xref: /freebsd/usr.bin/calendar/pom.c (revision 9a14aa017b21c292740c00ee098195cd46642730)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software posted to USENET.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #if 0
33 #ifndef lint
34 static const char copyright[] =
35 "@(#) Copyright (c) 1989, 1993\n\
36 	The Regents of the University of California.  All rights reserved.\n";
37 #endif /* not lint */
38 
39 #ifndef lint
40 static const char sccsid[] = "@(#)pom.c       8.1 (Berkeley) 5/31/93";
41 #endif /* not lint */
42 #endif
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 /*
47  * Phase of the Moon.  Calculates the current phase of the moon.
48  * Based on routines from `Practical Astronomy with Your Calculator',
49  * by Duffett-Smith.  Comments give the section from the book that
50  * particular piece of code was adapted from.
51  *
52  * -- Keith E. Brandt  VIII 1984
53  *
54  */
55 
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <math.h>
59 #include <string.h>
60 #include <sysexits.h>
61 #include <time.h>
62 #include <unistd.h>
63 
64 #include "calendar.h"
65 
66 #ifndef	PI
67 #define	PI	  3.14159265358979323846
68 #endif
69 #define	EPOCH	  85
70 #define	EPSILONg  279.611371	/* solar ecliptic long at EPOCH */
71 #define	RHOg	  282.680403	/* solar ecliptic long of perigee at EPOCH */
72 #define	ECCEN	  0.01671542	/* solar orbit eccentricity */
73 #define	lzero	  18.251907	/* lunar mean long at EPOCH */
74 #define	Pzero	  192.917585	/* lunar mean long of perigee at EPOCH */
75 #define	Nzero	  55.204723	/* lunar mean long of node at EPOCH */
76 #define isleap(y) ((((y) % 4) == 0 && ((y) % 100) != 0) || ((y) % 400) == 0)
77 
78 static void	adj360(double *);
79 static double	dtor(double);
80 static double	potm(double onday);
81 static double	potm_minute(double onday, int olddir);
82 
83 void
84 pom(int year, double utcoffset, int *fms, int *nms)
85 {
86 	double ffms[MAXMOONS];
87 	double fnms[MAXMOONS];
88 	int i, j;
89 
90 	fpom(year, utcoffset, ffms, fnms);
91 
92 	j = 0;
93 	for (i = 0; ffms[i] != 0; i++)
94 		fms[j++] = round(ffms[i]);
95 	fms[i] = -1;
96 	for (i = 0; fnms[i] != 0; i++)
97 		nms[i] = round(fnms[i]);
98 	nms[i] = -1;
99 }
100 
101 void
102 fpom(int year, double utcoffset, double *ffms, double *fnms)
103 {
104 	time_t tt;
105 	struct tm GMT, tmd_today, tmd_tomorrow;
106 	double days_today, days_tomorrow, today, tomorrow;
107 	int cnt, d;
108 	int yeardays;
109 	int olddir, newdir;
110 	double *pfnms, *pffms, t;
111 
112 	pfnms = fnms;
113 	pffms = ffms;
114 
115 	/*
116 	 * We take the phase of the moon one second before and one second
117 	 * after midnight.
118 	 */
119 	memset(&tmd_today, 0, sizeof(tmd_today));
120 	tmd_today.tm_year = year - 1900;
121 	tmd_today.tm_mon = 0;
122 	tmd_today.tm_mday = -1;		/* 31 December */
123 	tmd_today.tm_hour = 23;
124 	tmd_today.tm_min = 59;
125 	tmd_today.tm_sec = 59;
126 	memset(&tmd_tomorrow, 0, sizeof(tmd_tomorrow));
127 	tmd_tomorrow.tm_year = year - 1900;
128 	tmd_tomorrow.tm_mon = 0;
129 	tmd_tomorrow.tm_mday = 0;	/* 01 January */
130 	tmd_tomorrow.tm_hour = 0;
131 	tmd_tomorrow.tm_min = 0;
132 	tmd_tomorrow.tm_sec = 1;
133 
134 	tt = mktime(&tmd_today);
135 	gmtime_r(&tt, &GMT);
136 	yeardays = 0;
137 	for (cnt = EPOCH; cnt < GMT.tm_year; ++cnt)
138 		yeardays += isleap(1900 + cnt) ? DAYSPERLEAPYEAR : DAYSPERYEAR;
139 	days_today = (GMT.tm_yday + 1) + ((GMT.tm_hour +
140 	    (GMT.tm_min / FSECSPERMINUTE) + (GMT.tm_sec / FSECSPERHOUR)) /
141 	    FHOURSPERDAY);
142 	days_today += yeardays;
143 
144 	tt = mktime(&tmd_tomorrow);
145 	gmtime_r(&tt, &GMT);
146 	yeardays = 0;
147 	for (cnt = EPOCH; cnt < GMT.tm_year; ++cnt)
148 		yeardays += isleap(1900 + cnt) ? DAYSPERLEAPYEAR : DAYSPERYEAR;
149 	days_tomorrow = (GMT.tm_yday + 1) + ((GMT.tm_hour +
150 	    (GMT.tm_min / FSECSPERMINUTE) + (GMT.tm_sec / FSECSPERHOUR)) /
151 	    FHOURSPERDAY);
152 	days_tomorrow += yeardays;
153 
154 	today = potm(days_today);		/* 30 December 23:59:59 */
155 	tomorrow = potm(days_tomorrow);		/* 31 December 00:00:01 */
156 	olddir = today > tomorrow ? -1 : +1;
157 
158 	yeardays = 1 + (isleap(year) ? DAYSPERLEAPYEAR : DAYSPERYEAR); /* reuse */
159 	for (d = 0; d <= yeardays; d++) {
160 		today = potm(days_today);
161 		tomorrow = potm(days_tomorrow);
162 		newdir = today > tomorrow ? -1 : +1;
163 		if (olddir != newdir) {
164 			t = potm_minute(days_today - 1, olddir) +
165 			     utcoffset / FHOURSPERDAY;
166 			if (olddir == -1 && newdir == +1) {
167 				*pfnms = d - 1 + t;
168 				pfnms++;
169 			} else if (olddir == +1 && newdir == -1) {
170 				*pffms = d - 1 + t;
171 				pffms++;
172 			}
173 		}
174 		olddir = newdir;
175 		days_today++;
176 		days_tomorrow++;
177 	}
178 	*pffms = -1;
179 	*pfnms = -1;
180 }
181 
182 static double
183 potm_minute(double onday, int olddir) {
184 	double period = FSECSPERDAY / 2.0;
185 	double p1, p2;
186 	double before, after;
187 	int newdir;
188 
189 //	printf("---> days:%g olddir:%d\n", days, olddir);
190 
191 	p1 = onday + (period / SECSPERDAY);
192 	period /= 2;
193 
194 	while (period > 30) {	/* half a minute */
195 //		printf("period:%g - p1:%g - ", period, p1);
196 		p2 = p1 + (2.0 / SECSPERDAY);
197 		before = potm(p1);
198 		after = potm(p2);
199 //		printf("before:%10.10g - after:%10.10g\n", before, after);
200 		newdir = before < after ? -1 : +1;
201 		if (olddir != newdir)
202 			p1 += (period / SECSPERDAY);
203 		else
204 			p1 -= (period / SECSPERDAY);
205 		period /= 2;
206 //		printf("newdir:%d - p1:%10.10f - period:%g\n",
207 //		    newdir, p1, period);
208 	}
209 	p1 -= floor(p1);
210 	//exit(0);
211 	return (p1);
212 }
213 
214 /*
215  * potm --
216  *	return phase of the moon, as a percentage [0 ... 100]
217  */
218 static double
219 potm(double onday)
220 {
221 	double N, Msol, Ec, LambdaSol, l, Mm, Ev, Ac, A3, Mmprime;
222 	double A4, lprime, V, ldprime, D, Nm;
223 
224 	N = 360 * onday / 365.2422;				/* sec 42 #3 */
225 	adj360(&N);
226 	Msol = N + EPSILONg - RHOg;				/* sec 42 #4 */
227 	adj360(&Msol);
228 	Ec = 360 / PI * ECCEN * sin(dtor(Msol));		/* sec 42 #5 */
229 	LambdaSol = N + Ec + EPSILONg;				/* sec 42 #6 */
230 	adj360(&LambdaSol);
231 	l = 13.1763966 * onday + lzero;				/* sec 61 #4 */
232 	adj360(&l);
233 	Mm = l - (0.1114041 * onday) - Pzero;			/* sec 61 #5 */
234 	adj360(&Mm);
235 	Nm = Nzero - (0.0529539 * onday);			/* sec 61 #6 */
236 	adj360(&Nm);
237 	Ev = 1.2739 * sin(dtor(2*(l - LambdaSol) - Mm));	/* sec 61 #7 */
238 	Ac = 0.1858 * sin(dtor(Msol));				/* sec 61 #8 */
239 	A3 = 0.37 * sin(dtor(Msol));
240 	Mmprime = Mm + Ev - Ac - A3;				/* sec 61 #9 */
241 	Ec = 6.2886 * sin(dtor(Mmprime));			/* sec 61 #10 */
242 	A4 = 0.214 * sin(dtor(2 * Mmprime));			/* sec 61 #11 */
243 	lprime = l + Ev + Ec - Ac + A4;				/* sec 61 #12 */
244 	V = 0.6583 * sin(dtor(2 * (lprime - LambdaSol)));	/* sec 61 #13 */
245 	ldprime = lprime + V;					/* sec 61 #14 */
246 	D = ldprime - LambdaSol;				/* sec 63 #2 */
247 	return(50 * (1 - cos(dtor(D))));			/* sec 63 #3 */
248 }
249 
250 /*
251  * dtor --
252  *	convert degrees to radians
253  */
254 static double
255 dtor(double deg)
256 {
257 
258 	return(deg * PI / 180);
259 }
260 
261 /*
262  * adj360 --
263  *	adjust value so 0 <= deg <= 360
264  */
265 static void
266 adj360(double *deg)
267 {
268 
269 	for (;;)
270 		if (*deg < 0)
271 			*deg += 360;
272 		else if (*deg > 360)
273 			*deg -= 360;
274 		else
275 			break;
276 }
277