xref: /freebsd/usr.bin/primes/spsp.c (revision 0b3105a37d7adcadcb720112fed4dc4e8040be99)
1 /*-
2  * Copyright (c) 2014 Colin Percival
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include <assert.h>
30 #include <stddef.h>
31 #include <stdint.h>
32 
33 #include "primes.h"
34 
35 /* Return a * b % n, where 0 <= a, b < 2^63, 0 < n < 2^63. */
36 static uint64_t
37 mulmod(uint64_t a, uint64_t b, uint64_t n)
38 {
39 	uint64_t x = 0;
40 
41 	while (b != 0) {
42 		if (b & 1)
43 			x = (x + a) % n;
44 		a = (a + a) % n;
45 		b >>= 1;
46 	}
47 
48 	return (x);
49 }
50 
51 /* Return a^r % n, where 0 <= a < 2^63, 0 < n < 2^63. */
52 static uint64_t
53 powmod(uint64_t a, uint64_t r, uint64_t n)
54 {
55 	uint64_t x = 1;
56 
57 	while (r != 0) {
58 		if (r & 1)
59 			x = mulmod(a, x, n);
60 		a = mulmod(a, a, n);
61 		r >>= 1;
62 	}
63 
64 	return (x);
65 }
66 
67 /* Return non-zero if n is a strong pseudoprime to base p. */
68 static int
69 spsp(uint64_t n, uint64_t p)
70 {
71 	uint64_t x;
72 	uint64_t r = n - 1;
73 	int k = 0;
74 
75 	/* Compute n - 1 = 2^k * r. */
76 	while ((r & 1) == 0) {
77 		k++;
78 		r >>= 1;
79 	}
80 
81 	/* Compute x = p^r mod n.  If x = 1, n is a p-spsp. */
82 	x = powmod(p, r, n);
83 	if (x == 1)
84 		return (1);
85 
86 	/* Compute x^(2^i) for 0 <= i < n.  If any are -1, n is a p-spsp. */
87 	while (k > 0) {
88 		if (x == n - 1)
89 			return (1);
90 		x = powmod(x, 2, n);
91 		k--;
92 	}
93 
94 	/* Not a p-spsp. */
95 	return (0);
96 }
97 
98 /* Test for primality using strong pseudoprime tests. */
99 int
100 isprime(ubig _n)
101 {
102 	uint64_t n = _n;
103 
104 	/*
105 	 * Values from:
106 	 * C. Pomerance, J.L. Selfridge, and S.S. Wagstaff, Jr.,
107 	 * The pseudoprimes to 25 * 10^9, Math. Comp. 35(151):1003-1026, 1980.
108 	 */
109 
110 	/* No SPSPs to base 2 less than 2047. */
111 	if (!spsp(n, 2))
112 		return (0);
113 	if (n < 2047ULL)
114 		return (1);
115 
116 	/* No SPSPs to bases 2,3 less than 1373653. */
117 	if (!spsp(n, 3))
118 		return (0);
119 	if (n < 1373653ULL)
120 		return (1);
121 
122 	/* No SPSPs to bases 2,3,5 less than 25326001. */
123 	if (!spsp(n, 5))
124 		return (0);
125 	if (n < 25326001ULL)
126 		return (1);
127 
128 	/* No SPSPs to bases 2,3,5,7 less than 3215031751. */
129 	if (!spsp(n, 7))
130 		return (0);
131 	if (n < 3215031751ULL)
132 		return (1);
133 
134 	/*
135 	 * Values from:
136 	 * G. Jaeschke, On strong pseudoprimes to several bases,
137 	 * Math. Comp. 61(204):915-926, 1993.
138 	 */
139 
140 	/* No SPSPs to bases 2,3,5,7,11 less than 2152302898747. */
141 	if (!spsp(n, 11))
142 		return (0);
143 	if (n < 2152302898747ULL)
144 		return (1);
145 
146 	/* No SPSPs to bases 2,3,5,7,11,13 less than 3474749660383. */
147 	if (!spsp(n, 13))
148 		return (0);
149 	if (n < 3474749660383ULL)
150 		return (1);
151 
152 	/* No SPSPs to bases 2,3,5,7,11,13,17 less than 341550071728321. */
153 	if (!spsp(n, 17))
154 		return (0);
155 	if (n < 341550071728321ULL)
156 		return (1);
157 
158 	/* No SPSPs to bases 2,3,5,7,11,13,17,19 less than 341550071728321. */
159 	if (!spsp(n, 19))
160 		return (0);
161 	if (n < 341550071728321ULL)
162 		return (1);
163 
164 	/*
165 	 * Value from:
166 	 * Y. Jiang and Y. Deng, Strong pseudoprimes to the first eight prime
167 	 * bases, Math. Comp. 83(290):2915-2924, 2014.
168 	 */
169 
170 	/* No SPSPs to bases 2..23 less than 3825123056546413051. */
171 	if (!spsp(n, 23))
172 		return (0);
173 	if (n < 3825123056546413051)
174 		return (1);
175 
176 	/* We can't handle values larger than this. */
177 	assert(n <= SPSPMAX);
178 
179 	/* UNREACHABLE */
180 	return (0);
181 }
182