xref: /freebsd/tools/regression/usr.bin/cc/float.c (revision 0b3105a37d7adcadcb720112fed4dc4e8040be99)
1 /*-
2  * Copyright (c) 2012 David Schultz <das@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Test that floating-point arithmetic works as specified by the C standard.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <fenv.h>
35 #include <float.h>
36 #include <math.h>
37 #include <stdio.h>
38 
39 #ifdef  __i386__
40 #include <ieeefp.h>
41 #endif
42 
43 #define	ALL_STD_EXCEPT	(FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \
44 			 FE_OVERFLOW | FE_UNDERFLOW)
45 
46 #define	TWICE(x)		((x) + (x))
47 #define	test(desc, pass)	test1((desc), (pass), 0)
48 #define	skiptest(desc, pass)	test1((desc), (pass), 1)
49 
50 #pragma STDC FENV_ACCESS ON
51 
52 static const float one_f = 1.0 + FLT_EPSILON / 2;
53 static const double one_d = 1.0 + DBL_EPSILON / 2;
54 static const long double one_ld = 1.0L + LDBL_EPSILON / 2;
55 
56 static int testnum, failures;
57 
58 static void
59 test1(const char *testdesc, int pass, int skip)
60 {
61 
62 	testnum++;
63 	printf("%sok %d - %s%s\n", pass || skip ? "" : "not ", testnum,
64 	    skip ? "(SKIPPED) " : "", testdesc);
65 	if (!pass && !skip)
66 		failures++;
67 }
68 
69 /*
70  * Compare d1 and d2 using special rules: NaN == NaN and +0 != -0.
71  */
72 static int
73 fpequal(long double d1, long double d2)
74 {
75 
76 	if (d1 != d2)
77 		return (isnan(d1) && isnan(d2));
78 	return (copysignl(1.0, d1) == copysignl(1.0, d2));
79 }
80 
81 void
82 run_zero_opt_test(double d1, double d2)
83 {
84 
85 	test("optimizations don't break the sign of 0",
86 	     fpequal(d1 - d2, 0.0)
87 	     && fpequal(-d1 + 0.0, 0.0)
88 	     && fpequal(-d1 - d2, -0.0)
89 	     && fpequal(-(d1 - d2), -0.0)
90 	     && fpequal(-d1 - (-d2), 0.0));
91 }
92 
93 void
94 run_inf_opt_test(double d)
95 {
96 
97 	test("optimizations don't break infinities",
98 	     fpequal(d / d, NAN) && fpequal(0.0 * d, NAN));
99 }
100 
101 static inline double
102 todouble(long double ld)
103 {
104 
105 	return (ld);
106 }
107 
108 static inline float
109 tofloat(double d)
110 {
111 
112 	return (d);
113 }
114 
115 void
116 run_tests(void)
117 {
118 	volatile long double vld;
119 	long double ld;
120 	volatile double vd;
121 	double d;
122 	volatile float vf;
123 	float f;
124 	int x;
125 
126 	test("sign bits", fpequal(-0.0, -0.0) && !fpequal(0.0, -0.0));
127 
128 	vd = NAN;
129 	test("NaN equality", fpequal(NAN, NAN) && NAN != NAN && vd != vd);
130 
131 	feclearexcept(ALL_STD_EXCEPT);
132 	test("NaN comparison returns false", !(vd <= vd));
133 	/*
134 	 * XXX disabled; gcc/amd64 botches this IEEE 754 requirement by
135 	 * emitting ucomisd instead of comisd.
136 	 */
137 	skiptest("FENV_ACCESS: NaN comparison raises invalid exception",
138 	    fetestexcept(ALL_STD_EXCEPT) == FE_INVALID);
139 
140 	vd = 0.0;
141 	run_zero_opt_test(vd, vd);
142 
143 	vd = INFINITY;
144 	run_inf_opt_test(vd);
145 
146 	feclearexcept(ALL_STD_EXCEPT);
147 	vd = INFINITY;
148 	x = (int)vd;
149 	/* XXX disabled (works with -O0); gcc doesn't support FENV_ACCESS */
150 	skiptest("FENV_ACCESS: Inf->int conversion raises invalid exception",
151 	    fetestexcept(ALL_STD_EXCEPT) == FE_INVALID);
152 
153 	/* Raising an inexact exception here is an IEEE-854 requirement. */
154 	feclearexcept(ALL_STD_EXCEPT);
155 	vd = 0.75;
156 	x = (int)vd;
157 	test("0.75->int conversion rounds toward 0, raises inexact exception",
158 	     x == 0 && fetestexcept(ALL_STD_EXCEPT) == FE_INEXACT);
159 
160 	feclearexcept(ALL_STD_EXCEPT);
161 	vd = -42.0;
162 	x = (int)vd;
163 	test("-42.0->int conversion is exact, raises no exception",
164 	     x == -42 && fetestexcept(ALL_STD_EXCEPT) == 0);
165 
166 	feclearexcept(ALL_STD_EXCEPT);
167 	x = (int)INFINITY;
168 	/* XXX disabled; gcc doesn't support FENV_ACCESS */
169 	skiptest("FENV_ACCESS: const Inf->int conversion raises invalid",
170 	    fetestexcept(ALL_STD_EXCEPT) == FE_INVALID);
171 
172 	feclearexcept(ALL_STD_EXCEPT);
173 	x = (int)0.5;
174 	/* XXX disabled; gcc doesn't support FENV_ACCESS */
175 	skiptest("FENV_ACCESS: const double->int conversion raises inexact",
176 	     x == 0 && fetestexcept(ALL_STD_EXCEPT) == FE_INEXACT);
177 
178 	test("compile-time constants don't have too much precision",
179 	     one_f == 1.0L && one_d == 1.0L && one_ld == 1.0L);
180 
181 	test("const minimum rounding precision",
182 	     1.0F + FLT_EPSILON != 1.0F &&
183 	     1.0 + DBL_EPSILON != 1.0 &&
184 	     1.0L + LDBL_EPSILON != 1.0L);
185 
186 	/* It isn't the compiler's fault if this fails on FreeBSD/i386. */
187 	vf = FLT_EPSILON;
188 	vd = DBL_EPSILON;
189 	vld = LDBL_EPSILON;
190 	test("runtime minimum rounding precision",
191 	     1.0F + vf != 1.0F && 1.0 + vd != 1.0 && 1.0L + vld != 1.0L);
192 
193 	test("explicit float to float conversion discards extra precision",
194 	     (float)(1.0F + FLT_EPSILON * 0.5F) == 1.0F &&
195 	     (float)(1.0F + vf * 0.5F) == 1.0F);
196 	test("explicit double to float conversion discards extra precision",
197 	     (float)(1.0 + FLT_EPSILON * 0.5) == 1.0F &&
198 	     (float)(1.0 + vf * 0.5) == 1.0F);
199 	test("explicit ldouble to float conversion discards extra precision",
200 	     (float)(1.0L + FLT_EPSILON * 0.5L) == 1.0F &&
201 	     (float)(1.0L + vf * 0.5L) == 1.0F);
202 
203 	test("explicit double to double conversion discards extra precision",
204 	     (double)(1.0 + DBL_EPSILON * 0.5) == 1.0 &&
205 	     (double)(1.0 + vd * 0.5) == 1.0);
206 	test("explicit ldouble to double conversion discards extra precision",
207 	     (double)(1.0L + DBL_EPSILON * 0.5L) == 1.0 &&
208 	     (double)(1.0L + vd * 0.5L) == 1.0);
209 
210 	/*
211 	 * FLT_EVAL_METHOD > 1 implies that float expressions are always
212 	 * evaluated in double precision or higher, but some compilers get
213 	 * this wrong when registers spill to memory.  The following expression
214 	 * forces a spill when there are at most 8 FP registers.
215 	 */
216 	test("implicit promption to double or higher precision is consistent",
217 #if FLT_EVAL_METHOD == 1 || FLT_EVAL_METHOD == 2 || defined(__i386__)
218 	       TWICE(TWICE(TWICE(TWICE(TWICE(
219 	           TWICE(TWICE(TWICE(TWICE(1.0F + vf * 0.5F)))))))))
220 	     == (1.0 + FLT_EPSILON * 0.5) * 512.0
221 #else
222 	     1
223 #endif
224 	    );
225 
226 	f = 1.0 + FLT_EPSILON * 0.5;
227 	d = 1.0L + DBL_EPSILON * 0.5L;
228 	test("const assignment discards extra precision", f == 1.0F && d == 1.0);
229 
230 	f = 1.0 + vf * 0.5;
231 	d = 1.0L + vd * 0.5L;
232 	test("variable assignment discards explicit extra precision",
233 	     f == 1.0F && d == 1.0);
234 	f = 1.0F + vf * 0.5F;
235 	d = 1.0 + vd * 0.5;
236 	test("variable assignment discards implicit extra precision",
237 	     f == 1.0F && d == 1.0);
238 
239 	test("return discards extra precision",
240 	     tofloat(1.0 + vf * 0.5) == 1.0F &&
241 	     todouble(1.0L + vd * 0.5L) == 1.0);
242 
243 	fesetround(FE_UPWARD);
244 	/* XXX disabled (works with -frounding-math) */
245 	skiptest("FENV_ACCESS: constant arithmetic respects rounding mode",
246 	    1.0F + FLT_MIN == 1.0F + FLT_EPSILON &&
247 	    1.0 + DBL_MIN == 1.0 + DBL_EPSILON &&
248 	    1.0L + LDBL_MIN == 1.0L + LDBL_EPSILON);
249 	fesetround(FE_TONEAREST);
250 
251 	ld = vld * 0.5;
252 	test("associativity is respected",
253 	     1.0L + ld + (LDBL_EPSILON * 0.5) == 1.0L &&
254 	     1.0L + (LDBL_EPSILON * 0.5) + ld == 1.0L &&
255 	     ld + 1.0 + (LDBL_EPSILON * 0.5) == 1.0L &&
256 	     ld + (LDBL_EPSILON * 0.5) + 1.0 == 1.0L + LDBL_EPSILON);
257 }
258 
259 int
260 main(int argc, char *argv[])
261 {
262 
263 	printf("1..26\n");
264 
265 #ifdef  __i386__
266 	fpsetprec(FP_PE);
267 #endif
268 	run_tests();
269 
270 	return (failures);
271 }
272