1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 * 29 * $FreeBSD$ 30 */ 31 32 #include "opt_ah.h" 33 34 /* 35 * ath statistics class. 36 */ 37 #include <sys/types.h> 38 #include <sys/file.h> 39 #include <sys/sockio.h> 40 #include <sys/socket.h> 41 #include <net/if.h> 42 #include <net/if_media.h> 43 #include <net/if_var.h> 44 45 #include <stdio.h> 46 #include <stdlib.h> 47 #include <signal.h> 48 #include <string.h> 49 #include <unistd.h> 50 #include <err.h> 51 52 #include "ah.h" 53 #include "ah_desc.h" 54 #include "net80211/ieee80211_ioctl.h" 55 #include "net80211/ieee80211_radiotap.h" 56 #include "if_athioctl.h" 57 58 #include "athstats.h" 59 60 #ifdef ATH_SUPPORT_ANI 61 #define HAL_EP_RND(x,mul) \ 62 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 63 #define HAL_RSSI(x) HAL_EP_RND(x, HAL_RSSI_EP_MULTIPLIER) 64 #endif 65 66 #define NOTPRESENT { 0, "", "" } 67 68 #define AFTER(prev) ((prev)+1) 69 70 static const struct fmt athstats[] = { 71 #define S_INPUT 0 72 { 8, "input", "input", "data frames received" }, 73 #define S_OUTPUT AFTER(S_INPUT) 74 { 8, "output", "output", "data frames transmit" }, 75 #define S_TX_ALTRATE AFTER(S_OUTPUT) 76 { 7, "altrate", "altrate", "tx frames with an alternate rate" }, 77 #define S_TX_SHORTRETRY AFTER(S_TX_ALTRATE) 78 { 7, "short", "short", "short on-chip tx retries" }, 79 #define S_TX_LONGRETRY AFTER(S_TX_SHORTRETRY) 80 { 7, "long", "long", "long on-chip tx retries" }, 81 #define S_TX_XRETRIES AFTER(S_TX_LONGRETRY) 82 { 6, "xretry", "xretry", "tx failed 'cuz too many retries" }, 83 #define S_MIB AFTER(S_TX_XRETRIES) 84 { 5, "mib", "mib", "mib overflow interrupts" }, 85 #ifndef __linux__ 86 #define S_TX_LINEAR AFTER(S_MIB) 87 { 5, "txlinear", "txlinear", "tx linearized to cluster" }, 88 #define S_BSTUCK AFTER(S_TX_LINEAR) 89 { 6, "bstuck", "bstuck", "stuck beacon conditions" }, 90 #define S_INTRCOAL AFTER(S_BSTUCK) 91 { 5, "intrcoal", "intrcoal", "interrupts coalesced" }, 92 #define S_RATE AFTER(S_INTRCOAL) 93 #else 94 #define S_RATE AFTER(S_MIB) 95 #endif 96 { 5, "rate", "rate", "current transmit rate" }, 97 #define S_WATCHDOG AFTER(S_RATE) 98 { 5, "wdog", "wdog", "watchdog timeouts" }, 99 #define S_FATAL AFTER(S_WATCHDOG) 100 { 5, "fatal", "fatal", "hardware error interrupts" }, 101 #define S_BMISS AFTER(S_FATAL) 102 { 5, "bmiss", "bmiss", "beacon miss interrupts" }, 103 #define S_RXORN AFTER(S_BMISS) 104 { 5, "rxorn", "rxorn", "recv overrun interrupts" }, 105 #define S_RXEOL AFTER(S_RXORN) 106 { 5, "rxeol", "rxeol", "recv eol interrupts" }, 107 #define S_TXURN AFTER(S_RXEOL) 108 { 5, "txurn", "txurn", "txmit underrun interrupts" }, 109 #define S_TX_MGMT AFTER(S_TXURN) 110 { 5, "txmgt", "txmgt", "tx management frames" }, 111 #define S_TX_DISCARD AFTER(S_TX_MGMT) 112 { 5, "txdisc", "txdisc", "tx frames discarded prior to association" }, 113 #define S_TX_INVALID AFTER(S_TX_DISCARD) 114 { 5, "txinv", "txinv", "tx invalid (19)" }, 115 #define S_TX_QSTOP AFTER(S_TX_INVALID) 116 { 5, "qstop", "qstop", "tx stopped 'cuz no xmit buffer" }, 117 #define S_TX_ENCAP AFTER(S_TX_QSTOP) 118 { 5, "txencode", "txencode", "tx encapsulation failed" }, 119 #define S_TX_NONODE AFTER(S_TX_ENCAP) 120 { 5, "txnonode", "txnonode", "tx failed 'cuz no node" }, 121 #define S_TX_NOBUF AFTER(S_TX_NONODE) 122 { 5, "txnobuf", "txnobuf", "tx failed 'cuz dma buffer allocation failed" }, 123 #define S_TX_NOFRAG AFTER(S_TX_NOBUF) 124 { 5, "txnofrag", "txnofrag", "tx failed 'cuz frag buffer allocation(s) failed" }, 125 #define S_TX_NOMBUF AFTER(S_TX_NOFRAG) 126 { 5, "txnombuf", "txnombuf", "tx failed 'cuz mbuf allocation failed" }, 127 #ifndef __linux__ 128 #define S_TX_NOMCL AFTER(S_TX_NOMBUF) 129 { 5, "txnomcl", "txnomcl", "tx failed 'cuz cluster allocation failed" }, 130 #define S_TX_FIFOERR AFTER(S_TX_NOMCL) 131 #else 132 #define S_TX_FIFOERR AFTER(S_TX_NOMBUF) 133 #endif 134 { 5, "efifo", "efifo", "tx failed 'cuz FIFO underrun" }, 135 #define S_TX_FILTERED AFTER(S_TX_FIFOERR) 136 { 5, "efilt", "efilt", "tx failed 'cuz destination filtered" }, 137 #define S_TX_BADRATE AFTER(S_TX_FILTERED) 138 { 5, "txbadrate", "txbadrate", "tx failed 'cuz bogus xmit rate" }, 139 #define S_TX_NOACK AFTER(S_TX_BADRATE) 140 { 5, "noack", "noack", "tx frames with no ack marked" }, 141 #define S_TX_RTS AFTER(S_TX_NOACK) 142 { 5, "rts", "rts", "tx frames with rts enabled" }, 143 #define S_TX_CTS AFTER(S_TX_RTS) 144 { 5, "cts", "cts", "tx frames with cts enabled" }, 145 #define S_TX_SHORTPRE AFTER(S_TX_CTS) 146 { 5, "shpre", "shpre", "tx frames with short preamble" }, 147 #define S_TX_PROTECT AFTER(S_TX_SHORTPRE) 148 { 5, "protect", "protect", "tx frames with 11g protection" }, 149 #define S_RX_ORN AFTER(S_TX_PROTECT) 150 { 5, "rxorn", "rxorn", "rx failed 'cuz of desc overrun" }, 151 #define S_RX_CRC_ERR AFTER(S_RX_ORN) 152 { 6, "crcerr", "crcerr", "rx failed 'cuz of bad CRC" }, 153 #define S_RX_FIFO_ERR AFTER(S_RX_CRC_ERR) 154 { 5, "rxfifo", "rxfifo", "rx failed 'cuz of FIFO overrun" }, 155 #define S_RX_CRYPTO_ERR AFTER(S_RX_FIFO_ERR) 156 { 5, "crypt", "crypt", "rx failed 'cuz decryption" }, 157 #define S_RX_MIC_ERR AFTER(S_RX_CRYPTO_ERR) 158 { 4, "mic", "mic", "rx failed 'cuz MIC failure" }, 159 #define S_RX_TOOSHORT AFTER(S_RX_MIC_ERR) 160 { 5, "rxshort", "rxshort", "rx failed 'cuz frame too short" }, 161 #define S_RX_NOMBUF AFTER(S_RX_TOOSHORT) 162 { 5, "rxnombuf", "rxnombuf", "rx setup failed 'cuz no mbuf" }, 163 #define S_RX_MGT AFTER(S_RX_NOMBUF) 164 { 5, "rxmgt", "rxmgt", "rx management frames" }, 165 #define S_RX_CTL AFTER(S_RX_MGT) 166 { 5, "rxctl", "rxctl", "rx control frames" }, 167 #define S_RX_PHY_ERR AFTER(S_RX_CTL) 168 { 7, "phyerr", "phyerr", "rx failed 'cuz of PHY err" }, 169 #define S_RX_PHY_UNDERRUN AFTER(S_RX_PHY_ERR) 170 { 4, "phyund", "TUnd", "transmit underrun" }, 171 #define S_RX_PHY_TIMING AFTER(S_RX_PHY_UNDERRUN) 172 { 4, "phytim", "Tim", "timing error" }, 173 #define S_RX_PHY_PARITY AFTER(S_RX_PHY_TIMING) 174 { 4, "phypar", "IPar", "illegal parity" }, 175 #define S_RX_PHY_RATE AFTER(S_RX_PHY_PARITY) 176 { 4, "phyrate", "IRate", "illegal rate" }, 177 #define S_RX_PHY_LENGTH AFTER(S_RX_PHY_RATE) 178 { 4, "phylen", "ILen", "illegal length" }, 179 #define S_RX_PHY_RADAR AFTER(S_RX_PHY_LENGTH) 180 { 4, "phyradar", "Radar", "radar detect" }, 181 #define S_RX_PHY_SERVICE AFTER(S_RX_PHY_RADAR) 182 { 4, "physervice", "Service", "illegal service" }, 183 #define S_RX_PHY_TOR AFTER(S_RX_PHY_SERVICE) 184 { 4, "phytor", "TOR", "transmit override receive" }, 185 #define S_RX_PHY_OFDM_TIMING AFTER(S_RX_PHY_TOR) 186 { 6, "ofdmtim", "ofdmtim", "OFDM timing" }, 187 #define S_RX_PHY_OFDM_SIGNAL_PARITY AFTER(S_RX_PHY_OFDM_TIMING) 188 { 6, "ofdmsig", "ofdmsig", "OFDM illegal parity" }, 189 #define S_RX_PHY_OFDM_RATE_ILLEGAL AFTER(S_RX_PHY_OFDM_SIGNAL_PARITY) 190 { 6, "ofdmrate", "ofdmrate", "OFDM illegal rate" }, 191 #define S_RX_PHY_OFDM_POWER_DROP AFTER(S_RX_PHY_OFDM_RATE_ILLEGAL) 192 { 6, "ofdmpow", "ofdmpow", "OFDM power drop" }, 193 #define S_RX_PHY_OFDM_SERVICE AFTER(S_RX_PHY_OFDM_POWER_DROP) 194 { 6, "ofdmservice", "ofdmservice", "OFDM illegal service" }, 195 #define S_RX_PHY_OFDM_RESTART AFTER(S_RX_PHY_OFDM_SERVICE) 196 { 6, "ofdmrestart", "ofdmrestart", "OFDM restart" }, 197 #define S_RX_PHY_CCK_TIMING AFTER(S_RX_PHY_OFDM_RESTART) 198 { 6, "ccktim", "ccktim", "CCK timing" }, 199 #define S_RX_PHY_CCK_HEADER_CRC AFTER(S_RX_PHY_CCK_TIMING) 200 { 6, "cckhead", "cckhead", "CCK header crc" }, 201 #define S_RX_PHY_CCK_RATE_ILLEGAL AFTER(S_RX_PHY_CCK_HEADER_CRC) 202 { 6, "cckrate", "cckrate", "CCK illegal rate" }, 203 #define S_RX_PHY_CCK_SERVICE AFTER(S_RX_PHY_CCK_RATE_ILLEGAL) 204 { 6, "cckservice", "cckservice", "CCK illegal service" }, 205 #define S_RX_PHY_CCK_RESTART AFTER(S_RX_PHY_CCK_SERVICE) 206 { 6, "cckrestar", "cckrestar", "CCK restart" }, 207 #define S_BE_NOMBUF AFTER(S_RX_PHY_CCK_RESTART) 208 { 4, "benombuf", "benombuf", "beacon setup failed 'cuz no mbuf" }, 209 #define S_BE_XMIT AFTER(S_BE_NOMBUF) 210 { 7, "bexmit", "bexmit", "beacons transmitted" }, 211 #define S_PER_CAL AFTER(S_BE_XMIT) 212 { 4, "pcal", "pcal", "periodic calibrations" }, 213 #define S_PER_CALFAIL AFTER(S_PER_CAL) 214 { 4, "pcalf", "pcalf", "periodic calibration failures" }, 215 #define S_PER_RFGAIN AFTER(S_PER_CALFAIL) 216 { 4, "prfga", "prfga", "rfgain value change" }, 217 #if ATH_SUPPORT_TDMA 218 #define S_TDMA_UPDATE AFTER(S_PER_RFGAIN) 219 { 5, "tdmau", "tdmau", "TDMA slot timing updates" }, 220 #define S_TDMA_TIMERS AFTER(S_TDMA_UPDATE) 221 { 5, "tdmab", "tdmab", "TDMA slot update set beacon timers" }, 222 #define S_TDMA_TSF AFTER(S_TDMA_TIMERS) 223 { 5, "tdmat", "tdmat", "TDMA slot update set TSF" }, 224 #define S_TDMA_TSFADJ AFTER(S_TDMA_TSF) 225 { 8, "tdmadj", "tdmadj", "TDMA slot adjust (usecs, smoothed)" }, 226 #define S_TDMA_ACK AFTER(S_TDMA_TSFADJ) 227 { 5, "tdmack", "tdmack", "TDMA tx failed 'cuz ACK required" }, 228 #define S_RATE_CALLS AFTER(S_TDMA_ACK) 229 #else 230 #define S_RATE_CALLS AFTER(S_PER_RFGAIN) 231 #endif 232 { 5, "ratec", "ratec", "rate control checks" }, 233 #define S_RATE_RAISE AFTER(S_RATE_CALLS) 234 { 5, "rate+", "rate+", "rate control raised xmit rate" }, 235 #define S_RATE_DROP AFTER(S_RATE_RAISE) 236 { 5, "rate-", "rate-", "rate control dropped xmit rate" }, 237 #define S_TX_RSSI AFTER(S_RATE_DROP) 238 { 4, "arssi", "arssi", "rssi of last ack" }, 239 #define S_RX_RSSI AFTER(S_TX_RSSI) 240 { 4, "rssi", "rssi", "avg recv rssi" }, 241 #define S_RX_NOISE AFTER(S_RX_RSSI) 242 { 5, "noise", "noise", "rx noise floor" }, 243 #define S_BMISS_PHANTOM AFTER(S_RX_NOISE) 244 { 5, "bmissphantom", "bmissphantom", "phantom beacon misses" }, 245 #define S_TX_RAW AFTER(S_BMISS_PHANTOM) 246 { 5, "txraw", "txraw", "tx frames through raw api" }, 247 #define S_TX_RAW_FAIL AFTER(S_TX_RAW) 248 { 5, "txrawfail", "txrawfail", "raw tx failed 'cuz interface/hw down" }, 249 #define S_RX_TOOBIG AFTER(S_TX_RAW_FAIL) 250 { 5, "rx2big", "rx2big", "rx failed 'cuz frame too large" }, 251 #define S_RX_AGG AFTER(S_RX_TOOBIG) 252 { 5, "rxagg", "rxagg", "A-MPDU sub-frames received" }, 253 #define S_RX_HALFGI AFTER(S_RX_AGG) 254 { 5, "rxhalfgi", "rxhgi", "Half-GI frames received" }, 255 #define S_RX_2040 AFTER(S_RX_HALFGI) 256 { 6, "rx2040", "rx2040", "40MHz frames received" }, 257 #define S_RX_PRE_CRC_ERR AFTER(S_RX_2040) 258 { 11, "rxprecrcerr", "rxprecrcerr", "CRC errors for non-last A-MPDU subframes" }, 259 #define S_RX_POST_CRC_ERR AFTER(S_RX_PRE_CRC_ERR) 260 { 12, "rxpostcrcerr", "rxpostcrcerr", "CRC errors for last subframe in an A-MPDU" }, 261 #define S_RX_DECRYPT_BUSY_ERR AFTER(S_RX_POST_CRC_ERR) 262 { 10, "rxdescbusy", "rxdescbusy", "Decryption engine busy" }, 263 #define S_RX_HI_CHAIN AFTER(S_RX_DECRYPT_BUSY_ERR) 264 { 4, "rxhi", "rxhi", "Frames received with RX chain in high power mode" }, 265 #define S_RX_STBC AFTER(S_RX_HI_CHAIN) 266 { 6, "rxstbc", "rxstbc", "Frames received w/ STBC encoding" }, 267 #define S_TX_HTPROTECT AFTER(S_RX_STBC) 268 { 7, "txhtprot", "txhtprot", "Frames transmitted with HT Protection" }, 269 #define S_RX_QEND AFTER(S_TX_HTPROTECT) 270 { 7, "rxquend", "rxquend", "Hit end of RX descriptor queue" }, 271 #define S_TX_TIMEOUT AFTER(S_RX_QEND) 272 { 4, "txtimeout", "TXTX", "TX Timeout" }, 273 #define S_TX_CSTIMEOUT AFTER(S_TX_TIMEOUT) 274 { 4, "csttimeout", "CSTX", "Carrier Sense Timeout" }, 275 #define S_TX_XTXOP_ERR AFTER(S_TX_CSTIMEOUT) 276 { 5, "xtxoperr", "TXOPX", "TXOP exceed" }, 277 #define S_TX_TIMEREXPIRED_ERR AFTER(S_TX_XTXOP_ERR) 278 { 7, "texperr", "texperr", "TX Timer expired" }, 279 #define S_TX_DESCCFG_ERR AFTER(S_TX_TIMEREXPIRED_ERR) 280 { 10, "desccfgerr", "desccfgerr", "TX descriptor error" }, 281 #define S_TX_SWRETRIES AFTER(S_TX_DESCCFG_ERR) 282 { 9, "txswretry", "txswretry", "Number of frames retransmitted in software" }, 283 #define S_TX_SWRETRIES_MAX AFTER(S_TX_SWRETRIES) 284 { 7, "txswmax", "txswmax", "Number of frames exceeding software retry" }, 285 #define S_TX_DATA_UNDERRUN AFTER(S_TX_SWRETRIES_MAX) 286 { 5, "txdataunderrun", "TXDAU", "A-MPDU TX FIFO data underrun" }, 287 #define S_TX_DELIM_UNDERRUN AFTER(S_TX_DATA_UNDERRUN) 288 { 5, "txdelimunderrun", "TXDEU", "A-MPDU TX Delimiter underrun" }, 289 #define S_TX_AGGR_OK AFTER(S_TX_DELIM_UNDERRUN) 290 { 5, "txaggrok", "TXAOK", "A-MPDU sub-frame TX attempt success" }, 291 #define S_TX_AGGR_FAIL AFTER(S_TX_AGGR_OK) 292 { 4, "txaggrfail", "TXAF", "A-MPDU sub-frame TX attempt failures" }, 293 #define S_TX_AGGR_FAILALL AFTER(S_TX_AGGR_FAIL) 294 { 7, "txaggrfailall", "TXAFALL", "A-MPDU TX frame failures" }, 295 #ifndef __linux__ 296 #define S_CABQ_XMIT AFTER(S_TX_AGGR_FAILALL) 297 { 7, "cabxmit", "cabxmit", "cabq frames transmitted" }, 298 #define S_CABQ_BUSY AFTER(S_CABQ_XMIT) 299 { 8, "cabqbusy", "cabqbusy", "cabq xmit overflowed beacon interval" }, 300 #define S_TX_NODATA AFTER(S_CABQ_BUSY) 301 { 8, "txnodata", "txnodata", "tx discarded empty frame" }, 302 #define S_TX_BUSDMA AFTER(S_TX_NODATA) 303 { 8, "txbusdma", "txbusdma", "tx failed for dma resrcs" }, 304 #define S_RX_BUSDMA AFTER(S_TX_BUSDMA) 305 { 8, "rxbusdma", "rxbusdma", "rx setup failed for dma resrcs" }, 306 #define S_FF_TXOK AFTER(S_RX_BUSDMA) 307 #else 308 #define S_FF_TXOK AFTER(S_TX_AGGR_FAILALL) 309 #endif 310 { 5, "fftxok", "fftxok", "fast frames xmit successfully" }, 311 #define S_FF_TXERR AFTER(S_FF_TXOK) 312 { 5, "fftxerr", "fftxerr", "fast frames not xmit due to error" }, 313 #define S_FF_RX AFTER(S_FF_TXERR) 314 { 5, "ffrx", "ffrx", "fast frames received" }, 315 #define S_FF_FLUSH AFTER(S_FF_RX) 316 { 5, "ffflush", "ffflush", "fast frames flushed from staging q" }, 317 #define S_TX_QFULL AFTER(S_FF_FLUSH) 318 { 5, "txqfull", "txqfull", "tx discarded 'cuz queue is full" }, 319 #define S_ANT_DEFSWITCH AFTER(S_TX_QFULL) 320 { 5, "defsw", "defsw", "switched default/rx antenna" }, 321 #define S_ANT_TXSWITCH AFTER(S_ANT_DEFSWITCH) 322 { 5, "txsw", "txsw", "tx used alternate antenna" }, 323 #ifdef ATH_SUPPORT_ANI 324 #define S_ANI_NOISE AFTER(S_ANT_TXSWITCH) 325 { 2, "ni", "NI", "noise immunity level" }, 326 #define S_ANI_SPUR AFTER(S_ANI_NOISE) 327 { 2, "si", "SI", "spur immunity level" }, 328 #define S_ANI_STEP AFTER(S_ANI_SPUR) 329 { 2, "step", "ST", "first step level" }, 330 #define S_ANI_OFDM AFTER(S_ANI_STEP) 331 { 4, "owsd", "OWSD", "OFDM weak signal detect" }, 332 #define S_ANI_CCK AFTER(S_ANI_OFDM) 333 { 4, "cwst", "CWST", "CCK weak signal threshold" }, 334 #define S_ANI_MAXSPUR AFTER(S_ANI_CCK) 335 { 3, "maxsi","MSI", "max spur immunity level" }, 336 #define S_ANI_LISTEN AFTER(S_ANI_MAXSPUR) 337 { 6, "listen","LISTEN", "listen time" }, 338 #define S_ANI_NIUP AFTER(S_ANI_LISTEN) 339 { 4, "ni+", "NI-", "ANI increased noise immunity" }, 340 #define S_ANI_NIDOWN AFTER(S_ANI_NIUP) 341 { 4, "ni-", "NI-", "ANI decrease noise immunity" }, 342 #define S_ANI_SIUP AFTER(S_ANI_NIDOWN) 343 { 4, "si+", "SI+", "ANI increased spur immunity" }, 344 #define S_ANI_SIDOWN AFTER(S_ANI_SIUP) 345 { 4, "si-", "SI-", "ANI decrease spur immunity" }, 346 #define S_ANI_OFDMON AFTER(S_ANI_SIDOWN) 347 { 5, "ofdm+","OFDM+", "ANI enabled OFDM weak signal detect" }, 348 #define S_ANI_OFDMOFF AFTER(S_ANI_OFDMON) 349 { 5, "ofdm-","OFDM-", "ANI disabled OFDM weak signal detect" }, 350 #define S_ANI_CCKHI AFTER(S_ANI_OFDMOFF) 351 { 5, "cck+", "CCK+", "ANI enabled CCK weak signal threshold" }, 352 #define S_ANI_CCKLO AFTER(S_ANI_CCKHI) 353 { 5, "cck-", "CCK-", "ANI disabled CCK weak signal threshold" }, 354 #define S_ANI_STEPUP AFTER(S_ANI_CCKLO) 355 { 5, "step+","STEP+", "ANI increased first step level" }, 356 #define S_ANI_STEPDOWN AFTER(S_ANI_STEPUP) 357 { 5, "step-","STEP-", "ANI decreased first step level" }, 358 #define S_ANI_OFDMERRS AFTER(S_ANI_STEPDOWN) 359 { 8, "ofdm", "OFDM", "cumulative OFDM phy error count" }, 360 #define S_ANI_CCKERRS AFTER(S_ANI_OFDMERRS) 361 { 8, "cck", "CCK", "cumulative CCK phy error count" }, 362 #define S_ANI_RESET AFTER(S_ANI_CCKERRS) 363 { 5, "reset","RESET", "ANI parameters zero'd for non-STA operation" }, 364 #define S_ANI_LZERO AFTER(S_ANI_RESET) 365 { 5, "lzero","LZERO", "ANI forced listen time to zero" }, 366 #define S_ANI_LNEG AFTER(S_ANI_LZERO) 367 { 5, "lneg", "LNEG", "ANI calculated listen time < 0" }, 368 #define S_MIB_ACKBAD AFTER(S_ANI_LNEG) 369 { 5, "ackbad","ACKBAD", "missing ACK's" }, 370 #define S_MIB_RTSBAD AFTER(S_MIB_ACKBAD) 371 { 5, "rtsbad","RTSBAD", "RTS without CTS" }, 372 #define S_MIB_RTSGOOD AFTER(S_MIB_RTSBAD) 373 { 5, "rtsgood","RTSGOOD", "successful RTS" }, 374 #define S_MIB_FCSBAD AFTER(S_MIB_RTSGOOD) 375 { 5, "fcsbad","FCSBAD", "bad FCS" }, 376 #define S_MIB_BEACONS AFTER(S_MIB_FCSBAD) 377 { 5, "beacons","beacons", "beacons received" }, 378 #define S_NODE_AVGBRSSI AFTER(S_MIB_BEACONS) 379 { 3, "avgbrssi","BSI", "average rssi (beacons only)" }, 380 #define S_NODE_AVGRSSI AFTER(S_NODE_AVGBRSSI) 381 { 3, "avgrssi","DSI", "average rssi (all rx'd frames)" }, 382 #define S_NODE_AVGARSSI AFTER(S_NODE_AVGRSSI) 383 { 3, "avgtxrssi","TSI", "average rssi (ACKs only)" }, 384 #define S_ANT_TX0 AFTER(S_NODE_AVGARSSI) 385 #else 386 #define S_ANT_TX0 AFTER(S_ANT_TXSWITCH) 387 #endif /* ATH_SUPPORT_ANI */ 388 { 8, "tx0", "ant0(tx)", "frames tx on antenna 0" }, 389 #define S_ANT_TX1 AFTER(S_ANT_TX0) 390 { 8, "tx1", "ant1(tx)", "frames tx on antenna 1" }, 391 #define S_ANT_TX2 AFTER(S_ANT_TX1) 392 { 8, "tx2", "ant2(tx)", "frames tx on antenna 2" }, 393 #define S_ANT_TX3 AFTER(S_ANT_TX2) 394 { 8, "tx3", "ant3(tx)", "frames tx on antenna 3" }, 395 #define S_ANT_TX4 AFTER(S_ANT_TX3) 396 { 8, "tx4", "ant4(tx)", "frames tx on antenna 4" }, 397 #define S_ANT_TX5 AFTER(S_ANT_TX4) 398 { 8, "tx5", "ant5(tx)", "frames tx on antenna 5" }, 399 #define S_ANT_TX6 AFTER(S_ANT_TX5) 400 { 8, "tx6", "ant6(tx)", "frames tx on antenna 6" }, 401 #define S_ANT_TX7 AFTER(S_ANT_TX6) 402 { 8, "tx7", "ant7(tx)", "frames tx on antenna 7" }, 403 #define S_ANT_RX0 AFTER(S_ANT_TX7) 404 { 8, "rx0", "ant0(rx)", "frames rx on antenna 0" }, 405 #define S_ANT_RX1 AFTER(S_ANT_RX0) 406 { 8, "rx1", "ant1(rx)", "frames rx on antenna 1" }, 407 #define S_ANT_RX2 AFTER(S_ANT_RX1) 408 { 8, "rx2", "ant2(rx)", "frames rx on antenna 2" }, 409 #define S_ANT_RX3 AFTER(S_ANT_RX2) 410 { 8, "rx3", "ant3(rx)", "frames rx on antenna 3" }, 411 #define S_ANT_RX4 AFTER(S_ANT_RX3) 412 { 8, "rx4", "ant4(rx)", "frames rx on antenna 4" }, 413 #define S_ANT_RX5 AFTER(S_ANT_RX4) 414 { 8, "rx5", "ant5(rx)", "frames rx on antenna 5" }, 415 #define S_ANT_RX6 AFTER(S_ANT_RX5) 416 { 8, "rx6", "ant6(rx)", "frames rx on antenna 6" }, 417 #define S_ANT_RX7 AFTER(S_ANT_RX6) 418 { 8, "rx7", "ant7(rx)", "frames rx on antenna 7" }, 419 #define S_TX_SIGNAL AFTER(S_ANT_RX7) 420 { 4, "asignal", "asig", "signal of last ack (dBm)" }, 421 #define S_RX_SIGNAL AFTER(S_TX_SIGNAL) 422 { 4, "signal", "sig", "avg recv signal (dBm)" }, 423 #define S_BMISSCOUNT AFTER(S_RX_SIGNAL) 424 { 8, "bmisscount", "bmisscnt", "beacon miss count" }, 425 }; 426 #define S_PHY_MIN S_RX_PHY_UNDERRUN 427 #define S_PHY_MAX S_RX_PHY_CCK_RESTART 428 #define S_LAST S_ANT_TX0 429 #define S_MAX S_BMISSCOUNT+1 430 431 /* 432 * XXX fold this into the external HAL definitions! -adrian 433 */ 434 struct _athstats { 435 struct ath_stats ath; 436 #ifdef ATH_SUPPORT_ANI 437 struct { 438 uint32_t ast_ani_niup; /* increased noise immunity */ 439 uint32_t ast_ani_nidown; /* decreased noise immunity */ 440 uint32_t ast_ani_spurup; /* increased spur immunity */ 441 uint32_t ast_ani_spurdown; /* descreased spur immunity */ 442 uint32_t ast_ani_ofdmon; /* OFDM weak signal detect on */ 443 uint32_t ast_ani_ofdmoff; /* OFDM weak signal detect off*/ 444 uint32_t ast_ani_cckhigh; /* CCK weak signal thr high */ 445 uint32_t ast_ani_ccklow; /* CCK weak signal thr low */ 446 uint32_t ast_ani_stepup; /* increased first step level */ 447 uint32_t ast_ani_stepdown; /* decreased first step level */ 448 uint32_t ast_ani_ofdmerrs; /* cumulative ofdm phy err cnt*/ 449 uint32_t ast_ani_cckerrs; /* cumulative cck phy err cnt */ 450 uint32_t ast_ani_reset; /* params zero'd for non-STA */ 451 uint32_t ast_ani_lzero; /* listen time forced to zero */ 452 uint32_t ast_ani_lneg; /* listen time calculated < 0 */ 453 HAL_MIB_STATS ast_mibstats; /* MIB counter stats */ 454 HAL_NODE_STATS ast_nodestats; /* latest rssi stats */ 455 } ani_stats; 456 struct { 457 uint8_t noiseImmunityLevel; 458 uint8_t spurImmunityLevel; 459 uint8_t firstepLevel; 460 uint8_t ofdmWeakSigDetectOff; 461 uint8_t cckWeakSigThreshold; 462 uint32_t listenTime; 463 } ani_state; 464 #endif 465 }; 466 467 struct athstatfoo_p { 468 struct athstatfoo base; 469 int s; 470 int optstats; 471 #define ATHSTATS_ANI 0x0001 472 struct ifreq ifr; 473 struct ath_diag atd; 474 struct _athstats cur; 475 struct _athstats total; 476 }; 477 478 static void 479 ath_setifname(struct athstatfoo *wf0, const char *ifname) 480 { 481 struct athstatfoo_p *wf = (struct athstatfoo_p *) wf0; 482 483 strncpy(wf->ifr.ifr_name, ifname, sizeof (wf->ifr.ifr_name)); 484 #ifdef ATH_SUPPORT_ANI 485 strncpy(wf->atd.ad_name, ifname, sizeof (wf->atd.ad_name)); 486 wf->optstats |= ATHSTATS_ANI; 487 #endif 488 } 489 490 static void 491 ath_zerostats(struct athstatfoo *wf0) 492 { 493 struct athstatfoo_p *wf = (struct athstatfoo_p *) wf0; 494 495 if (ioctl(wf->s, SIOCZATHSTATS, &wf->ifr) < 0) 496 err(-1, "ioctl: %s", wf->ifr.ifr_name); 497 } 498 499 static void 500 ath_collect(struct athstatfoo_p *wf, struct _athstats *stats) 501 { 502 wf->ifr.ifr_data = (caddr_t) &stats->ath; 503 if (ioctl(wf->s, SIOCGATHSTATS, &wf->ifr) < 0) 504 err(1, "ioctl: %s", wf->ifr.ifr_name); 505 #ifdef ATH_SUPPORT_ANI 506 if (wf->optstats & ATHSTATS_ANI) { 507 wf->atd.ad_id = 5; 508 wf->atd.ad_out_data = (caddr_t) &stats->ani_state; 509 wf->atd.ad_out_size = sizeof(stats->ani_state); 510 if (ioctl(wf->s, SIOCGATHDIAG, &wf->atd) < 0) { 511 warn("ioctl: %s", wf->atd.ad_name); 512 wf->optstats &= ~ATHSTATS_ANI; 513 } 514 wf->atd.ad_id = 8; 515 wf->atd.ad_out_data = (caddr_t) &stats->ani_stats; 516 wf->atd.ad_out_size = sizeof(stats->ani_stats); 517 if (ioctl(wf->s, SIOCGATHDIAG, &wf->atd) < 0) 518 warn("ioctl: %s", wf->atd.ad_name); 519 } 520 #endif /* ATH_SUPPORT_ANI */ 521 } 522 523 static void 524 ath_collect_cur(struct statfoo *sf) 525 { 526 struct athstatfoo_p *wf = (struct athstatfoo_p *) sf; 527 528 ath_collect(wf, &wf->cur); 529 } 530 531 static void 532 ath_collect_tot(struct statfoo *sf) 533 { 534 struct athstatfoo_p *wf = (struct athstatfoo_p *) sf; 535 536 ath_collect(wf, &wf->total); 537 } 538 539 static void 540 ath_update_tot(struct statfoo *sf) 541 { 542 struct athstatfoo_p *wf = (struct athstatfoo_p *) sf; 543 544 wf->total = wf->cur; 545 } 546 547 static void 548 snprintrate(char b[], size_t bs, int rate) 549 { 550 if (rate & IEEE80211_RATE_MCS) 551 snprintf(b, bs, "MCS%u", rate &~ IEEE80211_RATE_MCS); 552 else if (rate & 1) 553 snprintf(b, bs, "%u.5M", rate / 2); 554 else 555 snprintf(b, bs, "%uM", rate / 2); 556 } 557 558 static int 559 ath_get_curstat(struct statfoo *sf, int s, char b[], size_t bs) 560 { 561 struct athstatfoo_p *wf = (struct athstatfoo_p *) sf; 562 #define STAT(x) \ 563 snprintf(b, bs, "%u", wf->cur.ath.ast_##x - wf->total.ath.ast_##x); return 1 564 #define PHY(x) \ 565 snprintf(b, bs, "%u", wf->cur.ath.ast_rx_phy[x] - wf->total.ath.ast_rx_phy[x]); return 1 566 #define ANI(x) \ 567 snprintf(b, bs, "%u", wf->cur.ani_state.x); return 1 568 #define ANISTAT(x) \ 569 snprintf(b, bs, "%u", wf->cur.ani_stats.ast_ani_##x - wf->total.ani_stats.ast_ani_##x); return 1 570 #define MIBSTAT(x) \ 571 snprintf(b, bs, "%u", wf->cur.ani_stats.ast_mibstats.x - wf->total.ani_stats.ast_mibstats.x); return 1 572 #define TXANT(x) \ 573 snprintf(b, bs, "%u", wf->cur.ath.ast_ant_tx[x] - wf->total.ath.ast_ant_tx[x]); return 1 574 #define RXANT(x) \ 575 snprintf(b, bs, "%u", wf->cur.ath.ast_ant_rx[x] - wf->total.ath.ast_ant_rx[x]); return 1 576 577 switch (s) { 578 case S_INPUT: 579 snprintf(b, bs, "%lu", 580 (unsigned long) 581 ((wf->cur.ath.ast_rx_packets - wf->total.ath.ast_rx_packets) - 582 (wf->cur.ath.ast_rx_mgt - wf->total.ath.ast_rx_mgt))); 583 return 1; 584 case S_OUTPUT: 585 snprintf(b, bs, "%lu", 586 (unsigned long) 587 (wf->cur.ath.ast_tx_packets - wf->total.ath.ast_tx_packets)); 588 return 1; 589 case S_RATE: 590 snprintrate(b, bs, wf->cur.ath.ast_tx_rate); 591 return 1; 592 case S_WATCHDOG: STAT(watchdog); 593 case S_FATAL: STAT(hardware); 594 case S_BMISS: STAT(bmiss); 595 case S_BMISS_PHANTOM: STAT(bmiss_phantom); 596 #ifdef S_BSTUCK 597 case S_BSTUCK: STAT(bstuck); 598 #endif 599 case S_RXORN: STAT(rxorn); 600 case S_RXEOL: STAT(rxeol); 601 case S_TXURN: STAT(txurn); 602 case S_MIB: STAT(mib); 603 #ifdef S_INTRCOAL 604 case S_INTRCOAL: STAT(intrcoal); 605 #endif 606 case S_TX_MGMT: STAT(tx_mgmt); 607 case S_TX_DISCARD: STAT(tx_discard); 608 case S_TX_QSTOP: STAT(tx_qstop); 609 case S_TX_ENCAP: STAT(tx_encap); 610 case S_TX_NONODE: STAT(tx_nonode); 611 case S_TX_NOBUF: STAT(tx_nobuf); 612 case S_TX_NOFRAG: STAT(tx_nofrag); 613 case S_TX_NOMBUF: STAT(tx_nombuf); 614 #ifdef S_TX_NOMCL 615 case S_TX_NOMCL: STAT(tx_nomcl); 616 case S_TX_LINEAR: STAT(tx_linear); 617 case S_TX_NODATA: STAT(tx_nodata); 618 case S_TX_BUSDMA: STAT(tx_busdma); 619 #endif 620 case S_TX_XRETRIES: STAT(tx_xretries); 621 case S_TX_FIFOERR: STAT(tx_fifoerr); 622 case S_TX_FILTERED: STAT(tx_filtered); 623 case S_TX_SHORTRETRY: STAT(tx_shortretry); 624 case S_TX_LONGRETRY: STAT(tx_longretry); 625 case S_TX_BADRATE: STAT(tx_badrate); 626 case S_TX_NOACK: STAT(tx_noack); 627 case S_TX_RTS: STAT(tx_rts); 628 case S_TX_CTS: STAT(tx_cts); 629 case S_TX_SHORTPRE: STAT(tx_shortpre); 630 case S_TX_ALTRATE: STAT(tx_altrate); 631 case S_TX_PROTECT: STAT(tx_protect); 632 case S_TX_RAW: STAT(tx_raw); 633 case S_TX_RAW_FAIL: STAT(tx_raw_fail); 634 case S_RX_NOMBUF: STAT(rx_nombuf); 635 #ifdef S_RX_BUSDMA 636 case S_RX_BUSDMA: STAT(rx_busdma); 637 #endif 638 case S_RX_ORN: STAT(rx_orn); 639 case S_RX_CRC_ERR: STAT(rx_crcerr); 640 case S_RX_FIFO_ERR: STAT(rx_fifoerr); 641 case S_RX_CRYPTO_ERR: STAT(rx_badcrypt); 642 case S_RX_MIC_ERR: STAT(rx_badmic); 643 case S_RX_PHY_ERR: STAT(rx_phyerr); 644 case S_RX_PHY_UNDERRUN: PHY(HAL_PHYERR_UNDERRUN); 645 case S_RX_PHY_TIMING: PHY(HAL_PHYERR_TIMING); 646 case S_RX_PHY_PARITY: PHY(HAL_PHYERR_PARITY); 647 case S_RX_PHY_RATE: PHY(HAL_PHYERR_RATE); 648 case S_RX_PHY_LENGTH: PHY(HAL_PHYERR_LENGTH); 649 case S_RX_PHY_RADAR: PHY(HAL_PHYERR_RADAR); 650 case S_RX_PHY_SERVICE: PHY(HAL_PHYERR_SERVICE); 651 case S_RX_PHY_TOR: PHY(HAL_PHYERR_TOR); 652 case S_RX_PHY_OFDM_TIMING: PHY(HAL_PHYERR_OFDM_TIMING); 653 case S_RX_PHY_OFDM_SIGNAL_PARITY: PHY(HAL_PHYERR_OFDM_SIGNAL_PARITY); 654 case S_RX_PHY_OFDM_RATE_ILLEGAL: PHY(HAL_PHYERR_OFDM_RATE_ILLEGAL); 655 case S_RX_PHY_OFDM_POWER_DROP: PHY(HAL_PHYERR_OFDM_POWER_DROP); 656 case S_RX_PHY_OFDM_SERVICE: PHY(HAL_PHYERR_OFDM_SERVICE); 657 case S_RX_PHY_OFDM_RESTART: PHY(HAL_PHYERR_OFDM_RESTART); 658 case S_RX_PHY_CCK_TIMING: PHY(HAL_PHYERR_CCK_TIMING); 659 case S_RX_PHY_CCK_HEADER_CRC: PHY(HAL_PHYERR_CCK_HEADER_CRC); 660 case S_RX_PHY_CCK_RATE_ILLEGAL: PHY(HAL_PHYERR_CCK_RATE_ILLEGAL); 661 case S_RX_PHY_CCK_SERVICE: PHY(HAL_PHYERR_CCK_SERVICE); 662 case S_RX_PHY_CCK_RESTART: PHY(HAL_PHYERR_CCK_RESTART); 663 case S_RX_TOOSHORT: STAT(rx_tooshort); 664 case S_RX_TOOBIG: STAT(rx_toobig); 665 case S_RX_MGT: STAT(rx_mgt); 666 case S_RX_CTL: STAT(rx_ctl); 667 case S_TX_RSSI: 668 snprintf(b, bs, "%d", wf->cur.ath.ast_tx_rssi); 669 return 1; 670 case S_RX_RSSI: 671 snprintf(b, bs, "%d", wf->cur.ath.ast_rx_rssi); 672 return 1; 673 case S_BE_XMIT: STAT(be_xmit); 674 case S_BE_NOMBUF: STAT(be_nombuf); 675 case S_PER_CAL: STAT(per_cal); 676 case S_PER_CALFAIL: STAT(per_calfail); 677 case S_PER_RFGAIN: STAT(per_rfgain); 678 #ifdef S_TDMA_UPDATE 679 case S_TDMA_UPDATE: STAT(tdma_update); 680 case S_TDMA_TIMERS: STAT(tdma_timers); 681 case S_TDMA_TSF: STAT(tdma_tsf); 682 case S_TDMA_TSFADJ: 683 snprintf(b, bs, "-%d/+%d", 684 wf->cur.ath.ast_tdma_tsfadjm, wf->cur.ath.ast_tdma_tsfadjp); 685 return 1; 686 case S_TDMA_ACK: STAT(tdma_ack); 687 #endif 688 case S_RATE_CALLS: STAT(rate_calls); 689 case S_RATE_RAISE: STAT(rate_raise); 690 case S_RATE_DROP: STAT(rate_drop); 691 case S_ANT_DEFSWITCH: STAT(ant_defswitch); 692 case S_ANT_TXSWITCH: STAT(ant_txswitch); 693 #ifdef S_ANI_NOISE 694 case S_ANI_NOISE: ANI(noiseImmunityLevel); 695 case S_ANI_SPUR: ANI(spurImmunityLevel); 696 case S_ANI_STEP: ANI(firstepLevel); 697 case S_ANI_OFDM: ANI(ofdmWeakSigDetectOff); 698 case S_ANI_CCK: ANI(cckWeakSigThreshold); 699 case S_ANI_LISTEN: ANI(listenTime); 700 case S_ANI_NIUP: ANISTAT(niup); 701 case S_ANI_NIDOWN: ANISTAT(nidown); 702 case S_ANI_SIUP: ANISTAT(spurup); 703 case S_ANI_SIDOWN: ANISTAT(spurdown); 704 case S_ANI_OFDMON: ANISTAT(ofdmon); 705 case S_ANI_OFDMOFF: ANISTAT(ofdmoff); 706 case S_ANI_CCKHI: ANISTAT(cckhigh); 707 case S_ANI_CCKLO: ANISTAT(ccklow); 708 case S_ANI_STEPUP: ANISTAT(stepup); 709 case S_ANI_STEPDOWN: ANISTAT(stepdown); 710 case S_ANI_OFDMERRS: ANISTAT(ofdmerrs); 711 case S_ANI_CCKERRS: ANISTAT(cckerrs); 712 case S_ANI_RESET: ANISTAT(reset); 713 case S_ANI_LZERO: ANISTAT(lzero); 714 case S_ANI_LNEG: ANISTAT(lneg); 715 case S_MIB_ACKBAD: MIBSTAT(ackrcv_bad); 716 case S_MIB_RTSBAD: MIBSTAT(rts_bad); 717 case S_MIB_RTSGOOD: MIBSTAT(rts_good); 718 case S_MIB_FCSBAD: MIBSTAT(fcs_bad); 719 case S_MIB_BEACONS: MIBSTAT(beacons); 720 case S_NODE_AVGBRSSI: 721 snprintf(b, bs, "%u", 722 HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgbrssi)); 723 return 1; 724 case S_NODE_AVGRSSI: 725 snprintf(b, bs, "%u", 726 HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgrssi)); 727 return 1; 728 case S_NODE_AVGARSSI: 729 snprintf(b, bs, "%u", 730 HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgtxrssi)); 731 return 1; 732 #endif 733 case S_ANT_TX0: TXANT(0); 734 case S_ANT_TX1: TXANT(1); 735 case S_ANT_TX2: TXANT(2); 736 case S_ANT_TX3: TXANT(3); 737 case S_ANT_TX4: TXANT(4); 738 case S_ANT_TX5: TXANT(5); 739 case S_ANT_TX6: TXANT(6); 740 case S_ANT_TX7: TXANT(7); 741 case S_ANT_RX0: RXANT(0); 742 case S_ANT_RX1: RXANT(1); 743 case S_ANT_RX2: RXANT(2); 744 case S_ANT_RX3: RXANT(3); 745 case S_ANT_RX4: RXANT(4); 746 case S_ANT_RX5: RXANT(5); 747 case S_ANT_RX6: RXANT(6); 748 case S_ANT_RX7: RXANT(7); 749 #ifdef S_CABQ_XMIT 750 case S_CABQ_XMIT: STAT(cabq_xmit); 751 case S_CABQ_BUSY: STAT(cabq_busy); 752 #endif 753 case S_FF_TXOK: STAT(ff_txok); 754 case S_FF_TXERR: STAT(ff_txerr); 755 case S_FF_RX: STAT(ff_rx); 756 case S_FF_FLUSH: STAT(ff_flush); 757 case S_TX_QFULL: STAT(tx_qfull); 758 case S_BMISSCOUNT: STAT(be_missed); 759 case S_RX_NOISE: 760 snprintf(b, bs, "%d", wf->cur.ath.ast_rx_noise); 761 return 1; 762 case S_TX_SIGNAL: 763 snprintf(b, bs, "%d", 764 wf->cur.ath.ast_tx_rssi + wf->cur.ath.ast_rx_noise); 765 return 1; 766 case S_RX_SIGNAL: 767 snprintf(b, bs, "%d", 768 wf->cur.ath.ast_rx_rssi + wf->cur.ath.ast_rx_noise); 769 return 1; 770 case S_RX_AGG: STAT(rx_agg); 771 case S_RX_HALFGI: STAT(rx_halfgi); 772 case S_RX_2040: STAT(rx_2040); 773 case S_RX_PRE_CRC_ERR: STAT(rx_pre_crc_err); 774 case S_RX_POST_CRC_ERR: STAT(rx_post_crc_err); 775 case S_RX_DECRYPT_BUSY_ERR: STAT(rx_decrypt_busy_err); 776 case S_RX_HI_CHAIN: STAT(rx_hi_rx_chain); 777 case S_RX_STBC: STAT(rx_stbc); 778 case S_TX_HTPROTECT: STAT(tx_htprotect); 779 case S_RX_QEND: STAT(rx_hitqueueend); 780 case S_TX_TIMEOUT: STAT(tx_timeout); 781 case S_TX_CSTIMEOUT: STAT(tx_cst); 782 case S_TX_XTXOP_ERR: STAT(tx_xtxop); 783 case S_TX_TIMEREXPIRED_ERR: STAT(tx_timerexpired); 784 case S_TX_DESCCFG_ERR: STAT(tx_desccfgerr); 785 case S_TX_SWRETRIES: STAT(tx_swretries); 786 case S_TX_SWRETRIES_MAX: STAT(tx_swretrymax); 787 case S_TX_DATA_UNDERRUN: STAT(tx_data_underrun); 788 case S_TX_DELIM_UNDERRUN: STAT(tx_delim_underrun); 789 case S_TX_AGGR_OK: STAT(tx_aggr_ok); 790 case S_TX_AGGR_FAIL: STAT(tx_aggr_fail); 791 case S_TX_AGGR_FAILALL: STAT(tx_aggr_failall); 792 } 793 b[0] = '\0'; 794 return 0; 795 #undef RXANT 796 #undef TXANT 797 #undef ANI 798 #undef ANISTAT 799 #undef MIBSTAT 800 #undef PHY 801 #undef STAT 802 } 803 804 static int 805 ath_get_totstat(struct statfoo *sf, int s, char b[], size_t bs) 806 { 807 struct athstatfoo_p *wf = (struct athstatfoo_p *) sf; 808 #define STAT(x) \ 809 snprintf(b, bs, "%u", wf->total.ath.ast_##x); return 1 810 #define PHY(x) \ 811 snprintf(b, bs, "%u", wf->total.ath.ast_rx_phy[x]); return 1 812 #define ANI(x) \ 813 snprintf(b, bs, "%u", wf->total.ani_state.x); return 1 814 #define ANISTAT(x) \ 815 snprintf(b, bs, "%u", wf->total.ani_stats.ast_ani_##x); return 1 816 #define MIBSTAT(x) \ 817 snprintf(b, bs, "%u", wf->total.ani_stats.ast_mibstats.x); return 1 818 #define TXANT(x) \ 819 snprintf(b, bs, "%u", wf->total.ath.ast_ant_tx[x]); return 1 820 #define RXANT(x) \ 821 snprintf(b, bs, "%u", wf->total.ath.ast_ant_rx[x]); return 1 822 823 switch (s) { 824 case S_INPUT: 825 snprintf(b, bs, "%lu", 826 wf->total.ath.ast_rx_packets - wf->total.ath.ast_rx_mgt); 827 return 1; 828 case S_OUTPUT: 829 snprintf(b, bs, "%lu", wf->total.ath.ast_tx_packets); 830 return 1; 831 case S_RATE: 832 snprintrate(b, bs, wf->total.ath.ast_tx_rate); 833 return 1; 834 case S_WATCHDOG: STAT(watchdog); 835 case S_FATAL: STAT(hardware); 836 case S_BMISS: STAT(bmiss); 837 case S_BMISS_PHANTOM: STAT(bmiss_phantom); 838 #ifdef S_BSTUCK 839 case S_BSTUCK: STAT(bstuck); 840 #endif 841 case S_RXORN: STAT(rxorn); 842 case S_RXEOL: STAT(rxeol); 843 case S_TXURN: STAT(txurn); 844 case S_MIB: STAT(mib); 845 #ifdef S_INTRCOAL 846 case S_INTRCOAL: STAT(intrcoal); 847 #endif 848 case S_TX_MGMT: STAT(tx_mgmt); 849 case S_TX_DISCARD: STAT(tx_discard); 850 case S_TX_QSTOP: STAT(tx_qstop); 851 case S_TX_ENCAP: STAT(tx_encap); 852 case S_TX_NONODE: STAT(tx_nonode); 853 case S_TX_NOBUF: STAT(tx_nobuf); 854 case S_TX_NOFRAG: STAT(tx_nofrag); 855 case S_TX_NOMBUF: STAT(tx_nombuf); 856 #ifdef S_TX_NOMCL 857 case S_TX_NOMCL: STAT(tx_nomcl); 858 case S_TX_LINEAR: STAT(tx_linear); 859 case S_TX_NODATA: STAT(tx_nodata); 860 case S_TX_BUSDMA: STAT(tx_busdma); 861 #endif 862 case S_TX_XRETRIES: STAT(tx_xretries); 863 case S_TX_FIFOERR: STAT(tx_fifoerr); 864 case S_TX_FILTERED: STAT(tx_filtered); 865 case S_TX_SHORTRETRY: STAT(tx_shortretry); 866 case S_TX_LONGRETRY: STAT(tx_longretry); 867 case S_TX_BADRATE: STAT(tx_badrate); 868 case S_TX_NOACK: STAT(tx_noack); 869 case S_TX_RTS: STAT(tx_rts); 870 case S_TX_CTS: STAT(tx_cts); 871 case S_TX_SHORTPRE: STAT(tx_shortpre); 872 case S_TX_ALTRATE: STAT(tx_altrate); 873 case S_TX_PROTECT: STAT(tx_protect); 874 case S_TX_RAW: STAT(tx_raw); 875 case S_TX_RAW_FAIL: STAT(tx_raw_fail); 876 case S_RX_NOMBUF: STAT(rx_nombuf); 877 #ifdef S_RX_BUSDMA 878 case S_RX_BUSDMA: STAT(rx_busdma); 879 #endif 880 case S_RX_ORN: STAT(rx_orn); 881 case S_RX_CRC_ERR: STAT(rx_crcerr); 882 case S_RX_FIFO_ERR: STAT(rx_fifoerr); 883 case S_RX_CRYPTO_ERR: STAT(rx_badcrypt); 884 case S_RX_MIC_ERR: STAT(rx_badmic); 885 case S_RX_PHY_ERR: STAT(rx_phyerr); 886 case S_RX_PHY_UNDERRUN: PHY(HAL_PHYERR_UNDERRUN); 887 case S_RX_PHY_TIMING: PHY(HAL_PHYERR_TIMING); 888 case S_RX_PHY_PARITY: PHY(HAL_PHYERR_PARITY); 889 case S_RX_PHY_RATE: PHY(HAL_PHYERR_RATE); 890 case S_RX_PHY_LENGTH: PHY(HAL_PHYERR_LENGTH); 891 case S_RX_PHY_RADAR: PHY(HAL_PHYERR_RADAR); 892 case S_RX_PHY_SERVICE: PHY(HAL_PHYERR_SERVICE); 893 case S_RX_PHY_TOR: PHY(HAL_PHYERR_TOR); 894 case S_RX_PHY_OFDM_TIMING: PHY(HAL_PHYERR_OFDM_TIMING); 895 case S_RX_PHY_OFDM_SIGNAL_PARITY: PHY(HAL_PHYERR_OFDM_SIGNAL_PARITY); 896 case S_RX_PHY_OFDM_RATE_ILLEGAL: PHY(HAL_PHYERR_OFDM_RATE_ILLEGAL); 897 case S_RX_PHY_OFDM_POWER_DROP: PHY(HAL_PHYERR_OFDM_POWER_DROP); 898 case S_RX_PHY_OFDM_SERVICE: PHY(HAL_PHYERR_OFDM_SERVICE); 899 case S_RX_PHY_OFDM_RESTART: PHY(HAL_PHYERR_OFDM_RESTART); 900 case S_RX_PHY_CCK_TIMING: PHY(HAL_PHYERR_CCK_TIMING); 901 case S_RX_PHY_CCK_HEADER_CRC: PHY(HAL_PHYERR_CCK_HEADER_CRC); 902 case S_RX_PHY_CCK_RATE_ILLEGAL: PHY(HAL_PHYERR_CCK_RATE_ILLEGAL); 903 case S_RX_PHY_CCK_SERVICE: PHY(HAL_PHYERR_CCK_SERVICE); 904 case S_RX_PHY_CCK_RESTART: PHY(HAL_PHYERR_CCK_RESTART); 905 case S_RX_TOOSHORT: STAT(rx_tooshort); 906 case S_RX_TOOBIG: STAT(rx_toobig); 907 case S_RX_MGT: STAT(rx_mgt); 908 case S_RX_CTL: STAT(rx_ctl); 909 case S_TX_RSSI: 910 snprintf(b, bs, "%d", wf->total.ath.ast_tx_rssi); 911 return 1; 912 case S_RX_RSSI: 913 snprintf(b, bs, "%d", wf->total.ath.ast_rx_rssi); 914 return 1; 915 case S_BE_XMIT: STAT(be_xmit); 916 case S_BE_NOMBUF: STAT(be_nombuf); 917 case S_PER_CAL: STAT(per_cal); 918 case S_PER_CALFAIL: STAT(per_calfail); 919 case S_PER_RFGAIN: STAT(per_rfgain); 920 #ifdef S_TDMA_UPDATE 921 case S_TDMA_UPDATE: STAT(tdma_update); 922 case S_TDMA_TIMERS: STAT(tdma_timers); 923 case S_TDMA_TSF: STAT(tdma_tsf); 924 case S_TDMA_TSFADJ: 925 snprintf(b, bs, "-%d/+%d", 926 wf->total.ath.ast_tdma_tsfadjm, 927 wf->total.ath.ast_tdma_tsfadjp); 928 return 1; 929 case S_TDMA_ACK: STAT(tdma_ack); 930 #endif 931 case S_RATE_CALLS: STAT(rate_calls); 932 case S_RATE_RAISE: STAT(rate_raise); 933 case S_RATE_DROP: STAT(rate_drop); 934 case S_ANT_DEFSWITCH: STAT(ant_defswitch); 935 case S_ANT_TXSWITCH: STAT(ant_txswitch); 936 #ifdef S_ANI_NOISE 937 case S_ANI_NOISE: ANI(noiseImmunityLevel); 938 case S_ANI_SPUR: ANI(spurImmunityLevel); 939 case S_ANI_STEP: ANI(firstepLevel); 940 case S_ANI_OFDM: ANI(ofdmWeakSigDetectOff); 941 case S_ANI_CCK: ANI(cckWeakSigThreshold); 942 case S_ANI_LISTEN: ANI(listenTime); 943 case S_ANI_NIUP: ANISTAT(niup); 944 case S_ANI_NIDOWN: ANISTAT(nidown); 945 case S_ANI_SIUP: ANISTAT(spurup); 946 case S_ANI_SIDOWN: ANISTAT(spurdown); 947 case S_ANI_OFDMON: ANISTAT(ofdmon); 948 case S_ANI_OFDMOFF: ANISTAT(ofdmoff); 949 case S_ANI_CCKHI: ANISTAT(cckhigh); 950 case S_ANI_CCKLO: ANISTAT(ccklow); 951 case S_ANI_STEPUP: ANISTAT(stepup); 952 case S_ANI_STEPDOWN: ANISTAT(stepdown); 953 case S_ANI_OFDMERRS: ANISTAT(ofdmerrs); 954 case S_ANI_CCKERRS: ANISTAT(cckerrs); 955 case S_ANI_RESET: ANISTAT(reset); 956 case S_ANI_LZERO: ANISTAT(lzero); 957 case S_ANI_LNEG: ANISTAT(lneg); 958 case S_MIB_ACKBAD: MIBSTAT(ackrcv_bad); 959 case S_MIB_RTSBAD: MIBSTAT(rts_bad); 960 case S_MIB_RTSGOOD: MIBSTAT(rts_good); 961 case S_MIB_FCSBAD: MIBSTAT(fcs_bad); 962 case S_MIB_BEACONS: MIBSTAT(beacons); 963 case S_NODE_AVGBRSSI: 964 snprintf(b, bs, "%u", 965 HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgbrssi)); 966 return 1; 967 case S_NODE_AVGRSSI: 968 snprintf(b, bs, "%u", 969 HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgrssi)); 970 return 1; 971 case S_NODE_AVGARSSI: 972 snprintf(b, bs, "%u", 973 HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgtxrssi)); 974 return 1; 975 #endif 976 case S_ANT_TX0: TXANT(0); 977 case S_ANT_TX1: TXANT(1); 978 case S_ANT_TX2: TXANT(2); 979 case S_ANT_TX3: TXANT(3); 980 case S_ANT_TX4: TXANT(4); 981 case S_ANT_TX5: TXANT(5); 982 case S_ANT_TX6: TXANT(6); 983 case S_ANT_TX7: TXANT(7); 984 case S_ANT_RX0: RXANT(0); 985 case S_ANT_RX1: RXANT(1); 986 case S_ANT_RX2: RXANT(2); 987 case S_ANT_RX3: RXANT(3); 988 case S_ANT_RX4: RXANT(4); 989 case S_ANT_RX5: RXANT(5); 990 case S_ANT_RX6: RXANT(6); 991 case S_ANT_RX7: RXANT(7); 992 #ifdef S_CABQ_XMIT 993 case S_CABQ_XMIT: STAT(cabq_xmit); 994 case S_CABQ_BUSY: STAT(cabq_busy); 995 #endif 996 case S_FF_TXOK: STAT(ff_txok); 997 case S_FF_TXERR: STAT(ff_txerr); 998 case S_FF_RX: STAT(ff_rx); 999 case S_FF_FLUSH: STAT(ff_flush); 1000 case S_TX_QFULL: STAT(tx_qfull); 1001 case S_BMISSCOUNT: STAT(be_missed); 1002 case S_RX_NOISE: 1003 snprintf(b, bs, "%d", wf->total.ath.ast_rx_noise); 1004 return 1; 1005 case S_TX_SIGNAL: 1006 snprintf(b, bs, "%d", 1007 wf->total.ath.ast_tx_rssi + wf->total.ath.ast_rx_noise); 1008 return 1; 1009 case S_RX_SIGNAL: 1010 snprintf(b, bs, "%d", 1011 wf->total.ath.ast_rx_rssi + wf->total.ath.ast_rx_noise); 1012 return 1; 1013 case S_RX_AGG: STAT(rx_agg); 1014 case S_RX_HALFGI: STAT(rx_halfgi); 1015 case S_RX_2040: STAT(rx_2040); 1016 case S_RX_PRE_CRC_ERR: STAT(rx_pre_crc_err); 1017 case S_RX_POST_CRC_ERR: STAT(rx_post_crc_err); 1018 case S_RX_DECRYPT_BUSY_ERR: STAT(rx_decrypt_busy_err); 1019 case S_RX_HI_CHAIN: STAT(rx_hi_rx_chain); 1020 case S_RX_STBC: STAT(rx_stbc); 1021 case S_TX_HTPROTECT: STAT(tx_htprotect); 1022 case S_RX_QEND: STAT(rx_hitqueueend); 1023 case S_TX_TIMEOUT: STAT(tx_timeout); 1024 case S_TX_CSTIMEOUT: STAT(tx_cst); 1025 case S_TX_XTXOP_ERR: STAT(tx_xtxop); 1026 case S_TX_TIMEREXPIRED_ERR: STAT(tx_timerexpired); 1027 case S_TX_DESCCFG_ERR: STAT(tx_desccfgerr); 1028 case S_TX_SWRETRIES: STAT(tx_swretries); 1029 case S_TX_SWRETRIES_MAX: STAT(tx_swretrymax); 1030 case S_TX_DATA_UNDERRUN: STAT(tx_data_underrun); 1031 case S_TX_DELIM_UNDERRUN: STAT(tx_delim_underrun); 1032 case S_TX_AGGR_OK: STAT(tx_aggr_ok); 1033 case S_TX_AGGR_FAIL: STAT(tx_aggr_fail); 1034 case S_TX_AGGR_FAILALL: STAT(tx_aggr_failall); 1035 } 1036 b[0] = '\0'; 1037 return 0; 1038 #undef RXANT 1039 #undef TXANT 1040 #undef ANI 1041 #undef ANISTAT 1042 #undef MIBSTAT 1043 #undef PHY 1044 #undef STAT 1045 } 1046 1047 static void 1048 ath_print_verbose(struct statfoo *sf, FILE *fd) 1049 { 1050 struct athstatfoo_p *wf = (struct athstatfoo_p *) sf; 1051 #define isphyerr(i) (S_PHY_MIN <= i && i <= S_PHY_MAX) 1052 const struct fmt *f; 1053 char s[32]; 1054 const char *indent; 1055 int i, width; 1056 1057 width = 0; 1058 for (i = 0; i < S_LAST; i++) { 1059 f = &sf->stats[i]; 1060 if (!isphyerr(i) && f->width > width) 1061 width = f->width; 1062 } 1063 for (i = 0; i < S_LAST; i++) { 1064 if (ath_get_totstat(sf, i, s, sizeof(s)) && strcmp(s, "0")) { 1065 if (isphyerr(i)) 1066 indent = " "; 1067 else 1068 indent = ""; 1069 fprintf(fd, "%s%-*s %s\n", indent, width, s, athstats[i].desc); 1070 } 1071 } 1072 fprintf(fd, "Antenna profile:\n"); 1073 for (i = 0; i < 8; i++) 1074 if (wf->total.ath.ast_ant_rx[i] || wf->total.ath.ast_ant_tx[i]) 1075 fprintf(fd, "[%u] tx %8u rx %8u\n", i, 1076 wf->total.ath.ast_ant_tx[i], 1077 wf->total.ath.ast_ant_rx[i]); 1078 #undef isphyerr 1079 } 1080 1081 STATFOO_DEFINE_BOUNCE(athstatfoo) 1082 1083 struct athstatfoo * 1084 athstats_new(const char *ifname, const char *fmtstring) 1085 { 1086 #define N(a) (sizeof(a) / sizeof(a[0])) 1087 struct athstatfoo_p *wf; 1088 1089 wf = calloc(1, sizeof(struct athstatfoo_p)); 1090 if (wf != NULL) { 1091 statfoo_init(&wf->base.base, "athstats", athstats, N(athstats)); 1092 /* override base methods */ 1093 wf->base.base.collect_cur = ath_collect_cur; 1094 wf->base.base.collect_tot = ath_collect_tot; 1095 wf->base.base.get_curstat = ath_get_curstat; 1096 wf->base.base.get_totstat = ath_get_totstat; 1097 wf->base.base.update_tot = ath_update_tot; 1098 wf->base.base.print_verbose = ath_print_verbose; 1099 1100 /* setup bounce functions for public methods */ 1101 STATFOO_BOUNCE(wf, athstatfoo); 1102 1103 /* setup our public methods */ 1104 wf->base.setifname = ath_setifname; 1105 #if 0 1106 wf->base.setstamac = wlan_setstamac; 1107 #endif 1108 wf->base.zerostats = ath_zerostats; 1109 wf->s = socket(AF_INET, SOCK_DGRAM, 0); 1110 if (wf->s < 0) 1111 err(1, "socket"); 1112 1113 ath_setifname(&wf->base, ifname); 1114 wf->base.setfmt(&wf->base, fmtstring); 1115 } 1116 return &wf->base; 1117 #undef N 1118 } 1119