xref: /freebsd/usr.bin/primes/spsp.c (revision 25ecdc7d52770caf1c9b44b5ec11f468f6b636f3)
1 /*-
2  * Copyright (c) 2014 Colin Percival
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include <stddef.h>
30 #include <stdint.h>
31 
32 #include "primes.h"
33 
34 /* Return a * b % n, where 0 < n. */
35 static uint64_t
36 mulmod(uint64_t a, uint64_t b, uint64_t n)
37 {
38 	uint64_t x = 0;
39 	uint64_t an = a % n;
40 
41 	while (b != 0) {
42 		if (b & 1) {
43 			x += an;
44 			if ((x < an) || (x >= n))
45 				x -= n;
46 		}
47 		if (an + an < an)
48 			an = an + an - n;
49 		else if (an + an >= n)
50 			an = an + an - n;
51 		else
52 			an = an + an;
53 		b >>= 1;
54 	}
55 
56 	return (x);
57 }
58 
59 /* Return a^r % n, where 0 < n. */
60 static uint64_t
61 powmod(uint64_t a, uint64_t r, uint64_t n)
62 {
63 	uint64_t x = 1;
64 
65 	while (r != 0) {
66 		if (r & 1)
67 			x = mulmod(a, x, n);
68 		a = mulmod(a, a, n);
69 		r >>= 1;
70 	}
71 
72 	return (x);
73 }
74 
75 /* Return non-zero if n is a strong pseudoprime to base p. */
76 static int
77 spsp(uint64_t n, uint64_t p)
78 {
79 	uint64_t x;
80 	uint64_t r = n - 1;
81 	int k = 0;
82 
83 	/* Compute n - 1 = 2^k * r. */
84 	while ((r & 1) == 0) {
85 		k++;
86 		r >>= 1;
87 	}
88 
89 	/* Compute x = p^r mod n.  If x = 1, n is a p-spsp. */
90 	x = powmod(p, r, n);
91 	if (x == 1)
92 		return (1);
93 
94 	/* Compute x^(2^i) for 0 <= i < n.  If any are -1, n is a p-spsp. */
95 	while (k > 0) {
96 		if (x == n - 1)
97 			return (1);
98 		x = powmod(x, 2, n);
99 		k--;
100 	}
101 
102 	/* Not a p-spsp. */
103 	return (0);
104 }
105 
106 /* Test for primality using strong pseudoprime tests. */
107 int
108 isprime(ubig _n)
109 {
110 	uint64_t n = _n;
111 
112 	/*
113 	 * Values from:
114 	 * C. Pomerance, J.L. Selfridge, and S.S. Wagstaff, Jr.,
115 	 * The pseudoprimes to 25 * 10^9, Math. Comp. 35(151):1003-1026, 1980.
116 	 */
117 
118 	/* No SPSPs to base 2 less than 2047. */
119 	if (!spsp(n, 2))
120 		return (0);
121 	if (n < 2047ULL)
122 		return (1);
123 
124 	/* No SPSPs to bases 2,3 less than 1373653. */
125 	if (!spsp(n, 3))
126 		return (0);
127 	if (n < 1373653ULL)
128 		return (1);
129 
130 	/* No SPSPs to bases 2,3,5 less than 25326001. */
131 	if (!spsp(n, 5))
132 		return (0);
133 	if (n < 25326001ULL)
134 		return (1);
135 
136 	/* No SPSPs to bases 2,3,5,7 less than 3215031751. */
137 	if (!spsp(n, 7))
138 		return (0);
139 	if (n < 3215031751ULL)
140 		return (1);
141 
142 	/*
143 	 * Values from:
144 	 * G. Jaeschke, On strong pseudoprimes to several bases,
145 	 * Math. Comp. 61(204):915-926, 1993.
146 	 */
147 
148 	/* No SPSPs to bases 2,3,5,7,11 less than 2152302898747. */
149 	if (!spsp(n, 11))
150 		return (0);
151 	if (n < 2152302898747ULL)
152 		return (1);
153 
154 	/* No SPSPs to bases 2,3,5,7,11,13 less than 3474749660383. */
155 	if (!spsp(n, 13))
156 		return (0);
157 	if (n < 3474749660383ULL)
158 		return (1);
159 
160 	/* No SPSPs to bases 2,3,5,7,11,13,17 less than 341550071728321. */
161 	if (!spsp(n, 17))
162 		return (0);
163 	if (n < 341550071728321ULL)
164 		return (1);
165 
166 	/* No SPSPs to bases 2,3,5,7,11,13,17,19 less than 341550071728321. */
167 	if (!spsp(n, 19))
168 		return (0);
169 	if (n < 341550071728321ULL)
170 		return (1);
171 
172 	/*
173 	 * Value from:
174 	 * Y. Jiang and Y. Deng, Strong pseudoprimes to the first eight prime
175 	 * bases, Math. Comp. 83(290):2915-2924, 2014.
176 	 */
177 
178 	/* No SPSPs to bases 2..23 less than 3825123056546413051. */
179 	if (!spsp(n, 23))
180 		return (0);
181 	if (n < 3825123056546413051)
182 		return (1);
183 
184 	/*
185 	 * Value from:
186 	 * J. Sorenson and J. Webster, Strong pseudoprimes to twelve prime
187 	 * bases, Math. Comp. 86(304):985-1003, 2017.
188 	 */
189 
190 	/* No SPSPs to bases 2..37 less than 318665857834031151167461. */
191 	if (!spsp(n, 29))
192 		return (0);
193 	if (!spsp(n, 31))
194 		return (0);
195 	if (!spsp(n, 37))
196 		return (0);
197 
198 	/* All 64-bit values are less than 318665857834031151167461. */
199 	return (1);
200 }
201