1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 * 29 * $FreeBSD$ 30 */ 31 32 #include "opt_ah.h" 33 34 /* 35 * ath statistics class. 36 */ 37 #include <sys/types.h> 38 #include <sys/file.h> 39 #include <sys/sockio.h> 40 #include <sys/socket.h> 41 #include <net/if.h> 42 #include <net/if_media.h> 43 #include <net/if_var.h> 44 45 #include <stdio.h> 46 #include <stdlib.h> 47 #include <signal.h> 48 #include <string.h> 49 #include <unistd.h> 50 #include <err.h> 51 52 /* Use the system net80211 headers, rather than the kernel tree */ 53 /* 54 * XXX this means that if you build a separate net80211 stack 55 * XXX with your kernel and don't install the new/changed headers, 56 * XXX this tool may break. 57 * XXX -adrian 58 */ 59 #include <net80211/ieee80211_ioctl.h> 60 #include <net80211/ieee80211_radiotap.h> 61 62 #include "ah.h" 63 #include "ah_desc.h" 64 #include "if_athioctl.h" 65 66 #include "athstats.h" 67 68 #ifdef ATH_SUPPORT_ANI 69 #define HAL_EP_RND(x,mul) \ 70 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 71 #define HAL_RSSI(x) HAL_EP_RND(x, HAL_RSSI_EP_MULTIPLIER) 72 #endif 73 74 #define NOTPRESENT { 0, "", "" } 75 76 #define AFTER(prev) ((prev)+1) 77 78 static const struct fmt athstats[] = { 79 #define S_INPUT 0 80 { 8, "input", "input", "data frames received" }, 81 #define S_OUTPUT AFTER(S_INPUT) 82 { 8, "output", "output", "data frames transmit" }, 83 #define S_TX_ALTRATE AFTER(S_OUTPUT) 84 { 7, "altrate", "altrate", "tx frames with an alternate rate" }, 85 #define S_TX_SHORTRETRY AFTER(S_TX_ALTRATE) 86 { 7, "short", "short", "short on-chip tx retries" }, 87 #define S_TX_LONGRETRY AFTER(S_TX_SHORTRETRY) 88 { 7, "long", "long", "long on-chip tx retries" }, 89 #define S_TX_XRETRIES AFTER(S_TX_LONGRETRY) 90 { 6, "xretry", "xretry", "tx failed 'cuz too many retries" }, 91 #define S_MIB AFTER(S_TX_XRETRIES) 92 { 5, "mib", "mib", "mib overflow interrupts" }, 93 #ifndef __linux__ 94 #define S_TX_LINEAR AFTER(S_MIB) 95 { 5, "txlinear", "txlinear", "tx linearized to cluster" }, 96 #define S_BSTUCK AFTER(S_TX_LINEAR) 97 { 5, "bstuck", "bstuck", "stuck beacon conditions" }, 98 #define S_INTRCOAL AFTER(S_BSTUCK) 99 { 5, "intrcoal", "intrcoal", "interrupts coalesced" }, 100 #define S_RATE AFTER(S_INTRCOAL) 101 #else 102 #define S_RATE AFTER(S_MIB) 103 #endif 104 { 5, "rate", "rate", "current transmit rate" }, 105 #define S_WATCHDOG AFTER(S_RATE) 106 { 5, "wdog", "wdog", "watchdog timeouts" }, 107 #define S_FATAL AFTER(S_WATCHDOG) 108 { 5, "fatal", "fatal", "hardware error interrupts" }, 109 #define S_BMISS AFTER(S_FATAL) 110 { 5, "bmiss", "bmiss", "beacon miss interrupts" }, 111 #define S_RXORN AFTER(S_BMISS) 112 { 5, "rxorn", "rxorn", "recv overrun interrupts" }, 113 #define S_RXEOL AFTER(S_RXORN) 114 { 5, "rxeol", "rxeol", "recv eol interrupts" }, 115 #define S_TXURN AFTER(S_RXEOL) 116 { 5, "txurn", "txurn", "txmit underrun interrupts" }, 117 #define S_TX_MGMT AFTER(S_TXURN) 118 { 5, "txmgt", "txmgt", "tx management frames" }, 119 #define S_TX_DISCARD AFTER(S_TX_MGMT) 120 { 5, "txdisc", "txdisc", "tx frames discarded prior to association" }, 121 #define S_TX_INVALID AFTER(S_TX_DISCARD) 122 { 5, "txinv", "txinv", "tx invalid (19)" }, 123 #define S_TX_QSTOP AFTER(S_TX_INVALID) 124 { 5, "qstop", "qstop", "tx stopped 'cuz no xmit buffer" }, 125 #define S_TX_ENCAP AFTER(S_TX_QSTOP) 126 { 5, "txencode", "txencode", "tx encapsulation failed" }, 127 #define S_TX_NONODE AFTER(S_TX_ENCAP) 128 { 5, "txnonode", "txnonode", "tx failed 'cuz no node" }, 129 #define S_TX_NOBUF AFTER(S_TX_NONODE) 130 { 5, "txnobuf", "txnobuf", "tx failed 'cuz dma buffer allocation failed" }, 131 #define S_TX_NOFRAG AFTER(S_TX_NOBUF) 132 { 5, "txnofrag", "txnofrag", "tx failed 'cuz frag buffer allocation(s) failed" }, 133 #define S_TX_NOMBUF AFTER(S_TX_NOFRAG) 134 { 5, "txnombuf", "txnombuf", "tx failed 'cuz mbuf allocation failed" }, 135 #ifndef __linux__ 136 #define S_TX_NOMCL AFTER(S_TX_NOMBUF) 137 { 5, "txnomcl", "txnomcl", "tx failed 'cuz cluster allocation failed" }, 138 #define S_TX_FIFOERR AFTER(S_TX_NOMCL) 139 #else 140 #define S_TX_FIFOERR AFTER(S_TX_NOMBUF) 141 #endif 142 { 5, "efifo", "efifo", "tx failed 'cuz FIFO underrun" }, 143 #define S_TX_FILTERED AFTER(S_TX_FIFOERR) 144 { 5, "efilt", "efilt", "tx failed 'cuz destination filtered" }, 145 #define S_TX_BADRATE AFTER(S_TX_FILTERED) 146 { 5, "txbadrate", "txbadrate", "tx failed 'cuz bogus xmit rate" }, 147 #define S_TX_NOACK AFTER(S_TX_BADRATE) 148 { 5, "noack", "noack", "tx frames with no ack marked" }, 149 #define S_TX_RTS AFTER(S_TX_NOACK) 150 { 5, "rts", "rts", "tx frames with rts enabled" }, 151 #define S_TX_CTS AFTER(S_TX_RTS) 152 { 5, "cts", "cts", "tx frames with cts enabled" }, 153 #define S_TX_SHORTPRE AFTER(S_TX_CTS) 154 { 5, "shpre", "shpre", "tx frames with short preamble" }, 155 #define S_TX_PROTECT AFTER(S_TX_SHORTPRE) 156 { 5, "protect", "protect", "tx frames with 11g protection" }, 157 #define S_RX_ORN AFTER(S_TX_PROTECT) 158 { 5, "rxorn", "rxorn", "rx failed 'cuz of desc overrun" }, 159 #define S_RX_CRC_ERR AFTER(S_RX_ORN) 160 { 6, "crcerr", "crcerr", "rx failed 'cuz of bad CRC" }, 161 #define S_RX_FIFO_ERR AFTER(S_RX_CRC_ERR) 162 { 5, "rxfifo", "rxfifo", "rx failed 'cuz of FIFO overrun" }, 163 #define S_RX_CRYPTO_ERR AFTER(S_RX_FIFO_ERR) 164 { 5, "crypt", "crypt", "rx failed 'cuz decryption" }, 165 #define S_RX_MIC_ERR AFTER(S_RX_CRYPTO_ERR) 166 { 4, "mic", "mic", "rx failed 'cuz MIC failure" }, 167 #define S_RX_TOOSHORT AFTER(S_RX_MIC_ERR) 168 { 5, "rxshort", "rxshort", "rx failed 'cuz frame too short" }, 169 #define S_RX_NOMBUF AFTER(S_RX_TOOSHORT) 170 { 5, "rxnombuf", "rxnombuf", "rx setup failed 'cuz no mbuf" }, 171 #define S_RX_MGT AFTER(S_RX_NOMBUF) 172 { 5, "rxmgt", "rxmgt", "rx management frames" }, 173 #define S_RX_CTL AFTER(S_RX_MGT) 174 { 5, "rxctl", "rxctl", "rx control frames" }, 175 #define S_RX_PHY_ERR AFTER(S_RX_CTL) 176 { 7, "phyerr", "phyerr", "rx failed 'cuz of PHY err" }, 177 #define S_RX_PHY_UNDERRUN AFTER(S_RX_PHY_ERR) 178 { 4, "phyund", "TUnd", "transmit underrun" }, 179 #define S_RX_PHY_TIMING AFTER(S_RX_PHY_UNDERRUN) 180 { 4, "phytim", "Tim", "timing error" }, 181 #define S_RX_PHY_PARITY AFTER(S_RX_PHY_TIMING) 182 { 4, "phypar", "IPar", "illegal parity" }, 183 #define S_RX_PHY_RATE AFTER(S_RX_PHY_PARITY) 184 { 4, "phyrate", "IRate", "illegal rate" }, 185 #define S_RX_PHY_LENGTH AFTER(S_RX_PHY_RATE) 186 { 4, "phylen", "ILen", "illegal length" }, 187 #define S_RX_PHY_RADAR AFTER(S_RX_PHY_LENGTH) 188 { 4, "phyradar", "Radar", "radar detect" }, 189 #define S_RX_PHY_SERVICE AFTER(S_RX_PHY_RADAR) 190 { 4, "physervice", "Service", "illegal service" }, 191 #define S_RX_PHY_TOR AFTER(S_RX_PHY_SERVICE) 192 { 4, "phytor", "TOR", "transmit override receive" }, 193 #define S_RX_PHY_OFDM_TIMING AFTER(S_RX_PHY_TOR) 194 { 6, "ofdmtim", "ofdmtim", "OFDM timing" }, 195 #define S_RX_PHY_OFDM_SIGNAL_PARITY AFTER(S_RX_PHY_OFDM_TIMING) 196 { 6, "ofdmsig", "ofdmsig", "OFDM illegal parity" }, 197 #define S_RX_PHY_OFDM_RATE_ILLEGAL AFTER(S_RX_PHY_OFDM_SIGNAL_PARITY) 198 { 6, "ofdmrate", "ofdmrate", "OFDM illegal rate" }, 199 #define S_RX_PHY_OFDM_POWER_DROP AFTER(S_RX_PHY_OFDM_RATE_ILLEGAL) 200 { 6, "ofdmpow", "ofdmpow", "OFDM power drop" }, 201 #define S_RX_PHY_OFDM_SERVICE AFTER(S_RX_PHY_OFDM_POWER_DROP) 202 { 6, "ofdmservice", "ofdmservice", "OFDM illegal service" }, 203 #define S_RX_PHY_OFDM_RESTART AFTER(S_RX_PHY_OFDM_SERVICE) 204 { 6, "ofdmrestart", "ofdmrestart", "OFDM restart" }, 205 #define S_RX_PHY_CCK_TIMING AFTER(S_RX_PHY_OFDM_RESTART) 206 { 6, "ccktim", "ccktim", "CCK timing" }, 207 #define S_RX_PHY_CCK_HEADER_CRC AFTER(S_RX_PHY_CCK_TIMING) 208 { 6, "cckhead", "cckhead", "CCK header crc" }, 209 #define S_RX_PHY_CCK_RATE_ILLEGAL AFTER(S_RX_PHY_CCK_HEADER_CRC) 210 { 6, "cckrate", "cckrate", "CCK illegal rate" }, 211 #define S_RX_PHY_CCK_SERVICE AFTER(S_RX_PHY_CCK_RATE_ILLEGAL) 212 { 6, "cckservice", "cckservice", "CCK illegal service" }, 213 #define S_RX_PHY_CCK_RESTART AFTER(S_RX_PHY_CCK_SERVICE) 214 { 6, "cckrestar", "cckrestar", "CCK restart" }, 215 #define S_BE_NOMBUF AFTER(S_RX_PHY_CCK_RESTART) 216 { 4, "benombuf", "benombuf", "beacon setup failed 'cuz no mbuf" }, 217 #define S_BE_XMIT AFTER(S_BE_NOMBUF) 218 { 7, "bexmit", "bexmit", "beacons transmitted" }, 219 #define S_PER_CAL AFTER(S_BE_XMIT) 220 { 4, "pcal", "pcal", "periodic calibrations" }, 221 #define S_PER_CALFAIL AFTER(S_PER_CAL) 222 { 4, "pcalf", "pcalf", "periodic calibration failures" }, 223 #define S_PER_RFGAIN AFTER(S_PER_CALFAIL) 224 { 4, "prfga", "prfga", "rfgain value change" }, 225 #if ATH_SUPPORT_TDMA 226 #define S_TDMA_UPDATE AFTER(S_PER_RFGAIN) 227 { 5, "tdmau", "tdmau", "TDMA slot timing updates" }, 228 #define S_TDMA_TIMERS AFTER(S_TDMA_UPDATE) 229 { 5, "tdmab", "tdmab", "TDMA slot update set beacon timers" }, 230 #define S_TDMA_TSF AFTER(S_TDMA_TIMERS) 231 { 5, "tdmat", "tdmat", "TDMA slot update set TSF" }, 232 #define S_TDMA_TSFADJ AFTER(S_TDMA_TSF) 233 { 8, "tdmadj", "tdmadj", "TDMA slot adjust (usecs, smoothed)" }, 234 #define S_TDMA_ACK AFTER(S_TDMA_TSFADJ) 235 { 5, "tdmack", "tdmack", "TDMA tx failed 'cuz ACK required" }, 236 #define S_RATE_CALLS AFTER(S_TDMA_ACK) 237 #else 238 #define S_RATE_CALLS AFTER(S_PER_RFGAIN) 239 #endif 240 { 5, "ratec", "ratec", "rate control checks" }, 241 #define S_RATE_RAISE AFTER(S_RATE_CALLS) 242 { 5, "rate+", "rate+", "rate control raised xmit rate" }, 243 #define S_RATE_DROP AFTER(S_RATE_RAISE) 244 { 5, "rate-", "rate-", "rate control dropped xmit rate" }, 245 #define S_TX_RSSI AFTER(S_RATE_DROP) 246 { 4, "arssi", "arssi", "rssi of last ack" }, 247 #define S_RX_RSSI AFTER(S_TX_RSSI) 248 { 4, "rssi", "rssi", "avg recv rssi" }, 249 #define S_RX_NOISE AFTER(S_RX_RSSI) 250 { 5, "noise", "noise", "rx noise floor" }, 251 #define S_BMISS_PHANTOM AFTER(S_RX_NOISE) 252 { 5, "bmissphantom", "bmissphantom", "phantom beacon misses" }, 253 #define S_TX_RAW AFTER(S_BMISS_PHANTOM) 254 { 5, "txraw", "txraw", "tx frames through raw api" }, 255 #define S_TX_RAW_FAIL AFTER(S_TX_RAW) 256 { 5, "txrawfail", "txrawfail", "raw tx failed 'cuz interface/hw down" }, 257 #define S_RX_TOOBIG AFTER(S_TX_RAW_FAIL) 258 { 5, "rx2big", "rx2big", "rx failed 'cuz frame too large" }, 259 #ifndef __linux__ 260 #define S_CABQ_XMIT AFTER(S_RX_TOOBIG) 261 { 5, "cabxmit", "cabxmit", "cabq frames transmitted" }, 262 #define S_CABQ_BUSY AFTER(S_CABQ_XMIT) 263 { 5, "cabqbusy", "cabqbusy", "cabq xmit overflowed beacon interval" }, 264 #define S_TX_NODATA AFTER(S_CABQ_BUSY) 265 { 5, "txnodata", "txnodata", "tx discarded empty frame" }, 266 #define S_TX_BUSDMA AFTER(S_TX_NODATA) 267 { 5, "txbusdma", "txbusdma", "tx failed for dma resrcs" }, 268 #define S_RX_BUSDMA AFTER(S_TX_BUSDMA) 269 { 5, "rxbusdma", "rxbusdma", "rx setup failed for dma resrcs" }, 270 #define S_FF_TXOK AFTER(S_RX_BUSDMA) 271 #else 272 #define S_FF_TXOK AFTER(S_RX_PHY_UNDERRUN) 273 #endif 274 { 5, "fftxok", "fftxok", "fast frames xmit successfully" }, 275 #define S_FF_TXERR AFTER(S_FF_TXOK) 276 { 5, "fftxerr", "fftxerr", "fast frames not xmit due to error" }, 277 #define S_FF_RX AFTER(S_FF_TXERR) 278 { 5, "ffrx", "ffrx", "fast frames received" }, 279 #define S_FF_FLUSH AFTER(S_FF_RX) 280 { 5, "ffflush", "ffflush", "fast frames flushed from staging q" }, 281 #define S_TX_QFULL AFTER(S_FF_FLUSH) 282 { 5, "txqfull", "txqfull", "tx discarded 'cuz queue is full" }, 283 #define S_ANT_DEFSWITCH AFTER(S_TX_QFULL) 284 { 5, "defsw", "defsw", "switched default/rx antenna" }, 285 #define S_ANT_TXSWITCH AFTER(S_ANT_DEFSWITCH) 286 { 5, "txsw", "txsw", "tx used alternate antenna" }, 287 #ifdef ATH_SUPPORT_ANI 288 #define S_ANI_NOISE AFTER(S_ANT_TXSWITCH) 289 { 2, "ni", "NI", "noise immunity level" }, 290 #define S_ANI_SPUR AFTER(S_ANI_NOISE) 291 { 2, "si", "SI", "spur immunity level" }, 292 #define S_ANI_STEP AFTER(S_ANI_SPUR) 293 { 2, "step", "ST", "first step level" }, 294 #define S_ANI_OFDM AFTER(S_ANI_STEP) 295 { 4, "owsd", "OWSD", "OFDM weak signal detect" }, 296 #define S_ANI_CCK AFTER(S_ANI_OFDM) 297 { 4, "cwst", "CWST", "CCK weak signal threshold" }, 298 #define S_ANI_MAXSPUR AFTER(S_ANI_CCK) 299 { 3, "maxsi","MSI", "max spur immunity level" }, 300 #define S_ANI_LISTEN AFTER(S_ANI_MAXSPUR) 301 { 6, "listen","LISTEN", "listen time" }, 302 #define S_ANI_NIUP AFTER(S_ANI_LISTEN) 303 { 4, "ni+", "NI-", "ANI increased noise immunity" }, 304 #define S_ANI_NIDOWN AFTER(S_ANI_NIUP) 305 { 4, "ni-", "NI-", "ANI decrease noise immunity" }, 306 #define S_ANI_SIUP AFTER(S_ANI_NIDOWN) 307 { 4, "si+", "SI+", "ANI increased spur immunity" }, 308 #define S_ANI_SIDOWN AFTER(S_ANI_SIUP) 309 { 4, "si-", "SI-", "ANI decrease spur immunity" }, 310 #define S_ANI_OFDMON AFTER(S_ANI_SIDOWN) 311 { 5, "ofdm+","OFDM+", "ANI enabled OFDM weak signal detect" }, 312 #define S_ANI_OFDMOFF AFTER(S_ANI_OFDMON) 313 { 5, "ofdm-","OFDM-", "ANI disabled OFDM weak signal detect" }, 314 #define S_ANI_CCKHI AFTER(S_ANI_OFDMOFF) 315 { 5, "cck+", "CCK+", "ANI enabled CCK weak signal threshold" }, 316 #define S_ANI_CCKLO AFTER(S_ANI_CCKHI) 317 { 5, "cck-", "CCK-", "ANI disabled CCK weak signal threshold" }, 318 #define S_ANI_STEPUP AFTER(S_ANI_CCKLO) 319 { 5, "step+","STEP+", "ANI increased first step level" }, 320 #define S_ANI_STEPDOWN AFTER(S_ANI_STEPUP) 321 { 5, "step-","STEP-", "ANI decreased first step level" }, 322 #define S_ANI_OFDMERRS AFTER(S_ANI_STEPDOWN) 323 { 8, "ofdm", "OFDM", "cumulative OFDM phy error count" }, 324 #define S_ANI_CCKERRS AFTER(S_ANI_OFDMERRS) 325 { 8, "cck", "CCK", "cumulative CCK phy error count" }, 326 #define S_ANI_RESET AFTER(S_ANI_CCKERRS) 327 { 5, "reset","RESET", "ANI parameters zero'd for non-STA operation" }, 328 #define S_ANI_LZERO AFTER(S_ANI_RESET) 329 { 5, "lzero","LZERO", "ANI forced listen time to zero" }, 330 #define S_ANI_LNEG AFTER(S_ANI_LZERO) 331 { 5, "lneg", "LNEG", "ANI calculated listen time < 0" }, 332 #define S_MIB_ACKBAD AFTER(S_ANI_LNEG) 333 { 5, "ackbad","ACKBAD", "missing ACK's" }, 334 #define S_MIB_RTSBAD AFTER(S_MIB_ACKBAD) 335 { 5, "rtsbad","RTSBAD", "RTS without CTS" }, 336 #define S_MIB_RTSGOOD AFTER(S_MIB_RTSBAD) 337 { 5, "rtsgood","RTSGOOD", "successful RTS" }, 338 #define S_MIB_FCSBAD AFTER(S_MIB_RTSGOOD) 339 { 5, "fcsbad","FCSBAD", "bad FCS" }, 340 #define S_MIB_BEACONS AFTER(S_MIB_FCSBAD) 341 { 5, "beacons","beacons", "beacons received" }, 342 #define S_NODE_AVGBRSSI AFTER(S_MIB_BEACONS) 343 { 3, "avgbrssi","BSI", "average rssi (beacons only)" }, 344 #define S_NODE_AVGRSSI AFTER(S_NODE_AVGBRSSI) 345 { 3, "avgrssi","DSI", "average rssi (all rx'd frames)" }, 346 #define S_NODE_AVGARSSI AFTER(S_NODE_AVGRSSI) 347 { 3, "avgtxrssi","TSI", "average rssi (ACKs only)" }, 348 #define S_ANT_TX0 AFTER(S_NODE_AVGARSSI) 349 #else 350 #define S_ANT_TX0 AFTER(S_ANT_TXSWITCH) 351 #endif /* ATH_SUPPORT_ANI */ 352 { 8, "tx0", "ant0(tx)", "frames tx on antenna 0" }, 353 #define S_ANT_TX1 AFTER(S_ANT_TX0) 354 { 8, "tx1", "ant1(tx)", "frames tx on antenna 1" }, 355 #define S_ANT_TX2 AFTER(S_ANT_TX1) 356 { 8, "tx2", "ant2(tx)", "frames tx on antenna 2" }, 357 #define S_ANT_TX3 AFTER(S_ANT_TX2) 358 { 8, "tx3", "ant3(tx)", "frames tx on antenna 3" }, 359 #define S_ANT_TX4 AFTER(S_ANT_TX3) 360 { 8, "tx4", "ant4(tx)", "frames tx on antenna 4" }, 361 #define S_ANT_TX5 AFTER(S_ANT_TX4) 362 { 8, "tx5", "ant5(tx)", "frames tx on antenna 5" }, 363 #define S_ANT_TX6 AFTER(S_ANT_TX5) 364 { 8, "tx6", "ant6(tx)", "frames tx on antenna 6" }, 365 #define S_ANT_TX7 AFTER(S_ANT_TX6) 366 { 8, "tx7", "ant7(tx)", "frames tx on antenna 7" }, 367 #define S_ANT_RX0 AFTER(S_ANT_TX7) 368 { 8, "rx0", "ant0(rx)", "frames rx on antenna 0" }, 369 #define S_ANT_RX1 AFTER(S_ANT_RX0) 370 { 8, "rx1", "ant1(rx)", "frames rx on antenna 1" }, 371 #define S_ANT_RX2 AFTER(S_ANT_RX1) 372 { 8, "rx2", "ant2(rx)", "frames rx on antenna 2" }, 373 #define S_ANT_RX3 AFTER(S_ANT_RX2) 374 { 8, "rx3", "ant3(rx)", "frames rx on antenna 3" }, 375 #define S_ANT_RX4 AFTER(S_ANT_RX3) 376 { 8, "rx4", "ant4(rx)", "frames rx on antenna 4" }, 377 #define S_ANT_RX5 AFTER(S_ANT_RX4) 378 { 8, "rx5", "ant5(rx)", "frames rx on antenna 5" }, 379 #define S_ANT_RX6 AFTER(S_ANT_RX5) 380 { 8, "rx6", "ant6(rx)", "frames rx on antenna 6" }, 381 #define S_ANT_RX7 AFTER(S_ANT_RX6) 382 { 8, "rx7", "ant7(rx)", "frames rx on antenna 7" }, 383 #define S_TX_SIGNAL AFTER(S_ANT_RX7) 384 { 4, "asignal", "asig", "signal of last ack (dBm)" }, 385 #define S_RX_SIGNAL AFTER(S_TX_SIGNAL) 386 { 4, "signal", "sig", "avg recv signal (dBm)" }, 387 }; 388 #define S_PHY_MIN S_RX_PHY_UNDERRUN 389 #define S_PHY_MAX S_RX_PHY_CCK_RESTART 390 #define S_LAST S_ANT_TX0 391 #define S_MAX S_ANT_RX7+1 392 393 struct _athstats { 394 struct ath_stats ath; 395 #ifdef ATH_SUPPORT_ANI 396 struct { 397 uint32_t ast_ani_niup; /* increased noise immunity */ 398 uint32_t ast_ani_nidown; /* decreased noise immunity */ 399 uint32_t ast_ani_spurup; /* increased spur immunity */ 400 uint32_t ast_ani_spurdown; /* descreased spur immunity */ 401 uint32_t ast_ani_ofdmon; /* OFDM weak signal detect on */ 402 uint32_t ast_ani_ofdmoff; /* OFDM weak signal detect off*/ 403 uint32_t ast_ani_cckhigh; /* CCK weak signal thr high */ 404 uint32_t ast_ani_ccklow; /* CCK weak signal thr low */ 405 uint32_t ast_ani_stepup; /* increased first step level */ 406 uint32_t ast_ani_stepdown; /* decreased first step level */ 407 uint32_t ast_ani_ofdmerrs; /* cumulative ofdm phy err cnt*/ 408 uint32_t ast_ani_cckerrs; /* cumulative cck phy err cnt */ 409 uint32_t ast_ani_reset; /* params zero'd for non-STA */ 410 uint32_t ast_ani_lzero; /* listen time forced to zero */ 411 uint32_t ast_ani_lneg; /* listen time calculated < 0 */ 412 HAL_MIB_STATS ast_mibstats; /* MIB counter stats */ 413 HAL_NODE_STATS ast_nodestats; /* latest rssi stats */ 414 } ani_stats; 415 struct { 416 uint8_t noiseImmunityLevel; 417 uint8_t spurImmunityLevel; 418 uint8_t firstepLevel; 419 uint8_t ofdmWeakSigDetectOff; 420 uint8_t cckWeakSigThreshold; 421 uint32_t listenTime; 422 } ani_state; 423 #endif 424 }; 425 426 struct athstatfoo_p { 427 struct athstatfoo base; 428 int s; 429 int optstats; 430 #define ATHSTATS_ANI 0x0001 431 struct ifreq ifr; 432 struct ath_diag atd; 433 struct _athstats cur; 434 struct _athstats total; 435 }; 436 437 static void 438 ath_setifname(struct athstatfoo *wf0, const char *ifname) 439 { 440 struct athstatfoo_p *wf = (struct athstatfoo_p *) wf0; 441 442 strncpy(wf->ifr.ifr_name, ifname, sizeof (wf->ifr.ifr_name)); 443 #ifdef ATH_SUPPORT_ANI 444 strncpy(wf->atd.ad_name, ifname, sizeof (wf->atd.ad_name)); 445 wf->optstats |= ATHSTATS_ANI; 446 #endif 447 } 448 449 static void 450 ath_zerostats(struct athstatfoo *wf0) 451 { 452 struct athstatfoo_p *wf = (struct athstatfoo_p *) wf0; 453 454 if (ioctl(wf->s, SIOCZATHSTATS, &wf->ifr) < 0) 455 err(-1, wf->ifr.ifr_name); 456 } 457 458 static void 459 ath_collect(struct athstatfoo_p *wf, struct _athstats *stats) 460 { 461 wf->ifr.ifr_data = (caddr_t) &stats->ath; 462 if (ioctl(wf->s, SIOCGATHSTATS, &wf->ifr) < 0) 463 err(1, wf->ifr.ifr_name); 464 #ifdef ATH_SUPPORT_ANI 465 if (wf->optstats & ATHSTATS_ANI) { 466 wf->atd.ad_id = 5; 467 wf->atd.ad_out_data = (caddr_t) &stats->ani_state; 468 wf->atd.ad_out_size = sizeof(stats->ani_state); 469 if (ioctl(wf->s, SIOCGATHDIAG, &wf->atd) < 0) { 470 warn(wf->atd.ad_name); 471 wf->optstats &= ~ATHSTATS_ANI; 472 } 473 wf->atd.ad_id = 8; 474 wf->atd.ad_out_data = (caddr_t) &stats->ani_stats; 475 wf->atd.ad_out_size = sizeof(stats->ani_stats); 476 if (ioctl(wf->s, SIOCGATHDIAG, &wf->atd) < 0) 477 warn(wf->atd.ad_name); 478 } 479 #endif /* ATH_SUPPORT_ANI */ 480 } 481 482 static void 483 ath_collect_cur(struct statfoo *sf) 484 { 485 struct athstatfoo_p *wf = (struct athstatfoo_p *) sf; 486 487 ath_collect(wf, &wf->cur); 488 } 489 490 static void 491 ath_collect_tot(struct statfoo *sf) 492 { 493 struct athstatfoo_p *wf = (struct athstatfoo_p *) sf; 494 495 ath_collect(wf, &wf->total); 496 } 497 498 static void 499 ath_update_tot(struct statfoo *sf) 500 { 501 struct athstatfoo_p *wf = (struct athstatfoo_p *) sf; 502 503 wf->total = wf->cur; 504 } 505 506 static void 507 snprintrate(char b[], size_t bs, int rate) 508 { 509 if (rate & IEEE80211_RATE_MCS) 510 snprintf(b, bs, "MCS%u", rate &~ IEEE80211_RATE_MCS); 511 else if (rate & 1) 512 snprintf(b, bs, "%u.5M", rate / 2); 513 else 514 snprintf(b, bs, "%uM", rate / 2); 515 } 516 517 static int 518 ath_get_curstat(struct statfoo *sf, int s, char b[], size_t bs) 519 { 520 struct athstatfoo_p *wf = (struct athstatfoo_p *) sf; 521 #define STAT(x) \ 522 snprintf(b, bs, "%u", wf->cur.ath.ast_##x - wf->total.ath.ast_##x); return 1 523 #define PHY(x) \ 524 snprintf(b, bs, "%u", wf->cur.ath.ast_rx_phy[x] - wf->total.ath.ast_rx_phy[x]); return 1 525 #define ANI(x) \ 526 snprintf(b, bs, "%u", wf->cur.ani_state.x); return 1 527 #define ANISTAT(x) \ 528 snprintf(b, bs, "%u", wf->cur.ani_stats.ast_ani_##x - wf->total.ani_stats.ast_ani_##x); return 1 529 #define MIBSTAT(x) \ 530 snprintf(b, bs, "%u", wf->cur.ani_stats.ast_mibstats.x - wf->total.ani_stats.ast_mibstats.x); return 1 531 #define TXANT(x) \ 532 snprintf(b, bs, "%u", wf->cur.ath.ast_ant_tx[x] - wf->total.ath.ast_ant_tx[x]); return 1 533 #define RXANT(x) \ 534 snprintf(b, bs, "%u", wf->cur.ath.ast_ant_rx[x] - wf->total.ath.ast_ant_rx[x]); return 1 535 536 switch (s) { 537 case S_INPUT: 538 snprintf(b, bs, "%lu", 539 (wf->cur.ath.ast_rx_packets - wf->total.ath.ast_rx_packets) - 540 (wf->cur.ath.ast_rx_mgt - wf->total.ath.ast_rx_mgt)); 541 return 1; 542 case S_OUTPUT: 543 snprintf(b, bs, "%lu", 544 wf->cur.ath.ast_tx_packets - wf->total.ath.ast_tx_packets); 545 return 1; 546 case S_RATE: 547 snprintrate(b, bs, wf->cur.ath.ast_tx_rate); 548 return 1; 549 case S_WATCHDOG: STAT(watchdog); 550 case S_FATAL: STAT(hardware); 551 case S_BMISS: STAT(bmiss); 552 case S_BMISS_PHANTOM: STAT(bmiss_phantom); 553 #ifdef S_BSTUCK 554 case S_BSTUCK: STAT(bstuck); 555 #endif 556 case S_RXORN: STAT(rxorn); 557 case S_RXEOL: STAT(rxeol); 558 case S_TXURN: STAT(txurn); 559 case S_MIB: STAT(mib); 560 #ifdef S_INTRCOAL 561 case S_INTRCOAL: STAT(intrcoal); 562 #endif 563 case S_TX_MGMT: STAT(tx_mgmt); 564 case S_TX_DISCARD: STAT(tx_discard); 565 case S_TX_QSTOP: STAT(tx_qstop); 566 case S_TX_ENCAP: STAT(tx_encap); 567 case S_TX_NONODE: STAT(tx_nonode); 568 case S_TX_NOBUF: STAT(tx_nobuf); 569 case S_TX_NOFRAG: STAT(tx_nofrag); 570 case S_TX_NOMBUF: STAT(tx_nombuf); 571 #ifdef S_TX_NOMCL 572 case S_TX_NOMCL: STAT(tx_nomcl); 573 case S_TX_LINEAR: STAT(tx_linear); 574 case S_TX_NODATA: STAT(tx_nodata); 575 case S_TX_BUSDMA: STAT(tx_busdma); 576 #endif 577 case S_TX_XRETRIES: STAT(tx_xretries); 578 case S_TX_FIFOERR: STAT(tx_fifoerr); 579 case S_TX_FILTERED: STAT(tx_filtered); 580 case S_TX_SHORTRETRY: STAT(tx_shortretry); 581 case S_TX_LONGRETRY: STAT(tx_longretry); 582 case S_TX_BADRATE: STAT(tx_badrate); 583 case S_TX_NOACK: STAT(tx_noack); 584 case S_TX_RTS: STAT(tx_rts); 585 case S_TX_CTS: STAT(tx_cts); 586 case S_TX_SHORTPRE: STAT(tx_shortpre); 587 case S_TX_ALTRATE: STAT(tx_altrate); 588 case S_TX_PROTECT: STAT(tx_protect); 589 case S_TX_RAW: STAT(tx_raw); 590 case S_TX_RAW_FAIL: STAT(tx_raw_fail); 591 case S_RX_NOMBUF: STAT(rx_nombuf); 592 #ifdef S_RX_BUSDMA 593 case S_RX_BUSDMA: STAT(rx_busdma); 594 #endif 595 case S_RX_ORN: STAT(rx_orn); 596 case S_RX_CRC_ERR: STAT(rx_crcerr); 597 case S_RX_FIFO_ERR: STAT(rx_fifoerr); 598 case S_RX_CRYPTO_ERR: STAT(rx_badcrypt); 599 case S_RX_MIC_ERR: STAT(rx_badmic); 600 case S_RX_PHY_ERR: STAT(rx_phyerr); 601 case S_RX_PHY_UNDERRUN: PHY(HAL_PHYERR_UNDERRUN); 602 case S_RX_PHY_TIMING: PHY(HAL_PHYERR_TIMING); 603 case S_RX_PHY_PARITY: PHY(HAL_PHYERR_PARITY); 604 case S_RX_PHY_RATE: PHY(HAL_PHYERR_RATE); 605 case S_RX_PHY_LENGTH: PHY(HAL_PHYERR_LENGTH); 606 case S_RX_PHY_RADAR: PHY(HAL_PHYERR_RADAR); 607 case S_RX_PHY_SERVICE: PHY(HAL_PHYERR_SERVICE); 608 case S_RX_PHY_TOR: PHY(HAL_PHYERR_TOR); 609 case S_RX_PHY_OFDM_TIMING: PHY(HAL_PHYERR_OFDM_TIMING); 610 case S_RX_PHY_OFDM_SIGNAL_PARITY: PHY(HAL_PHYERR_OFDM_SIGNAL_PARITY); 611 case S_RX_PHY_OFDM_RATE_ILLEGAL: PHY(HAL_PHYERR_OFDM_RATE_ILLEGAL); 612 case S_RX_PHY_OFDM_POWER_DROP: PHY(HAL_PHYERR_OFDM_POWER_DROP); 613 case S_RX_PHY_OFDM_SERVICE: PHY(HAL_PHYERR_OFDM_SERVICE); 614 case S_RX_PHY_OFDM_RESTART: PHY(HAL_PHYERR_OFDM_RESTART); 615 case S_RX_PHY_CCK_TIMING: PHY(HAL_PHYERR_CCK_TIMING); 616 case S_RX_PHY_CCK_HEADER_CRC: PHY(HAL_PHYERR_CCK_HEADER_CRC); 617 case S_RX_PHY_CCK_RATE_ILLEGAL: PHY(HAL_PHYERR_CCK_RATE_ILLEGAL); 618 case S_RX_PHY_CCK_SERVICE: PHY(HAL_PHYERR_CCK_SERVICE); 619 case S_RX_PHY_CCK_RESTART: PHY(HAL_PHYERR_CCK_RESTART); 620 case S_RX_TOOSHORT: STAT(rx_tooshort); 621 case S_RX_TOOBIG: STAT(rx_toobig); 622 case S_RX_MGT: STAT(rx_mgt); 623 case S_RX_CTL: STAT(rx_ctl); 624 case S_TX_RSSI: 625 snprintf(b, bs, "%d", wf->cur.ath.ast_tx_rssi); 626 return 1; 627 case S_RX_RSSI: 628 snprintf(b, bs, "%d", wf->cur.ath.ast_rx_rssi); 629 return 1; 630 case S_BE_XMIT: STAT(be_xmit); 631 case S_BE_NOMBUF: STAT(be_nombuf); 632 case S_PER_CAL: STAT(per_cal); 633 case S_PER_CALFAIL: STAT(per_calfail); 634 case S_PER_RFGAIN: STAT(per_rfgain); 635 #ifdef S_TDMA_UPDATE 636 case S_TDMA_UPDATE: STAT(tdma_update); 637 case S_TDMA_TIMERS: STAT(tdma_timers); 638 case S_TDMA_TSF: STAT(tdma_tsf); 639 case S_TDMA_TSFADJ: 640 snprintf(b, bs, "-%d/+%d", 641 wf->cur.ath.ast_tdma_tsfadjm, wf->cur.ath.ast_tdma_tsfadjp); 642 return 1; 643 case S_TDMA_ACK: STAT(tdma_ack); 644 #endif 645 case S_RATE_CALLS: STAT(rate_calls); 646 case S_RATE_RAISE: STAT(rate_raise); 647 case S_RATE_DROP: STAT(rate_drop); 648 case S_ANT_DEFSWITCH: STAT(ant_defswitch); 649 case S_ANT_TXSWITCH: STAT(ant_txswitch); 650 #ifdef S_ANI_NOISE 651 case S_ANI_NOISE: ANI(noiseImmunityLevel); 652 case S_ANI_SPUR: ANI(spurImmunityLevel); 653 case S_ANI_STEP: ANI(firstepLevel); 654 case S_ANI_OFDM: ANI(ofdmWeakSigDetectOff); 655 case S_ANI_CCK: ANI(cckWeakSigThreshold); 656 case S_ANI_LISTEN: ANI(listenTime); 657 case S_ANI_NIUP: ANISTAT(niup); 658 case S_ANI_NIDOWN: ANISTAT(nidown); 659 case S_ANI_SIUP: ANISTAT(spurup); 660 case S_ANI_SIDOWN: ANISTAT(spurdown); 661 case S_ANI_OFDMON: ANISTAT(ofdmon); 662 case S_ANI_OFDMOFF: ANISTAT(ofdmoff); 663 case S_ANI_CCKHI: ANISTAT(cckhigh); 664 case S_ANI_CCKLO: ANISTAT(ccklow); 665 case S_ANI_STEPUP: ANISTAT(stepup); 666 case S_ANI_STEPDOWN: ANISTAT(stepdown); 667 case S_ANI_OFDMERRS: ANISTAT(ofdmerrs); 668 case S_ANI_CCKERRS: ANISTAT(cckerrs); 669 case S_ANI_RESET: ANISTAT(reset); 670 case S_ANI_LZERO: ANISTAT(lzero); 671 case S_ANI_LNEG: ANISTAT(lneg); 672 case S_MIB_ACKBAD: MIBSTAT(ackrcv_bad); 673 case S_MIB_RTSBAD: MIBSTAT(rts_bad); 674 case S_MIB_RTSGOOD: MIBSTAT(rts_good); 675 case S_MIB_FCSBAD: MIBSTAT(fcs_bad); 676 case S_MIB_BEACONS: MIBSTAT(beacons); 677 case S_NODE_AVGBRSSI: 678 snprintf(b, bs, "%u", 679 HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgbrssi)); 680 return 1; 681 case S_NODE_AVGRSSI: 682 snprintf(b, bs, "%u", 683 HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgrssi)); 684 return 1; 685 case S_NODE_AVGARSSI: 686 snprintf(b, bs, "%u", 687 HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgtxrssi)); 688 return 1; 689 #endif 690 case S_ANT_TX0: TXANT(0); 691 case S_ANT_TX1: TXANT(1); 692 case S_ANT_TX2: TXANT(2); 693 case S_ANT_TX3: TXANT(3); 694 case S_ANT_TX4: TXANT(4); 695 case S_ANT_TX5: TXANT(5); 696 case S_ANT_TX6: TXANT(6); 697 case S_ANT_TX7: TXANT(7); 698 case S_ANT_RX0: RXANT(0); 699 case S_ANT_RX1: RXANT(1); 700 case S_ANT_RX2: RXANT(2); 701 case S_ANT_RX3: RXANT(3); 702 case S_ANT_RX4: RXANT(4); 703 case S_ANT_RX5: RXANT(5); 704 case S_ANT_RX6: RXANT(6); 705 case S_ANT_RX7: RXANT(7); 706 #ifdef S_CABQ_XMIT 707 case S_CABQ_XMIT: STAT(cabq_xmit); 708 case S_CABQ_BUSY: STAT(cabq_busy); 709 #endif 710 case S_FF_TXOK: STAT(ff_txok); 711 case S_FF_TXERR: STAT(ff_txerr); 712 case S_FF_RX: STAT(ff_rx); 713 case S_FF_FLUSH: STAT(ff_flush); 714 case S_TX_QFULL: STAT(tx_qfull); 715 case S_RX_NOISE: 716 snprintf(b, bs, "%d", wf->cur.ath.ast_rx_noise); 717 return 1; 718 case S_TX_SIGNAL: 719 snprintf(b, bs, "%d", 720 wf->cur.ath.ast_tx_rssi + wf->cur.ath.ast_rx_noise); 721 return 1; 722 case S_RX_SIGNAL: 723 snprintf(b, bs, "%d", 724 wf->cur.ath.ast_rx_rssi + wf->cur.ath.ast_rx_noise); 725 return 1; 726 } 727 b[0] = '\0'; 728 return 0; 729 #undef RXANT 730 #undef TXANT 731 #undef ANI 732 #undef ANISTAT 733 #undef MIBSTAT 734 #undef PHY 735 #undef STAT 736 } 737 738 static int 739 ath_get_totstat(struct statfoo *sf, int s, char b[], size_t bs) 740 { 741 struct athstatfoo_p *wf = (struct athstatfoo_p *) sf; 742 #define STAT(x) \ 743 snprintf(b, bs, "%u", wf->total.ath.ast_##x); return 1 744 #define PHY(x) \ 745 snprintf(b, bs, "%u", wf->total.ath.ast_rx_phy[x]); return 1 746 #define ANI(x) \ 747 snprintf(b, bs, "%u", wf->total.ani_state.x); return 1 748 #define ANISTAT(x) \ 749 snprintf(b, bs, "%u", wf->total.ani_stats.ast_ani_##x); return 1 750 #define MIBSTAT(x) \ 751 snprintf(b, bs, "%u", wf->total.ani_stats.ast_mibstats.x); return 1 752 #define TXANT(x) \ 753 snprintf(b, bs, "%u", wf->total.ath.ast_ant_tx[x]); return 1 754 #define RXANT(x) \ 755 snprintf(b, bs, "%u", wf->total.ath.ast_ant_rx[x]); return 1 756 757 switch (s) { 758 case S_INPUT: 759 snprintf(b, bs, "%lu", 760 wf->total.ath.ast_rx_packets - wf->total.ath.ast_rx_mgt); 761 return 1; 762 case S_OUTPUT: 763 snprintf(b, bs, "%lu", wf->total.ath.ast_tx_packets); 764 return 1; 765 case S_RATE: 766 snprintrate(b, bs, wf->total.ath.ast_tx_rate); 767 return 1; 768 case S_WATCHDOG: STAT(watchdog); 769 case S_FATAL: STAT(hardware); 770 case S_BMISS: STAT(bmiss); 771 case S_BMISS_PHANTOM: STAT(bmiss_phantom); 772 #ifdef S_BSTUCK 773 case S_BSTUCK: STAT(bstuck); 774 #endif 775 case S_RXORN: STAT(rxorn); 776 case S_RXEOL: STAT(rxeol); 777 case S_TXURN: STAT(txurn); 778 case S_MIB: STAT(mib); 779 #ifdef S_INTRCOAL 780 case S_INTRCOAL: STAT(intrcoal); 781 #endif 782 case S_TX_MGMT: STAT(tx_mgmt); 783 case S_TX_DISCARD: STAT(tx_discard); 784 case S_TX_QSTOP: STAT(tx_qstop); 785 case S_TX_ENCAP: STAT(tx_encap); 786 case S_TX_NONODE: STAT(tx_nonode); 787 case S_TX_NOBUF: STAT(tx_nobuf); 788 case S_TX_NOFRAG: STAT(tx_nofrag); 789 case S_TX_NOMBUF: STAT(tx_nombuf); 790 #ifdef S_TX_NOMCL 791 case S_TX_NOMCL: STAT(tx_nomcl); 792 case S_TX_LINEAR: STAT(tx_linear); 793 case S_TX_NODATA: STAT(tx_nodata); 794 case S_TX_BUSDMA: STAT(tx_busdma); 795 #endif 796 case S_TX_XRETRIES: STAT(tx_xretries); 797 case S_TX_FIFOERR: STAT(tx_fifoerr); 798 case S_TX_FILTERED: STAT(tx_filtered); 799 case S_TX_SHORTRETRY: STAT(tx_shortretry); 800 case S_TX_LONGRETRY: STAT(tx_longretry); 801 case S_TX_BADRATE: STAT(tx_badrate); 802 case S_TX_NOACK: STAT(tx_noack); 803 case S_TX_RTS: STAT(tx_rts); 804 case S_TX_CTS: STAT(tx_cts); 805 case S_TX_SHORTPRE: STAT(tx_shortpre); 806 case S_TX_ALTRATE: STAT(tx_altrate); 807 case S_TX_PROTECT: STAT(tx_protect); 808 case S_TX_RAW: STAT(tx_raw); 809 case S_TX_RAW_FAIL: STAT(tx_raw_fail); 810 case S_RX_NOMBUF: STAT(rx_nombuf); 811 #ifdef S_RX_BUSDMA 812 case S_RX_BUSDMA: STAT(rx_busdma); 813 #endif 814 case S_RX_ORN: STAT(rx_orn); 815 case S_RX_CRC_ERR: STAT(rx_crcerr); 816 case S_RX_FIFO_ERR: STAT(rx_fifoerr); 817 case S_RX_CRYPTO_ERR: STAT(rx_badcrypt); 818 case S_RX_MIC_ERR: STAT(rx_badmic); 819 case S_RX_PHY_ERR: STAT(rx_phyerr); 820 case S_RX_PHY_UNDERRUN: PHY(HAL_PHYERR_UNDERRUN); 821 case S_RX_PHY_TIMING: PHY(HAL_PHYERR_TIMING); 822 case S_RX_PHY_PARITY: PHY(HAL_PHYERR_PARITY); 823 case S_RX_PHY_RATE: PHY(HAL_PHYERR_RATE); 824 case S_RX_PHY_LENGTH: PHY(HAL_PHYERR_LENGTH); 825 case S_RX_PHY_RADAR: PHY(HAL_PHYERR_RADAR); 826 case S_RX_PHY_SERVICE: PHY(HAL_PHYERR_SERVICE); 827 case S_RX_PHY_TOR: PHY(HAL_PHYERR_TOR); 828 case S_RX_PHY_OFDM_TIMING: PHY(HAL_PHYERR_OFDM_TIMING); 829 case S_RX_PHY_OFDM_SIGNAL_PARITY: PHY(HAL_PHYERR_OFDM_SIGNAL_PARITY); 830 case S_RX_PHY_OFDM_RATE_ILLEGAL: PHY(HAL_PHYERR_OFDM_RATE_ILLEGAL); 831 case S_RX_PHY_OFDM_POWER_DROP: PHY(HAL_PHYERR_OFDM_POWER_DROP); 832 case S_RX_PHY_OFDM_SERVICE: PHY(HAL_PHYERR_OFDM_SERVICE); 833 case S_RX_PHY_OFDM_RESTART: PHY(HAL_PHYERR_OFDM_RESTART); 834 case S_RX_PHY_CCK_TIMING: PHY(HAL_PHYERR_CCK_TIMING); 835 case S_RX_PHY_CCK_HEADER_CRC: PHY(HAL_PHYERR_CCK_HEADER_CRC); 836 case S_RX_PHY_CCK_RATE_ILLEGAL: PHY(HAL_PHYERR_CCK_RATE_ILLEGAL); 837 case S_RX_PHY_CCK_SERVICE: PHY(HAL_PHYERR_CCK_SERVICE); 838 case S_RX_PHY_CCK_RESTART: PHY(HAL_PHYERR_CCK_RESTART); 839 case S_RX_TOOSHORT: STAT(rx_tooshort); 840 case S_RX_TOOBIG: STAT(rx_toobig); 841 case S_RX_MGT: STAT(rx_mgt); 842 case S_RX_CTL: STAT(rx_ctl); 843 case S_TX_RSSI: 844 snprintf(b, bs, "%d", wf->total.ath.ast_tx_rssi); 845 return 1; 846 case S_RX_RSSI: 847 snprintf(b, bs, "%d", wf->total.ath.ast_rx_rssi); 848 return 1; 849 case S_BE_XMIT: STAT(be_xmit); 850 case S_BE_NOMBUF: STAT(be_nombuf); 851 case S_PER_CAL: STAT(per_cal); 852 case S_PER_CALFAIL: STAT(per_calfail); 853 case S_PER_RFGAIN: STAT(per_rfgain); 854 #ifdef S_TDMA_UPDATE 855 case S_TDMA_UPDATE: STAT(tdma_update); 856 case S_TDMA_TIMERS: STAT(tdma_timers); 857 case S_TDMA_TSF: STAT(tdma_tsf); 858 case S_TDMA_TSFADJ: 859 snprintf(b, bs, "-%d/+%d", 860 wf->total.ath.ast_tdma_tsfadjm, 861 wf->total.ath.ast_tdma_tsfadjp); 862 return 1; 863 case S_TDMA_ACK: STAT(tdma_ack); 864 #endif 865 case S_RATE_CALLS: STAT(rate_calls); 866 case S_RATE_RAISE: STAT(rate_raise); 867 case S_RATE_DROP: STAT(rate_drop); 868 case S_ANT_DEFSWITCH: STAT(ant_defswitch); 869 case S_ANT_TXSWITCH: STAT(ant_txswitch); 870 #ifdef S_ANI_NOISE 871 case S_ANI_NOISE: ANI(noiseImmunityLevel); 872 case S_ANI_SPUR: ANI(spurImmunityLevel); 873 case S_ANI_STEP: ANI(firstepLevel); 874 case S_ANI_OFDM: ANI(ofdmWeakSigDetectOff); 875 case S_ANI_CCK: ANI(cckWeakSigThreshold); 876 case S_ANI_LISTEN: ANI(listenTime); 877 case S_ANI_NIUP: ANISTAT(niup); 878 case S_ANI_NIDOWN: ANISTAT(nidown); 879 case S_ANI_SIUP: ANISTAT(spurup); 880 case S_ANI_SIDOWN: ANISTAT(spurdown); 881 case S_ANI_OFDMON: ANISTAT(ofdmon); 882 case S_ANI_OFDMOFF: ANISTAT(ofdmoff); 883 case S_ANI_CCKHI: ANISTAT(cckhigh); 884 case S_ANI_CCKLO: ANISTAT(ccklow); 885 case S_ANI_STEPUP: ANISTAT(stepup); 886 case S_ANI_STEPDOWN: ANISTAT(stepdown); 887 case S_ANI_OFDMERRS: ANISTAT(ofdmerrs); 888 case S_ANI_CCKERRS: ANISTAT(cckerrs); 889 case S_ANI_RESET: ANISTAT(reset); 890 case S_ANI_LZERO: ANISTAT(lzero); 891 case S_ANI_LNEG: ANISTAT(lneg); 892 case S_MIB_ACKBAD: MIBSTAT(ackrcv_bad); 893 case S_MIB_RTSBAD: MIBSTAT(rts_bad); 894 case S_MIB_RTSGOOD: MIBSTAT(rts_good); 895 case S_MIB_FCSBAD: MIBSTAT(fcs_bad); 896 case S_MIB_BEACONS: MIBSTAT(beacons); 897 case S_NODE_AVGBRSSI: 898 snprintf(b, bs, "%u", 899 HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgbrssi)); 900 return 1; 901 case S_NODE_AVGRSSI: 902 snprintf(b, bs, "%u", 903 HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgrssi)); 904 return 1; 905 case S_NODE_AVGARSSI: 906 snprintf(b, bs, "%u", 907 HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgtxrssi)); 908 return 1; 909 #endif 910 case S_ANT_TX0: TXANT(0); 911 case S_ANT_TX1: TXANT(1); 912 case S_ANT_TX2: TXANT(2); 913 case S_ANT_TX3: TXANT(3); 914 case S_ANT_TX4: TXANT(4); 915 case S_ANT_TX5: TXANT(5); 916 case S_ANT_TX6: TXANT(6); 917 case S_ANT_TX7: TXANT(7); 918 case S_ANT_RX0: RXANT(0); 919 case S_ANT_RX1: RXANT(1); 920 case S_ANT_RX2: RXANT(2); 921 case S_ANT_RX3: RXANT(3); 922 case S_ANT_RX4: RXANT(4); 923 case S_ANT_RX5: RXANT(5); 924 case S_ANT_RX6: RXANT(6); 925 case S_ANT_RX7: RXANT(7); 926 #ifdef S_CABQ_XMIT 927 case S_CABQ_XMIT: STAT(cabq_xmit); 928 case S_CABQ_BUSY: STAT(cabq_busy); 929 #endif 930 case S_FF_TXOK: STAT(ff_txok); 931 case S_FF_TXERR: STAT(ff_txerr); 932 case S_FF_RX: STAT(ff_rx); 933 case S_FF_FLUSH: STAT(ff_flush); 934 case S_TX_QFULL: STAT(tx_qfull); 935 case S_RX_NOISE: 936 snprintf(b, bs, "%d", wf->total.ath.ast_rx_noise); 937 return 1; 938 case S_TX_SIGNAL: 939 snprintf(b, bs, "%d", 940 wf->total.ath.ast_tx_rssi + wf->total.ath.ast_rx_noise); 941 return 1; 942 case S_RX_SIGNAL: 943 snprintf(b, bs, "%d", 944 wf->total.ath.ast_rx_rssi + wf->total.ath.ast_rx_noise); 945 return 1; 946 } 947 b[0] = '\0'; 948 return 0; 949 #undef RXANT 950 #undef TXANT 951 #undef ANI 952 #undef ANISTAT 953 #undef MIBSTAT 954 #undef PHY 955 #undef STAT 956 } 957 958 static void 959 ath_print_verbose(struct statfoo *sf, FILE *fd) 960 { 961 struct athstatfoo_p *wf = (struct athstatfoo_p *) sf; 962 #define isphyerr(i) (S_PHY_MIN <= i && i <= S_PHY_MAX) 963 const struct fmt *f; 964 char s[32]; 965 const char *indent; 966 int i, width; 967 968 width = 0; 969 for (i = 0; i < S_LAST; i++) { 970 f = &sf->stats[i]; 971 if (!isphyerr(i) && f->width > width) 972 width = f->width; 973 } 974 for (i = 0; i < S_LAST; i++) { 975 if (ath_get_totstat(sf, i, s, sizeof(s)) && strcmp(s, "0")) { 976 if (isphyerr(i)) 977 indent = " "; 978 else 979 indent = ""; 980 fprintf(fd, "%s%-*s %s\n", indent, width, s, athstats[i].desc); 981 } 982 } 983 fprintf(fd, "Antenna profile:\n"); 984 for (i = 0; i < 8; i++) 985 if (wf->total.ath.ast_ant_rx[i] || wf->total.ath.ast_ant_tx[i]) 986 fprintf(fd, "[%u] tx %8u rx %8u\n", i, 987 wf->total.ath.ast_ant_tx[i], 988 wf->total.ath.ast_ant_rx[i]); 989 #undef isphyerr 990 } 991 992 STATFOO_DEFINE_BOUNCE(athstatfoo) 993 994 struct athstatfoo * 995 athstats_new(const char *ifname, const char *fmtstring) 996 { 997 #define N(a) (sizeof(a) / sizeof(a[0])) 998 struct athstatfoo_p *wf; 999 1000 wf = calloc(1, sizeof(struct athstatfoo_p)); 1001 if (wf != NULL) { 1002 statfoo_init(&wf->base.base, "athstats", athstats, N(athstats)); 1003 /* override base methods */ 1004 wf->base.base.collect_cur = ath_collect_cur; 1005 wf->base.base.collect_tot = ath_collect_tot; 1006 wf->base.base.get_curstat = ath_get_curstat; 1007 wf->base.base.get_totstat = ath_get_totstat; 1008 wf->base.base.update_tot = ath_update_tot; 1009 wf->base.base.print_verbose = ath_print_verbose; 1010 1011 /* setup bounce functions for public methods */ 1012 STATFOO_BOUNCE(wf, athstatfoo); 1013 1014 /* setup our public methods */ 1015 wf->base.setifname = ath_setifname; 1016 #if 0 1017 wf->base.setstamac = wlan_setstamac; 1018 #endif 1019 wf->base.zerostats = ath_zerostats; 1020 wf->s = socket(AF_INET, SOCK_DGRAM, 0); 1021 if (wf->s < 0) 1022 err(1, "socket"); 1023 1024 ath_setifname(&wf->base, ifname); 1025 wf->base.setfmt(&wf->base, fmtstring); 1026 } 1027 return &wf->base; 1028 #undef N 1029 } 1030