xref: /freebsd/usr.bin/primes/spsp.c (revision 63a938566d524836885917d95bd491aa4400b181)
1 /*-
2  * Copyright (c) 2014 Colin Percival
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include <assert.h>
30 #include <stddef.h>
31 #include <stdint.h>
32 
33 #include "primes.h"
34 
35 /* Return a * b % n, where 0 < n. */
36 static uint64_t
37 mulmod(uint64_t a, uint64_t b, uint64_t n)
38 {
39 	uint64_t x = 0;
40 	uint64_t an = a % n;
41 
42 	while (b != 0) {
43 		if (b & 1) {
44 			x += an;
45 			if ((x < an) || (x >= n))
46 				x -= n;
47 		}
48 		if (an + an < an)
49 			an = an + an - n;
50 		else if (an + an >= n)
51 			an = an + an - n;
52 		else
53 			an = an + an;
54 		b >>= 1;
55 	}
56 
57 	return (x);
58 }
59 
60 /* Return a^r % n, where 0 < n. */
61 static uint64_t
62 powmod(uint64_t a, uint64_t r, uint64_t n)
63 {
64 	uint64_t x = 1;
65 
66 	while (r != 0) {
67 		if (r & 1)
68 			x = mulmod(a, x, n);
69 		a = mulmod(a, a, n);
70 		r >>= 1;
71 	}
72 
73 	return (x);
74 }
75 
76 /* Return non-zero if n is a strong pseudoprime to base p. */
77 static int
78 spsp(uint64_t n, uint64_t p)
79 {
80 	uint64_t x;
81 	uint64_t r = n - 1;
82 	int k = 0;
83 
84 	/* Compute n - 1 = 2^k * r. */
85 	while ((r & 1) == 0) {
86 		k++;
87 		r >>= 1;
88 	}
89 
90 	/* Compute x = p^r mod n.  If x = 1, n is a p-spsp. */
91 	x = powmod(p, r, n);
92 	if (x == 1)
93 		return (1);
94 
95 	/* Compute x^(2^i) for 0 <= i < n.  If any are -1, n is a p-spsp. */
96 	while (k > 0) {
97 		if (x == n - 1)
98 			return (1);
99 		x = powmod(x, 2, n);
100 		k--;
101 	}
102 
103 	/* Not a p-spsp. */
104 	return (0);
105 }
106 
107 /* Test for primality using strong pseudoprime tests. */
108 int
109 isprime(ubig _n)
110 {
111 	uint64_t n = _n;
112 
113 	/*
114 	 * Values from:
115 	 * C. Pomerance, J.L. Selfridge, and S.S. Wagstaff, Jr.,
116 	 * The pseudoprimes to 25 * 10^9, Math. Comp. 35(151):1003-1026, 1980.
117 	 */
118 
119 	/* No SPSPs to base 2 less than 2047. */
120 	if (!spsp(n, 2))
121 		return (0);
122 	if (n < 2047ULL)
123 		return (1);
124 
125 	/* No SPSPs to bases 2,3 less than 1373653. */
126 	if (!spsp(n, 3))
127 		return (0);
128 	if (n < 1373653ULL)
129 		return (1);
130 
131 	/* No SPSPs to bases 2,3,5 less than 25326001. */
132 	if (!spsp(n, 5))
133 		return (0);
134 	if (n < 25326001ULL)
135 		return (1);
136 
137 	/* No SPSPs to bases 2,3,5,7 less than 3215031751. */
138 	if (!spsp(n, 7))
139 		return (0);
140 	if (n < 3215031751ULL)
141 		return (1);
142 
143 	/*
144 	 * Values from:
145 	 * G. Jaeschke, On strong pseudoprimes to several bases,
146 	 * Math. Comp. 61(204):915-926, 1993.
147 	 */
148 
149 	/* No SPSPs to bases 2,3,5,7,11 less than 2152302898747. */
150 	if (!spsp(n, 11))
151 		return (0);
152 	if (n < 2152302898747ULL)
153 		return (1);
154 
155 	/* No SPSPs to bases 2,3,5,7,11,13 less than 3474749660383. */
156 	if (!spsp(n, 13))
157 		return (0);
158 	if (n < 3474749660383ULL)
159 		return (1);
160 
161 	/* No SPSPs to bases 2,3,5,7,11,13,17 less than 341550071728321. */
162 	if (!spsp(n, 17))
163 		return (0);
164 	if (n < 341550071728321ULL)
165 		return (1);
166 
167 	/* No SPSPs to bases 2,3,5,7,11,13,17,19 less than 341550071728321. */
168 	if (!spsp(n, 19))
169 		return (0);
170 	if (n < 341550071728321ULL)
171 		return (1);
172 
173 	/*
174 	 * Value from:
175 	 * Y. Jiang and Y. Deng, Strong pseudoprimes to the first eight prime
176 	 * bases, Math. Comp. 83(290):2915-2924, 2014.
177 	 */
178 
179 	/* No SPSPs to bases 2..23 less than 3825123056546413051. */
180 	if (!spsp(n, 23))
181 		return (0);
182 	if (n < 3825123056546413051)
183 		return (1);
184 
185 	/*
186 	 * Value from:
187 	 * J. Sorenson and J. Webster, Strong pseudoprimes to twelve prime
188 	 * bases, Math. Comp. 86(304):985-1003, 2017.
189 	 */
190 
191 	/* No SPSPs to bases 2..37 less than 318665857834031151167461. */
192 	if (!spsp(n, 29))
193 		return (0);
194 	if (!spsp(n, 31))
195 		return (0);
196 	if (!spsp(n, 37))
197 		return (0);
198 
199 	/* All 64-bit values are less than 318665857834031151167461. */
200 	return (1);
201 }
202