xref: /freebsd/usr.bin/dtc/fdt.hh (revision 792bbaba989533a1fc93823df1720c8c4aaf0442)
1 /*-
2  * Copyright (c) 2013 David Chisnall
3  * All rights reserved.
4  *
5  * This software was developed by SRI International and the University of
6  * Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237)
7  * ("CTSRD"), as part of the DARPA CRASH research programme.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * $FreeBSD$
31  */
32 
33 #ifndef _FDT_HH_
34 #define _FDT_HH_
35 #include <unordered_map>
36 #include <unordered_set>
37 #include <memory>
38 #include <string>
39 #include <functional>
40 
41 #include "util.hh"
42 #include "input_buffer.hh"
43 
44 namespace dtc
45 {
46 
47 namespace dtb
48 {
49 struct output_writer;
50 class string_table;
51 }
52 
53 namespace fdt
54 {
55 class property;
56 class node;
57 /**
58  * Type for (owned) pointers to properties.
59  */
60 typedef std::shared_ptr<property> property_ptr;
61 /**
62  * Owning pointer to a node.
63  */
64 typedef std::unique_ptr<node> node_ptr;
65 /**
66  * Map from macros to property pointers.
67  */
68 typedef std::unordered_map<std::string, property_ptr> define_map;
69 /**
70  * Set of strings used for label names.
71  */
72 typedef std::unordered_set<std::string> string_set;
73 /**
74  * Properties may contain a number of different value, each with a different
75  * label.  This class encapsulates a single value.
76  */
77 struct property_value
78 {
79 	/**
80 	 * The label for this data.  This is usually empty.
81 	 */
82 	std::string label;
83 	/**
84 	 * If this value is a string, or something resolved from a string (a
85 	 * reference) then this contains the source string.
86 	 */
87 	std::string string_data;
88 	/**
89 	 * The data that should be written to the final output.
90 	 */
91 	byte_buffer byte_data;
92 	/**
93 	 * Enumeration describing the possible types of a value.  Note that
94 	 * property-coded arrays will appear simply as binary (or possibly
95 	 * string, if they happen to be nul-terminated and printable), and must
96 	 * be checked separately.
97 	 */
98 	enum value_type
99 	{
100 		/**
101 		 * This is a list of strings.  When read from source, string
102 		 * lists become one property value for each string, however
103 		 * when read from binary we have a single property value
104 		 * incorporating the entire text, with nul bytes separating the
105 		 * strings.
106 		 */
107 		STRING_LIST,
108 		/**
109 		 * This property contains a single string.
110 		 */
111 		STRING,
112 		/**
113 		 * This is a binary value.  Check the size of byte_data to
114 		 * determine how many bytes this contains.
115 		 */
116 		BINARY,
117 		/** This contains a short-form address that should be replaced
118 		 * by a fully-qualified version.  This will only appear when
119 		 * the input is a device tree source.  When parsed from a
120 		 * device tree blob, the cross reference will have already been
121 		 * resolved and the property value will be a string containing
122 		 * the full path of the target node.  */
123 		CROSS_REFERENCE,
124 		/**
125 		 * This is a phandle reference.  When parsed from source, the
126 		 * string_data will contain the node label for the target and,
127 		 * after cross references have been resolved, the binary data
128 		 * will contain a 32-bit integer that should match the phandle
129 		 * property of the target node.
130 		 */
131 		PHANDLE,
132 		/**
133 		 * An empty property value.  This will never appear on a real
134 		 * property value, it is used by checkers to indicate that no
135 		 * property values should exist for a property.
136 		 */
137 		EMPTY,
138 		/**
139 		 * The type of this property has not yet been determined.
140 		 */
141 		UNKNOWN
142 	};
143 	/**
144 	 * The type of this property.
145 	 */
146 	value_type type;
147 	/**
148 	 * Returns true if this value is a cross reference, false otherwise.
149 	 */
150 	inline bool is_cross_reference()
151 	{
152 		return is_type(CROSS_REFERENCE);
153 	}
154 	/**
155 	 * Returns true if this value is a phandle reference, false otherwise.
156 	 */
157 	inline bool is_phandle()
158 	{
159 		return is_type(PHANDLE);
160 	}
161 	/**
162 	 * Returns true if this value is a string, false otherwise.
163 	 */
164 	inline bool is_string()
165 	{
166 		return is_type(STRING);
167 	}
168 	/**
169 	 * Returns true if this value is a string list (a nul-separated
170 	 * sequence of strings), false otherwise.
171 	 */
172 	inline bool is_string_list()
173 	{
174 		return is_type(STRING_LIST);
175 	}
176 	/**
177 	 * Returns true if this value is binary, false otherwise.
178 	 */
179 	inline bool is_binary()
180 	{
181 		return is_type(BINARY);
182 	}
183 	/**
184 	 * Returns this property value as a 32-bit integer.  Returns 0 if this
185 	 * property value is not 32 bits long.  The bytes in the property value
186 	 * are assumed to be in big-endian format, but the return value is in
187 	 * the host native endian.
188 	 */
189 	uint32_t get_as_uint32();
190 	/**
191 	 * Default constructor, specifying the label of the value.
192 	 */
193 	property_value(std::string l=std::string()) : label(l), type(UNKNOWN) {}
194 	/**
195 	 * Writes the data for this value into an output buffer.
196 	 */
197 	void push_to_buffer(byte_buffer &buffer);
198 
199 	/**
200 	 * Writes the property value to the standard output.  This uses the
201 	 * following heuristics for deciding how to print the output:
202 	 *
203 	 * - If the value is nul-terminated and only contains printable
204 	 *   characters, it is written as a string.
205 	 * - If it is a multiple of 4 bytes long, then it is printed as cells.
206 	 * - Otherwise, it is printed as a byte buffer.
207 	 */
208 	void write_dts(FILE *file);
209 	/**
210 	 * Tries to merge adjacent property values, returns true if it succeeds and
211 	 * false otherwise.
212 	 */
213 	bool try_to_merge(property_value &other);
214 	private:
215 	/**
216 	 * Returns whether the value is of the specified type.  If the type of
217 	 * the value has not yet been determined, then this calculates it.
218 	 */
219 	inline bool is_type(value_type v)
220 	{
221 		if (type == UNKNOWN)
222 		{
223 			resolve_type();
224 		}
225 		return type == v;
226 	}
227 	/**
228 	 * Determines the type of the value based on its contents.
229 	 */
230 	void resolve_type();
231 	/**
232 	 * Writes the property value to the specified file as a quoted string.
233 	 * This is used when generating DTS.
234 	 */
235 	void write_as_string(FILE *file);
236 	/**
237 	 * Writes the property value to the specified file as a sequence of
238 	 * 32-bit big-endian cells.  This is used when generating DTS.
239 	 */
240 	void write_as_cells(FILE *file);
241 	/**
242 	 * Writes the property value to the specified file as a sequence of
243 	 * bytes.  This is used when generating DTS.
244 	 */
245 	void write_as_bytes(FILE *file);
246 };
247 
248 /**
249  * A value encapsulating a single property.  This contains a key, optionally a
250  * label, and optionally one or more values.
251  */
252 class property
253 {
254 	/**
255 	 * The name of this property.
256 	 */
257 	std::string key;
258 	/**
259 	 * Zero or more labels.
260 	 */
261 	string_set labels;
262 	/**
263 	 * The values in this property.
264 	 */
265 	std::vector<property_value> values;
266 	/**
267 	 * Value indicating that this is a valid property.  If a parse error
268 	 * occurs, then this value is false.
269 	 */
270 	bool valid;
271 	/**
272 	 * Parses a string property value, i.e. a value enclosed in double quotes.
273 	 */
274 	void parse_string(text_input_buffer &input);
275 	/**
276 	 * Parses one or more 32-bit values enclosed in angle brackets.
277 	 */
278 	void parse_cells(text_input_buffer &input, int cell_size);
279 	/**
280 	 * Parses an array of bytes, contained within square brackets.
281 	 */
282 	void parse_bytes(text_input_buffer &input);
283 	/**
284 	 * Parses a reference.  This is a node label preceded by an ampersand
285 	 * symbol, which should expand to the full path to that node.
286 	 *
287 	 * Note: The specification says that the target of such a reference is
288 	 * a node name, however dtc assumes that it is a label, and so we
289 	 * follow their interpretation for compatibility.
290 	 */
291 	void parse_reference(text_input_buffer &input);
292 	/**
293 	 * Parse a predefined macro definition for a property.
294 	 */
295 	void parse_define(text_input_buffer &input, define_map *defines);
296 	/**
297 	 * Constructs a new property from two input buffers, pointing to the
298 	 * struct and strings tables in the device tree blob, respectively.
299 	 * The structs input buffer is assumed to have just consumed the
300 	 * FDT_PROP token.
301 	 */
302 	property(input_buffer &structs, input_buffer &strings);
303 	/**
304 	 * Parses a new property from the input buffer.
305 	 */
306 	property(text_input_buffer &input,
307 	         std::string &&k,
308 	         string_set &&l,
309 	         bool terminated,
310 	         define_map *defines);
311 	public:
312 	/**
313 	 * Creates an empty property.
314 	 */
315 	property(std::string &&k, string_set &&l=string_set())
316 		: key(k), labels(l), valid(true) {}
317 	/**
318 	 * Copy constructor.
319 	 */
320 	property(property &p) : key(p.key), labels(p.labels), values(p.values),
321 		valid(p.valid) {}
322 	/**
323 	 * Factory method for constructing a new property.  Attempts to parse a
324 	 * property from the input, and returns it on success.  On any parse
325 	 * error, this will return 0.
326 	 */
327 	static property_ptr parse_dtb(input_buffer &structs,
328 	                              input_buffer &strings);
329 	/**
330 	 * Factory method for constructing a new property.  Attempts to parse a
331 	 * property from the input, and returns it on success.  On any parse
332 	 * error, this will return 0.
333 	 */
334 	static property_ptr parse(text_input_buffer &input,
335 	                          std::string &&key,
336 	                          string_set &&labels=string_set(),
337 	                          bool semicolonTerminated=true,
338 	                          define_map *defines=0);
339 	/**
340 	 * Iterator type used for accessing the values of a property.
341 	 */
342 	typedef std::vector<property_value>::iterator value_iterator;
343 	/**
344 	 * Returns an iterator referring to the first value in this property.
345 	 */
346 	inline value_iterator begin()
347 	{
348 		return values.begin();
349 	}
350 	/**
351 	 * Returns an iterator referring to the last value in this property.
352 	 */
353 	inline value_iterator end()
354 	{
355 		return values.end();
356 	}
357 	/**
358 	 * Adds a new value to an existing property.
359 	 */
360 	inline void add_value(property_value v)
361 	{
362 		values.push_back(v);
363 	}
364 	/**
365 	 * Returns the key for this property.
366 	 */
367 	inline std::string get_key()
368 	{
369 		return key;
370 	}
371 	/**
372 	 * Writes the property to the specified writer.  The property name is a
373 	 * reference into the strings table.
374 	 */
375 	void write(dtb::output_writer &writer, dtb::string_table &strings);
376 	/**
377 	 * Writes in DTS format to the specified file, at the given indent
378 	 * level.  This will begin the line with the number of tabs specified
379 	 * as the indent level and then write the property in the most
380 	 * applicable way that it can determine.
381 	 */
382 	void write_dts(FILE *file, int indent);
383 };
384 
385 /**
386  * Class encapsulating a device tree node.  Nodes may contain properties and
387  * other nodes.
388  */
389 class node
390 {
391 	public:
392 	/**
393 	 * The labels for this node, if any.  Node labels are used as the
394 	 * targets for cross references.
395 	 */
396 	std::unordered_set<std::string> labels;
397 	/**
398 	 * The name of the node.
399 	 */
400 	std::string name;
401 	/**
402 	 * The unit address of the node, which is optionally written after the
403 	 * name followed by an at symbol.
404 	 */
405 	std::string unit_address;
406 	/**
407 	 * The type for the property vector.
408 	 */
409 	typedef std::vector<property_ptr> property_vector;
410 	/**
411 	 * Iterator type for child nodes.
412 	 */
413 	typedef std::vector<node_ptr>::iterator child_iterator;
414 	private:
415 	/**
416 	 * Adaptor to use children in range-based for loops.
417 	 */
418 	struct child_range
419 	{
420 		child_range(node &nd) : n(nd) {}
421 		child_iterator begin() { return n.child_begin(); }
422 		child_iterator end() { return n.child_end(); }
423 		private:
424 		node &n;
425 	};
426 	/**
427 	 * Adaptor to use properties in range-based for loops.
428 	 */
429 	struct property_range
430 	{
431 		property_range(node &nd) : n(nd) {}
432 		property_vector::iterator begin() { return n.property_begin(); }
433 		property_vector::iterator end() { return n.property_end(); }
434 		private:
435 		node &n;
436 	};
437 	/**
438 	 * The properties contained within this node.
439 	 */
440 	property_vector props;
441 	/**
442 	 * The children of this node.
443 	 */
444 	std::vector<node_ptr> children;
445 	/**
446 	 * Children that should be deleted from this node when merging.
447 	 */
448 	std::unordered_set<std::string> deleted_children;
449 	/**
450 	 * Properties that should be deleted from this node when merging.
451 	 */
452 	std::unordered_set<std::string> deleted_props;
453 	/**
454 	 * A flag indicating whether this node is valid.  This is set to false
455 	 * if an error occurs during parsing.
456 	 */
457 	bool valid;
458 	/**
459 	 * Parses a name inside a node, writing the string passed as the last
460 	 * argument as an error if it fails.
461 	 */
462 	std::string parse_name(text_input_buffer &input,
463 	                       bool &is_property,
464 	                       const char *error);
465 	/**
466 	 * Constructs a new node from two input buffers, pointing to the struct
467 	 * and strings tables in the device tree blob, respectively.
468 	 */
469 	node(input_buffer &structs, input_buffer &strings);
470 	/**
471 	 * Parses a new node from the specified input buffer.  This is called
472 	 * when the input cursor is on the open brace for the start of the
473 	 * node.  The name, and optionally label and unit address, should have
474 	 * already been parsed.
475 	 */
476 	node(text_input_buffer &input,
477 	     std::string &&n,
478 	     std::unordered_set<std::string> &&l,
479 	     std::string &&a,
480 	     define_map*);
481 	/**
482 	 * Comparison function for properties, used when sorting the properties
483 	 * vector.  Orders the properties based on their names.
484 	 */
485 	static inline bool cmp_properties(property_ptr &p1, property_ptr &p2);
486 		/*
487 	{
488 		return p1->get_key() < p2->get_key();
489 	}
490 	*/
491 	/**
492 	 * Comparison function for nodes, used when sorting the children
493 	 * vector.  Orders the nodes based on their names or, if the names are
494 	 * the same, by the unit addresses.
495 	 */
496 	static inline bool cmp_children(node_ptr &c1, node_ptr &c2);
497 	public:
498 	/**
499 	 * Sorts the node's properties and children into alphabetical order and
500 	 * recursively sorts the children.
501 	 */
502 	void sort();
503 	/**
504 	 * Returns an iterator for the first child of this node.
505 	 */
506 	inline child_iterator child_begin()
507 	{
508 		return children.begin();
509 	}
510 	/**
511 	 * Returns an iterator after the last child of this node.
512 	 */
513 	inline child_iterator child_end()
514 	{
515 		return children.end();
516 	}
517 	/**
518 	 * Returns a range suitable for use in a range-based for loop describing
519 	 * the children of this node.
520 	 */
521 	inline child_range child_nodes()
522 	{
523 		return child_range(*this);
524 	}
525 	/**
526 	 * Accessor for the deleted children.
527 	 */
528 	inline const std::unordered_set<std::string> &deleted_child_nodes()
529 	{
530 		return deleted_children;
531 	}
532 	/**
533 	 * Accessor for the deleted properties
534 	 */
535 	inline const std::unordered_set<std::string> &deleted_properties()
536 	{
537 		return deleted_props;
538 	}
539 	/**
540 	 * Returns a range suitable for use in a range-based for loop describing
541 	 * the properties of this node.
542 	 */
543 	inline property_range properties()
544 	{
545 		return property_range(*this);
546 	}
547 	/**
548 	 * Returns an iterator after the last property of this node.
549 	 */
550 	inline property_vector::iterator property_begin()
551 	{
552 		return props.begin();
553 	}
554 	/**
555 	 * Returns an iterator for the first property of this node.
556 	 */
557 	inline property_vector::iterator property_end()
558 	{
559 		return props.end();
560 	}
561 	/**
562 	 * Factory method for constructing a new node.  Attempts to parse a
563 	 * node in DTS format from the input, and returns it on success.  On
564 	 * any parse error, this will return 0.  This should be called with the
565 	 * cursor on the open brace of the property, after the name and so on
566 	 * have been parsed.
567 	 */
568 	static node_ptr parse(text_input_buffer &input,
569 	                      std::string &&name,
570 	                      std::unordered_set<std::string> &&label=std::unordered_set<std::string>(),
571 	                      std::string &&address=std::string(),
572 	                      define_map *defines=0);
573 	/**
574 	 * Factory method for constructing a new node.  Attempts to parse a
575 	 * node in DTB format from the input, and returns it on success.  On
576 	 * any parse error, this will return 0.  This should be called with the
577 	 * cursor on the open brace of the property, after the name and so on
578 	 * have been parsed.
579 	 */
580 	static node_ptr parse_dtb(input_buffer &structs, input_buffer &strings);
581 	/**
582 	 * Returns a property corresponding to the specified key, or 0 if this
583 	 * node does not contain a property of that name.
584 	 */
585 	property_ptr get_property(const std::string &key);
586 	/**
587 	 * Adds a new property to this node.
588 	 */
589 	inline void add_property(property_ptr &p)
590 	{
591 		props.push_back(p);
592 	}
593 	/**
594 	 * Merges a node into this one.  Any properties present in both are
595 	 * overridden, any properties present in only one are preserved.
596 	 */
597 	void merge_node(node_ptr other);
598 	/**
599 	 * Write this node to the specified output.  Although nodes do not
600 	 * refer to a string table directly, their properties do.  The string
601 	 * table passed as the second argument is used for the names of
602 	 * properties within this node and its children.
603 	 */
604 	void write(dtb::output_writer &writer, dtb::string_table &strings);
605 	/**
606 	 * Writes the current node as DTS to the specified file.  The second
607 	 * parameter is the indent level.  This function will start every line
608 	 * with this number of tabs.
609 	 */
610 	void write_dts(FILE *file, int indent);
611 	/**
612 	 * Recursively visit this node and then its children.
613 	 */
614 	void visit(std::function<void(node&)>);
615 };
616 
617 /**
618  * Class encapsulating the entire parsed FDT.  This is the top-level class,
619  * which parses the entire DTS representation and write out the finished
620  * version.
621  */
622 class device_tree
623 {
624 	public:
625 	/**
626 	 * Type used for node paths.  A node path is sequence of names and unit
627 	 * addresses.
628 	 */
629 	typedef std::vector<std::pair<std::string,std::string> > node_path;
630 	/**
631 	 * Name that we should use for phandle nodes.
632 	 */
633 	enum phandle_format
634 	{
635 		/** linux,phandle */
636 		LINUX,
637 		/** phandle */
638 		EPAPR,
639 		/** Create both nodes. */
640 		BOTH
641 	};
642 	private:
643 	/**
644 	 * The format that we should use for writing phandles.
645 	 */
646 	phandle_format phandle_node_name;
647 	/**
648 	 * Flag indicating that this tree is valid.  This will be set to false
649 	 * on parse errors.
650 	 */
651 	bool valid;
652 	/**
653 	 * Type used for memory reservations.  A reservation is two 64-bit
654 	 * values indicating a base address and length in memory that the
655 	 * kernel should not use.  The high 32 bits are ignored on 32-bit
656 	 * platforms.
657 	 */
658 	typedef std::pair<uint64_t, uint64_t> reservation;
659 	/**
660 	 * The memory reserves table.
661 	 */
662 	std::vector<reservation> reservations;
663 	/**
664 	 * Root node.  All other nodes are children of this node.
665 	 */
666 	node_ptr root;
667 	/**
668 	 * Mapping from names to nodes.  Only unambiguous names are recorded,
669 	 * duplicate names are stored as (node*)-1.
670 	 */
671 	std::unordered_map<std::string, node*> node_names;
672 	/**
673 	 * A map from labels to node paths.  When resolving cross references,
674 	 * we look up referenced nodes in this and replace the cross reference
675 	 * with the full path to its target.
676 	 */
677 	std::unordered_map<std::string, node_path> node_paths;
678 	/**
679 	 * A collection of property values that are references to other nodes.
680 	 * These should be expanded to the full path of their targets.
681 	 */
682 	std::vector<property_value*> cross_references;
683 	/**
684 	 * A collection of property values that refer to phandles.  These will
685 	 * be replaced by the value of the phandle property in their
686 	 * destination.
687 	 */
688 	std::vector<property_value*> phandles;
689 	/**
690 	 * The names of nodes that target phandles.
691 	 */
692 	std::unordered_set<std::string> phandle_targets;
693 	/**
694 	 * A collection of input buffers that we are using.  These input
695 	 * buffers are the ones that own their memory, and so we must preserve
696 	 * them for the lifetime of the device tree.
697 	 */
698 	std::vector<std::unique_ptr<input_buffer>> buffers;
699 	/**
700 	 * A map of used phandle values to nodes.  All phandles must be unique,
701 	 * so we keep a set of ones that the user explicitly provides in the
702 	 * input to ensure that we don't reuse them.
703 	 *
704 	 * This is a map, rather than a set, because we also want to be able to
705 	 * find phandles that were provided by the user explicitly when we are
706 	 * doing checking.
707 	 */
708 	std::unordered_map<uint32_t, node*> used_phandles;
709 	/**
710 	 * Paths to search for include files.  This contains a set of
711 	 * nul-terminated strings, which are not owned by this class and so
712 	 * must be freed separately.
713 	 */
714 	std::vector<std::string> include_paths;
715 	/**
716 	 * Dictionary of predefined macros provided on the command line.
717 	 */
718 	define_map               defines;
719 	/**
720 	 * The default boot CPU, specified in the device tree header.
721 	 */
722 	uint32_t boot_cpu;
723 	/**
724 	 * The number of empty reserve map entries to generate in the blob.
725 	 */
726 	uint32_t spare_reserve_map_entries;
727 	/**
728 	 * The minimum size in bytes of the blob.
729 	 */
730 	uint32_t minimum_blob_size;
731 	/**
732 	 * The number of bytes of padding to add to the end of the blob.
733 	 */
734 	uint32_t blob_padding;
735 	/**
736 	 * Visit all of the nodes recursively, and if they have labels then add
737 	 * them to the node_paths and node_names vectors so that they can be
738 	 * used in resolving cross references.  Also collects phandle
739 	 * properties that have been explicitly added.
740 	 */
741 	void collect_names_recursive(node_ptr &n, node_path &path);
742 	/**
743 	 * Assign phandle properties to all nodes that have been referenced and
744 	 * require one.  This method will recursively visit the tree starting at
745 	 * the node that it is passed.
746 	 */
747 	void assign_phandles(node_ptr &n, uint32_t &next);
748 	/**
749 	 * Calls the recursive version of this method on every root node.
750 	 */
751 	void collect_names();
752 	/**
753 	 * Resolves all cross references.  Any properties that refer to another
754 	 * node must have their values replaced by either the node path or
755 	 * phandle value.
756 	 */
757 	void resolve_cross_references();
758 	/**
759 	 * Parses a dts file in the given buffer and adds the roots to the parsed
760 	 * set.  The `read_header` argument indicates whether the header has
761 	 * already been read.  Some dts files place the header in an include,
762 	 * rather than in the top-level file.
763 	 */
764 	void parse_file(text_input_buffer &input,
765 	                std::vector<node_ptr> &roots,
766 	                bool &read_header);
767 	/**
768 	 * Template function that writes a dtb blob using the specified writer.
769 	 * The writer defines the output format (assembly, blob).
770 	 */
771 	template<class writer>
772 	void write(int fd);
773 	public:
774 	/**
775 	 * Returns the node referenced by the property.  If this is a tree that
776 	 * is in source form, then we have a string that we can use to index
777 	 * the cross_references array and so we can just look that up.
778 	 */
779 	node *referenced_node(property_value &v);
780 	/**
781 	 * Writes this FDT as a DTB to the specified output.
782 	 */
783 	void write_binary(int fd);
784 	/**
785 	 * Writes this FDT as an assembly representation of the DTB to the
786 	 * specified output.  The result can then be assembled and linked into
787 	 * a program.
788 	 */
789 	void write_asm(int fd);
790 	/**
791 	 * Writes the tree in DTS (source) format.
792 	 */
793 	void write_dts(int fd);
794 	/**
795 	 * Default constructor.  Creates a valid, but empty FDT.
796 	 */
797 	device_tree() : phandle_node_name(EPAPR), valid(true),
798 		boot_cpu(0), spare_reserve_map_entries(0),
799 		minimum_blob_size(0), blob_padding(0) {}
800 	/**
801 	 * Constructs a device tree from the specified file name, referring to
802 	 * a file that contains a device tree blob.
803 	 */
804 	void parse_dtb(const std::string &fn, FILE *depfile);
805 	/**
806 	 * Constructs a device tree from the specified file name, referring to
807 	 * a file that contains device tree source.
808 	 */
809 	void parse_dts(const std::string &fn, FILE *depfile);
810 	/**
811 	 * Returns whether this tree is valid.
812 	 */
813 	inline bool is_valid()
814 	{
815 		return valid;
816 	}
817 	/**
818 	 * Sets the format for writing phandle properties.
819 	 */
820 	inline void set_phandle_format(phandle_format f)
821 	{
822 		phandle_node_name = f;
823 	}
824 	/**
825 	 * Returns a pointer to the root node of this tree.  No ownership
826 	 * transfer.
827 	 */
828 	inline const node_ptr &get_root() const
829 	{
830 		return root;
831 	}
832 	/**
833 	 * Sets the physical boot CPU.
834 	 */
835 	void set_boot_cpu(uint32_t cpu)
836 	{
837 		boot_cpu = cpu;
838 	}
839 	/**
840 	 * Sorts the tree.  Useful for debugging device trees.
841 	 */
842 	void sort()
843 	{
844 		root->sort();
845 	}
846 	/**
847 	 * Adds a path to search for include files.  The argument must be a
848 	 * nul-terminated string representing the path.  The device tree keeps
849 	 * a pointer to this string, but does not own it: the caller is
850 	 * responsible for freeing it if required.
851 	 */
852 	void add_include_path(const char *path)
853 	{
854 		std::string p(path);
855 		include_paths.push_back(std::move(p));
856 	}
857 	/**
858 	 * Sets the number of empty reserve map entries to add.
859 	 */
860 	void set_empty_reserve_map_entries(uint32_t e)
861 	{
862 		spare_reserve_map_entries = e;
863 	}
864 	/**
865 	 * Sets the minimum size, in bytes, of the blob.
866 	 */
867 	void set_blob_minimum_size(uint32_t s)
868 	{
869 		minimum_blob_size = s;
870 	}
871 	/**
872 	 * Sets the amount of padding to add to the blob.
873 	 */
874 	void set_blob_padding(uint32_t p)
875 	{
876 		blob_padding = p;
877 	}
878 	/**
879 	 * Parses a predefined macro value.
880 	 */
881 	bool parse_define(const char *def);
882 };
883 
884 } // namespace fdt
885 
886 } // namespace dtc
887 
888 #endif // !_FDT_HH_
889