xref: /freebsd/usr.bin/dtc/fdt.hh (revision 036d2e814bf0f5d88ffb4b24c159320894541757)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2013 David Chisnall
5  * All rights reserved.
6  *
7  * This software was developed by SRI International and the University of
8  * Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237)
9  * ("CTSRD"), as part of the DARPA CRASH research programme.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 #ifndef _FDT_HH_
36 #define _FDT_HH_
37 #include <algorithm>
38 #include <unordered_map>
39 #include <unordered_set>
40 #include <memory>
41 #include <string>
42 #include <functional>
43 
44 #include "util.hh"
45 #include "input_buffer.hh"
46 
47 namespace dtc
48 {
49 
50 namespace dtb
51 {
52 struct output_writer;
53 class string_table;
54 }
55 
56 namespace fdt
57 {
58 class property;
59 class node;
60 class device_tree;
61 /**
62  * Type for (owned) pointers to properties.
63  */
64 typedef std::shared_ptr<property> property_ptr;
65 /**
66  * Owning pointer to a node.
67  */
68 typedef std::unique_ptr<node> node_ptr;
69 /**
70  * Map from macros to property pointers.
71  */
72 typedef std::unordered_map<std::string, property_ptr> define_map;
73 /**
74  * Set of strings used for label names.
75  */
76 typedef std::unordered_set<std::string> string_set;
77 /**
78  * Properties may contain a number of different value, each with a different
79  * label.  This class encapsulates a single value.
80  */
81 struct property_value
82 {
83 	/**
84 	 * The label for this data.  This is usually empty.
85 	 */
86 	std::string label;
87 	/**
88 	 * If this value is a string, or something resolved from a string (a
89 	 * reference) then this contains the source string.
90 	 */
91 	std::string string_data;
92 	/**
93 	 * The data that should be written to the final output.
94 	 */
95 	byte_buffer byte_data;
96 	/**
97 	 * Enumeration describing the possible types of a value.  Note that
98 	 * property-coded arrays will appear simply as binary (or possibly
99 	 * string, if they happen to be nul-terminated and printable), and must
100 	 * be checked separately.
101 	 */
102 	enum value_type
103 	{
104 		/**
105 		 * This is a list of strings.  When read from source, string
106 		 * lists become one property value for each string, however
107 		 * when read from binary we have a single property value
108 		 * incorporating the entire text, with nul bytes separating the
109 		 * strings.
110 		 */
111 		STRING_LIST,
112 		/**
113 		 * This property contains a single string.
114 		 */
115 		STRING,
116 		/**
117 		 * This is a binary value.  Check the size of byte_data to
118 		 * determine how many bytes this contains.
119 		 */
120 		BINARY,
121 		/** This contains a short-form address that should be replaced
122 		 * by a fully-qualified version.  This will only appear when
123 		 * the input is a device tree source.  When parsed from a
124 		 * device tree blob, the cross reference will have already been
125 		 * resolved and the property value will be a string containing
126 		 * the full path of the target node.  */
127 		CROSS_REFERENCE,
128 		/**
129 		 * This is a phandle reference.  When parsed from source, the
130 		 * string_data will contain the node label for the target and,
131 		 * after cross references have been resolved, the binary data
132 		 * will contain a 32-bit integer that should match the phandle
133 		 * property of the target node.
134 		 */
135 		PHANDLE,
136 		/**
137 		 * An empty property value.  This will never appear on a real
138 		 * property value, it is used by checkers to indicate that no
139 		 * property values should exist for a property.
140 		 */
141 		EMPTY,
142 		/**
143 		 * The type of this property has not yet been determined.
144 		 */
145 		UNKNOWN
146 	};
147 	/**
148 	 * The type of this property.
149 	 */
150 	value_type type;
151 	/**
152 	 * Returns true if this value is a cross reference, false otherwise.
153 	 */
154 	inline bool is_cross_reference()
155 	{
156 		return is_type(CROSS_REFERENCE);
157 	}
158 	/**
159 	 * Returns true if this value is a phandle reference, false otherwise.
160 	 */
161 	inline bool is_phandle()
162 	{
163 		return is_type(PHANDLE);
164 	}
165 	/**
166 	 * Returns true if this value is a string, false otherwise.
167 	 */
168 	inline bool is_string()
169 	{
170 		return is_type(STRING);
171 	}
172 	/**
173 	 * Returns true if this value is a string list (a nul-separated
174 	 * sequence of strings), false otherwise.
175 	 */
176 	inline bool is_string_list()
177 	{
178 		return is_type(STRING_LIST);
179 	}
180 	/**
181 	 * Returns true if this value is binary, false otherwise.
182 	 */
183 	inline bool is_binary()
184 	{
185 		return is_type(BINARY);
186 	}
187 	/**
188 	 * Returns this property value as a 32-bit integer.  Returns 0 if this
189 	 * property value is not 32 bits long.  The bytes in the property value
190 	 * are assumed to be in big-endian format, but the return value is in
191 	 * the host native endian.
192 	 */
193 	uint32_t get_as_uint32();
194 	/**
195 	 * Default constructor, specifying the label of the value.
196 	 */
197 	property_value(std::string l=std::string()) : label(l), type(UNKNOWN) {}
198 	/**
199 	 * Writes the data for this value into an output buffer.
200 	 */
201 	void push_to_buffer(byte_buffer &buffer);
202 
203 	/**
204 	 * Writes the property value to the standard output.  This uses the
205 	 * following heuristics for deciding how to print the output:
206 	 *
207 	 * - If the value is nul-terminated and only contains printable
208 	 *   characters, it is written as a string.
209 	 * - If it is a multiple of 4 bytes long, then it is printed as cells.
210 	 * - Otherwise, it is printed as a byte buffer.
211 	 */
212 	void write_dts(FILE *file);
213 	/**
214 	 * Tries to merge adjacent property values, returns true if it succeeds and
215 	 * false otherwise.
216 	 */
217 	bool try_to_merge(property_value &other);
218 	/**
219 	 * Returns the size (in bytes) of this property value.
220 	 */
221 	size_t size();
222 	private:
223 	/**
224 	 * Returns whether the value is of the specified type.  If the type of
225 	 * the value has not yet been determined, then this calculates it.
226 	 */
227 	inline bool is_type(value_type v)
228 	{
229 		if (type == UNKNOWN)
230 		{
231 			resolve_type();
232 		}
233 		return type == v;
234 	}
235 	/**
236 	 * Determines the type of the value based on its contents.
237 	 */
238 	void resolve_type();
239 	/**
240 	 * Writes the property value to the specified file as a quoted string.
241 	 * This is used when generating DTS.
242 	 */
243 	void write_as_string(FILE *file);
244 	/**
245 	 * Writes the property value to the specified file as a sequence of
246 	 * 32-bit big-endian cells.  This is used when generating DTS.
247 	 */
248 	void write_as_cells(FILE *file);
249 	/**
250 	 * Writes the property value to the specified file as a sequence of
251 	 * bytes.  This is used when generating DTS.
252 	 */
253 	void write_as_bytes(FILE *file);
254 };
255 
256 /**
257  * A value encapsulating a single property.  This contains a key, optionally a
258  * label, and optionally one or more values.
259  */
260 class property
261 {
262 	/**
263 	 * The name of this property.
264 	 */
265 	std::string key;
266 	/**
267 	 * Zero or more labels.
268 	 */
269 	string_set labels;
270 	/**
271 	 * The values in this property.
272 	 */
273 	std::vector<property_value> values;
274 	/**
275 	 * Value indicating that this is a valid property.  If a parse error
276 	 * occurs, then this value is false.
277 	 */
278 	bool valid;
279 	/**
280 	 * Parses a string property value, i.e. a value enclosed in double quotes.
281 	 */
282 	void parse_string(text_input_buffer &input);
283 	/**
284 	 * Parses one or more 32-bit values enclosed in angle brackets.
285 	 */
286 	void parse_cells(text_input_buffer &input, int cell_size);
287 	/**
288 	 * Parses an array of bytes, contained within square brackets.
289 	 */
290 	void parse_bytes(text_input_buffer &input);
291 	/**
292 	 * Parses a reference.  This is a node label preceded by an ampersand
293 	 * symbol, which should expand to the full path to that node.
294 	 *
295 	 * Note: The specification says that the target of such a reference is
296 	 * a node name, however dtc assumes that it is a label, and so we
297 	 * follow their interpretation for compatibility.
298 	 */
299 	void parse_reference(text_input_buffer &input);
300 	/**
301 	 * Parse a predefined macro definition for a property.
302 	 */
303 	void parse_define(text_input_buffer &input, define_map *defines);
304 	/**
305 	 * Constructs a new property from two input buffers, pointing to the
306 	 * struct and strings tables in the device tree blob, respectively.
307 	 * The structs input buffer is assumed to have just consumed the
308 	 * FDT_PROP token.
309 	 */
310 	property(input_buffer &structs, input_buffer &strings);
311 	/**
312 	 * Parses a new property from the input buffer.
313 	 */
314 	property(text_input_buffer &input,
315 	         std::string &&k,
316 	         string_set &&l,
317 	         bool terminated,
318 	         define_map *defines);
319 	public:
320 	/**
321 	 * Creates an empty property.
322 	 */
323 	property(std::string &&k, string_set &&l=string_set())
324 		: key(k), labels(l), valid(true) {}
325 	/**
326 	 * Copy constructor.
327 	 */
328 	property(property &p) : key(p.key), labels(p.labels), values(p.values),
329 		valid(p.valid) {}
330 	/**
331 	 * Factory method for constructing a new property.  Attempts to parse a
332 	 * property from the input, and returns it on success.  On any parse
333 	 * error, this will return 0.
334 	 */
335 	static property_ptr parse_dtb(input_buffer &structs,
336 	                              input_buffer &strings);
337 	/**
338 	 * Factory method for constructing a new property.  Attempts to parse a
339 	 * property from the input, and returns it on success.  On any parse
340 	 * error, this will return 0.
341 	 */
342 	static property_ptr parse(text_input_buffer &input,
343 	                          std::string &&key,
344 	                          string_set &&labels=string_set(),
345 	                          bool semicolonTerminated=true,
346 	                          define_map *defines=0);
347 	/**
348 	 * Iterator type used for accessing the values of a property.
349 	 */
350 	typedef std::vector<property_value>::iterator value_iterator;
351 	/**
352 	 * Returns an iterator referring to the first value in this property.
353 	 */
354 	inline value_iterator begin()
355 	{
356 		return values.begin();
357 	}
358 	/**
359 	 * Returns an iterator referring to the last value in this property.
360 	 */
361 	inline value_iterator end()
362 	{
363 		return values.end();
364 	}
365 	/**
366 	 * Adds a new value to an existing property.
367 	 */
368 	inline void add_value(property_value v)
369 	{
370 		values.push_back(v);
371 	}
372 	/**
373 	 * Returns the key for this property.
374 	 */
375 	inline const std::string &get_key()
376 	{
377 		return key;
378 	}
379 	/**
380 	 * Writes the property to the specified writer.  The property name is a
381 	 * reference into the strings table.
382 	 */
383 	void write(dtb::output_writer &writer, dtb::string_table &strings);
384 	/**
385 	 * Writes in DTS format to the specified file, at the given indent
386 	 * level.  This will begin the line with the number of tabs specified
387 	 * as the indent level and then write the property in the most
388 	 * applicable way that it can determine.
389 	 */
390 	void write_dts(FILE *file, int indent);
391 	/**
392 	 * Returns the byte offset of the specified property value.
393 	 */
394 	size_t offset_of_value(property_value &val);
395 };
396 
397 /**
398  * Class encapsulating a device tree node.  Nodes may contain properties and
399  * other nodes.
400  */
401 class node
402 {
403 	public:
404 	/**
405 	 * The labels for this node, if any.  Node labels are used as the
406 	 * targets for cross references.
407 	 */
408 	std::unordered_set<std::string> labels;
409 	/**
410 	 * The name of the node.
411 	 */
412 	std::string name;
413 	/**
414 	 * The name of the node is a path reference.
415 	 */
416 	bool name_is_path_reference = false;
417 	/**
418 	 * The unit address of the node, which is optionally written after the
419 	 * name followed by an at symbol.
420 	 */
421 	std::string unit_address;
422 	/**
423 	 * A flag indicating that this node has been marked /omit-if-no-ref/ and
424 	 * will be omitted if it is not referenced, either directly or indirectly,
425 	 * by a node that is not similarly denoted.
426 	 */
427 	bool omit_if_no_ref = false;
428 	/**
429 	 * A flag indicating that this node has been referenced, either directly
430 	 * or indirectly, by a node that is not marked /omit-if-no-ref/.
431 	 */
432 	bool used = false;
433 	/**
434 	 * The type for the property vector.
435 	 */
436 	typedef std::vector<property_ptr> property_vector;
437 	/**
438 	 * Iterator type for child nodes.
439 	 */
440 	typedef std::vector<node_ptr>::iterator child_iterator;
441 	/**
442 	 * Recursion behavior to be observed for visiting
443 	 */
444 	enum visit_behavior
445 	{
446 		/**
447 		 * Recurse as normal through the rest of the tree.
448 		 */
449 		VISIT_RECURSE,
450 		/**
451 		 * Continue recursing through the device tree, but do not
452 		 * recurse through this branch of the tree any further.
453 		 */
454 		VISIT_CONTINUE,
455 		/**
456 		 * Immediately halt the visit.  No further nodes will be visited.
457 		 */
458 		VISIT_BREAK
459 	};
460 	private:
461 	/**
462 	 * Adaptor to use children in range-based for loops.
463 	 */
464 	struct child_range
465 	{
466 		child_range(node &nd) : n(nd) {}
467 		child_iterator begin() { return n.child_begin(); }
468 		child_iterator end() { return n.child_end(); }
469 		private:
470 		node &n;
471 	};
472 	/**
473 	 * Adaptor to use properties in range-based for loops.
474 	 */
475 	struct property_range
476 	{
477 		property_range(node &nd) : n(nd) {}
478 		property_vector::iterator begin() { return n.property_begin(); }
479 		property_vector::iterator end() { return n.property_end(); }
480 		private:
481 		node &n;
482 	};
483 	/**
484 	 * The properties contained within this node.
485 	 */
486 	property_vector props;
487 	/**
488 	 * The children of this node.
489 	 */
490 	std::vector<node_ptr> children;
491 	/**
492 	 * Children that should be deleted from this node when merging.
493 	 */
494 	std::unordered_set<std::string> deleted_children;
495 	/**
496 	 * Properties that should be deleted from this node when merging.
497 	 */
498 	std::unordered_set<std::string> deleted_props;
499 	/**
500 	 * A flag indicating whether this node is valid.  This is set to false
501 	 * if an error occurs during parsing.
502 	 */
503 	bool valid;
504 	/**
505 	 * Parses a name inside a node, writing the string passed as the last
506 	 * argument as an error if it fails.
507 	 */
508 	std::string parse_name(text_input_buffer &input,
509 	                       bool &is_property,
510 	                       const char *error);
511 	/**
512 	 * Constructs a new node from two input buffers, pointing to the struct
513 	 * and strings tables in the device tree blob, respectively.
514 	 */
515 	node(input_buffer &structs, input_buffer &strings);
516 	/**
517 	 * Parses a new node from the specified input buffer.  This is called
518 	 * when the input cursor is on the open brace for the start of the
519 	 * node.  The name, and optionally label and unit address, should have
520 	 * already been parsed.
521 	 */
522 	node(text_input_buffer &input,
523 	     device_tree &tree,
524 	     std::string &&n,
525 	     std::unordered_set<std::string> &&l,
526 	     std::string &&a,
527 	     define_map*);
528 	/**
529 	 * Creates a special node with the specified name and properties.
530 	 */
531 	node(const std::string &n, const std::vector<property_ptr> &p);
532 	/**
533 	 * Comparison function for properties, used when sorting the properties
534 	 * vector.  Orders the properties based on their names.
535 	 */
536 	static inline bool cmp_properties(property_ptr &p1, property_ptr &p2);
537 		/*
538 	{
539 		return p1->get_key() < p2->get_key();
540 	}
541 	*/
542 	/**
543 	 * Comparison function for nodes, used when sorting the children
544 	 * vector.  Orders the nodes based on their names or, if the names are
545 	 * the same, by the unit addresses.
546 	 */
547 	static inline bool cmp_children(node_ptr &c1, node_ptr &c2);
548 	public:
549 	/**
550 	 * Sorts the node's properties and children into alphabetical order and
551 	 * recursively sorts the children.
552 	 */
553 	void sort();
554 	/**
555 	 * Returns an iterator for the first child of this node.
556 	 */
557 	inline child_iterator child_begin()
558 	{
559 		return children.begin();
560 	}
561 	/**
562 	 * Returns an iterator after the last child of this node.
563 	 */
564 	inline child_iterator child_end()
565 	{
566 		return children.end();
567 	}
568 	/**
569 	 * Returns a range suitable for use in a range-based for loop describing
570 	 * the children of this node.
571 	 */
572 	inline child_range child_nodes()
573 	{
574 		return child_range(*this);
575 	}
576 	/**
577 	 * Accessor for the deleted children.
578 	 */
579 	inline const std::unordered_set<std::string> &deleted_child_nodes()
580 	{
581 		return deleted_children;
582 	}
583 	/**
584 	 * Accessor for the deleted properties
585 	 */
586 	inline const std::unordered_set<std::string> &deleted_properties()
587 	{
588 		return deleted_props;
589 	}
590 	/**
591 	 * Returns a range suitable for use in a range-based for loop describing
592 	 * the properties of this node.
593 	 */
594 	inline property_range properties()
595 	{
596 		return property_range(*this);
597 	}
598 	/**
599 	 * Returns an iterator after the last property of this node.
600 	 */
601 	inline property_vector::iterator property_begin()
602 	{
603 		return props.begin();
604 	}
605 	/**
606 	 * Returns an iterator for the first property of this node.
607 	 */
608 	inline property_vector::iterator property_end()
609 	{
610 		return props.end();
611 	}
612 	/**
613 	 * Factory method for constructing a new node.  Attempts to parse a
614 	 * node in DTS format from the input, and returns it on success.  On
615 	 * any parse error, this will return 0.  This should be called with the
616 	 * cursor on the open brace of the property, after the name and so on
617 	 * have been parsed.
618 	 */
619 	static node_ptr parse(text_input_buffer &input,
620 	                      device_tree &tree,
621 	                      std::string &&name,
622 	                      std::unordered_set<std::string> &&label=std::unordered_set<std::string>(),
623 	                      std::string &&address=std::string(),
624 	                      define_map *defines=0);
625 	/**
626 	 * Factory method for constructing a new node.  Attempts to parse a
627 	 * node in DTB format from the input, and returns it on success.  On
628 	 * any parse error, this will return 0.  This should be called with the
629 	 * cursor on the open brace of the property, after the name and so on
630 	 * have been parsed.
631 	 */
632 	static node_ptr parse_dtb(input_buffer &structs, input_buffer &strings);
633 	/**
634 	 * Construct a new special node from a name and set of properties.
635 	 */
636 	static node_ptr create_special_node(const std::string &name,
637 			const std::vector<property_ptr> &props);
638 	/**
639 	 * Returns a property corresponding to the specified key, or 0 if this
640 	 * node does not contain a property of that name.
641 	 */
642 	property_ptr get_property(const std::string &key);
643 	/**
644 	 * Adds a new property to this node.
645 	 */
646 	inline void add_property(property_ptr &p)
647 	{
648 		props.push_back(p);
649 	}
650 	/**
651 	 * Adds a new child to this node.
652 	 */
653 	inline void add_child(node_ptr &&n)
654 	{
655 		children.push_back(std::move(n));
656 	}
657 	/**
658 	 * Deletes any children from this node.
659 	 */
660 	inline void delete_children_if(bool (*predicate)(node_ptr &))
661 	{
662 		children.erase(std::remove_if(children.begin(), children.end(), predicate), children.end());
663 	}
664 	/**
665 	 * Merges a node into this one.  Any properties present in both are
666 	 * overridden, any properties present in only one are preserved.
667 	 */
668 	void merge_node(node_ptr &other);
669 	/**
670 	 * Write this node to the specified output.  Although nodes do not
671 	 * refer to a string table directly, their properties do.  The string
672 	 * table passed as the second argument is used for the names of
673 	 * properties within this node and its children.
674 	 */
675 	void write(dtb::output_writer &writer, dtb::string_table &strings);
676 	/**
677 	 * Writes the current node as DTS to the specified file.  The second
678 	 * parameter is the indent level.  This function will start every line
679 	 * with this number of tabs.
680 	 */
681 	void write_dts(FILE *file, int indent);
682 	/**
683 	 * Recursively visit this node and then its children based on the
684 	 * callable's return value.  The callable may return VISIT_BREAK
685 	 * immediately halt all recursion and end the visit, VISIT_CONTINUE to
686 	 * not recurse into the current node's children, or VISIT_RECURSE to recurse
687 	 * through children as expected.  parent will be passed to the callable.
688 	 */
689 	visit_behavior visit(std::function<visit_behavior(node&, node*)>, node *parent);
690 };
691 
692 /**
693  * Class encapsulating the entire parsed FDT.  This is the top-level class,
694  * which parses the entire DTS representation and write out the finished
695  * version.
696  */
697 class device_tree
698 {
699 	public:
700 	/**
701 	 * Type used for node paths.  A node path is sequence of names and unit
702 	 * addresses.
703 	 */
704 	class node_path : public std::vector<std::pair<std::string,std::string>>
705 	{
706 		public:
707 		/**
708 		 * Converts this to a string representation.
709 		 */
710 		std::string to_string() const;
711 	};
712 	/**
713 	 * Name that we should use for phandle nodes.
714 	 */
715 	enum phandle_format
716 	{
717 		/** linux,phandle */
718 		LINUX,
719 		/** phandle */
720 		EPAPR,
721 		/** Create both nodes. */
722 		BOTH
723 	};
724 	private:
725 	/**
726 	 * The format that we should use for writing phandles.
727 	 */
728 	phandle_format phandle_node_name = EPAPR;
729 	/**
730 	 * Flag indicating that this tree is valid.  This will be set to false
731 	 * on parse errors.
732 	 */
733 	bool valid = true;
734 	/**
735 	 * Flag indicating that this tree requires garbage collection.  This will be
736 	 * set to true if a node marked /omit-if-no-ref/ is encountered.
737 	 */
738 	bool garbage_collect = false;
739 	/**
740 	 * Type used for memory reservations.  A reservation is two 64-bit
741 	 * values indicating a base address and length in memory that the
742 	 * kernel should not use.  The high 32 bits are ignored on 32-bit
743 	 * platforms.
744 	 */
745 	typedef std::pair<uint64_t, uint64_t> reservation;
746 	/**
747 	 * The memory reserves table.
748 	 */
749 	std::vector<reservation> reservations;
750 	/**
751 	 * Root node.  All other nodes are children of this node.
752 	 */
753 	node_ptr root;
754 	/**
755 	 * Mapping from names to nodes.  Only unambiguous names are recorded,
756 	 * duplicate names are stored as (node*)-1.
757 	 */
758 	std::unordered_map<std::string, node*> node_names;
759 	/**
760 	 * A map from labels to node paths.  When resolving cross references,
761 	 * we look up referenced nodes in this and replace the cross reference
762 	 * with the full path to its target.
763 	 */
764 	std::unordered_map<std::string, node_path> node_paths;
765 	/**
766 	 * All of the elements in `node_paths` in the order that they were
767 	 * created.  This is used for emitting the `__symbols__` section, where
768 	 * we want to guarantee stable ordering.
769 	 */
770 	std::vector<std::pair<std::string, node_path>> ordered_node_paths;
771 	/**
772 	 * A collection of property values that are references to other nodes.
773 	 * These should be expanded to the full path of their targets.
774 	 */
775 	std::vector<property_value*> cross_references;
776 	/**
777 	 * The location of something requiring a fixup entry.
778 	 */
779 	struct fixup
780 	{
781 		/**
782 		 * The path to the node.
783 		 */
784 		node_path path;
785 		/**
786 		 * The property containing the reference.
787 		 */
788 		property_ptr prop;
789 		/**
790 		 * The property value that contains the reference.
791 		 */
792 		property_value &val;
793 	};
794 	/**
795 	 * A collection of property values that refer to phandles.  These will
796 	 * be replaced by the value of the phandle property in their
797 	 * destination.
798 	 */
799 	std::vector<fixup> fixups;
800 	/**
801 	 * The locations of all of the values that are supposed to become phandle
802 	 * references, but refer to things outside of this file.
803 	 */
804 	std::vector<std::reference_wrapper<fixup>> unresolved_fixups;
805 	/**
806 	 * The names of nodes that target phandles.
807 	 */
808 	std::unordered_set<std::string> phandle_targets;
809 	/**
810 	 * A collection of input buffers that we are using.  These input
811 	 * buffers are the ones that own their memory, and so we must preserve
812 	 * them for the lifetime of the device tree.
813 	 */
814 	std::vector<std::unique_ptr<input_buffer>> buffers;
815 	/**
816 	 * A map of used phandle values to nodes.  All phandles must be unique,
817 	 * so we keep a set of ones that the user explicitly provides in the
818 	 * input to ensure that we don't reuse them.
819 	 *
820 	 * This is a map, rather than a set, because we also want to be able to
821 	 * find phandles that were provided by the user explicitly when we are
822 	 * doing checking.
823 	 */
824 	std::unordered_map<uint32_t, node*> used_phandles;
825 	/**
826 	 * Paths to search for include files.  This contains a set of
827 	 * nul-terminated strings, which are not owned by this class and so
828 	 * must be freed separately.
829 	 */
830 	std::vector<std::string> include_paths;
831 	/**
832 	 * Dictionary of predefined macros provided on the command line.
833 	 */
834 	define_map               defines;
835 	/**
836 	 * The default boot CPU, specified in the device tree header.
837 	 */
838 	uint32_t boot_cpu = 0;
839 	/**
840 	 * The number of empty reserve map entries to generate in the blob.
841 	 */
842 	uint32_t spare_reserve_map_entries = 0;
843 	/**
844 	 * The minimum size in bytes of the blob.
845 	 */
846 	uint32_t minimum_blob_size = 0;
847 	/**
848 	 * The number of bytes of padding to add to the end of the blob.
849 	 */
850 	uint32_t blob_padding = 0;
851 	/**
852 	 * Is this tree a plugin?
853 	 */
854 	bool is_plugin = false;
855 	/**
856 	 * Visit all of the nodes recursively, and if they have labels then add
857 	 * them to the node_paths and node_names vectors so that they can be
858 	 * used in resolving cross references.  Also collects phandle
859 	 * properties that have been explicitly added.
860 	 */
861 	void collect_names_recursive(node_ptr &n, node_path &path);
862 	/**
863 	 * Assign a phandle property to a single node.  The next parameter
864 	 * holds the phandle to be assigned, and will be incremented upon
865 	 * assignment.
866 	 */
867 	property_ptr assign_phandle(node *n, uint32_t &next);
868 	/**
869 	 * Assign phandle properties to all nodes that have been referenced and
870 	 * require one.  This method will recursively visit the tree starting at
871 	 * the node that it is passed.
872 	 */
873 	void assign_phandles(node_ptr &n, uint32_t &next);
874 	/**
875 	 * Calls the recursive version of this method on every root node.
876 	 */
877 	void collect_names();
878 	/**
879 	 * Resolves all cross references.  Any properties that refer to another
880 	 * node must have their values replaced by either the node path or
881 	 * phandle value.  The phandle parameter holds the next phandle to be
882 	 * assigned, should the need arise.  It will be incremented upon each
883 	 * assignment of a phandle.  Garbage collection of unreferenced nodes
884 	 * marked for "delete if unreferenced" will also occur here.
885 	 */
886 	void resolve_cross_references(uint32_t &phandle);
887 	/**
888 	 * Garbage collects nodes that have been marked /omit-if-no-ref/ and do not
889 	 * have any references to them from nodes that are similarly marked.  This
890 	 * is a fairly expensive operation.  The return value indicates whether the
891 	 * tree has been dirtied as a result of this operation, so that the caller
892 	 * may take appropriate measures to bring the device tree into a consistent
893 	 * state as needed.
894 	 */
895 	bool garbage_collect_marked_nodes();
896 	/**
897 	 * Parses a dts file in the given buffer and adds the roots to the parsed
898 	 * set.  The `read_header` argument indicates whether the header has
899 	 * already been read.  Some dts files place the header in an include,
900 	 * rather than in the top-level file.
901 	 */
902 	void parse_file(text_input_buffer &input,
903 	                std::vector<node_ptr> &roots,
904 	                bool &read_header);
905 	/**
906 	 * Template function that writes a dtb blob using the specified writer.
907 	 * The writer defines the output format (assembly, blob).
908 	 */
909 	template<class writer>
910 	void write(int fd);
911 	public:
912 	/**
913 	 * Should we write the __symbols__ node (to allow overlays to be linked
914 	 * against this blob)?
915 	 */
916 	bool write_symbols = false;
917 	/**
918 	 * Returns the node referenced by the property.  If this is a tree that
919 	 * is in source form, then we have a string that we can use to index
920 	 * the cross_references array and so we can just look that up.
921 	 */
922 	node *referenced_node(property_value &v);
923 	/**
924 	 * Writes this FDT as a DTB to the specified output.
925 	 */
926 	void write_binary(int fd);
927 	/**
928 	 * Writes this FDT as an assembly representation of the DTB to the
929 	 * specified output.  The result can then be assembled and linked into
930 	 * a program.
931 	 */
932 	void write_asm(int fd);
933 	/**
934 	 * Writes the tree in DTS (source) format.
935 	 */
936 	void write_dts(int fd);
937 	/**
938 	 * Default constructor.  Creates a valid, but empty FDT.
939 	 */
940 	device_tree() {}
941 	/**
942 	 * Constructs a device tree from the specified file name, referring to
943 	 * a file that contains a device tree blob.
944 	 */
945 	void parse_dtb(const std::string &fn, FILE *depfile);
946 	/**
947 	 * Construct a fragment wrapper around node.  This will assume that node's
948 	 * name may be used as the target of the fragment, and the contents are to
949 	 * be wrapped in an __overlay__ node.  The fragment wrapper will be assigned
950 	 * fragnumas its fragment number, and fragment number will be incremented.
951 	 */
952 	node_ptr create_fragment_wrapper(node_ptr &node, int &fragnum);
953 	/**
954 	 * Generate a root node from the node passed in.  This is sensitive to
955 	 * whether we're in a plugin context or not, so that if we're in a plugin we
956 	 * can circumvent any errors that might normally arise from a non-/ root.
957 	 * fragnum will be assigned to any fragment wrapper generated as a result
958 	 * of the call, and fragnum will be incremented.
959 	 */
960 	node_ptr generate_root(node_ptr &node, int &fragnum);
961 	/**
962 	 * Reassign any fragment numbers from this new node, based on the given
963 	 * delta.
964 	 */
965 	void reassign_fragment_numbers(node_ptr &node, int &delta);
966 	/*
967 	 * Constructs a device tree from the specified file name, referring to
968 	 * a file that contains device tree source.
969 	 */
970 	void parse_dts(const std::string &fn, FILE *depfile);
971 	/**
972 	 * Returns whether this tree is valid.
973 	 */
974 	inline bool is_valid()
975 	{
976 		return valid;
977 	}
978 	/**
979 	 * Mark this tree as needing garbage collection, because an /omit-if-no-ref/
980 	 * node has been encountered.
981 	 */
982 	void set_needs_garbage_collection()
983 	{
984 		garbage_collect = true;
985 	}
986 	/**
987 	 * Sets the format for writing phandle properties.
988 	 */
989 	inline void set_phandle_format(phandle_format f)
990 	{
991 		phandle_node_name = f;
992 	}
993 	/**
994 	 * Returns a pointer to the root node of this tree.  No ownership
995 	 * transfer.
996 	 */
997 	inline const node_ptr &get_root() const
998 	{
999 		return root;
1000 	}
1001 	/**
1002 	 * Sets the physical boot CPU.
1003 	 */
1004 	void set_boot_cpu(uint32_t cpu)
1005 	{
1006 		boot_cpu = cpu;
1007 	}
1008 	/**
1009 	 * Sorts the tree.  Useful for debugging device trees.
1010 	 */
1011 	void sort()
1012 	{
1013 		if (root)
1014 		{
1015 			root->sort();
1016 		}
1017 	}
1018 	/**
1019 	 * Adds a path to search for include files.  The argument must be a
1020 	 * nul-terminated string representing the path.  The device tree keeps
1021 	 * a pointer to this string, but does not own it: the caller is
1022 	 * responsible for freeing it if required.
1023 	 */
1024 	void add_include_path(const char *path)
1025 	{
1026 		std::string p(path);
1027 		include_paths.push_back(std::move(p));
1028 	}
1029 	/**
1030 	 * Sets the number of empty reserve map entries to add.
1031 	 */
1032 	void set_empty_reserve_map_entries(uint32_t e)
1033 	{
1034 		spare_reserve_map_entries = e;
1035 	}
1036 	/**
1037 	 * Sets the minimum size, in bytes, of the blob.
1038 	 */
1039 	void set_blob_minimum_size(uint32_t s)
1040 	{
1041 		minimum_blob_size = s;
1042 	}
1043 	/**
1044 	 * Sets the amount of padding to add to the blob.
1045 	 */
1046 	void set_blob_padding(uint32_t p)
1047 	{
1048 		blob_padding = p;
1049 	}
1050 	/**
1051 	 * Parses a predefined macro value.
1052 	 */
1053 	bool parse_define(const char *def);
1054 };
1055 
1056 } // namespace fdt
1057 
1058 } // namespace dtc
1059 
1060 #endif // !_FDT_HH_
1061