 280 } 281 else 282 { 283 /* standard method produces MMM:SS */ 284 /* we avoid printf as must as possible to make this quick */ 285 sprintf(result, "%3ld:%02ld", 286 (long)(seconds / 60), (long)(seconds % 60)); 287 } 288 return(result); 289 } 290 291 /* 292 * format_k(amt) - format a kilobyte memory value, returning a string 293 * suitable for display. Returns a pointer to a static 294 * area that changes each call. "amt" is converted to a 295 * string with a trailing "K". If "amt" is 10000 or greater, 296 * then it is formatted as megabytes (rounded) with a 297 * trailing "M". 298 */ 299 300 /* 301 * Compromise time. We need to return a string, but we don't want the 302 * caller to have to worry about freeing a dynamically allocated string. 303 * Unfortunately, we can't just return a pointer to a static area as one 304 * of the common uses of this function is in a large call to sprintf where 305 * it might get invoked several times. Our compromise is to maintain an 306 * array of strings and cycle thru them with each invocation. We make the 307 * array large enough to handle the above mentioned case. The constant 308 * NUM_STRINGS defines the number of strings in this array: we can tolerate 309 * up to NUM_STRINGS calls before we start overwriting old information. 310 * Keeping NUM_STRINGS a power of two will allow an intelligent optimizer 311 * to convert the modulo operation into something quicker. What a hack! 312 */ 313 314 #define NUM_STRINGS 8 315 316 char *format_k(int amt) 317 { 318 static char retarray[NUM_STRINGS][16]; 319 static int index = 0; 320 char *p; 321 char *ret; 322 char tag = 'K'; 323 324 p = ret = retarray[index]; 325 index = (index + 1) % NUM_STRINGS; 326 327 if (amt >= 10000) 328 { 329 amt = (amt + 512) / 1024; 330 tag = 'M'; 331 if (amt >= 10000) 332 { 333 amt = (amt + 512) / 1024; 334 tag = 'G'; 335 } 336 } 337 338 p = stpcpy(p, itoa(amt)); 339 *p++ = tag; 340 *p = '\0'; 341 342 return(ret); 343 } 344 345 char * 346 format_k2(unsigned long long amt) 347 { 348 static char retarray[NUM_STRINGS][16]; 349 static int index = 0; 350 char *p; 351 char *ret; 352 char tag = 'K'; 353 354 p = ret = retarray[index]; 355 index = (index + 1) % NUM_STRINGS; 356 357 if (amt >= 100000) 358 { 359 amt = (amt + 512) / 1024; 360 tag = 'M'; 361 if (amt >= 100000) 362 { 363 amt = (amt + 512) / 1024; 364 tag = 'G'; 365 } 366 } 367 368 p = stpcpy(p, itoa((int)amt)); 369 *p++ = tag; 370 *p = '\0'; 371 372 return(ret); 373 } 374 375 int 376 find_pid(pid_t pid) 377 { 378 kvm_t *kd = NULL; 379 struct kinfo_proc *pbase = NULL; 380 int nproc; 381 int ret = 0; 382 383 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, NULL); 384 if (kd == NULL) { 385 fprintf(stderr, "top: kvm_open() failed.\n"); 386 quit(TOP_EX_SYS_ERROR); 387 } 388 389 pbase = kvm_getprocs(kd, KERN_PROC_PID, pid, &nproc); 390 if (pbase == NULL) { 391 goto done; 392 } 393 394 if ((nproc == 1) && (pbase->ki_pid == pid)) { 395 ret = 1; 396 } 397 398 done: 399 kvm_close(kd); 400 return ret; 401 } 402