xref: /freebsd/usr.bin/sed/tests/math.sed (revision 3e11bd9e2a2b1cbd4283c87c93e3cc75e3f2dacb)
1# This is ksb's infamous sed calculator.		(ksb@sa.fedex.com)
2#
3# $FreeBSD$
4#
5# $Id: math.sed,v 2.5 1998/08/02 13:23:34 ksb Exp ksb $
6# expr ::= (expr) | expr! |
7#	expr ^ expr |
8#	-expr | expr * expr | expr / expr | expr % expr |
9#	expr + expr | expr - expr |
10#	[0-9][0-9]* ;
11# Bugs: some sign combinations don't work, and I got sick of added cases
12# for unary +.  Don't depend on signed math working all the time. -- ksb
13#
14# $Compile: echo "4+7*3+2^7/3" | sed -f %f
15
16# make sure the expression is well formed
17s/[ 	]//g
18/[*\/^%+-]$/{
19	a\
20	poorly formed expression, dyadic operator on the end
21	q
22}
23/^[*\/^%]/{
24	a\
25	poorly formed expression, leading dyadic operator
26	q
27}
28
29# fill hold space with done token
30x
31s/^.*/done/
32x
33
34# main loop, process operators ((), !, *, /, %, +, and -)
35: loop
36# uncomment the print below to follow the "logic" -- ksb
37#p
38/^[+]/{
39	s///
40	b loop
41}
42/^--/{
43	s///
44	b loop
45}
46# eval parenthesised sub expressions first
47/^\(.*\)(\([^)]*\))\(.*\)$/{
48	H
49	s//\2/
50	x
51	s/^\(.*\)\n\(.*\)(\([^()]*\))\(.*\)$/()\2@\4@\1/
52	x
53	b loop
54}
55# reduce a^b^c -> a^(b^c)
56/\([0-9][0-9]*^\)\([0-9][0-9]*^[0-9][0-9^]*\)/{
57	s//\1(\2)/
58	b loop
59}
60# pull any buried exponents
61/^\(.*[^0-9]\)\([0-9][0-9]*^[0-9][0-9]*\)$/{
62	s//\1(\2)/
63	b loop
64}
65/^\(.*[^0-9]\)\([0-9][0-9]*^[0-9][0-9]*\)\([^0-9].*\)$/{
66	s//\1(\2)\3/
67	b loop
68}
69/^\([0-9][0-9]*^[0-9][0-9]*\)\([^0-9].*\)$/{
70	s//(\1)\2/
71	b loop
72}
73/^\([-]*[0-9]*\)^0*$/{
74	s//1/
75	b loop
76}
77/^\([-]*[0-9]*\)^0*1$/{
78	s//\1/
79	b loop
80}
81/^\([-]*[0-9]*\)^-[0-9]*$/{
82	s//0/
83	b loop
84}
85/^\([-]*\)\([0-9]*\)^\([0-9][0-9]*[13579]\)$/{
86	s//\1\2*((\2*\2)^(\3\/2))/
87	b loop
88}
89/^[-]*\([0-9]*\)^\([0-9][0-9]*[02468]\)$/{
90	s//(\1*\1)^(\2\/2)/
91	b loop
92}
93# single digit powers (2  3,9  4,6,8   5,7
94/^[-]*\([0-9]*\)^0*2$/{
95	s//(\1*\1)/
96	b loop
97}
98/^\([-]*\)\([0-9]*\)^0*\([39]\)$/{
99	s//\1(\2*(\2*\2))^(\3\/3)/
100	b loop
101}
102/^[-]*\([0-9]*\)^0*\([468]\)$/{
103	s//(\1*\1)^(\2\/2)/
104	b loop
105}
106# 5 7
107/^\([-]*[0-9]*\)^\([0-9]*\)$/{
108	s//\1*(\1^(\2-1))/
109	b loop
110}
111# reduce all number factorials
112/^0*[01]!/{
113	s//1/
114	b loop
115}
116/\([*+-/%^]\)0*[01]!/{
117	s//\11/
118	b loop
119}
120/\([0-9]*\)!/{
121	s//(\1-1)!*\1/
122	b loop
123}
124# sign simplifications
125/^-\([0-9]*\)\([*/%]\)-\([0-9]*\)$/{
126	s//\1\2\3/
127	b loop
128}
129/^\([0-9]*\)\([*/%]\)-\([0-9]*\)$/{
130	s//-\1\2\3/
131	b loop
132}
133/^-\([0-9][0-9]*\)[+]*-\([0-9][0-9]*\)$/{
134	s//\1+\2/
135	x
136	s/\(.*\)/()-@@\1/
137	x
138	b loop
139}
140/^-\([0-9]*\)[+]\([0-9]\)*$/{
141	s//\2-\1/
142	b loop
143}
144/^-.*[-+*/%].*/{
145	H
146	s/^-//
147	x
148	s/^\(.*\)\n-.*$/()-@@\1/
149	x
150	b loop
151}
152# can we simplify multiplications
153/^\([0-9]*\)\([*][0-9]*[1-9]\)00*$/{
154	H
155	s//\1\2/
156	x
157	s/^\(.*\)\n[0-9]*[*][0-9]*[1-9]\(00*\)$/()@\2@\1/
158	x
159	b loop
160}
161/^\([0-9][1-9]*\)00*\([*][0-9]*\)$/{
162	H
163	s//\1\2/
164	x
165	s/^\(.*\)\n[0-9][1-9]*\(00*\)[*][0-9]*$/()@\2@\1/
166	x
167	b loop
168}
169# can we simplify division (20/30 -> 2/3)
170/^\([0-9][0-9]*\)0\([/%]\)\([0-9][0-9]*\)0$/{
171	s//\1\2\3/
172	b loop
173}
174# n/1 -> n
175/^0*\([0-9][0-9]*\)0[/]0*1$/{
176	s//\1/
177	b loop
178}
179# n%2 -> last_digit(n)%2 (same for 1, BTW) N.B. NO LOOP
180/^[0-9]*\([0-9]\)%0*\([12]\)$/{
181	s//\1%\2/
182}
183# move any mul/divs to the front via parans
184/^\([0-9+]*\)\([-+]\)\([0-9]*[*/][0-9*/]*\)/{
185	s//\1\2(\3)/
186	b loop
187}
188# can we div or mul
189/^[0-9]*[*][0-9]*$/{
190	b mul
191}
192/^[0-9]*[/%]0*$/{
193	i\
194divide by zero
195	d
196}
197/^[0-9]*[/%][0-9]*$/{
198	H
199	s/\([0-9]\).*[/%]/\1-/
200	x
201	s/^\(.*\)\n\([0-9]\)\([0-9]*\)\([/%]\)\([0-9]*\).*$/.\4\3q0r\2-\5@\1/
202	x
203	b loop
204}
205/^\([0-9]*[*/%][0-9]*\)\(.*\)/{
206	H
207	s//\1/
208	x
209	s/^\(.*\)\n\([0-9]*[*/][0-9]*\)\(.*\)$/()@\3@\1/
210	x
211	b loop
212}
213# can we add or subtract -- note subtract hold expression for underflow
214/^[0-9]*[+][0-9]*$/{
215	s/$/=/
216	b add
217}
218/^[0-9][0-9]*-[0-9]*$/{
219	H
220	s/$/=/
221	b sub
222}
223/^\([0-9][0-9]*[-+][0-9]*\)\(.*\)/{
224	H
225	s//\1/
226	x
227	s/^\(.*\)\n\([0-9]*[-+][0-9]*\)\(.*\)$/()@\3@\1/
228	x
229	b loop
230}
231# look in hold space for stack to reduce
232x
233/^done$/{
234	x
235	s/^0*\([0-9][0-9]*\)/\1/
236	p
237	d
238}
239# .[/%] numerator q quotient r remainder-divisor @stack
240/^\./{
241	x
242	/^[^-]/{
243		H
244		x
245		s/.\(.\)\([0-9]*\)q\([^r]*\)r\([0-9]*\)-\([0-9]*\)@\(.*\)\n\(.*\)/.\1\2q\3+1r\7-\5@\6/
246		h
247		s/..[0-9]*q[^r]*r\([0-9]*-[0-9]*\)@.*/\1/
248		b loop
249	}
250	/^-/{
251		g
252		/.\(.\)\([0-9]\)\([0-9]*\)q\([^r]*\)r0*\([0-9]*\)-\([^@]*\)@.*/{
253			s//\5\2-\6/
254			x
255			s/.\(.\)\([0-9]\)\([0-9]*\)q\([^r]*\)r0*\([0-9]*\)-\([0-9]*\)@\(.*\)/.\1\3q(\4)*10r\5\2-\6@\7/
256			x
257			b loop
258		}
259# no digits to shift on
260		s/^\.[/]q\([^r]*\)r[^@]*@.*/\1/
261		s/^\.[%]q[^r]*r0*\([0-9][0-9]*\)-[^@]*@.*/\1/
262		/^\./{
263			i\
264divide error
265			q
266		}
267		x
268		s/^\.[/%]q[^r]*r[^@]*@\(.*\)/\1/
269		x
270		b loop
271	}
272}
273/^()/{
274	s///
275	x
276	G
277	s/\(.*\)\n\([^@]*\)@\([^@]*\)@\(.*\)/\2\1\3/
278	x
279	s/[^@]*@[^@]*@\(.*\)/\1/
280	x
281	b loop
282}
283i\
284help, stack problem - the hold space
285p
286x
287i\
288and the pat space
289p
290i\
291quit
292q
293
294# turn mul into add until 1*x -> x, 0*x -> 0
295: mul
296/^00*\*.*/{
297	s//0/
298	b loop
299}
300/^0*1\*/{
301	s///
302: leading
303	s/^0*\([0-9][0-9]*\)/\1/
304	b loop
305}
306s/^\([0-9]*\)0\*\([0-9]*\)/\1*\20/
307s/^\([0-9]*\)1\*\([0-9]*\)/\1*\20+\2/
308s/^\([0-9]*\)2\*\([0-9]*\)/\1*\20+(\2+\2)/
309s/^\([0-9]*\)3\*\([0-9]*\)/\1*\20+(\2+\2+\2)/
310s/^\([0-9]*\)4\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2)/
311s/^\([0-9]*\)5\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2+\2)/
312s/^\([0-9]*\)6\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2+\2+\2)/
313s/^\([0-9]*\)7\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2+\2+\2+\2)/
314s/^\([0-9]*\)8\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2+\2+\2+\2+\2)/
315s/^\([0-9]*\)9\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2+\2+\2+\2+\2+\2)/
316/^0*\*[0-9]*[+]*\(.*\)/{
317	s//\1/
318	b loop
319}
320b mul
321
322# get rid of a plus term until 0+x -> x
323: add
324/^[+]\([0-9+*]*\)=/{
325	s//\1/
326	b leading
327}
328/^\([0-9*]*\)[+]=/{
329	s//\1/
330	b loop
331}
332/^\([0-9]*\)0[+]\([0-9]*\)\([0-9]\)=/{
333	s//\1+\2=\3/
334	b add
335}
336/^\([0-9]*\)\([0-9]\)[+]\([0-9]*\)0=/{
337	s//\1+\3=\2/
338	b add
339}
340s/^\([0-9]*\)1[+]/\10+/
341s/^\([0-9]*\)2[+]/\11+/
342s/^\([0-9]*\)3[+]/\12+/
343s/^\([0-9]*\)4[+]/\13+/
344s/^\([0-9]*\)5[+]/\14+/
345s/^\([0-9]*\)6[+]/\15+/
346s/^\([0-9]*\)7[+]/\16+/
347s/^\([0-9]*\)8[+]/\17+/
348s/^\([0-9]*\)9[+]/\18+/
349
350s/9=\([0-9]*\)$/_=\1/
351s/8=\([0-9]*\)$/9=\1/
352s/7=\([0-9]*\)$/8=\1/
353s/6=\([0-9]*\)$/7=\1/
354s/5=\([0-9]*\)$/6=\1/
355s/4=\([0-9]*\)$/5=\1/
356s/3=\([0-9]*\)$/4=\1/
357s/2=\([0-9]*\)$/3=\1/
358s/1=\([0-9]*\)$/2=\1/
359/_/{
360	s//_0/
361	: inc
362	s/9_/_0/
363	s/8_/9/
364	s/7_/8/
365	s/6_/7/
366	s/5_/6/
367	s/4_/5/
368	s/3_/4/
369	s/2_/3/
370	s/1_/2/
371	s/0_/1/
372	s/[+]_/+1/
373	/_/b inc
374}
375b add
376
377# get rid of a sub term until /-0*=/ or underflow
378: sub
379/^\([0-9]*\)-0*=/{
380	s//\1/
381	x
382	s/\(.*\)\n.*$/\1/
383	x
384	b leading
385}
386/^-\([0-9].*\)=/{
387: under
388	g
389	s/.*\n\([0-9]*\)-\([0-9]*\).*/-(\2-\1)/
390	x
391	s/\(.*\)\n.*/\1/
392	x
393	b loop
394}
395/^\([0-9]*\)\([0-9]\)-\([0-9]*\)0=/{
396	s//\1-\3=\2/
397	b sub
398}
399s/1=/0=/
400s/2=/1=/
401s/3=/2=/
402s/4=/3=/
403s/5=/4=/
404s/6=/5=/
405s/7=/6=/
406s/8=/7=/
407s/9=/8=/
408
409s/^\([0-9]*\)1-/\1_-/
410s/^\([0-9]*\)2-/\11-/
411s/^\([0-9]*\)3-/\12-/
412s/^\([0-9]*\)4-/\13-/
413s/^\([0-9]*\)5-/\14-/
414s/^\([0-9]*\)6-/\15-/
415s/^\([0-9]*\)7-/\16-/
416s/^\([0-9]*\)8-/\17-/
417s/^\([0-9]*\)9-/\18-/
418s/^\([0-9]*\)0-/\1'9-/
419s/_/0/
420
421: scarry
422/0'/{
423	s//'9/
424	b scarry
425}
426/^'/{
427	b under
428}
429s/1'/0/
430s/2'/1/
431s/3'/2/
432s/4'/3/
433s/5'/4/
434s/6'/5/
435s/7'/6/
436s/8'/7/
437s/9'/8/
438
439b sub
440