xref: /freebsd/usr.bin/find/operator.c (revision 069ac18495ad8fde2748bc94b0f80a50250bb01d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Cimarron D. Taylor of the University of California, Berkeley.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/types.h>
36 
37 #include <err.h>
38 #include <fts.h>
39 #include <stdio.h>
40 #include <time.h>
41 
42 #include "find.h"
43 
44 static PLAN *yanknode(PLAN **);
45 static PLAN *yankexpr(PLAN **);
46 
47 /*
48  * yanknode --
49  *	destructively removes the top from the plan
50  */
51 static PLAN *
52 yanknode(PLAN **planp)
53 {
54 	PLAN *node;		/* top node removed from the plan */
55 
56 	if ((node = (*planp)) == NULL)
57 		return (NULL);
58 	(*planp) = (*planp)->next;
59 	node->next = NULL;
60 	return (node);
61 }
62 
63 /*
64  * yankexpr --
65  *	Removes one expression from the plan.  This is used mainly by
66  *	paren_squish.  In comments below, an expression is either a
67  *	simple node or a f_expr node containing a list of simple nodes.
68  */
69 static PLAN *
70 yankexpr(PLAN **planp)
71 {
72 	PLAN *next;		/* temp node holding subexpression results */
73 	PLAN *node;		/* pointer to returned node or expression */
74 	PLAN *tail;		/* pointer to tail of subplan */
75 	PLAN *subplan;		/* pointer to head of ( ) expression */
76 
77 	/* first pull the top node from the plan */
78 	if ((node = yanknode(planp)) == NULL)
79 		return (NULL);
80 
81 	/*
82 	 * If the node is an '(' then we recursively slurp up expressions
83 	 * until we find its associated ')'.  If it's a closing paren we
84 	 * just return it and unwind our recursion; all other nodes are
85 	 * complete expressions, so just return them.
86 	 */
87 	if (node->execute == f_openparen)
88 		for (tail = subplan = NULL;;) {
89 			if ((next = yankexpr(planp)) == NULL)
90 				errx(1, "(: missing closing ')'");
91 			/*
92 			 * If we find a closing ')' we store the collected
93 			 * subplan in our '(' node and convert the node to
94 			 * a f_expr.  The ')' we found is ignored.  Otherwise,
95 			 * we just continue to add whatever we get to our
96 			 * subplan.
97 			 */
98 			if (next->execute == f_closeparen) {
99 				if (subplan == NULL)
100 					errx(1, "(): empty inner expression");
101 				node->p_data[0] = subplan;
102 				node->execute = f_expr;
103 				break;
104 			} else {
105 				if (subplan == NULL)
106 					tail = subplan = next;
107 				else {
108 					tail->next = next;
109 					tail = next;
110 				}
111 				tail->next = NULL;
112 			}
113 		}
114 	return (node);
115 }
116 
117 /*
118  * paren_squish --
119  *	replaces "parenthesized" plans in our search plan with "expr" nodes.
120  */
121 PLAN *
122 paren_squish(PLAN *plan)
123 {
124 	PLAN *expr;		/* pointer to next expression */
125 	PLAN *tail;		/* pointer to tail of result plan */
126 	PLAN *result;		/* pointer to head of result plan */
127 
128 	result = tail = NULL;
129 
130 	/*
131 	 * the basic idea is to have yankexpr do all our work and just
132 	 * collect its results together.
133 	 */
134 	while ((expr = yankexpr(&plan)) != NULL) {
135 		/*
136 		 * if we find an unclaimed ')' it means there is a missing
137 		 * '(' someplace.
138 		 */
139 		if (expr->execute == f_closeparen)
140 			errx(1, "): no beginning '('");
141 
142 		/* add the expression to our result plan */
143 		if (result == NULL)
144 			tail = result = expr;
145 		else {
146 			tail->next = expr;
147 			tail = expr;
148 		}
149 		tail->next = NULL;
150 	}
151 	return (result);
152 }
153 
154 /*
155  * not_squish --
156  *	compresses "!" expressions in our search plan.
157  */
158 PLAN *
159 not_squish(PLAN *plan)
160 {
161 	PLAN *next;		/* next node being processed */
162 	PLAN *node;		/* temporary node used in f_not processing */
163 	PLAN *tail;		/* pointer to tail of result plan */
164 	PLAN *result;		/* pointer to head of result plan */
165 
166 	tail = result = NULL;
167 
168 	while ((next = yanknode(&plan))) {
169 		/*
170 		 * if we encounter a ( expression ) then look for nots in
171 		 * the expr subplan.
172 		 */
173 		if (next->execute == f_expr)
174 			next->p_data[0] = not_squish(next->p_data[0]);
175 
176 		/*
177 		 * if we encounter a not, then snag the next node and place
178 		 * it in the not's subplan.  As an optimization we compress
179 		 * several not's to zero or one not.
180 		 */
181 		if (next->execute == f_not) {
182 			int notlevel = 1;
183 
184 			node = yanknode(&plan);
185 			while (node != NULL && node->execute == f_not) {
186 				++notlevel;
187 				node = yanknode(&plan);
188 			}
189 			if (node == NULL)
190 				errx(1, "!: no following expression");
191 			if (node->execute == f_or)
192 				errx(1, "!: nothing between ! and -o");
193 			/*
194 			 * If we encounter ! ( expr ) then look for nots in
195 			 * the expr subplan.
196 			 */
197 			if (node->execute == f_expr)
198 				node->p_data[0] = not_squish(node->p_data[0]);
199 			if (notlevel % 2 != 1)
200 				next = node;
201 			else
202 				next->p_data[0] = node;
203 		}
204 
205 		/* add the node to our result plan */
206 		if (result == NULL)
207 			tail = result = next;
208 		else {
209 			tail->next = next;
210 			tail = next;
211 		}
212 		tail->next = NULL;
213 	}
214 	return (result);
215 }
216 
217 /*
218  * or_squish --
219  *	compresses -o expressions in our search plan.
220  */
221 PLAN *
222 or_squish(PLAN *plan)
223 {
224 	PLAN *next;		/* next node being processed */
225 	PLAN *tail;		/* pointer to tail of result plan */
226 	PLAN *result;		/* pointer to head of result plan */
227 
228 	tail = result = next = NULL;
229 
230 	while ((next = yanknode(&plan)) != NULL) {
231 		/*
232 		 * if we encounter a ( expression ) then look for or's in
233 		 * the expr subplan.
234 		 */
235 		if (next->execute == f_expr)
236 			next->p_data[0] = or_squish(next->p_data[0]);
237 
238 		/* if we encounter a not then look for or's in the subplan */
239 		if (next->execute == f_not)
240 			next->p_data[0] = or_squish(next->p_data[0]);
241 
242 		/*
243 		 * if we encounter an or, then place our collected plan in the
244 		 * or's first subplan and then recursively collect the
245 		 * remaining stuff into the second subplan and return the or.
246 		 */
247 		if (next->execute == f_or) {
248 			if (result == NULL)
249 				errx(1, "-o: no expression before -o");
250 			next->p_data[0] = result;
251 			next->p_data[1] = or_squish(plan);
252 			if (next->p_data[1] == NULL)
253 				errx(1, "-o: no expression after -o");
254 			return (next);
255 		}
256 
257 		/* add the node to our result plan */
258 		if (result == NULL)
259 			tail = result = next;
260 		else {
261 			tail->next = next;
262 			tail = next;
263 		}
264 		tail->next = NULL;
265 	}
266 	return (result);
267 }
268