xref: /freebsd/usr.bin/compress/zopen.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 1985, 1986, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Diomidis Spinellis and James A. Woods, derived from original
7  * work by Spencer Thomas and Joseph Orost.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #if defined(LIBC_SCCS) && !defined(lint)
35 static char sccsid[] = "@(#)zopen.c	8.1 (Berkeley) 6/27/93";
36 #endif /* LIBC_SCCS and not lint */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 /*-
42  * fcompress.c - File compression ala IEEE Computer, June 1984.
43  *
44  * Compress authors:
45  *		Spencer W. Thomas	(decvax!utah-cs!thomas)
46  *		Jim McKie		(decvax!mcvax!jim)
47  *		Steve Davies		(decvax!vax135!petsd!peora!srd)
48  *		Ken Turkowski		(decvax!decwrl!turtlevax!ken)
49  *		James A. Woods		(decvax!ihnp4!ames!jaw)
50  *		Joe Orost		(decvax!vax135!petsd!joe)
51  *
52  * Cleaned up and converted to library returning I/O streams by
53  * Diomidis Spinellis <dds@doc.ic.ac.uk>.
54  *
55  * zopen(filename, mode, bits)
56  *	Returns a FILE * that can be used for read or write.  The modes
57  *	supported are only "r" and "w".  Seeking is not allowed.  On
58  *	reading the file is decompressed, on writing it is compressed.
59  *	The output is compatible with compress(1) with 16 bit tables.
60  *	Any file produced by compress(1) can be read.
61  */
62 
63 #include <sys/param.h>
64 #include <sys/stat.h>
65 
66 #include <ctype.h>
67 #include <errno.h>
68 #include <signal.h>
69 #include <stdio.h>
70 #include <stdlib.h>
71 #include <string.h>
72 #include <unistd.h>
73 #include "zopen.h"
74 
75 #define	BITS		16		/* Default bits. */
76 #define	HSIZE		69001		/* 95% occupancy */
77 
78 /* A code_int must be able to hold 2**BITS values of type int, and also -1. */
79 typedef long code_int;
80 typedef long count_int;
81 
82 typedef u_char char_type;
83 static char_type magic_header[] =
84 	{'\037', '\235'};		/* 1F 9D */
85 
86 #define	BIT_MASK	0x1f		/* Defines for third byte of header. */
87 #define	BLOCK_MASK	0x80
88 
89 /*
90  * Masks 0x40 and 0x20 are free.  I think 0x20 should mean that there is
91  * a fourth header byte (for expansion).
92  */
93 #define	INIT_BITS 9			/* Initial number of bits/code. */
94 
95 #define	MAXCODE(n_bits)	((1 << (n_bits)) - 1)
96 
97 struct s_zstate {
98 	FILE *zs_fp;			/* File stream for I/O */
99 	char zs_mode;			/* r or w */
100 	enum {
101 		S_START, S_MIDDLE, S_EOF
102 	} zs_state;			/* State of computation */
103 	u_int zs_n_bits;		/* Number of bits/code. */
104 	u_int zs_maxbits;		/* User settable max # bits/code. */
105 	code_int zs_maxcode;		/* Maximum code, given n_bits. */
106 	code_int zs_maxmaxcode;		/* Should NEVER generate this code. */
107 	count_int zs_htab [HSIZE];
108 	u_short zs_codetab [HSIZE];
109 	code_int zs_hsize;		/* For dynamic table sizing. */
110 	code_int zs_free_ent;		/* First unused entry. */
111 	/*
112 	 * Block compression parameters -- after all codes are used up,
113 	 * and compression rate changes, start over.
114 	 */
115 	int zs_block_compress;
116 	int zs_clear_flg;
117 	long zs_ratio;
118 	count_int zs_checkpoint;
119 	u_int zs_offset;
120 	long zs_in_count;		/* Length of input. */
121 	long zs_bytes_out;		/* Length of compressed output. */
122 	long zs_out_count;		/* # of codes output (for debugging). */
123 	char_type zs_buf[BITS];
124 	union {
125 		struct {
126 			long zs_fcode;
127 			code_int zs_ent;
128 			code_int zs_hsize_reg;
129 			int zs_hshift;
130 		} w;			/* Write parameters */
131 		struct {
132 			char_type *zs_stackp;
133 			int zs_finchar;
134 			code_int zs_code, zs_oldcode, zs_incode;
135 			int zs_roffset, zs_size;
136 			char_type zs_gbuf[BITS];
137 		} r;			/* Read parameters */
138 	} u;
139 };
140 
141 /* Definitions to retain old variable names */
142 #define	fp		zs->zs_fp
143 #define	zmode		zs->zs_mode
144 #define	state		zs->zs_state
145 #define	n_bits		zs->zs_n_bits
146 #define	maxbits		zs->zs_maxbits
147 #define	maxcode		zs->zs_maxcode
148 #define	maxmaxcode	zs->zs_maxmaxcode
149 #define	htab		zs->zs_htab
150 #define	codetab		zs->zs_codetab
151 #define	hsize		zs->zs_hsize
152 #define	free_ent	zs->zs_free_ent
153 #define	block_compress	zs->zs_block_compress
154 #define	clear_flg	zs->zs_clear_flg
155 #define	ratio		zs->zs_ratio
156 #define	checkpoint	zs->zs_checkpoint
157 #define	offset		zs->zs_offset
158 #define	in_count	zs->zs_in_count
159 #define	bytes_out	zs->zs_bytes_out
160 #define	out_count	zs->zs_out_count
161 #define	buf		zs->zs_buf
162 #define	fcode		zs->u.w.zs_fcode
163 #define	hsize_reg	zs->u.w.zs_hsize_reg
164 #define	ent		zs->u.w.zs_ent
165 #define	hshift		zs->u.w.zs_hshift
166 #define	stackp		zs->u.r.zs_stackp
167 #define	finchar		zs->u.r.zs_finchar
168 #define	code		zs->u.r.zs_code
169 #define	oldcode		zs->u.r.zs_oldcode
170 #define	incode		zs->u.r.zs_incode
171 #define	roffset		zs->u.r.zs_roffset
172 #define	size		zs->u.r.zs_size
173 #define	gbuf		zs->u.r.zs_gbuf
174 
175 /*
176  * To save much memory, we overlay the table used by compress() with those
177  * used by decompress().  The tab_prefix table is the same size and type as
178  * the codetab.  The tab_suffix table needs 2**BITS characters.  We get this
179  * from the beginning of htab.  The output stack uses the rest of htab, and
180  * contains characters.  There is plenty of room for any possible stack
181  * (stack used to be 8000 characters).
182  */
183 
184 #define	htabof(i)	htab[i]
185 #define	codetabof(i)	codetab[i]
186 
187 #define	tab_prefixof(i)	codetabof(i)
188 #define	tab_suffixof(i)	((char_type *)(htab))[i]
189 #define	de_stack	((char_type *)&tab_suffixof(1 << BITS))
190 
191 #define	CHECK_GAP 10000		/* Ratio check interval. */
192 
193 /*
194  * the next two codes should not be changed lightly, as they must not
195  * lie within the contiguous general code space.
196  */
197 #define	FIRST	257		/* First free entry. */
198 #define	CLEAR	256		/* Table clear output code. */
199 
200 static int	cl_block(struct s_zstate *);
201 static void	cl_hash(struct s_zstate *, count_int);
202 static code_int	getcode(struct s_zstate *);
203 static int	output(struct s_zstate *, code_int);
204 static int	zclose(void *);
205 static int	zread(void *, char *, int);
206 static int	zwrite(void *, const char *, int);
207 
208 /*-
209  * Algorithm from "A Technique for High Performance Data Compression",
210  * Terry A. Welch, IEEE Computer Vol 17, No 6 (June 1984), pp 8-19.
211  *
212  * Algorithm:
213  * 	Modified Lempel-Ziv method (LZW).  Basically finds common
214  * substrings and replaces them with a variable size code.  This is
215  * deterministic, and can be done on the fly.  Thus, the decompression
216  * procedure needs no input table, but tracks the way the table was built.
217  */
218 
219 /*-
220  * compress write
221  *
222  * Algorithm:  use open addressing double hashing (no chaining) on the
223  * prefix code / next character combination.  We do a variant of Knuth's
224  * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
225  * secondary probe.  Here, the modular division first probe is gives way
226  * to a faster exclusive-or manipulation.  Also do block compression with
227  * an adaptive reset, whereby the code table is cleared when the compression
228  * ratio decreases, but after the table fills.  The variable-length output
229  * codes are re-sized at this point, and a special CLEAR code is generated
230  * for the decompressor.  Late addition:  construct the table according to
231  * file size for noticeable speed improvement on small files.  Please direct
232  * questions about this implementation to ames!jaw.
233  */
234 static int
235 zwrite(void *cookie, const char *wbp, int num)
236 {
237 	code_int i;
238 	int c, disp;
239 	struct s_zstate *zs;
240 	const u_char *bp;
241 	u_char tmp;
242 	int count;
243 
244 	if (num == 0)
245 		return (0);
246 
247 	zs = cookie;
248 	count = num;
249 	bp = (const u_char *)wbp;
250 	if (state == S_MIDDLE)
251 		goto middle;
252 	state = S_MIDDLE;
253 
254 	maxmaxcode = 1L << maxbits;
255 	if (fwrite(magic_header,
256 	    sizeof(char), sizeof(magic_header), fp) != sizeof(magic_header))
257 		return (-1);
258 	tmp = (u_char)((maxbits) | block_compress);
259 	if (fwrite(&tmp, sizeof(char), sizeof(tmp), fp) != sizeof(tmp))
260 		return (-1);
261 
262 	offset = 0;
263 	bytes_out = 3;		/* Includes 3-byte header mojo. */
264 	out_count = 0;
265 	clear_flg = 0;
266 	ratio = 0;
267 	in_count = 1;
268 	checkpoint = CHECK_GAP;
269 	maxcode = MAXCODE(n_bits = INIT_BITS);
270 	free_ent = ((block_compress) ? FIRST : 256);
271 
272 	ent = *bp++;
273 	--count;
274 
275 	hshift = 0;
276 	for (fcode = (long)hsize; fcode < 65536L; fcode *= 2L)
277 		hshift++;
278 	hshift = 8 - hshift;	/* Set hash code range bound. */
279 
280 	hsize_reg = hsize;
281 	cl_hash(zs, (count_int)hsize_reg);	/* Clear hash table. */
282 
283 middle:	for (i = 0; count--;) {
284 		c = *bp++;
285 		in_count++;
286 		fcode = (long)(((long)c << maxbits) + ent);
287 		i = ((c << hshift) ^ ent);	/* Xor hashing. */
288 
289 		if (htabof(i) == fcode) {
290 			ent = codetabof(i);
291 			continue;
292 		} else if ((long)htabof(i) < 0)	/* Empty slot. */
293 			goto nomatch;
294 		disp = hsize_reg - i;	/* Secondary hash (after G. Knott). */
295 		if (i == 0)
296 			disp = 1;
297 probe:		if ((i -= disp) < 0)
298 			i += hsize_reg;
299 
300 		if (htabof(i) == fcode) {
301 			ent = codetabof(i);
302 			continue;
303 		}
304 		if ((long)htabof(i) >= 0)
305 			goto probe;
306 nomatch:	if (output(zs, (code_int) ent) == -1)
307 			return (-1);
308 		out_count++;
309 		ent = c;
310 		if (free_ent < maxmaxcode) {
311 			codetabof(i) = free_ent++;	/* code -> hashtable */
312 			htabof(i) = fcode;
313 		} else if ((count_int)in_count >=
314 		    checkpoint && block_compress) {
315 			if (cl_block(zs) == -1)
316 				return (-1);
317 		}
318 	}
319 	return (num);
320 }
321 
322 static int
323 zclose(void *cookie)
324 {
325 	struct s_zstate *zs;
326 	int rval;
327 
328 	zs = cookie;
329 	if (zmode == 'w') {		/* Put out the final code. */
330 		if (output(zs, (code_int) ent) == -1) {
331 			(void)fclose(fp);
332 			free(zs);
333 			return (-1);
334 		}
335 		out_count++;
336 		if (output(zs, (code_int) - 1) == -1) {
337 			(void)fclose(fp);
338 			free(zs);
339 			return (-1);
340 		}
341 	}
342 	rval = fclose(fp) == EOF ? -1 : 0;
343 	free(zs);
344 	return (rval);
345 }
346 
347 /*-
348  * Output the given code.
349  * Inputs:
350  * 	code:	A n_bits-bit integer.  If == -1, then EOF.  This assumes
351  *		that n_bits =< (long)wordsize - 1.
352  * Outputs:
353  * 	Outputs code to the file.
354  * Assumptions:
355  *	Chars are 8 bits long.
356  * Algorithm:
357  * 	Maintain a BITS character long buffer (so that 8 codes will
358  * fit in it exactly).  Use the VAX insv instruction to insert each
359  * code in turn.  When the buffer fills up empty it and start over.
360  */
361 
362 static char_type lmask[9] =
363 	{0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00};
364 static char_type rmask[9] =
365 	{0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};
366 
367 static int
368 output(struct s_zstate *zs, code_int ocode)
369 {
370 	int r_off;
371 	u_int bits;
372 	char_type *bp;
373 
374 	r_off = offset;
375 	bits = n_bits;
376 	bp = buf;
377 	if (ocode >= 0) {
378 		/* Get to the first byte. */
379 		bp += (r_off >> 3);
380 		r_off &= 7;
381 		/*
382 		 * Since ocode is always >= 8 bits, only need to mask the first
383 		 * hunk on the left.
384 		 */
385 		*bp = (*bp & rmask[r_off]) | ((ocode << r_off) & lmask[r_off]);
386 		bp++;
387 		bits -= (8 - r_off);
388 		ocode >>= 8 - r_off;
389 		/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
390 		if (bits >= 8) {
391 			*bp++ = ocode;
392 			ocode >>= 8;
393 			bits -= 8;
394 		}
395 		/* Last bits. */
396 		if (bits)
397 			*bp = ocode;
398 		offset += n_bits;
399 		if (offset == (n_bits << 3)) {
400 			bp = buf;
401 			bits = n_bits;
402 			bytes_out += bits;
403 			if (fwrite(bp, sizeof(char), bits, fp) != bits)
404 				return (-1);
405 			bp += bits;
406 			bits = 0;
407 			offset = 0;
408 		}
409 		/*
410 		 * If the next entry is going to be too big for the ocode size,
411 		 * then increase it, if possible.
412 		 */
413 		if (free_ent > maxcode || (clear_flg > 0)) {
414 		       /*
415 			* Write the whole buffer, because the input side won't
416 			* discover the size increase until after it has read it.
417 			*/
418 			if (offset > 0) {
419 				if (fwrite(buf, 1, n_bits, fp) != n_bits)
420 					return (-1);
421 				bytes_out += n_bits;
422 			}
423 			offset = 0;
424 
425 			if (clear_flg) {
426 				maxcode = MAXCODE(n_bits = INIT_BITS);
427 				clear_flg = 0;
428 			} else {
429 				n_bits++;
430 				if (n_bits == maxbits)
431 					maxcode = maxmaxcode;
432 				else
433 					maxcode = MAXCODE(n_bits);
434 			}
435 		}
436 	} else {
437 		/* At EOF, write the rest of the buffer. */
438 		if (offset > 0) {
439 			offset = (offset + 7) / 8;
440 			if (fwrite(buf, 1, offset, fp) != offset)
441 				return (-1);
442 			bytes_out += offset;
443 		}
444 		offset = 0;
445 	}
446 	return (0);
447 }
448 
449 /*
450  * Decompress read.  This routine adapts to the codes in the file building
451  * the "string" table on-the-fly; requiring no table to be stored in the
452  * compressed file.  The tables used herein are shared with those of the
453  * compress() routine.  See the definitions above.
454  */
455 static int
456 zread(void *cookie, char *rbp, int num)
457 {
458 	u_int count;
459 	struct s_zstate *zs;
460 	u_char *bp, header[3];
461 
462 	if (num == 0)
463 		return (0);
464 
465 	zs = cookie;
466 	count = num;
467 	bp = (u_char *)rbp;
468 	switch (state) {
469 	case S_START:
470 		state = S_MIDDLE;
471 		break;
472 	case S_MIDDLE:
473 		goto middle;
474 	case S_EOF:
475 		goto eof;
476 	}
477 
478 	/* Check the magic number */
479 	if (fread(header,
480 	    sizeof(char), sizeof(header), fp) != sizeof(header) ||
481 	    memcmp(header, magic_header, sizeof(magic_header)) != 0) {
482 		errno = EFTYPE;
483 		return (-1);
484 	}
485 	maxbits = header[2];	/* Set -b from file. */
486 	block_compress = maxbits & BLOCK_MASK;
487 	maxbits &= BIT_MASK;
488 	maxmaxcode = 1L << maxbits;
489 	if (maxbits > BITS) {
490 		errno = EFTYPE;
491 		return (-1);
492 	}
493 	/* As above, initialize the first 256 entries in the table. */
494 	maxcode = MAXCODE(n_bits = INIT_BITS);
495 	for (code = 255; code >= 0; code--) {
496 		tab_prefixof(code) = 0;
497 		tab_suffixof(code) = (char_type) code;
498 	}
499 	free_ent = block_compress ? FIRST : 256;
500 
501 	finchar = oldcode = getcode(zs);
502 	if (oldcode == -1)	/* EOF already? */
503 		return (0);	/* Get out of here */
504 
505 	/* First code must be 8 bits = char. */
506 	*bp++ = (u_char)finchar;
507 	count--;
508 	stackp = de_stack;
509 
510 	while ((code = getcode(zs)) > -1) {
511 
512 		if ((code == CLEAR) && block_compress) {
513 			for (code = 255; code >= 0; code--)
514 				tab_prefixof(code) = 0;
515 			clear_flg = 1;
516 			free_ent = FIRST - 1;
517 			if ((code = getcode(zs)) == -1)	/* O, untimely death! */
518 				break;
519 		}
520 		incode = code;
521 
522 		/* Special case for KwKwK string. */
523 		if (code >= free_ent) {
524 			*stackp++ = finchar;
525 			code = oldcode;
526 		}
527 
528 		/* Generate output characters in reverse order. */
529 		while (code >= 256) {
530 			*stackp++ = tab_suffixof(code);
531 			code = tab_prefixof(code);
532 		}
533 		*stackp++ = finchar = tab_suffixof(code);
534 
535 		/* And put them out in forward order.  */
536 middle:		do {
537 			if (count-- == 0)
538 				return (num);
539 			*bp++ = *--stackp;
540 		} while (stackp > de_stack);
541 
542 		/* Generate the new entry. */
543 		if ((code = free_ent) < maxmaxcode) {
544 			tab_prefixof(code) = (u_short) oldcode;
545 			tab_suffixof(code) = finchar;
546 			free_ent = code + 1;
547 		}
548 
549 		/* Remember previous code. */
550 		oldcode = incode;
551 	}
552 	state = S_EOF;
553 eof:	return (num - count);
554 }
555 
556 /*-
557  * Read one code from the standard input.  If EOF, return -1.
558  * Inputs:
559  * 	stdin
560  * Outputs:
561  * 	code or -1 is returned.
562  */
563 static code_int
564 getcode(struct s_zstate *zs)
565 {
566 	code_int gcode;
567 	int r_off, bits;
568 	char_type *bp;
569 
570 	bp = gbuf;
571 	if (clear_flg > 0 || roffset >= size || free_ent > maxcode) {
572 		/*
573 		 * If the next entry will be too big for the current gcode
574 		 * size, then we must increase the size.  This implies reading
575 		 * a new buffer full, too.
576 		 */
577 		if (free_ent > maxcode) {
578 			n_bits++;
579 			if (n_bits == maxbits)	/* Won't get any bigger now. */
580 				maxcode = maxmaxcode;
581 			else
582 				maxcode = MAXCODE(n_bits);
583 		}
584 		if (clear_flg > 0) {
585 			maxcode = MAXCODE(n_bits = INIT_BITS);
586 			clear_flg = 0;
587 		}
588 		size = fread(gbuf, 1, n_bits, fp);
589 		if (size <= 0)			/* End of file. */
590 			return (-1);
591 		roffset = 0;
592 		/* Round size down to integral number of codes. */
593 		size = (size << 3) - (n_bits - 1);
594 	}
595 	r_off = roffset;
596 	bits = n_bits;
597 
598 	/* Get to the first byte. */
599 	bp += (r_off >> 3);
600 	r_off &= 7;
601 
602 	/* Get first part (low order bits). */
603 	gcode = (*bp++ >> r_off);
604 	bits -= (8 - r_off);
605 	r_off = 8 - r_off;	/* Now, roffset into gcode word. */
606 
607 	/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
608 	if (bits >= 8) {
609 		gcode |= *bp++ << r_off;
610 		r_off += 8;
611 		bits -= 8;
612 	}
613 
614 	/* High order bits. */
615 	gcode |= (*bp & rmask[bits]) << r_off;
616 	roffset += n_bits;
617 
618 	return (gcode);
619 }
620 
621 static int
622 cl_block(struct s_zstate *zs)		/* Table clear for block compress. */
623 {
624 	long rat;
625 
626 	checkpoint = in_count + CHECK_GAP;
627 
628 	if (in_count > 0x007fffff) {	/* Shift will overflow. */
629 		rat = bytes_out >> 8;
630 		if (rat == 0)		/* Don't divide by zero. */
631 			rat = 0x7fffffff;
632 		else
633 			rat = in_count / rat;
634 	} else
635 		rat = (in_count << 8) / bytes_out;	/* 8 fractional bits. */
636 	if (rat > ratio)
637 		ratio = rat;
638 	else {
639 		ratio = 0;
640 		cl_hash(zs, (count_int) hsize);
641 		free_ent = FIRST;
642 		clear_flg = 1;
643 		if (output(zs, (code_int) CLEAR) == -1)
644 			return (-1);
645 	}
646 	return (0);
647 }
648 
649 static void
650 cl_hash(struct s_zstate *zs, count_int cl_hsize)	/* Reset code table. */
651 {
652 	count_int *htab_p;
653 	long i, m1;
654 
655 	m1 = -1;
656 	htab_p = htab + cl_hsize;
657 	i = cl_hsize - 16;
658 	do {			/* Might use Sys V memset(3) here. */
659 		*(htab_p - 16) = m1;
660 		*(htab_p - 15) = m1;
661 		*(htab_p - 14) = m1;
662 		*(htab_p - 13) = m1;
663 		*(htab_p - 12) = m1;
664 		*(htab_p - 11) = m1;
665 		*(htab_p - 10) = m1;
666 		*(htab_p - 9) = m1;
667 		*(htab_p - 8) = m1;
668 		*(htab_p - 7) = m1;
669 		*(htab_p - 6) = m1;
670 		*(htab_p - 5) = m1;
671 		*(htab_p - 4) = m1;
672 		*(htab_p - 3) = m1;
673 		*(htab_p - 2) = m1;
674 		*(htab_p - 1) = m1;
675 		htab_p -= 16;
676 	} while ((i -= 16) >= 0);
677 	for (i += 16; i > 0; i--)
678 		*--htab_p = m1;
679 }
680 
681 FILE *
682 zopen(const char *fname, const char *mode, int bits)
683 {
684 	struct s_zstate *zs;
685 
686 	if ((mode[0] != 'r' && mode[0] != 'w') || mode[1] != '\0' ||
687 	    bits < 0 || bits > BITS) {
688 		errno = EINVAL;
689 		return (NULL);
690 	}
691 
692 	if ((zs = calloc(1, sizeof(struct s_zstate))) == NULL)
693 		return (NULL);
694 
695 	maxbits = bits ? bits : BITS;	/* User settable max # bits/code. */
696 	maxmaxcode = 1L << maxbits;	/* Should NEVER generate this code. */
697 	hsize = HSIZE;			/* For dynamic table sizing. */
698 	free_ent = 0;			/* First unused entry. */
699 	block_compress = BLOCK_MASK;
700 	clear_flg = 0;
701 	ratio = 0;
702 	checkpoint = CHECK_GAP;
703 	in_count = 1;			/* Length of input. */
704 	out_count = 0;			/* # of codes output (for debugging). */
705 	state = S_START;
706 	roffset = 0;
707 	size = 0;
708 
709 	/*
710 	 * Layering compress on top of stdio in order to provide buffering,
711 	 * and ensure that reads and write work with the data specified.
712 	 */
713 	if ((fp = fopen(fname, mode)) == NULL) {
714 		free(zs);
715 		return (NULL);
716 	}
717 	switch (*mode) {
718 	case 'r':
719 		zmode = 'r';
720 		return (funopen(zs, zread, NULL, NULL, zclose));
721 	case 'w':
722 		zmode = 'w';
723 		return (funopen(zs, NULL, zwrite, NULL, zclose));
724 	}
725 	/* NOTREACHED */
726 	return (NULL);
727 }
728