xref: /freebsd/usr.bin/find/operator.c (revision e043f37205ffbde5627ff299ad25cd532f2956f0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Cimarron D. Taylor of the University of California, Berkeley.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 
36 #include <sys/cdefs.h>
37 #include <sys/types.h>
38 
39 #include <err.h>
40 #include <fts.h>
41 #include <stdio.h>
42 #include <time.h>
43 
44 #include "find.h"
45 
46 static PLAN *yanknode(PLAN **);
47 static PLAN *yankexpr(PLAN **);
48 
49 /*
50  * yanknode --
51  *	destructively removes the top from the plan
52  */
53 static PLAN *
54 yanknode(PLAN **planp)
55 {
56 	PLAN *node;		/* top node removed from the plan */
57 
58 	if ((node = (*planp)) == NULL)
59 		return (NULL);
60 	(*planp) = (*planp)->next;
61 	node->next = NULL;
62 	return (node);
63 }
64 
65 /*
66  * yankexpr --
67  *	Removes one expression from the plan.  This is used mainly by
68  *	paren_squish.  In comments below, an expression is either a
69  *	simple node or a f_expr node containing a list of simple nodes.
70  */
71 static PLAN *
72 yankexpr(PLAN **planp)
73 {
74 	PLAN *next;		/* temp node holding subexpression results */
75 	PLAN *node;		/* pointer to returned node or expression */
76 	PLAN *tail;		/* pointer to tail of subplan */
77 	PLAN *subplan;		/* pointer to head of ( ) expression */
78 
79 	/* first pull the top node from the plan */
80 	if ((node = yanknode(planp)) == NULL)
81 		return (NULL);
82 
83 	/*
84 	 * If the node is an '(' then we recursively slurp up expressions
85 	 * until we find its associated ')'.  If it's a closing paren we
86 	 * just return it and unwind our recursion; all other nodes are
87 	 * complete expressions, so just return them.
88 	 */
89 	if (node->execute == f_openparen)
90 		for (tail = subplan = NULL;;) {
91 			if ((next = yankexpr(planp)) == NULL)
92 				errx(1, "(: missing closing ')'");
93 			/*
94 			 * If we find a closing ')' we store the collected
95 			 * subplan in our '(' node and convert the node to
96 			 * a f_expr.  The ')' we found is ignored.  Otherwise,
97 			 * we just continue to add whatever we get to our
98 			 * subplan.
99 			 */
100 			if (next->execute == f_closeparen) {
101 				if (subplan == NULL)
102 					errx(1, "(): empty inner expression");
103 				node->p_data[0] = subplan;
104 				node->execute = f_expr;
105 				break;
106 			} else {
107 				if (subplan == NULL)
108 					tail = subplan = next;
109 				else {
110 					tail->next = next;
111 					tail = next;
112 				}
113 				tail->next = NULL;
114 			}
115 		}
116 	return (node);
117 }
118 
119 /*
120  * paren_squish --
121  *	replaces "parenthesized" plans in our search plan with "expr" nodes.
122  */
123 PLAN *
124 paren_squish(PLAN *plan)
125 {
126 	PLAN *expr;		/* pointer to next expression */
127 	PLAN *tail;		/* pointer to tail of result plan */
128 	PLAN *result;		/* pointer to head of result plan */
129 
130 	result = tail = NULL;
131 
132 	/*
133 	 * the basic idea is to have yankexpr do all our work and just
134 	 * collect its results together.
135 	 */
136 	while ((expr = yankexpr(&plan)) != NULL) {
137 		/*
138 		 * if we find an unclaimed ')' it means there is a missing
139 		 * '(' someplace.
140 		 */
141 		if (expr->execute == f_closeparen)
142 			errx(1, "): no beginning '('");
143 
144 		/* add the expression to our result plan */
145 		if (result == NULL)
146 			tail = result = expr;
147 		else {
148 			tail->next = expr;
149 			tail = expr;
150 		}
151 		tail->next = NULL;
152 	}
153 	return (result);
154 }
155 
156 /*
157  * not_squish --
158  *	compresses "!" expressions in our search plan.
159  */
160 PLAN *
161 not_squish(PLAN *plan)
162 {
163 	PLAN *next;		/* next node being processed */
164 	PLAN *node;		/* temporary node used in f_not processing */
165 	PLAN *tail;		/* pointer to tail of result plan */
166 	PLAN *result;		/* pointer to head of result plan */
167 
168 	tail = result = NULL;
169 
170 	while ((next = yanknode(&plan))) {
171 		/*
172 		 * if we encounter a ( expression ) then look for nots in
173 		 * the expr subplan.
174 		 */
175 		if (next->execute == f_expr)
176 			next->p_data[0] = not_squish(next->p_data[0]);
177 
178 		/*
179 		 * if we encounter a not, then snag the next node and place
180 		 * it in the not's subplan.  As an optimization we compress
181 		 * several not's to zero or one not.
182 		 */
183 		if (next->execute == f_not) {
184 			int notlevel = 1;
185 
186 			node = yanknode(&plan);
187 			while (node != NULL && node->execute == f_not) {
188 				++notlevel;
189 				node = yanknode(&plan);
190 			}
191 			if (node == NULL)
192 				errx(1, "!: no following expression");
193 			if (node->execute == f_or)
194 				errx(1, "!: nothing between ! and -o");
195 			/*
196 			 * If we encounter ! ( expr ) then look for nots in
197 			 * the expr subplan.
198 			 */
199 			if (node->execute == f_expr)
200 				node->p_data[0] = not_squish(node->p_data[0]);
201 			if (notlevel % 2 != 1)
202 				next = node;
203 			else
204 				next->p_data[0] = node;
205 		}
206 
207 		/* add the node to our result plan */
208 		if (result == NULL)
209 			tail = result = next;
210 		else {
211 			tail->next = next;
212 			tail = next;
213 		}
214 		tail->next = NULL;
215 	}
216 	return (result);
217 }
218 
219 /*
220  * or_squish --
221  *	compresses -o expressions in our search plan.
222  */
223 PLAN *
224 or_squish(PLAN *plan)
225 {
226 	PLAN *next;		/* next node being processed */
227 	PLAN *tail;		/* pointer to tail of result plan */
228 	PLAN *result;		/* pointer to head of result plan */
229 
230 	tail = result = next = NULL;
231 
232 	while ((next = yanknode(&plan)) != NULL) {
233 		/*
234 		 * if we encounter a ( expression ) then look for or's in
235 		 * the expr subplan.
236 		 */
237 		if (next->execute == f_expr)
238 			next->p_data[0] = or_squish(next->p_data[0]);
239 
240 		/* if we encounter a not then look for or's in the subplan */
241 		if (next->execute == f_not)
242 			next->p_data[0] = or_squish(next->p_data[0]);
243 
244 		/*
245 		 * if we encounter an or, then place our collected plan in the
246 		 * or's first subplan and then recursively collect the
247 		 * remaining stuff into the second subplan and return the or.
248 		 */
249 		if (next->execute == f_or) {
250 			if (result == NULL)
251 				errx(1, "-o: no expression before -o");
252 			next->p_data[0] = result;
253 			next->p_data[1] = or_squish(plan);
254 			if (next->p_data[1] == NULL)
255 				errx(1, "-o: no expression after -o");
256 			return (next);
257 		}
258 
259 		/* add the node to our result plan */
260 		if (result == NULL)
261 			tail = result = next;
262 		else {
263 			tail->next = next;
264 			tail = next;
265 		}
266 		tail->next = NULL;
267 	}
268 	return (result);
269 }
270