xref: /freebsd/usr.bin/top/utils.c (revision 58a0f0d00c0cc4a90ce584a61470290751bfcac7)
1 /*
2  *  Top users/processes display for Unix
3  *  Version 3
4  *
5  *  This program may be freely redistributed,
6  *  but this entire comment MUST remain intact.
7  *
8  *  Copyright (c) 1984, 1989, William LeFebvre, Rice University
9  *  Copyright (c) 1989, 1990, 1992, William LeFebvre, Northwestern University
10  *
11  * $FreeBSD$
12  */
13 
14 /*
15  *  This file contains various handy utilities used by top.
16  */
17 
18 #include "top.h"
19 
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <string.h>
23 
24 int
25 atoiwi(char *str)
26 {
27     int len;
28 
29     len = strlen(str);
30     if (len != 0)
31     {
32 	if (strncmp(str, "infinity", len) == 0 ||
33 	    strncmp(str, "all",      len) == 0 ||
34 	    strncmp(str, "maximum",  len) == 0)
35 	{
36 	    return(Infinity);
37 	}
38 	else if (str[0] == '-')
39 	{
40 	    return(Invalid);
41 	}
42 	else
43 	{
44 	    return(atoi(str));
45 	}
46     }
47     return(0);
48 }
49 
50 /*
51  *  itoa - convert integer (decimal) to ascii string for positive numbers
52  *  	   only (we don't bother with negative numbers since we know we
53  *	   don't use them).
54  */
55 
56 				/*
57 				 * How do we know that 16 will suffice?
58 				 * Because the biggest number that we will
59 				 * ever convert will be 2^32-1, which is 10
60 				 * digits.
61 				 */
62 _Static_assert(sizeof(int) <= 4, "buffer too small for this sized int");
63 
64 char *itoa(val)
65 
66 int val;
67 
68 {
69     char *ptr;
70     static char buffer[16];	/* result is built here */
71     				/* 16 is sufficient since the largest number
72 				   we will ever convert will be 2^32-1,
73 				   which is 10 digits. */
74 
75     ptr = buffer + sizeof(buffer);
76     *--ptr = '\0';
77     if (val == 0)
78     {
79 	*--ptr = '0';
80     }
81     else while (val != 0)
82     {
83 	*--ptr = (val % 10) + '0';
84 	val /= 10;
85     }
86     return(ptr);
87 }
88 
89 /*
90  *  itoa7(val) - like itoa, except the number is right justified in a 7
91  *	character field.  This code is a duplication of itoa instead of
92  *	a front end to a more general routine for efficiency.
93  */
94 
95 char *itoa7(val)
96 
97 int val;
98 
99 {
100     char *ptr;
101     static char buffer[16];	/* result is built here */
102     				/* 16 is sufficient since the largest number
103 				   we will ever convert will be 2^32-1,
104 				   which is 10 digits. */
105 
106     ptr = buffer + sizeof(buffer);
107     *--ptr = '\0';
108     if (val == 0)
109     {
110 	*--ptr = '0';
111     }
112     else while (val != 0)
113     {
114 	*--ptr = (val % 10) + '0';
115 	val /= 10;
116     }
117     while (ptr > buffer + sizeof(buffer) - 7)
118     {
119 	*--ptr = ' ';
120     }
121     return(ptr);
122 }
123 
124 /*
125  *  digits(val) - return number of decimal digits in val.  Only works for
126  *	positive numbers.  If val <= 0 then digits(val) == 0.
127  */
128 
129 int digits(val)
130 
131 int val;
132 
133 {
134     int cnt = 0;
135 
136     while (val > 0)
137     {
138 	cnt++;
139 	val /= 10;
140     }
141     return(cnt);
142 }
143 
144 /*
145  *  strecpy(to, from) - copy string "from" into "to" and return a pointer
146  *	to the END of the string "to".
147  */
148 
149 char *
150 strecpy(char *to, char *from)
151 {
152     while ((*to++ = *from++) != '\0');
153     return(--to);
154 }
155 
156 /*
157  * string_index(string, array) - find string in array and return index
158  */
159 
160 int string_index(string, array)
161 
162 char *string;
163 char **array;
164 
165 {
166     int i = 0;
167 
168     while (*array != NULL)
169     {
170 	if (strcmp(string, *array) == 0)
171 	{
172 	    return(i);
173 	}
174 	array++;
175 	i++;
176     }
177     return(-1);
178 }
179 
180 /*
181  * argparse(line, cntp) - parse arguments in string "line", separating them
182  *	out into an argv-like array, and setting *cntp to the number of
183  *	arguments encountered.  This is a simple parser that doesn't understand
184  *	squat about quotes.
185  */
186 
187 char **argparse(line, cntp)
188 
189 char *line;
190 int *cntp;
191 
192 {
193     char *from;
194     char *to;
195     int cnt;
196     int ch;
197     int length;
198     int lastch;
199     char **argv;
200     char **argarray;
201     char *args;
202 
203     /* unfortunately, the only real way to do this is to go thru the
204        input string twice. */
205 
206     /* step thru the string counting the white space sections */
207     from = line;
208     lastch = cnt = length = 0;
209     while ((ch = *from++) != '\0')
210     {
211 	length++;
212 	if (ch == ' ' && lastch != ' ')
213 	{
214 	    cnt++;
215 	}
216 	lastch = ch;
217     }
218 
219     /* add three to the count:  one for the initial "dummy" argument,
220        one for the last argument and one for NULL */
221     cnt += 3;
222 
223     /* allocate a char * array to hold the pointers */
224     argarray = (char **)malloc(cnt * sizeof(char *));
225 
226     /* allocate another array to hold the strings themselves */
227     args = (char *)malloc(length+2);
228 
229     /* initialization for main loop */
230     from = line;
231     to = args;
232     argv = argarray;
233     lastch = '\0';
234 
235     /* create a dummy argument to keep getopt happy */
236     *argv++ = to;
237     *to++ = '\0';
238     cnt = 2;
239 
240     /* now build argv while copying characters */
241     *argv++ = to;
242     while ((ch = *from++) != '\0')
243     {
244 	if (ch != ' ')
245 	{
246 	    if (lastch == ' ')
247 	    {
248 		*to++ = '\0';
249 		*argv++ = to;
250 		cnt++;
251 	    }
252 	    *to++ = ch;
253 	}
254 	lastch = ch;
255     }
256     *to++ = '\0';
257 
258     /* set cntp and return the allocated array */
259     *cntp = cnt;
260     return(argarray);
261 }
262 
263 /*
264  *  percentages(cnt, out, new, old, diffs) - calculate percentage change
265  *	between array "old" and "new", putting the percentages i "out".
266  *	"cnt" is size of each array and "diffs" is used for scratch space.
267  *	The array "old" is updated on each call.
268  *	The routine assumes modulo arithmetic.  This function is especially
269  *	useful on BSD mchines for calculating cpu state percentages.
270  */
271 
272 long percentages(cnt, out, new, old, diffs)
273 
274 int cnt;
275 int *out;
276 long *new;
277 long *old;
278 long *diffs;
279 
280 {
281     int i;
282     long change;
283     long total_change;
284     long *dp;
285     long half_total;
286 
287     /* initialization */
288     total_change = 0;
289     dp = diffs;
290 
291     /* calculate changes for each state and the overall change */
292     for (i = 0; i < cnt; i++)
293     {
294 	if ((change = *new - *old) < 0)
295 	{
296 	    /* this only happens when the counter wraps */
297 	    change = (int)
298 		((unsigned long)*new-(unsigned long)*old);
299 	}
300 	total_change += (*dp++ = change);
301 	*old++ = *new++;
302     }
303 
304     /* avoid divide by zero potential */
305     if (total_change == 0)
306     {
307 	total_change = 1;
308     }
309 
310     /* calculate percentages based on overall change, rounding up */
311     half_total = total_change / 2l;
312 
313     /* Do not divide by 0. Causes Floating point exception */
314     if(total_change) {
315         for (i = 0; i < cnt; i++)
316         {
317           *out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
318         }
319     }
320 
321     /* return the total in case the caller wants to use it */
322     return(total_change);
323 }
324 
325 /* format_time(seconds) - format number of seconds into a suitable
326  *		display that will fit within 6 characters.  Note that this
327  *		routine builds its string in a static area.  If it needs
328  *		to be called more than once without overwriting previous data,
329  *		then we will need to adopt a technique similar to the
330  *		one used for format_k.
331  */
332 
333 /* Explanation:
334    We want to keep the output within 6 characters.  For low values we use
335    the format mm:ss.  For values that exceed 999:59, we switch to a format
336    that displays hours and fractions:  hhh.tH.  For values that exceed
337    999.9, we use hhhh.t and drop the "H" designator.  For values that
338    exceed 9999.9, we use "???".
339  */
340 
341 char *format_time(seconds)
342 
343 long seconds;
344 
345 {
346     static char result[10];
347 
348     /* sanity protection */
349     if (seconds < 0 || seconds > (99999l * 360l))
350     {
351 	strcpy(result, "   ???");
352     }
353     else if (seconds >= (1000l * 60l))
354     {
355 	/* alternate (slow) method displaying hours and tenths */
356 	sprintf(result, "%5.1fH", (double)seconds / (double)(60l * 60l));
357 
358 	/* It is possible that the sprintf took more than 6 characters.
359 	   If so, then the "H" appears as result[6].  If not, then there
360 	   is a \0 in result[6].  Either way, it is safe to step on.
361 	 */
362 	result[6] = '\0';
363     }
364     else
365     {
366 	/* standard method produces MMM:SS */
367 	/* we avoid printf as must as possible to make this quick */
368 	sprintf(result, "%3ld:%02ld",
369 	    (long)(seconds / 60), (long)(seconds % 60));
370     }
371     return(result);
372 }
373 
374 /*
375  * format_k(amt) - format a kilobyte memory value, returning a string
376  *		suitable for display.  Returns a pointer to a static
377  *		area that changes each call.  "amt" is converted to a
378  *		string with a trailing "K".  If "amt" is 10000 or greater,
379  *		then it is formatted as megabytes (rounded) with a
380  *		trailing "M".
381  */
382 
383 /*
384  * Compromise time.  We need to return a string, but we don't want the
385  * caller to have to worry about freeing a dynamically allocated string.
386  * Unfortunately, we can't just return a pointer to a static area as one
387  * of the common uses of this function is in a large call to sprintf where
388  * it might get invoked several times.  Our compromise is to maintain an
389  * array of strings and cycle thru them with each invocation.  We make the
390  * array large enough to handle the above mentioned case.  The constant
391  * NUM_STRINGS defines the number of strings in this array:  we can tolerate
392  * up to NUM_STRINGS calls before we start overwriting old information.
393  * Keeping NUM_STRINGS a power of two will allow an intelligent optimizer
394  * to convert the modulo operation into something quicker.  What a hack!
395  */
396 
397 #define NUM_STRINGS 8
398 
399 char *format_k(amt)
400 
401 int amt;
402 
403 {
404     static char retarray[NUM_STRINGS][16];
405     static int index = 0;
406     char *p;
407     char *ret;
408     char tag = 'K';
409 
410     p = ret = retarray[index];
411     index = (index + 1) % NUM_STRINGS;
412 
413     if (amt >= 10000)
414     {
415 	amt = (amt + 512) / 1024;
416 	tag = 'M';
417 	if (amt >= 10000)
418 	{
419 	    amt = (amt + 512) / 1024;
420 	    tag = 'G';
421 	}
422     }
423 
424     p = strecpy(p, itoa(amt));
425     *p++ = tag;
426     *p = '\0';
427 
428     return(ret);
429 }
430 
431 char *format_k2(amt)
432 
433 unsigned long long amt;
434 
435 {
436     static char retarray[NUM_STRINGS][16];
437     static int index = 0;
438     char *p;
439     char *ret;
440     char tag = 'K';
441 
442     p = ret = retarray[index];
443     index = (index + 1) % NUM_STRINGS;
444 
445     if (amt >= 100000)
446     {
447 	amt = (amt + 512) / 1024;
448 	tag = 'M';
449 	if (amt >= 100000)
450 	{
451 	    amt = (amt + 512) / 1024;
452 	    tag = 'G';
453 	}
454     }
455 
456     p = strecpy(p, itoa((int)amt));
457     *p++ = tag;
458     *p = '\0';
459 
460     return(ret);
461 }
462