xref: /freebsd/usr.bin/ctlstat/ctlstat.c (revision 076ad2f836d5f49dc1375f1677335a48fe0d4b82)
1 /*-
2  * Copyright (c) 2004, 2008, 2009 Silicon Graphics International Corp.
3  * Copyright (c) 2017 Alexander Motin <mav@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13  *    substantially similar to the "NO WARRANTY" disclaimer below
14  *    ("Disclaimer") and any redistribution must be conditioned upon
15  *    including a substantially similar Disclaimer requirement for further
16  *    binary redistribution.
17  *
18  * NO WARRANTY
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
22  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
28  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGES.
30  *
31  * $Id: //depot/users/kenm/FreeBSD-test2/usr.bin/ctlstat/ctlstat.c#4 $
32  */
33 /*
34  * CAM Target Layer statistics program
35  *
36  * Authors: Ken Merry <ken@FreeBSD.org>, Will Andrews <will@FreeBSD.org>
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/ioctl.h>
43 #include <sys/types.h>
44 #include <sys/param.h>
45 #include <sys/time.h>
46 #include <sys/sysctl.h>
47 #include <sys/resource.h>
48 #include <sys/queue.h>
49 #include <sys/callout.h>
50 #include <stdint.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <unistd.h>
54 #include <fcntl.h>
55 #include <getopt.h>
56 #include <string.h>
57 #include <errno.h>
58 #include <err.h>
59 #include <ctype.h>
60 #include <bitstring.h>
61 #include <cam/scsi/scsi_all.h>
62 #include <cam/ctl/ctl.h>
63 #include <cam/ctl/ctl_io.h>
64 #include <cam/ctl/ctl_scsi_all.h>
65 #include <cam/ctl/ctl_util.h>
66 #include <cam/ctl/ctl_backend.h>
67 #include <cam/ctl/ctl_ioctl.h>
68 
69 /*
70  * The default amount of space we allocate for stats storage space.
71  * We dynamically allocate more if needed.
72  */
73 #define	CTL_STAT_NUM_ITEMS	256
74 
75 /*
76  * The default number of LUN selection bits we allocate.  This is large
77  * because we don't currently increase it if the user specifies a LUN
78  * number of 1024 or larger.
79  */
80 #define	CTL_STAT_BITS		1024L
81 
82 static const char *ctlstat_opts = "Cc:Ddhjl:n:p:tw:";
83 static const char *ctlstat_usage = "Usage:  ctlstat [-CDdjht] [-l lunnum]"
84 				   "[-c count] [-n numdevs] [-w wait]\n";
85 
86 struct ctl_cpu_stats {
87 	uint64_t user;
88 	uint64_t nice;
89 	uint64_t system;
90 	uint64_t intr;
91 	uint64_t idle;
92 };
93 
94 typedef enum {
95 	CTLSTAT_MODE_STANDARD,
96 	CTLSTAT_MODE_DUMP,
97 	CTLSTAT_MODE_JSON,
98 } ctlstat_mode_types;
99 
100 #define	CTLSTAT_FLAG_CPU		(1 << 0)
101 #define	CTLSTAT_FLAG_HEADER		(1 << 1)
102 #define	CTLSTAT_FLAG_FIRST_RUN		(1 << 2)
103 #define	CTLSTAT_FLAG_TOTALS		(1 << 3)
104 #define	CTLSTAT_FLAG_DMA_TIME		(1 << 4)
105 #define	CTLSTAT_FLAG_TIME_VALID		(1 << 5)
106 #define	CTLSTAT_FLAG_MASK		(1 << 6)
107 #define	CTLSTAT_FLAG_LUNS		(1 << 7)
108 #define	CTLSTAT_FLAG_PORTS		(1 << 8)
109 #define	F_CPU(ctx) ((ctx)->flags & CTLSTAT_FLAG_CPU)
110 #define	F_HDR(ctx) ((ctx)->flags & CTLSTAT_FLAG_HEADER)
111 #define	F_FIRST(ctx) ((ctx)->flags & CTLSTAT_FLAG_FIRST_RUN)
112 #define	F_TOTALS(ctx) ((ctx)->flags & CTLSTAT_FLAG_TOTALS)
113 #define	F_DMA(ctx) ((ctx)->flags & CTLSTAT_FLAG_DMA_TIME)
114 #define	F_TIMEVAL(ctx) ((ctx)->flags & CTLSTAT_FLAG_TIME_VALID)
115 #define	F_MASK(ctx) ((ctx)->flags & CTLSTAT_FLAG_MASK)
116 #define	F_LUNS(ctx) ((ctx)->flags & CTLSTAT_FLAG_LUNS)
117 #define	F_PORTS(ctx) ((ctx)->flags & CTLSTAT_FLAG_PORTS)
118 
119 struct ctlstat_context {
120 	ctlstat_mode_types mode;
121 	int flags;
122 	struct ctl_io_stats *cur_stats, *prev_stats;
123 	struct ctl_io_stats cur_total_stats[3], prev_total_stats[3];
124 	struct timespec cur_time, prev_time;
125 	struct ctl_cpu_stats cur_cpu, prev_cpu;
126 	uint64_t cur_total_jiffies, prev_total_jiffies;
127 	uint64_t cur_idle, prev_idle;
128 	bitstr_t bit_decl(item_mask, CTL_STAT_BITS);
129 	int cur_items, prev_items;
130 	int cur_alloc, prev_alloc;
131 	int numdevs;
132 	int header_interval;
133 };
134 
135 #ifndef min
136 #define	min(x,y)	(((x) < (y)) ? (x) : (y))
137 #endif
138 
139 static void usage(int error);
140 static int getstats(int fd, int *alloc_items, int *num_items,
141     struct ctl_io_stats **xstats, struct timespec *cur_time, int *time_valid);
142 static int getcpu(struct ctl_cpu_stats *cpu_stats);
143 static void compute_stats(struct ctl_io_stats *cur_stats,
144 			  struct ctl_io_stats *prev_stats,
145 			  long double etime, long double *mbsec,
146 			  long double *kb_per_transfer,
147 			  long double *transfers_per_second,
148 			  long double *ms_per_transfer,
149 			  long double *ms_per_dma,
150 			  long double *dmas_per_second);
151 
152 static void
153 usage(int error)
154 {
155 	fputs(ctlstat_usage, error ? stderr : stdout);
156 }
157 
158 static int
159 getstats(int fd, int *alloc_items, int *num_items, struct ctl_io_stats **stats,
160 	 struct timespec *cur_time, int *flags)
161 {
162 	struct ctl_get_io_stats get_stats;
163 	int more_space_count = 0;
164 
165 	if (*alloc_items == 0)
166 		*alloc_items = CTL_STAT_NUM_ITEMS;
167 retry:
168 	if (*stats == NULL)
169 		*stats = malloc(sizeof(**stats) * *alloc_items);
170 
171 	memset(&get_stats, 0, sizeof(get_stats));
172 	get_stats.alloc_len = *alloc_items * sizeof(**stats);
173 	memset(*stats, 0, get_stats.alloc_len);
174 	get_stats.stats = *stats;
175 
176 	if (ioctl(fd, (*flags & CTLSTAT_FLAG_PORTS) ? CTL_GET_PORT_STATS :
177 	    CTL_GET_LUN_STATS, &get_stats) == -1)
178 		err(1, "CTL_GET_*_STATS ioctl returned error");
179 
180 	switch (get_stats.status) {
181 	case CTL_SS_OK:
182 		break;
183 	case CTL_SS_ERROR:
184 		err(1, "CTL_GET_*_STATS ioctl returned CTL_SS_ERROR");
185 		break;
186 	case CTL_SS_NEED_MORE_SPACE:
187 		if (more_space_count >= 2)
188 			errx(1, "CTL_GET_*_STATS returned NEED_MORE_SPACE again");
189 		*alloc_items = get_stats.num_items * 5 / 4;
190 		free(*stats);
191 		*stats = NULL;
192 		more_space_count++;
193 		goto retry;
194 		break; /* NOTREACHED */
195 	default:
196 		errx(1, "CTL_GET_*_STATS ioctl returned unknown status %d",
197 		     get_stats.status);
198 		break;
199 	}
200 
201 	*num_items = get_stats.fill_len / sizeof(**stats);
202 	cur_time->tv_sec = get_stats.timestamp.tv_sec;
203 	cur_time->tv_nsec = get_stats.timestamp.tv_nsec;
204 	if (get_stats.flags & CTL_STATS_FLAG_TIME_VALID)
205 		*flags |= CTLSTAT_FLAG_TIME_VALID;
206 	else
207 		*flags &= ~CTLSTAT_FLAG_TIME_VALID;
208 
209 	return (0);
210 }
211 
212 static int
213 getcpu(struct ctl_cpu_stats *cpu_stats)
214 {
215 	long cp_time[CPUSTATES];
216 	size_t cplen;
217 
218 	cplen = sizeof(cp_time);
219 
220 	if (sysctlbyname("kern.cp_time", &cp_time, &cplen, NULL, 0) == -1) {
221 		warn("sysctlbyname(kern.cp_time...) failed");
222 		return (1);
223 	}
224 
225 	cpu_stats->user = cp_time[CP_USER];
226 	cpu_stats->nice = cp_time[CP_NICE];
227 	cpu_stats->system = cp_time[CP_SYS];
228 	cpu_stats->intr = cp_time[CP_INTR];
229 	cpu_stats->idle = cp_time[CP_IDLE];
230 
231 	return (0);
232 }
233 
234 static void
235 compute_stats(struct ctl_io_stats *cur_stats,
236 	      struct ctl_io_stats *prev_stats, long double etime,
237 	      long double *mbsec, long double *kb_per_transfer,
238 	      long double *transfers_per_second, long double *ms_per_transfer,
239 	      long double *ms_per_dma, long double *dmas_per_second)
240 {
241 	uint64_t total_bytes = 0, total_operations = 0, total_dmas = 0;
242 	struct bintime total_time_bt, total_dma_bt;
243 	struct timespec total_time_ts, total_dma_ts;
244 	int i;
245 
246 	bzero(&total_time_bt, sizeof(total_time_bt));
247 	bzero(&total_dma_bt, sizeof(total_dma_bt));
248 	bzero(&total_time_ts, sizeof(total_time_ts));
249 	bzero(&total_dma_ts, sizeof(total_dma_ts));
250 	for (i = 0; i < CTL_STATS_NUM_TYPES; i++) {
251 		total_bytes += cur_stats->bytes[i];
252 		total_operations += cur_stats->operations[i];
253 		total_dmas += cur_stats->dmas[i];
254 		bintime_add(&total_time_bt, &cur_stats->time[i]);
255 		bintime_add(&total_dma_bt, &cur_stats->dma_time[i]);
256 		if (prev_stats != NULL) {
257 			total_bytes -= prev_stats->bytes[i];
258 			total_operations -= prev_stats->operations[i];
259 			total_dmas -= prev_stats->dmas[i];
260 			bintime_sub(&total_time_bt, &prev_stats->time[i]);
261 			bintime_sub(&total_dma_bt, &prev_stats->dma_time[i]);
262 		}
263 	}
264 
265 	*mbsec = total_bytes;
266 	*mbsec /= 1024 * 1024;
267 	if (etime > 0.0)
268 		*mbsec /= etime;
269 	else
270 		*mbsec = 0;
271 	*kb_per_transfer = total_bytes;
272 	*kb_per_transfer /= 1024;
273 	if (total_operations > 0)
274 		*kb_per_transfer /= total_operations;
275 	else
276 		*kb_per_transfer = 0;
277 	*transfers_per_second = total_operations;
278 	*dmas_per_second = total_dmas;
279 	if (etime > 0.0) {
280 		*transfers_per_second /= etime;
281 		*dmas_per_second /= etime;
282 	} else {
283 		*transfers_per_second = 0;
284 		*dmas_per_second = 0;
285 	}
286 
287 	bintime2timespec(&total_time_bt, &total_time_ts);
288 	bintime2timespec(&total_dma_bt, &total_dma_ts);
289 	if (total_operations > 0) {
290 		/*
291 		 * Convert the timespec to milliseconds.
292 		 */
293 		*ms_per_transfer = total_time_ts.tv_sec * 1000;
294 		*ms_per_transfer += total_time_ts.tv_nsec / 1000000;
295 		*ms_per_transfer /= total_operations;
296 	} else
297 		*ms_per_transfer = 0;
298 
299 	if (total_dmas > 0) {
300 		/*
301 		 * Convert the timespec to milliseconds.
302 		 */
303 		*ms_per_dma = total_dma_ts.tv_sec * 1000;
304 		*ms_per_dma += total_dma_ts.tv_nsec / 1000000;
305 		*ms_per_dma /= total_dmas;
306 	} else
307 		*ms_per_dma = 0;
308 }
309 
310 /* The dump_stats() and json_stats() functions perform essentially the same
311  * purpose, but dump the statistics in different formats.  JSON is more
312  * conducive to programming, however.
313  */
314 
315 #define	PRINT_BINTIME(prefix, bt) \
316 	printf("%s %jd.%06ju\n", prefix, (intmax_t)(bt).sec, \
317 	       (uintmax_t)(((bt).frac >> 32) * 1000000 >> 32))
318 static const char *iotypes[] = {"NO IO", "READ", "WRITE"};
319 
320 static void
321 ctlstat_dump(struct ctlstat_context *ctx)
322 {
323 	int iotype, i;
324 	struct ctl_io_stats *stats = ctx->cur_stats;
325 
326 	for (i = 0; i < ctx->cur_items;i++) {
327 		if (F_MASK(ctx) && bit_test(ctx->item_mask, i) == 0)
328 			continue;
329 		printf("%s %d\n", F_PORTS(ctx) ? "port" : "lun", stats[i].item);
330 		for (iotype = 0; iotype < CTL_STATS_NUM_TYPES; iotype++) {
331 			printf("  io type %d (%s)\n", iotype, iotypes[iotype]);
332 			printf("   bytes %ju\n", (uintmax_t)
333 			    stats[i].bytes[iotype]);
334 			printf("   operations %ju\n", (uintmax_t)
335 			    stats[i].operations[iotype]);
336 			printf("   dmas %ju\n", (uintmax_t)
337 			    stats[i].dmas[iotype]);
338 			PRINT_BINTIME("   io time", stats[i].time[iotype]);
339 			PRINT_BINTIME("   dma time", stats[i].dma_time[iotype]);
340 		}
341 	}
342 }
343 
344 #define	JSON_BINTIME(prefix, bt) \
345 	printf("\"%s\":%jd.%06ju,", prefix, (intmax_t)(bt).sec, \
346 	    (uintmax_t)(((bt).frac >> 32) * 1000000 >> 32))
347 static void
348 ctlstat_json(struct ctlstat_context *ctx) {
349 	int iotype, i;
350 	struct ctl_io_stats *stats = ctx->cur_stats;
351 
352 	printf("{\"%s\":[", F_PORTS(ctx) ? "ports" : "luns");
353 	for (i = 0; i < ctx->cur_items; i++) {
354 		if (F_MASK(ctx) && bit_test(ctx->item_mask, i) == 0)
355 			continue;
356 		printf("{\"num\":%d,\"io\":[",
357 		    stats[i].item);
358 		for (iotype = 0; iotype < CTL_STATS_NUM_TYPES; iotype++) {
359 			printf("{\"type\":\"%s\",", iotypes[iotype]);
360 			printf("\"bytes\":%ju,", (uintmax_t)stats[
361 			       i].bytes[iotype]);
362 			printf("\"operations\":%ju,", (uintmax_t)stats[
363 			       i].operations[iotype]);
364 			printf("\"dmas\":%ju}", (uintmax_t)
365 			    stats[i].dmas[iotype]);
366 			JSON_BINTIME("io time", stats[i].time[iotype]);
367 			JSON_BINTIME("dma time", stats[i].dma_time[iotype]);
368 			if (iotype < (CTL_STATS_NUM_TYPES - 1))
369 				printf(","); /* continue io array */
370 		}
371 		printf("]}");
372 		if (i < (ctx->cur_items - 1))
373 			printf(","); /* continue lun array */
374 	}
375 	printf("]}");
376 }
377 
378 static void
379 ctlstat_standard(struct ctlstat_context *ctx) {
380 	long double etime;
381 	uint64_t delta_jiffies, delta_idle;
382 	long double cpu_percentage;
383 	int i, j;
384 
385 	cpu_percentage = 0;
386 
387 	if (F_CPU(ctx) && (getcpu(&ctx->cur_cpu) != 0))
388 		errx(1, "error returned from getcpu()");
389 
390 	etime = ctx->cur_time.tv_sec - ctx->prev_time.tv_sec +
391 	    (ctx->prev_time.tv_nsec - ctx->cur_time.tv_nsec) * 1e-9;
392 
393 	if (F_CPU(ctx)) {
394 		ctx->prev_total_jiffies = ctx->cur_total_jiffies;
395 		ctx->cur_total_jiffies = ctx->cur_cpu.user +
396 		    ctx->cur_cpu.nice + ctx->cur_cpu.system +
397 		    ctx->cur_cpu.intr + ctx->cur_cpu.idle;
398 		delta_jiffies = ctx->cur_total_jiffies;
399 		if (F_FIRST(ctx) == 0)
400 			delta_jiffies -= ctx->prev_total_jiffies;
401 		ctx->prev_idle = ctx->cur_idle;
402 		ctx->cur_idle = ctx->cur_cpu.idle;
403 		delta_idle = ctx->cur_idle - ctx->prev_idle;
404 
405 		cpu_percentage = delta_jiffies - delta_idle;
406 		cpu_percentage /= delta_jiffies;
407 		cpu_percentage *= 100;
408 	}
409 
410 	if (F_HDR(ctx)) {
411 		ctx->header_interval--;
412 		if (ctx->header_interval <= 0) {
413 			int hdr_devs;
414 
415 			hdr_devs = 0;
416 
417 			if (F_CPU(ctx))
418 				fprintf(stdout, " CPU");
419 			if (F_TOTALS(ctx)) {
420 				fprintf(stdout, "%s     Read       %s"
421 					"    Write       %s    Total\n",
422 					(F_TIMEVAL(ctx) != 0) ? "      " : "",
423 					(F_TIMEVAL(ctx) != 0) ? "      " : "",
424 					(F_TIMEVAL(ctx) != 0) ? "      " : "");
425 				hdr_devs = 3;
426 			} else {
427 				for (i = 0; i < min(CTL_STAT_BITS,
428 				     ctx->cur_items); i++) {
429 					int item;
430 
431 					/*
432 					 * Obviously this won't work with
433 					 * LUN numbers greater than a signed
434 					 * integer.
435 					 */
436 					item = (int)ctx->cur_stats[i].item;
437 
438 					if (F_MASK(ctx) &&
439 					    bit_test(ctx->item_mask, item) == 0)
440 						continue;
441 					fprintf(stdout, "%15.6s%d %s",
442 					    F_PORTS(ctx) ? "port" : "lun", item,
443 					    (F_TIMEVAL(ctx) != 0) ? "     " : "");
444 					hdr_devs++;
445 				}
446 				fprintf(stdout, "\n");
447 			}
448 			if (F_CPU(ctx))
449 				fprintf(stdout, "    ");
450 			for (i = 0; i < hdr_devs; i++)
451 				fprintf(stdout, "%s KB/t   %s MB/s",
452 					(F_TIMEVAL(ctx) != 0) ? "    ms" : "",
453 					(F_DMA(ctx) == 0) ? "tps" : "dps");
454 			fprintf(stdout, "\n");
455 			ctx->header_interval = 20;
456 		}
457 	}
458 
459 	if (F_CPU(ctx))
460 		fprintf(stdout, "%3.0Lf%%", cpu_percentage);
461 	if (F_TOTALS(ctx) != 0) {
462 		long double mbsec[3];
463 		long double kb_per_transfer[3];
464 		long double transfers_per_sec[3];
465 		long double ms_per_transfer[3];
466 		long double ms_per_dma[3];
467 		long double dmas_per_sec[3];
468 
469 		for (i = 0; i < 3; i++)
470 			ctx->prev_total_stats[i] = ctx->cur_total_stats[i];
471 
472 		memset(&ctx->cur_total_stats, 0, sizeof(ctx->cur_total_stats));
473 
474 		/* Use macros to make the next loop more readable. */
475 #define	ADD_STATS_BYTES(st, i, j) \
476 	ctx->cur_total_stats[st].bytes[j] += \
477 	    ctx->cur_stats[i].bytes[j]
478 #define	ADD_STATS_OPERATIONS(st, i, j) \
479 	ctx->cur_total_stats[st].operations[j] += \
480 	    ctx->cur_stats[i].operations[j]
481 #define	ADD_STATS_DMAS(st, i, j) \
482 	ctx->cur_total_stats[st].dmas[j] += \
483 	    ctx->cur_stats[i].dmas[j]
484 #define	ADD_STATS_TIME(st, i, j) \
485 	bintime_add(&ctx->cur_total_stats[st].time[j], \
486 	    &ctx->cur_stats[i].time[j])
487 #define	ADD_STATS_DMA_TIME(st, i, j) \
488 	bintime_add(&ctx->cur_total_stats[st].dma_time[j], \
489 	    &ctx->cur_stats[i].dma_time[j])
490 
491 		for (i = 0; i < ctx->cur_items; i++) {
492 			if (F_MASK(ctx) && bit_test(ctx->item_mask,
493 			    (int)ctx->cur_stats[i].item) == 0)
494 				continue;
495 			for (j = 0; j < CTL_STATS_NUM_TYPES; j++) {
496 				ADD_STATS_BYTES(2, i, j);
497 				ADD_STATS_OPERATIONS(2, i, j);
498 				ADD_STATS_DMAS(2, i, j);
499 				ADD_STATS_TIME(2, i, j);
500 				ADD_STATS_DMA_TIME(2, i, j);
501 			}
502 			ADD_STATS_BYTES(0, i, CTL_STATS_READ);
503 			ADD_STATS_OPERATIONS(0, i, CTL_STATS_READ);
504 			ADD_STATS_DMAS(0, i, CTL_STATS_READ);
505 			ADD_STATS_TIME(0, i, CTL_STATS_READ);
506 			ADD_STATS_DMA_TIME(0, i, CTL_STATS_READ);
507 
508 			ADD_STATS_BYTES(1, i, CTL_STATS_WRITE);
509 			ADD_STATS_OPERATIONS(1, i, CTL_STATS_WRITE);
510 			ADD_STATS_DMAS(1, i, CTL_STATS_WRITE);
511 			ADD_STATS_TIME(1, i, CTL_STATS_WRITE);
512 			ADD_STATS_DMA_TIME(1, i, CTL_STATS_WRITE);
513 		}
514 
515 		for (i = 0; i < 3; i++) {
516 			compute_stats(&ctx->cur_total_stats[i],
517 				F_FIRST(ctx) ? NULL : &ctx->prev_total_stats[i],
518 				etime, &mbsec[i], &kb_per_transfer[i],
519 				&transfers_per_sec[i],
520 				&ms_per_transfer[i], &ms_per_dma[i],
521 				&dmas_per_sec[i]);
522 			if (F_DMA(ctx) != 0)
523 				fprintf(stdout, " %5.1Lf",
524 					ms_per_dma[i]);
525 			else if (F_TIMEVAL(ctx) != 0)
526 				fprintf(stdout, " %5.1Lf",
527 					ms_per_transfer[i]);
528 			fprintf(stdout, " %4.0Lf %5.0Lf %4.0Lf",
529 				kb_per_transfer[i],
530 				(F_DMA(ctx) == 0) ? transfers_per_sec[i] :
531 				dmas_per_sec[i], mbsec[i]);
532 		}
533 	} else {
534 		for (i = 0; i < min(CTL_STAT_BITS, ctx->cur_items); i++) {
535 			long double mbsec, kb_per_transfer;
536 			long double transfers_per_sec;
537 			long double ms_per_transfer;
538 			long double ms_per_dma;
539 			long double dmas_per_sec;
540 
541 			if (F_MASK(ctx) && bit_test(ctx->item_mask,
542 			    (int)ctx->cur_stats[i].item) == 0)
543 				continue;
544 			for (j = 0; j < ctx->prev_items; j++) {
545 				if (ctx->prev_stats[j].item ==
546 				    ctx->cur_stats[i].item)
547 					break;
548 			}
549 			if (j >= ctx->prev_items)
550 				j = -1;
551 			compute_stats(&ctx->cur_stats[i],
552 			    j >= 0 ? &ctx->prev_stats[j] : NULL,
553 			    etime, &mbsec, &kb_per_transfer,
554 			    &transfers_per_sec, &ms_per_transfer,
555 			    &ms_per_dma, &dmas_per_sec);
556 			if (F_DMA(ctx))
557 				fprintf(stdout, " %5.1Lf",
558 					ms_per_dma);
559 			else if (F_TIMEVAL(ctx) != 0)
560 				fprintf(stdout, " %5.1Lf",
561 					ms_per_transfer);
562 			fprintf(stdout, " %4.0Lf %5.0Lf %4.0Lf",
563 				kb_per_transfer, (F_DMA(ctx) == 0) ?
564 				transfers_per_sec : dmas_per_sec, mbsec);
565 		}
566 	}
567 }
568 
569 int
570 main(int argc, char **argv)
571 {
572 	int c;
573 	int count, waittime;
574 	int fd, retval;
575 	struct ctlstat_context ctx;
576 	struct ctl_io_stats *tmp_stats;
577 
578 	/* default values */
579 	retval = 0;
580 	waittime = 1;
581 	count = -1;
582 	memset(&ctx, 0, sizeof(ctx));
583 	ctx.numdevs = 3;
584 	ctx.mode = CTLSTAT_MODE_STANDARD;
585 	ctx.flags |= CTLSTAT_FLAG_CPU;
586 	ctx.flags |= CTLSTAT_FLAG_FIRST_RUN;
587 	ctx.flags |= CTLSTAT_FLAG_HEADER;
588 
589 	while ((c = getopt(argc, argv, ctlstat_opts)) != -1) {
590 		switch (c) {
591 		case 'C':
592 			ctx.flags &= ~CTLSTAT_FLAG_CPU;
593 			break;
594 		case 'c':
595 			count = atoi(optarg);
596 			break;
597 		case 'd':
598 			ctx.flags |= CTLSTAT_FLAG_DMA_TIME;
599 			break;
600 		case 'D':
601 			ctx.mode = CTLSTAT_MODE_DUMP;
602 			waittime = 30;
603 			break;
604 		case 'h':
605 			ctx.flags &= ~CTLSTAT_FLAG_HEADER;
606 			break;
607 		case 'j':
608 			ctx.mode = CTLSTAT_MODE_JSON;
609 			waittime = 30;
610 			break;
611 		case 'l': {
612 			int cur_lun;
613 
614 			cur_lun = atoi(optarg);
615 			if (cur_lun > CTL_STAT_BITS)
616 				errx(1, "Invalid LUN number %d", cur_lun);
617 
618 			if (!F_MASK(&ctx))
619 				ctx.numdevs = 1;
620 			else
621 				ctx.numdevs++;
622 			bit_set(ctx.item_mask, cur_lun);
623 			ctx.flags |= CTLSTAT_FLAG_MASK;
624 			ctx.flags |= CTLSTAT_FLAG_LUNS;
625 			break;
626 		}
627 		case 'n':
628 			ctx.numdevs = atoi(optarg);
629 			break;
630 		case 'p': {
631 			int cur_port;
632 
633 			cur_port = atoi(optarg);
634 			if (cur_port > CTL_STAT_BITS)
635 				errx(1, "Invalid port number %d", cur_port);
636 
637 			if (!F_MASK(&ctx))
638 				ctx.numdevs = 1;
639 			else
640 				ctx.numdevs++;
641 			bit_set(ctx.item_mask, cur_port);
642 			ctx.flags |= CTLSTAT_FLAG_MASK;
643 			ctx.flags |= CTLSTAT_FLAG_PORTS;
644 			break;
645 		}
646 		case 't':
647 			ctx.flags |= CTLSTAT_FLAG_TOTALS;
648 			break;
649 		case 'w':
650 			waittime = atoi(optarg);
651 			break;
652 		default:
653 			retval = 1;
654 			usage(retval);
655 			exit(retval);
656 			break;
657 		}
658 	}
659 
660 	if (F_LUNS(&ctx) && F_PORTS(&ctx))
661 		errx(1, "Options -p and -l are exclusive.");
662 
663 	if (!F_LUNS(&ctx) && !F_PORTS(&ctx)) {
664 		if (F_TOTALS(&ctx))
665 			ctx.flags |= CTLSTAT_FLAG_PORTS;
666 		else
667 			ctx.flags |= CTLSTAT_FLAG_LUNS;
668 	}
669 
670 	if (!F_TOTALS(&ctx) && !F_MASK(&ctx)) {
671 		/*
672 		 * Note that this just selects the first N LUNs to display,
673 		 * but at this point we have no knoweledge of which LUN
674 		 * numbers actually exist.  So we may select LUNs that
675 		 * aren't there.
676 		 */
677 		bit_nset(ctx.item_mask, 0, min(ctx.numdevs - 1,
678 			 CTL_STAT_BITS - 1));
679 		ctx.flags |= CTLSTAT_FLAG_MASK;
680 	}
681 
682 	if ((fd = open(CTL_DEFAULT_DEV, O_RDWR)) == -1)
683 		err(1, "cannot open %s", CTL_DEFAULT_DEV);
684 
685 	for (;count != 0;) {
686 		tmp_stats = ctx.prev_stats;
687 		ctx.prev_stats = ctx.cur_stats;
688 		ctx.cur_stats = tmp_stats;
689 		c = ctx.prev_alloc;
690 		ctx.prev_alloc = ctx.cur_alloc;
691 		ctx.cur_alloc = c;
692 		c = ctx.prev_items;
693 		ctx.prev_items = ctx.cur_items;
694 		ctx.cur_items = c;
695 		ctx.prev_time = ctx.cur_time;
696 		ctx.prev_cpu = ctx.cur_cpu;
697 		if (getstats(fd, &ctx.cur_alloc, &ctx.cur_items,
698 		    &ctx.cur_stats, &ctx.cur_time, &ctx.flags) != 0)
699 			errx(1, "error returned from getstats()");
700 
701 		switch(ctx.mode) {
702 		case CTLSTAT_MODE_STANDARD:
703 			ctlstat_standard(&ctx);
704 			break;
705 		case CTLSTAT_MODE_DUMP:
706 			ctlstat_dump(&ctx);
707 			break;
708 		case CTLSTAT_MODE_JSON:
709 			ctlstat_json(&ctx);
710 			break;
711 		default:
712 			break;
713 		}
714 
715 		fprintf(stdout, "\n");
716 		ctx.flags &= ~CTLSTAT_FLAG_FIRST_RUN;
717 		if (count != 1)
718 			sleep(waittime);
719 		if (count > 0)
720 			count--;
721 	}
722 
723 	exit (retval);
724 }
725 
726 /*
727  * vim: ts=8
728  */
729