1 /*- 2 * Copyright 2010 Nexenta Systems, Inc. All rights reserved. 3 * Copyright 2015 John Marino <draco@marino.st> 4 * 5 * This source code is derived from the illumos localedef command, and 6 * provided under BSD-style license terms by Nexenta Systems, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * LC_COLLATE database generation routines for localedef. 33 */ 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/types.h> 38 #include <sys/tree.h> 39 40 #include <stdio.h> 41 #include <stddef.h> 42 #include <stdlib.h> 43 #include <errno.h> 44 #include <string.h> 45 #include <unistd.h> 46 #include <wchar.h> 47 #include <limits.h> 48 #include "localedef.h" 49 #include "parser.h" 50 #include "collate.h" 51 52 /* 53 * Design notes. 54 * 55 * It will be extremely helpful to the reader if they have access to 56 * the localedef and locale file format specifications available. 57 * Latest versions of these are available from www.opengroup.org. 58 * 59 * The design for the collation code is a bit complex. The goal is a 60 * single collation database as described in collate.h (in 61 * libc/port/locale). However, there are some other tidbits: 62 * 63 * a) The substitution entries are now a directly indexable array. A 64 * priority elsewhere in the table is taken as an index into the 65 * substitution table if it has a high bit (COLLATE_SUBST_PRIORITY) 66 * set. (The bit is cleared and the result is the index into the 67 * table. 68 * 69 * b) We eliminate duplicate entries into the substitution table. 70 * This saves a lot of space. 71 * 72 * c) The priorities for each level are "compressed", so that each 73 * sorting level has consecutively numbered priorities starting at 1. 74 * (O is reserved for the ignore priority.) This means sort levels 75 * which only have a few distinct priorities can represent the 76 * priority level in fewer bits, which makes the strxfrm output 77 * smaller. 78 * 79 * d) We record the total number of priorities so that strxfrm can 80 * figure out how many bytes to expand a numeric priority into. 81 * 82 * e) For the UNDEFINED pass (the last pass), we record the maximum 83 * number of bits needed to uniquely prioritize these entries, so that 84 * the last pass can also use smaller strxfrm output when possible. 85 * 86 * f) Priorities with the sign bit set are verboten. This works out 87 * because no active character set needs that bit to carry significant 88 * information once the character is in wide form. 89 * 90 * To process the entire data to make the database, we actually run 91 * multiple passes over the data. 92 * 93 * The first pass, which is done at parse time, identifies elements, 94 * substitutions, and such, and records them in priority order. As 95 * some priorities can refer to other priorities, using forward 96 * references, we use a table of references indicating whether the 97 * priority's value has been resolved, or whether it is still a 98 * reference. 99 * 100 * The second pass walks over all the items in priority order, noting 101 * that they are used directly, and not just an indirect reference. 102 * This is done by creating a "weight" structure for the item. The 103 * weights are stashed in an RB tree sorted by relative "priority". 104 * 105 * The third pass walks over all the weight structures, in priority 106 * order, and assigns a new monotonically increasing (per sort level) 107 * weight value to them. These are the values that will actually be 108 * written to the file. 109 * 110 * The fourth pass just writes the data out. 111 */ 112 113 /* 114 * In order to resolve the priorities, we create a table of priorities. 115 * Entries in the table can be in one of three states. 116 * 117 * UNKNOWN is for newly allocated entries, and indicates that nothing 118 * is known about the priority. (For example, when new entries are created 119 * for collating-symbols, this is the value assigned for them until the 120 * collating symbol's order has been determined. 121 * 122 * RESOLVED is used for an entry where the priority indicates the final 123 * numeric weight. 124 * 125 * REFER is used for entries that reference other entries. Typically 126 * this is used for forward references. A collating-symbol can never 127 * have this value. 128 * 129 * The "pass" field is used during final resolution to aid in detection 130 * of referencing loops. (For example <A> depends on <B>, but <B> has its 131 * priority dependent on <A>.) 132 */ 133 typedef enum { 134 UNKNOWN, /* priority is totally unknown */ 135 RESOLVED, /* priority value fully resolved */ 136 REFER /* priority is a reference (index) */ 137 } res_t; 138 139 typedef struct weight { 140 int32_t pri; 141 int opt; 142 RB_ENTRY(weight) entry; 143 } weight_t; 144 145 typedef struct priority { 146 res_t res; 147 int32_t pri; 148 int pass; 149 int lineno; 150 } collpri_t; 151 152 #define NUM_WT collinfo.directive_count 153 154 /* 155 * These are the abstract collating symbols, which are just a symbolic 156 * way to reference a priority. 157 */ 158 struct collsym { 159 char *name; 160 int32_t ref; 161 RB_ENTRY(collsym) entry; 162 }; 163 164 /* 165 * These are also abstract collating symbols, but we allow them to have 166 * different priorities at different levels. 167 */ 168 typedef struct collundef { 169 char *name; 170 int32_t ref[COLL_WEIGHTS_MAX]; 171 RB_ENTRY(collundef) entry; 172 } collundef_t; 173 174 /* 175 * These are called "chains" in libc. This records the fact that two 176 * more characters should be treated as a single collating entity when 177 * they appear together. For example, in Spanish <C><h> gets collated 178 * as a character between <C> and <D>. 179 */ 180 struct collelem { 181 char *symbol; 182 wchar_t *expand; 183 int32_t ref[COLL_WEIGHTS_MAX]; 184 RB_ENTRY(collelem) rb_bysymbol; 185 RB_ENTRY(collelem) rb_byexpand; 186 }; 187 188 /* 189 * Individual characters have a sequence of weights as well. 190 */ 191 typedef struct collchar { 192 wchar_t wc; 193 int32_t ref[COLL_WEIGHTS_MAX]; 194 RB_ENTRY(collchar) entry; 195 } collchar_t; 196 197 /* 198 * Substitution entries. The key is itself a priority. Note that 199 * when we create one of these, we *automatically* wind up with a 200 * fully resolved priority for the key, because creation of 201 * substitutions creates a resolved priority at the same time. 202 */ 203 typedef struct subst{ 204 int32_t key; 205 int32_t ref[COLLATE_STR_LEN]; 206 RB_ENTRY(subst) entry; 207 RB_ENTRY(subst) entry_ref; 208 } subst_t; 209 210 static RB_HEAD(collsyms, collsym) collsyms; 211 static RB_HEAD(collundefs, collundef) collundefs; 212 static RB_HEAD(elem_by_symbol, collelem) elem_by_symbol; 213 static RB_HEAD(elem_by_expand, collelem) elem_by_expand; 214 static RB_HEAD(collchars, collchar) collchars; 215 static RB_HEAD(substs, subst) substs[COLL_WEIGHTS_MAX]; 216 static RB_HEAD(substs_ref, subst) substs_ref[COLL_WEIGHTS_MAX]; 217 static RB_HEAD(weights, weight) weights[COLL_WEIGHTS_MAX]; 218 static int32_t nweight[COLL_WEIGHTS_MAX]; 219 220 /* 221 * This is state tracking for the ellipsis token. Note that we start 222 * the initial values so that the ellipsis logic will think we got a 223 * magic starting value of NUL. It starts at minus one because the 224 * starting point is exclusive -- i.e. the starting point is not 225 * itself handled by the ellipsis code. 226 */ 227 static int currorder = EOF; 228 static int lastorder = EOF; 229 static collelem_t *currelem; 230 static collchar_t *currchar; 231 static collundef_t *currundef; 232 static wchar_t ellipsis_start = 0; 233 static int32_t ellipsis_weights[COLL_WEIGHTS_MAX]; 234 235 /* 236 * We keep a running tally of weights. 237 */ 238 static int nextpri = 1; 239 static int nextsubst[COLL_WEIGHTS_MAX] = { 0 }; 240 241 /* 242 * This array collects up the weights for each level. 243 */ 244 static int32_t order_weights[COLL_WEIGHTS_MAX]; 245 static int curr_weight = 0; 246 static int32_t subst_weights[COLLATE_STR_LEN]; 247 static int curr_subst = 0; 248 249 /* 250 * Some initial priority values. 251 */ 252 static int32_t pri_undefined[COLL_WEIGHTS_MAX]; 253 static int32_t pri_ignore; 254 255 static collate_info_t collinfo; 256 257 static collpri_t *prilist = NULL; 258 static int numpri = 0; 259 static int maxpri = 0; 260 261 static void start_order(int); 262 263 static int32_t 264 new_pri(void) 265 { 266 int i; 267 268 if (numpri >= maxpri) { 269 maxpri = maxpri ? maxpri * 2 : 1024; 270 prilist = realloc(prilist, sizeof (collpri_t) * maxpri); 271 if (prilist == NULL) { 272 fprintf(stderr,"out of memory"); 273 return (-1); 274 } 275 for (i = numpri; i < maxpri; i++) { 276 prilist[i].res = UNKNOWN; 277 prilist[i].pri = 0; 278 prilist[i].pass = 0; 279 } 280 } 281 return (numpri++); 282 } 283 284 static collpri_t * 285 get_pri(int32_t ref) 286 { 287 if ((ref < 0) || (ref > numpri)) { 288 INTERR; 289 return (NULL); 290 } 291 return (&prilist[ref]); 292 } 293 294 static void 295 set_pri(int32_t ref, int32_t v, res_t res) 296 { 297 collpri_t *pri; 298 299 pri = get_pri(ref); 300 301 if ((res == REFER) && ((v < 0) || (v >= numpri))) { 302 INTERR; 303 } 304 305 /* Resolve self references */ 306 if ((res == REFER) && (ref == v)) { 307 v = nextpri; 308 res = RESOLVED; 309 } 310 311 if (pri->res != UNKNOWN) { 312 warn("repeated item in order list (first on %d)", 313 pri->lineno); 314 return; 315 } 316 pri->lineno = lineno; 317 pri->pri = v; 318 pri->res = res; 319 } 320 321 static int32_t 322 resolve_pri(int32_t ref) 323 { 324 collpri_t *pri; 325 static int32_t pass = 0; 326 327 pri = get_pri(ref); 328 pass++; 329 while (pri->res == REFER) { 330 if (pri->pass == pass) { 331 /* report a line with the circular symbol */ 332 lineno = pri->lineno; 333 fprintf(stderr,"circular reference in order list"); 334 return (-1); 335 } 336 if ((pri->pri < 0) || (pri->pri >= numpri)) { 337 INTERR; 338 return (-1); 339 } 340 pri->pass = pass; 341 pri = &prilist[pri->pri]; 342 } 343 344 if (pri->res == UNKNOWN) { 345 return (-1); 346 } 347 if (pri->res != RESOLVED) 348 INTERR; 349 350 return (pri->pri); 351 } 352 353 static int 354 weight_compare(const void *n1, const void *n2) 355 { 356 int32_t k1 = ((const weight_t *)n1)->pri; 357 int32_t k2 = ((const weight_t *)n2)->pri; 358 359 return (k1 < k2 ? -1 : k1 > k2 ? 1 : 0); 360 } 361 362 RB_GENERATE_STATIC(weights, weight, entry, weight_compare); 363 364 static int 365 collsym_compare(const void *n1, const void *n2) 366 { 367 const collsym_t *c1 = n1; 368 const collsym_t *c2 = n2; 369 int rv; 370 371 rv = strcmp(c1->name, c2->name); 372 return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0); 373 } 374 375 RB_GENERATE_STATIC(collsyms, collsym, entry, collsym_compare); 376 377 static int 378 collundef_compare(const void *n1, const void *n2) 379 { 380 const collundef_t *c1 = n1; 381 const collundef_t *c2 = n2; 382 int rv; 383 384 rv = strcmp(c1->name, c2->name); 385 return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0); 386 } 387 388 RB_GENERATE_STATIC(collundefs, collundef, entry, collundef_compare); 389 390 static int 391 element_compare_symbol(const void *n1, const void *n2) 392 { 393 const collelem_t *c1 = n1; 394 const collelem_t *c2 = n2; 395 int rv; 396 397 rv = strcmp(c1->symbol, c2->symbol); 398 return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0); 399 } 400 401 RB_GENERATE_STATIC(elem_by_symbol, collelem, rb_bysymbol, element_compare_symbol); 402 403 static int 404 element_compare_expand(const void *n1, const void *n2) 405 { 406 const collelem_t *c1 = n1; 407 const collelem_t *c2 = n2; 408 int rv; 409 410 rv = wcscmp(c1->expand, c2->expand); 411 return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0); 412 } 413 414 RB_GENERATE_STATIC(elem_by_expand, collelem, rb_byexpand, element_compare_expand); 415 416 static int 417 collchar_compare(const void *n1, const void *n2) 418 { 419 wchar_t k1 = ((const collchar_t *)n1)->wc; 420 wchar_t k2 = ((const collchar_t *)n2)->wc; 421 422 return (k1 < k2 ? -1 : k1 > k2 ? 1 : 0); 423 } 424 425 RB_GENERATE_STATIC(collchars, collchar, entry, collchar_compare); 426 427 static int 428 subst_compare(const void *n1, const void *n2) 429 { 430 int32_t k1 = ((const subst_t *)n1)->key; 431 int32_t k2 = ((const subst_t *)n2)->key; 432 433 return (k1 < k2 ? -1 : k1 > k2 ? 1 : 0); 434 } 435 436 RB_GENERATE_STATIC(substs, subst, entry, subst_compare); 437 438 static int 439 subst_compare_ref(const void *n1, const void *n2) 440 { 441 const wchar_t *c1 = ((const subst_t *)n1)->ref; 442 const wchar_t *c2 = ((const subst_t *)n2)->ref; 443 int rv; 444 445 rv = wcscmp(c1, c2); 446 return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0); 447 } 448 449 RB_GENERATE_STATIC(substs_ref, subst, entry_ref, subst_compare_ref); 450 451 void 452 init_collate(void) 453 { 454 int i; 455 456 RB_INIT(&collsyms); 457 458 RB_INIT(&collundefs); 459 460 RB_INIT(&elem_by_symbol); 461 462 RB_INIT(&elem_by_expand); 463 464 RB_INIT(&collchars); 465 466 for (i = 0; i < COLL_WEIGHTS_MAX; i++) { 467 RB_INIT(&substs[i]); 468 RB_INIT(&substs_ref[i]); 469 RB_INIT(&weights[i]); 470 nweight[i] = 1; 471 } 472 473 (void) memset(&collinfo, 0, sizeof (collinfo)); 474 475 /* allocate some initial priorities */ 476 pri_ignore = new_pri(); 477 478 set_pri(pri_ignore, 0, RESOLVED); 479 480 for (i = 0; i < COLL_WEIGHTS_MAX; i++) { 481 pri_undefined[i] = new_pri(); 482 483 /* we will override this later */ 484 set_pri(pri_undefined[i], COLLATE_MAX_PRIORITY, UNKNOWN); 485 } 486 } 487 488 void 489 define_collsym(char *name) 490 { 491 collsym_t *sym; 492 493 if ((sym = calloc(1, sizeof(*sym))) == NULL) { 494 fprintf(stderr,"out of memory"); 495 return; 496 } 497 sym->name = name; 498 sym->ref = new_pri(); 499 500 if (RB_FIND(collsyms, &collsyms, sym) != NULL) { 501 /* 502 * This should never happen because we are only called 503 * for undefined symbols. 504 */ 505 free(sym); 506 INTERR; 507 return; 508 } 509 RB_INSERT(collsyms, &collsyms, sym); 510 } 511 512 collsym_t * 513 lookup_collsym(char *name) 514 { 515 collsym_t srch; 516 517 srch.name = name; 518 return (RB_FIND(collsyms, &collsyms, &srch)); 519 } 520 521 collelem_t * 522 lookup_collelem(char *symbol) 523 { 524 collelem_t srch; 525 526 srch.symbol = symbol; 527 return (RB_FIND(elem_by_symbol, &elem_by_symbol, &srch)); 528 } 529 530 static collundef_t * 531 get_collundef(char *name) 532 { 533 collundef_t srch; 534 collundef_t *ud; 535 int i; 536 537 srch.name = name; 538 if ((ud = RB_FIND(collundefs, &collundefs, &srch)) == NULL) { 539 if (((ud = calloc(1, sizeof(*ud))) == NULL) || 540 ((ud->name = strdup(name)) == NULL)) { 541 fprintf(stderr,"out of memory"); 542 free(ud); 543 return (NULL); 544 } 545 for (i = 0; i < NUM_WT; i++) { 546 ud->ref[i] = new_pri(); 547 } 548 RB_INSERT(collundefs, &collundefs, ud); 549 } 550 add_charmap_undefined(name); 551 return (ud); 552 } 553 554 static collchar_t * 555 get_collchar(wchar_t wc, int create) 556 { 557 collchar_t srch; 558 collchar_t *cc; 559 int i; 560 561 srch.wc = wc; 562 cc = RB_FIND(collchars, &collchars, &srch); 563 if ((cc == NULL) && create) { 564 if ((cc = calloc(1, sizeof(*cc))) == NULL) { 565 fprintf(stderr, "out of memory"); 566 return (NULL); 567 } 568 for (i = 0; i < NUM_WT; i++) { 569 cc->ref[i] = new_pri(); 570 } 571 cc->wc = wc; 572 RB_INSERT(collchars, &collchars, cc); 573 } 574 return (cc); 575 } 576 577 void 578 end_order_collsym(collsym_t *sym) 579 { 580 start_order(T_COLLSYM); 581 /* update the weight */ 582 583 set_pri(sym->ref, nextpri, RESOLVED); 584 nextpri++; 585 } 586 587 void 588 end_order(void) 589 { 590 int i; 591 int32_t pri; 592 int32_t ref; 593 collpri_t *p; 594 595 /* advance the priority/weight */ 596 pri = nextpri; 597 598 switch (currorder) { 599 case T_CHAR: 600 for (i = 0; i < NUM_WT; i++) { 601 if (((ref = order_weights[i]) < 0) || 602 ((p = get_pri(ref)) == NULL) || 603 (p->pri == -1)) { 604 /* unspecified weight is a self reference */ 605 set_pri(currchar->ref[i], pri, RESOLVED); 606 } else { 607 set_pri(currchar->ref[i], ref, REFER); 608 } 609 order_weights[i] = -1; 610 } 611 612 /* leave a cookie trail in case next symbol is ellipsis */ 613 ellipsis_start = currchar->wc + 1; 614 currchar = NULL; 615 break; 616 617 case T_ELLIPSIS: 618 /* save off the weights were we can find them */ 619 for (i = 0; i < NUM_WT; i++) { 620 ellipsis_weights[i] = order_weights[i]; 621 order_weights[i] = -1; 622 } 623 break; 624 625 case T_COLLELEM: 626 if (currelem == NULL) { 627 INTERR; 628 } else { 629 for (i = 0; i < NUM_WT; i++) { 630 631 if (((ref = order_weights[i]) < 0) || 632 ((p = get_pri(ref)) == NULL) || 633 (p->pri == -1)) { 634 set_pri(currelem->ref[i], pri, 635 RESOLVED); 636 } else { 637 set_pri(currelem->ref[i], ref, REFER); 638 } 639 order_weights[i] = -1; 640 } 641 } 642 break; 643 644 case T_UNDEFINED: 645 for (i = 0; i < NUM_WT; i++) { 646 if (((ref = order_weights[i]) < 0) || 647 ((p = get_pri(ref)) == NULL) || 648 (p->pri == -1)) { 649 set_pri(pri_undefined[i], -1, RESOLVED); 650 } else { 651 set_pri(pri_undefined[i], ref, REFER); 652 } 653 order_weights[i] = -1; 654 } 655 break; 656 657 case T_SYMBOL: 658 for (i = 0; i < NUM_WT; i++) { 659 if (((ref = order_weights[i]) < 0) || 660 ((p = get_pri(ref)) == NULL) || 661 (p->pri == -1)) { 662 set_pri(currundef->ref[i], pri, RESOLVED); 663 } else { 664 set_pri(currundef->ref[i], ref, REFER); 665 } 666 order_weights[i] = -1; 667 } 668 break; 669 670 default: 671 INTERR; 672 } 673 674 nextpri++; 675 } 676 677 static void 678 start_order(int type) 679 { 680 int i; 681 682 lastorder = currorder; 683 currorder = type; 684 685 /* this is used to protect ELLIPSIS processing */ 686 if ((lastorder == T_ELLIPSIS) && (type != T_CHAR)) { 687 fprintf(stderr, "character value expected"); 688 } 689 690 for (i = 0; i < COLL_WEIGHTS_MAX; i++) { 691 order_weights[i] = -1; 692 } 693 curr_weight = 0; 694 } 695 696 void 697 start_order_undefined(void) 698 { 699 start_order(T_UNDEFINED); 700 } 701 702 void 703 start_order_symbol(char *name) 704 { 705 currundef = get_collundef(name); 706 start_order(T_SYMBOL); 707 } 708 709 void 710 start_order_char(wchar_t wc) 711 { 712 collchar_t *cc; 713 int32_t ref; 714 715 start_order(T_CHAR); 716 717 /* 718 * If we last saw an ellipsis, then we need to close the range. 719 * Handle that here. Note that we have to be careful because the 720 * items *inside* the range are treated exclusiveley to the items 721 * outside of the range. The ends of the range can have quite 722 * different weights than the range members. 723 */ 724 if (lastorder == T_ELLIPSIS) { 725 int i; 726 727 if (wc < ellipsis_start) { 728 fprintf(stderr, "malformed range!"); 729 return; 730 } 731 while (ellipsis_start < wc) { 732 /* 733 * pick all of the saved weights for the 734 * ellipsis. note that -1 encodes for the 735 * ellipsis itself, which means to take the 736 * current relative priority. 737 */ 738 if ((cc = get_collchar(ellipsis_start, 1)) == NULL) { 739 INTERR; 740 return; 741 } 742 for (i = 0; i < NUM_WT; i++) { 743 collpri_t *p; 744 if (((ref = ellipsis_weights[i]) == -1) || 745 ((p = get_pri(ref)) == NULL) || 746 (p->pri == -1)) { 747 set_pri(cc->ref[i], nextpri, RESOLVED); 748 } else { 749 set_pri(cc->ref[i], ref, REFER); 750 } 751 ellipsis_weights[i] = 0; 752 } 753 ellipsis_start++; 754 nextpri++; 755 } 756 } 757 758 currchar = get_collchar(wc, 1); 759 } 760 761 void 762 start_order_collelem(collelem_t *e) 763 { 764 start_order(T_COLLELEM); 765 currelem = e; 766 } 767 768 void 769 start_order_ellipsis(void) 770 { 771 int i; 772 773 start_order(T_ELLIPSIS); 774 775 if (lastorder != T_CHAR) { 776 fprintf(stderr, "illegal starting point for range"); 777 return; 778 } 779 780 for (i = 0; i < NUM_WT; i++) { 781 ellipsis_weights[i] = order_weights[i]; 782 } 783 } 784 785 void 786 define_collelem(char *name, wchar_t *wcs) 787 { 788 collelem_t *e; 789 int i; 790 791 if (wcslen(wcs) >= COLLATE_STR_LEN) { 792 fprintf(stderr,"expanded collation element too long"); 793 return; 794 } 795 796 if ((e = calloc(1, sizeof(*e))) == NULL) { 797 fprintf(stderr, "out of memory"); 798 return; 799 } 800 e->expand = wcs; 801 e->symbol = name; 802 803 /* 804 * This is executed before the order statement, so we don't 805 * know how many priorities we *really* need. We allocate one 806 * for each possible weight. Not a big deal, as collating-elements 807 * prove to be quite rare. 808 */ 809 for (i = 0; i < COLL_WEIGHTS_MAX; i++) { 810 e->ref[i] = new_pri(); 811 } 812 813 /* A character sequence can only reduce to one element. */ 814 if ((RB_FIND(elem_by_symbol, &elem_by_symbol, e) != NULL) || 815 (RB_FIND(elem_by_expand, &elem_by_expand, e) != NULL)) { 816 fprintf(stderr, "duplicate collating element definition"); 817 free(e); 818 return; 819 } 820 RB_INSERT(elem_by_symbol, &elem_by_symbol, e); 821 RB_INSERT(elem_by_expand, &elem_by_expand, e); 822 } 823 824 void 825 add_order_bit(int kw) 826 { 827 uint8_t bit = DIRECTIVE_UNDEF; 828 829 switch (kw) { 830 case T_FORWARD: 831 bit = DIRECTIVE_FORWARD; 832 break; 833 case T_BACKWARD: 834 bit = DIRECTIVE_BACKWARD; 835 break; 836 case T_POSITION: 837 bit = DIRECTIVE_POSITION; 838 break; 839 default: 840 INTERR; 841 break; 842 } 843 collinfo.directive[collinfo.directive_count] |= bit; 844 } 845 846 void 847 add_order_directive(void) 848 { 849 if (collinfo.directive_count >= COLL_WEIGHTS_MAX) { 850 fprintf(stderr,"too many directives (max %d)", COLL_WEIGHTS_MAX); 851 } 852 collinfo.directive_count++; 853 } 854 855 static void 856 add_order_pri(int32_t ref) 857 { 858 if (curr_weight >= NUM_WT) { 859 fprintf(stderr,"too many weights (max %d)", NUM_WT); 860 return; 861 } 862 order_weights[curr_weight] = ref; 863 curr_weight++; 864 } 865 866 void 867 add_order_collsym(collsym_t *s) 868 { 869 add_order_pri(s->ref); 870 } 871 872 void 873 add_order_char(wchar_t wc) 874 { 875 collchar_t *cc; 876 877 if ((cc = get_collchar(wc, 1)) == NULL) { 878 INTERR; 879 return; 880 } 881 882 add_order_pri(cc->ref[curr_weight]); 883 } 884 885 void 886 add_order_collelem(collelem_t *e) 887 { 888 add_order_pri(e->ref[curr_weight]); 889 } 890 891 void 892 add_order_ignore(void) 893 { 894 add_order_pri(pri_ignore); 895 } 896 897 void 898 add_order_symbol(char *sym) 899 { 900 collundef_t *c; 901 if ((c = get_collundef(sym)) == NULL) { 902 INTERR; 903 return; 904 } 905 add_order_pri(c->ref[curr_weight]); 906 } 907 908 void 909 add_order_ellipsis(void) 910 { 911 /* special NULL value indicates self reference */ 912 add_order_pri(0); 913 } 914 915 void 916 add_order_subst(void) 917 { 918 subst_t srch; 919 subst_t *s; 920 int i; 921 922 (void) memset(&srch, 0, sizeof (srch)); 923 for (i = 0; i < curr_subst; i++) { 924 srch.ref[i] = subst_weights[i]; 925 subst_weights[i] = 0; 926 } 927 s = RB_FIND(substs_ref, &substs_ref[curr_weight], &srch); 928 929 if (s == NULL) { 930 if ((s = calloc(1, sizeof(*s))) == NULL) { 931 fprintf(stderr,"out of memory"); 932 return; 933 } 934 s->key = new_pri(); 935 936 /* 937 * We use a self reference for our key, but we set a 938 * high bit to indicate that this is a substitution 939 * reference. This will expedite table lookups later, 940 * and prevent table lookups for situations that don't 941 * require it. (In short, its a big win, because we 942 * can skip a lot of binary searching.) 943 */ 944 set_pri(s->key, 945 (nextsubst[curr_weight] | COLLATE_SUBST_PRIORITY), 946 RESOLVED); 947 nextsubst[curr_weight] += 1; 948 949 for (i = 0; i < curr_subst; i++) { 950 s->ref[i] = srch.ref[i]; 951 } 952 953 RB_INSERT(substs_ref, &substs_ref[curr_weight], s); 954 955 if (RB_FIND(substs, &substs[curr_weight], s) != NULL) { 956 INTERR; 957 return; 958 } 959 RB_INSERT(substs, &substs[curr_weight], s); 960 } 961 curr_subst = 0; 962 963 964 /* 965 * We are using the current (unique) priority as a search key 966 * in the substitution table. 967 */ 968 add_order_pri(s->key); 969 } 970 971 static void 972 add_subst_pri(int32_t ref) 973 { 974 if (curr_subst >= COLLATE_STR_LEN) { 975 fprintf(stderr,"substitution string is too long"); 976 return; 977 } 978 subst_weights[curr_subst] = ref; 979 curr_subst++; 980 } 981 982 void 983 add_subst_char(wchar_t wc) 984 { 985 collchar_t *cc; 986 987 988 if (((cc = get_collchar(wc, 1)) == NULL) || 989 (cc->wc != wc)) { 990 INTERR; 991 return; 992 } 993 /* we take the weight for the character at that position */ 994 add_subst_pri(cc->ref[curr_weight]); 995 } 996 997 void 998 add_subst_collelem(collelem_t *e) 999 { 1000 add_subst_pri(e->ref[curr_weight]); 1001 } 1002 1003 void 1004 add_subst_collsym(collsym_t *s) 1005 { 1006 add_subst_pri(s->ref); 1007 } 1008 1009 void 1010 add_subst_symbol(char *ptr) 1011 { 1012 collundef_t *cu; 1013 1014 if ((cu = get_collundef(ptr)) != NULL) { 1015 add_subst_pri(cu->ref[curr_weight]); 1016 } 1017 } 1018 1019 void 1020 add_weight(int32_t ref, int pass) 1021 { 1022 weight_t srch; 1023 weight_t *w; 1024 1025 srch.pri = resolve_pri(ref); 1026 1027 /* No translation of ignores */ 1028 if (srch.pri == 0) 1029 return; 1030 1031 /* Substitution priorities are not weights */ 1032 if (srch.pri & COLLATE_SUBST_PRIORITY) 1033 return; 1034 1035 if (RB_FIND(weights, &weights[pass], &srch) != NULL) 1036 return; 1037 1038 if ((w = calloc(1, sizeof(*w))) == NULL) { 1039 fprintf(stderr, "out of memory"); 1040 return; 1041 } 1042 w->pri = srch.pri; 1043 RB_INSERT(weights, &weights[pass], w); 1044 } 1045 1046 void 1047 add_weights(int32_t *refs) 1048 { 1049 int i; 1050 for (i = 0; i < NUM_WT; i++) { 1051 add_weight(refs[i], i); 1052 } 1053 } 1054 1055 int32_t 1056 get_weight(int32_t ref, int pass) 1057 { 1058 weight_t srch; 1059 weight_t *w; 1060 int32_t pri; 1061 1062 pri = resolve_pri(ref); 1063 if (pri & COLLATE_SUBST_PRIORITY) { 1064 return (pri); 1065 } 1066 if (pri <= 0) { 1067 return (pri); 1068 } 1069 srch.pri = pri; 1070 if ((w = RB_FIND(weights, &weights[pass], &srch)) == NULL) { 1071 INTERR; 1072 return (-1); 1073 } 1074 return (w->opt); 1075 } 1076 1077 wchar_t * 1078 wsncpy(wchar_t *s1, const wchar_t *s2, size_t n) 1079 { 1080 wchar_t *os1 = s1; 1081 1082 n++; 1083 while (--n > 0 && (*s1++ = *s2++) != 0) 1084 continue; 1085 if (n > 0) 1086 while (--n > 0) 1087 *s1++ = 0; 1088 return (os1); 1089 } 1090 1091 #define RB_COUNT(x, name, head, cnt) do { \ 1092 (cnt) = 0; \ 1093 RB_FOREACH(x, name, (head)) { \ 1094 (cnt)++; \ 1095 } \ 1096 } while (0) 1097 1098 #define RB_NUMNODES(type, name, head, cnt) do { \ 1099 type *t; \ 1100 cnt = 0; \ 1101 RB_FOREACH(t, name, head) { \ 1102 cnt++; \ 1103 } \ 1104 } while (0) 1105 1106 void 1107 dump_collate(void) 1108 { 1109 FILE *f; 1110 int i, j, n; 1111 size_t sz; 1112 int32_t pri; 1113 collelem_t *ce; 1114 collchar_t *cc; 1115 subst_t *sb; 1116 char vers[COLLATE_STR_LEN]; 1117 collate_char_t chars[UCHAR_MAX + 1]; 1118 collate_large_t *large; 1119 collate_subst_t *subst[COLL_WEIGHTS_MAX]; 1120 collate_chain_t *chain; 1121 1122 /* 1123 * We have to run through a preliminary pass to identify all the 1124 * weights that we use for each sorting level. 1125 */ 1126 for (i = 0; i < NUM_WT; i++) { 1127 add_weight(pri_ignore, i); 1128 } 1129 for (i = 0; i < NUM_WT; i++) { 1130 RB_FOREACH(sb, substs, &substs[i]) { 1131 for (j = 0; sb->ref[j]; j++) { 1132 add_weight(sb->ref[j], i); 1133 } 1134 } 1135 } 1136 RB_FOREACH(ce, elem_by_expand, &elem_by_expand) { 1137 add_weights(ce->ref); 1138 } 1139 RB_FOREACH(cc, collchars, &collchars) { 1140 add_weights(cc->ref); 1141 } 1142 1143 /* 1144 * Now we walk the entire set of weights, removing the gaps 1145 * in the weights. This gives us optimum usage. The walk 1146 * occurs in priority. 1147 */ 1148 for (i = 0; i < NUM_WT; i++) { 1149 weight_t *w; 1150 RB_FOREACH(w, weights, &weights[i]) { 1151 w->opt = nweight[i]; 1152 nweight[i] += 1; 1153 } 1154 } 1155 1156 (void) memset(&chars, 0, sizeof (chars)); 1157 (void) memset(vers, 0, COLLATE_STR_LEN); 1158 (void) strlcpy(vers, COLLATE_VERSION, sizeof (vers)); 1159 1160 /* 1161 * We need to make sure we arrange for the UNDEFINED field 1162 * to show up. Also, set the total weight counts. 1163 */ 1164 for (i = 0; i < NUM_WT; i++) { 1165 if (resolve_pri(pri_undefined[i]) == -1) { 1166 set_pri(pri_undefined[i], -1, RESOLVED); 1167 /* they collate at the end of everything else */ 1168 collinfo.undef_pri[i] = COLLATE_MAX_PRIORITY; 1169 } 1170 collinfo.pri_count[i] = nweight[i]; 1171 } 1172 1173 collinfo.pri_count[NUM_WT] = max_wide(); 1174 collinfo.undef_pri[NUM_WT] = COLLATE_MAX_PRIORITY; 1175 collinfo.directive[NUM_WT] = DIRECTIVE_UNDEFINED; 1176 1177 /* 1178 * Ordinary character priorities 1179 */ 1180 for (i = 0; i <= UCHAR_MAX; i++) { 1181 if ((cc = get_collchar(i, 0)) != NULL) { 1182 for (j = 0; j < NUM_WT; j++) { 1183 chars[i].pri[j] = get_weight(cc->ref[j], j); 1184 } 1185 } else { 1186 for (j = 0; j < NUM_WT; j++) { 1187 chars[i].pri[j] = 1188 get_weight(pri_undefined[j], j); 1189 } 1190 /* 1191 * Per POSIX, for undefined characters, we 1192 * also have to add a last item, which is the 1193 * character code. 1194 */ 1195 chars[i].pri[NUM_WT] = i; 1196 } 1197 } 1198 1199 /* 1200 * Substitution tables 1201 */ 1202 for (i = 0; i < NUM_WT; i++) { 1203 collate_subst_t *st = NULL; 1204 subst_t *temp; 1205 RB_COUNT(temp, substs, &substs[i], n); 1206 collinfo.subst_count[i] = n; 1207 if ((st = calloc(n, sizeof(collate_subst_t))) == NULL) { 1208 fprintf(stderr, "out of memory"); 1209 return; 1210 } 1211 n = 0; 1212 RB_FOREACH(sb, substs, &substs[i]) { 1213 if ((st[n].key = resolve_pri(sb->key)) < 0) { 1214 /* by definition these resolve! */ 1215 INTERR; 1216 } 1217 if (st[n].key != (n | COLLATE_SUBST_PRIORITY)) { 1218 INTERR; 1219 } 1220 for (j = 0; sb->ref[j]; j++) { 1221 st[n].pri[j] = get_weight(sb->ref[j], i); 1222 } 1223 n++; 1224 } 1225 if (n != collinfo.subst_count[i]) 1226 INTERR; 1227 subst[i] = st; 1228 } 1229 1230 1231 /* 1232 * Chains, i.e. collating elements 1233 */ 1234 RB_NUMNODES(collelem_t, elem_by_expand, &elem_by_expand, 1235 collinfo.chain_count); 1236 chain = calloc(collinfo.chain_count, sizeof(collate_chain_t)); 1237 if (chain == NULL) { 1238 fprintf(stderr, "out of memory"); 1239 return; 1240 } 1241 n = 0; 1242 RB_FOREACH(ce, elem_by_expand, &elem_by_expand) { 1243 (void) wsncpy(chain[n].str, ce->expand, COLLATE_STR_LEN); 1244 for (i = 0; i < NUM_WT; i++) { 1245 chain[n].pri[i] = get_weight(ce->ref[i], i); 1246 } 1247 n++; 1248 } 1249 if (n != collinfo.chain_count) 1250 INTERR; 1251 1252 /* 1253 * Large (> UCHAR_MAX) character priorities 1254 */ 1255 RB_NUMNODES(collchar_t, collchars, &collchars, n); 1256 large = calloc(n, sizeof(collate_large_t)); 1257 if (large == NULL) { 1258 fprintf(stderr, "out of memory"); 1259 return; 1260 } 1261 1262 i = 0; 1263 RB_FOREACH(cc, collchars, &collchars) { 1264 int undef = 0; 1265 /* we already gathered those */ 1266 if (cc->wc <= UCHAR_MAX) 1267 continue; 1268 for (j = 0; j < NUM_WT; j++) { 1269 if ((pri = get_weight(cc->ref[j], j)) < 0) { 1270 undef = 1; 1271 } 1272 if (undef && (pri >= 0)) { 1273 /* if undefined, then all priorities are */ 1274 INTERR; 1275 } else { 1276 large[i].pri.pri[j] = pri; 1277 } 1278 } 1279 if (!undef) { 1280 large[i].val = cc->wc; 1281 collinfo.large_count = i++; 1282 } 1283 } 1284 1285 if ((f = open_category()) == NULL) { 1286 return; 1287 } 1288 1289 /* Time to write the entire data set out */ 1290 1291 if ((wr_category(vers, COLLATE_STR_LEN, f) < 0) || 1292 (wr_category(&collinfo, sizeof (collinfo), f) < 0) || 1293 (wr_category(&chars, sizeof (chars), f) < 0)) { 1294 return; 1295 } 1296 1297 for (i = 0; i < NUM_WT; i++) { 1298 sz = sizeof (collate_subst_t) * collinfo.subst_count[i]; 1299 if (wr_category(subst[i], sz, f) < 0) { 1300 return; 1301 } 1302 } 1303 sz = sizeof (collate_chain_t) * collinfo.chain_count; 1304 if (wr_category(chain, sz, f) < 0) { 1305 return; 1306 } 1307 sz = sizeof (collate_large_t) * collinfo.large_count; 1308 if (wr_category(large, sz, f) < 0) { 1309 return; 1310 } 1311 1312 close_category(f); 1313 } 1314