xref: /freebsd/usr.bin/primes/spsp.c (revision 4fbb9c43aa44d9145151bb5f77d302ba01fb7551)
1 /*-
2  * Copyright (c) 2014 Colin Percival
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 #include <sys/cdefs.h>
27 #include <stddef.h>
28 #include <stdint.h>
29 
30 #include "primes.h"
31 
32 /* Return a * b % n, where 0 < n. */
33 static uint64_t
34 mulmod(uint64_t a, uint64_t b, uint64_t n)
35 {
36 	uint64_t x = 0;
37 	uint64_t an = a % n;
38 
39 	while (b != 0) {
40 		if (b & 1) {
41 			x += an;
42 			if ((x < an) || (x >= n))
43 				x -= n;
44 		}
45 		if (an + an < an)
46 			an = an + an - n;
47 		else if (an + an >= n)
48 			an = an + an - n;
49 		else
50 			an = an + an;
51 		b >>= 1;
52 	}
53 
54 	return (x);
55 }
56 
57 /* Return a^r % n, where 0 < n. */
58 static uint64_t
59 powmod(uint64_t a, uint64_t r, uint64_t n)
60 {
61 	uint64_t x = 1;
62 
63 	while (r != 0) {
64 		if (r & 1)
65 			x = mulmod(a, x, n);
66 		a = mulmod(a, a, n);
67 		r >>= 1;
68 	}
69 
70 	return (x);
71 }
72 
73 /* Return non-zero if n is a strong pseudoprime to base p. */
74 static int
75 spsp(uint64_t n, uint64_t p)
76 {
77 	uint64_t x;
78 	uint64_t r = n - 1;
79 	int k = 0;
80 
81 	/* Compute n - 1 = 2^k * r. */
82 	while ((r & 1) == 0) {
83 		k++;
84 		r >>= 1;
85 	}
86 
87 	/* Compute x = p^r mod n.  If x = 1, n is a p-spsp. */
88 	x = powmod(p, r, n);
89 	if (x == 1)
90 		return (1);
91 
92 	/* Compute x^(2^i) for 0 <= i < n.  If any are -1, n is a p-spsp. */
93 	while (k > 0) {
94 		if (x == n - 1)
95 			return (1);
96 		x = powmod(x, 2, n);
97 		k--;
98 	}
99 
100 	/* Not a p-spsp. */
101 	return (0);
102 }
103 
104 /* Test for primality using strong pseudoprime tests. */
105 int
106 isprime(ubig _n)
107 {
108 	uint64_t n = _n;
109 
110 	/*
111 	 * Values from:
112 	 * C. Pomerance, J.L. Selfridge, and S.S. Wagstaff, Jr.,
113 	 * The pseudoprimes to 25 * 10^9, Math. Comp. 35(151):1003-1026, 1980.
114 	 */
115 
116 	/* No SPSPs to base 2 less than 2047. */
117 	if (!spsp(n, 2))
118 		return (0);
119 	if (n < 2047ULL)
120 		return (1);
121 
122 	/* No SPSPs to bases 2,3 less than 1373653. */
123 	if (!spsp(n, 3))
124 		return (0);
125 	if (n < 1373653ULL)
126 		return (1);
127 
128 	/* No SPSPs to bases 2,3,5 less than 25326001. */
129 	if (!spsp(n, 5))
130 		return (0);
131 	if (n < 25326001ULL)
132 		return (1);
133 
134 	/* No SPSPs to bases 2,3,5,7 less than 3215031751. */
135 	if (!spsp(n, 7))
136 		return (0);
137 	if (n < 3215031751ULL)
138 		return (1);
139 
140 	/*
141 	 * Values from:
142 	 * G. Jaeschke, On strong pseudoprimes to several bases,
143 	 * Math. Comp. 61(204):915-926, 1993.
144 	 */
145 
146 	/* No SPSPs to bases 2,3,5,7,11 less than 2152302898747. */
147 	if (!spsp(n, 11))
148 		return (0);
149 	if (n < 2152302898747ULL)
150 		return (1);
151 
152 	/* No SPSPs to bases 2,3,5,7,11,13 less than 3474749660383. */
153 	if (!spsp(n, 13))
154 		return (0);
155 	if (n < 3474749660383ULL)
156 		return (1);
157 
158 	/* No SPSPs to bases 2,3,5,7,11,13,17 less than 341550071728321. */
159 	if (!spsp(n, 17))
160 		return (0);
161 	if (n < 341550071728321ULL)
162 		return (1);
163 
164 	/* No SPSPs to bases 2,3,5,7,11,13,17,19 less than 341550071728321. */
165 	if (!spsp(n, 19))
166 		return (0);
167 	if (n < 341550071728321ULL)
168 		return (1);
169 
170 	/*
171 	 * Value from:
172 	 * Y. Jiang and Y. Deng, Strong pseudoprimes to the first eight prime
173 	 * bases, Math. Comp. 83(290):2915-2924, 2014.
174 	 */
175 
176 	/* No SPSPs to bases 2..23 less than 3825123056546413051. */
177 	if (!spsp(n, 23))
178 		return (0);
179 	if (n < 3825123056546413051)
180 		return (1);
181 
182 	/*
183 	 * Value from:
184 	 * J. Sorenson and J. Webster, Strong pseudoprimes to twelve prime
185 	 * bases, Math. Comp. 86(304):985-1003, 2017.
186 	 */
187 
188 	/* No SPSPs to bases 2..37 less than 318665857834031151167461. */
189 	if (!spsp(n, 29))
190 		return (0);
191 	if (!spsp(n, 31))
192 		return (0);
193 	if (!spsp(n, 37))
194 		return (0);
195 
196 	/* All 64-bit values are less than 318665857834031151167461. */
197 	return (1);
198 }
199