1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2019 The FreeBSD Foundation 5 * 6 * This software was developed by BFF Storage Systems, LLC under sponsorship 7 * from the FreeBSD Foundation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * $FreeBSD$ 31 */ 32 33 extern "C" { 34 #include <sys/param.h> 35 #include <sys/mman.h> 36 #include <sys/resource.h> 37 #include <sys/stat.h> 38 #include <sys/time.h> 39 #include <sys/uio.h> 40 41 #include <aio.h> 42 #include <fcntl.h> 43 #include <signal.h> 44 #include <unistd.h> 45 } 46 47 #include "mockfs.hh" 48 #include "utils.hh" 49 50 using namespace testing; 51 52 class Write: public FuseTest { 53 54 public: 55 void SetUp() { 56 FuseTest::SetUp(); 57 } 58 59 void TearDown() { 60 struct sigaction sa; 61 62 bzero(&sa, sizeof(sa)); 63 sa.sa_handler = SIG_DFL; 64 sigaction(SIGXFSZ, &sa, NULL); 65 66 FuseTest::TearDown(); 67 } 68 69 void expect_lookup(const char *relpath, uint64_t ino, uint64_t size) 70 { 71 FuseTest::expect_lookup(relpath, ino, S_IFREG | 0644, size, 1); 72 } 73 74 void expect_release(uint64_t ino, ProcessMockerT r) 75 { 76 EXPECT_CALL(*m_mock, process( 77 ResultOf([=](auto in) { 78 return (in.header.opcode == FUSE_RELEASE && 79 in.header.nodeid == ino); 80 }, Eq(true)), 81 _) 82 ).WillRepeatedly(Invoke(r)); 83 } 84 85 void expect_write(uint64_t ino, uint64_t offset, uint64_t isize, 86 uint64_t osize, const void *contents) 87 { 88 FuseTest::expect_write(ino, offset, isize, osize, 0, 0, contents); 89 } 90 91 /* Expect a write that may or may not come, depending on the cache mode */ 92 void maybe_expect_write(uint64_t ino, uint64_t offset, uint64_t size, 93 const void *contents) 94 { 95 EXPECT_CALL(*m_mock, process( 96 ResultOf([=](auto in) { 97 const char *buf = (const char*)in.body.bytes + 98 sizeof(struct fuse_write_in); 99 100 return (in.header.opcode == FUSE_WRITE && 101 in.header.nodeid == ino && 102 in.body.write.offset == offset && 103 in.body.write.size == size && 104 0 == bcmp(buf, contents, size)); 105 }, Eq(true)), 106 _) 107 ).Times(AtMost(1)) 108 .WillRepeatedly(Invoke( 109 ReturnImmediate([=](auto in __unused, auto& out) { 110 SET_OUT_HEADER_LEN(out, write); 111 out.body.write.size = size; 112 }) 113 )); 114 } 115 116 }; 117 118 class Write_7_8: public FuseTest { 119 120 public: 121 virtual void SetUp() { 122 m_kernel_minor_version = 8; 123 FuseTest::SetUp(); 124 } 125 126 void expect_lookup(const char *relpath, uint64_t ino, uint64_t size) 127 { 128 FuseTest::expect_lookup_7_8(relpath, ino, S_IFREG | 0644, size, 1); 129 } 130 131 }; 132 133 class AioWrite: public Write { 134 virtual void SetUp() { 135 if (!is_unsafe_aio_enabled()) 136 GTEST_SKIP() << 137 "vfs.aio.enable_unsafe must be set for this test"; 138 FuseTest::SetUp(); 139 } 140 }; 141 142 /* Tests for the writeback cache mode */ 143 class WriteBack: public Write { 144 public: 145 virtual void SetUp() { 146 m_init_flags |= FUSE_WRITEBACK_CACHE; 147 FuseTest::SetUp(); 148 if (IsSkipped()) 149 return; 150 } 151 152 void expect_write(uint64_t ino, uint64_t offset, uint64_t isize, 153 uint64_t osize, const void *contents) 154 { 155 FuseTest::expect_write(ino, offset, isize, osize, FUSE_WRITE_CACHE, 0, 156 contents); 157 } 158 }; 159 160 class WriteBackAsync: public WriteBack { 161 public: 162 virtual void SetUp() { 163 m_async = true; 164 m_maxwrite = 65536; 165 WriteBack::SetUp(); 166 } 167 }; 168 169 class TimeGran: public WriteBackAsync, public WithParamInterface<unsigned> { 170 public: 171 virtual void SetUp() { 172 m_time_gran = 1 << GetParam(); 173 WriteBackAsync::SetUp(); 174 } 175 }; 176 177 /* Tests for clustered writes with WriteBack cacheing */ 178 class WriteCluster: public WriteBack { 179 public: 180 virtual void SetUp() { 181 m_async = true; 182 m_maxwrite = 1 << 25; // Anything larger than MAXPHYS will suffice 183 WriteBack::SetUp(); 184 if (m_maxphys < 2 * DFLTPHYS) 185 GTEST_SKIP() << "MAXPHYS must be at least twice DFLTPHYS" 186 << " for this test"; 187 if (m_maxphys < 2 * m_maxbcachebuf) 188 GTEST_SKIP() << "MAXPHYS must be at least twice maxbcachebuf" 189 << " for this test"; 190 } 191 }; 192 193 /* Tests relating to the server's max_write property */ 194 class WriteMaxWrite: public Write { 195 public: 196 virtual void SetUp() { 197 /* 198 * For this test, m_maxwrite must be less than either m_maxbcachebuf or 199 * maxphys. 200 */ 201 m_maxwrite = 32768; 202 Write::SetUp(); 203 } 204 }; 205 206 class WriteEofDuringVnopStrategy: public Write, public WithParamInterface<int> 207 {}; 208 209 class WriteRlimitFsize: public Write, public WithParamInterface<int> { 210 public: 211 static sig_atomic_t s_sigxfsz; 212 struct rlimit m_initial_limit; 213 214 void SetUp() { 215 s_sigxfsz = 0; 216 getrlimit(RLIMIT_FSIZE, &m_initial_limit); 217 FuseTest::SetUp(); 218 } 219 220 void TearDown() { 221 setrlimit(RLIMIT_FSIZE, &m_initial_limit); 222 223 FuseTest::TearDown(); 224 } 225 }; 226 227 sig_atomic_t WriteRlimitFsize::s_sigxfsz = 0; 228 229 void sigxfsz_handler(int __unused sig) { 230 WriteRlimitFsize::s_sigxfsz = 1; 231 } 232 233 /* AIO writes need to set the header's pid field correctly */ 234 /* https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=236379 */ 235 TEST_F(AioWrite, DISABLED_aio_write) 236 { 237 const char FULLPATH[] = "mountpoint/some_file.txt"; 238 const char RELPATH[] = "some_file.txt"; 239 const char *CONTENTS = "abcdefgh"; 240 uint64_t ino = 42; 241 uint64_t offset = 4096; 242 int fd; 243 ssize_t bufsize = strlen(CONTENTS); 244 struct aiocb iocb, *piocb; 245 246 expect_lookup(RELPATH, ino, 0); 247 expect_open(ino, 0, 1); 248 expect_write(ino, offset, bufsize, bufsize, CONTENTS); 249 250 fd = open(FULLPATH, O_WRONLY); 251 ASSERT_LE(0, fd) << strerror(errno); 252 253 iocb.aio_nbytes = bufsize; 254 iocb.aio_fildes = fd; 255 iocb.aio_buf = __DECONST(void *, CONTENTS); 256 iocb.aio_offset = offset; 257 iocb.aio_sigevent.sigev_notify = SIGEV_NONE; 258 ASSERT_EQ(0, aio_write(&iocb)) << strerror(errno); 259 ASSERT_EQ(bufsize, aio_waitcomplete(&piocb, NULL)) << strerror(errno); 260 leak(fd); 261 } 262 263 /* 264 * When a file is opened with O_APPEND, we should forward that flag to 265 * FUSE_OPEN (tested by Open.o_append) but still attempt to calculate the 266 * offset internally. That way we'll work both with filesystems that 267 * understand O_APPEND (and ignore the offset) and filesystems that don't (and 268 * simply use the offset). 269 * 270 * Note that verifying the O_APPEND flag in FUSE_OPEN is done in the 271 * Open.o_append test. 272 */ 273 TEST_F(Write, append) 274 { 275 const ssize_t BUFSIZE = 9; 276 const char FULLPATH[] = "mountpoint/some_file.txt"; 277 const char RELPATH[] = "some_file.txt"; 278 const char CONTENTS[BUFSIZE] = "abcdefgh"; 279 uint64_t ino = 42; 280 /* 281 * Set offset to a maxbcachebuf boundary so we don't need to RMW when 282 * using writeback caching 283 */ 284 uint64_t initial_offset = m_maxbcachebuf; 285 int fd; 286 287 expect_lookup(RELPATH, ino, initial_offset); 288 expect_open(ino, 0, 1); 289 expect_write(ino, initial_offset, BUFSIZE, BUFSIZE, CONTENTS); 290 291 /* Must open O_RDWR or fuse(4) implicitly sets direct_io */ 292 fd = open(FULLPATH, O_RDWR | O_APPEND); 293 ASSERT_LE(0, fd) << strerror(errno); 294 295 ASSERT_EQ(BUFSIZE, write(fd, CONTENTS, BUFSIZE)) << strerror(errno); 296 leak(fd); 297 } 298 299 /* If a file is cached, then appending to the end should not cause a read */ 300 TEST_F(Write, append_to_cached) 301 { 302 const ssize_t BUFSIZE = 9; 303 const char FULLPATH[] = "mountpoint/some_file.txt"; 304 const char RELPATH[] = "some_file.txt"; 305 char *oldcontents, *oldbuf; 306 const char CONTENTS[BUFSIZE] = "abcdefgh"; 307 uint64_t ino = 42; 308 /* 309 * Set offset in between maxbcachebuf boundary to test buffer handling 310 */ 311 uint64_t oldsize = m_maxbcachebuf / 2; 312 int fd; 313 314 oldcontents = (char*)calloc(1, oldsize); 315 ASSERT_NE(nullptr, oldcontents) << strerror(errno); 316 oldbuf = (char*)malloc(oldsize); 317 ASSERT_NE(nullptr, oldbuf) << strerror(errno); 318 319 expect_lookup(RELPATH, ino, oldsize); 320 expect_open(ino, 0, 1); 321 expect_read(ino, 0, oldsize, oldsize, oldcontents); 322 maybe_expect_write(ino, oldsize, BUFSIZE, CONTENTS); 323 324 /* Must open O_RDWR or fuse(4) implicitly sets direct_io */ 325 fd = open(FULLPATH, O_RDWR | O_APPEND); 326 ASSERT_LE(0, fd) << strerror(errno); 327 328 /* Read the old data into the cache */ 329 ASSERT_EQ((ssize_t)oldsize, read(fd, oldbuf, oldsize)) 330 << strerror(errno); 331 332 /* Write the new data. There should be no more read operations */ 333 ASSERT_EQ(BUFSIZE, write(fd, CONTENTS, BUFSIZE)) << strerror(errno); 334 leak(fd); 335 free(oldbuf); 336 free(oldcontents); 337 } 338 339 TEST_F(Write, append_direct_io) 340 { 341 const ssize_t BUFSIZE = 9; 342 const char FULLPATH[] = "mountpoint/some_file.txt"; 343 const char RELPATH[] = "some_file.txt"; 344 const char CONTENTS[BUFSIZE] = "abcdefgh"; 345 uint64_t ino = 42; 346 uint64_t initial_offset = 4096; 347 int fd; 348 349 expect_lookup(RELPATH, ino, initial_offset); 350 expect_open(ino, FOPEN_DIRECT_IO, 1); 351 expect_write(ino, initial_offset, BUFSIZE, BUFSIZE, CONTENTS); 352 353 fd = open(FULLPATH, O_WRONLY | O_APPEND); 354 ASSERT_LE(0, fd) << strerror(errno); 355 356 ASSERT_EQ(BUFSIZE, write(fd, CONTENTS, BUFSIZE)) << strerror(errno); 357 leak(fd); 358 } 359 360 /* A direct write should evict any overlapping cached data */ 361 TEST_F(Write, direct_io_evicts_cache) 362 { 363 const char FULLPATH[] = "mountpoint/some_file.txt"; 364 const char RELPATH[] = "some_file.txt"; 365 const char CONTENTS0[] = "abcdefgh"; 366 const char CONTENTS1[] = "ijklmnop"; 367 uint64_t ino = 42; 368 int fd; 369 ssize_t bufsize = strlen(CONTENTS0) + 1; 370 char readbuf[bufsize]; 371 372 expect_lookup(RELPATH, ino, bufsize); 373 expect_open(ino, 0, 1); 374 expect_read(ino, 0, bufsize, bufsize, CONTENTS0); 375 expect_write(ino, 0, bufsize, bufsize, CONTENTS1); 376 377 fd = open(FULLPATH, O_RDWR); 378 ASSERT_LE(0, fd) << strerror(errno); 379 380 // Prime cache 381 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 382 383 // Write directly, evicting cache 384 ASSERT_EQ(0, fcntl(fd, F_SETFL, O_DIRECT)) << strerror(errno); 385 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 386 ASSERT_EQ(bufsize, write(fd, CONTENTS1, bufsize)) << strerror(errno); 387 388 // Read again. Cache should be bypassed 389 expect_read(ino, 0, bufsize, bufsize, CONTENTS1); 390 ASSERT_EQ(0, fcntl(fd, F_SETFL, 0)) << strerror(errno); 391 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 392 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 393 ASSERT_STREQ(readbuf, CONTENTS1); 394 395 leak(fd); 396 } 397 398 /* 399 * If the server doesn't return FOPEN_DIRECT_IO during FUSE_OPEN, then it's not 400 * allowed to return a short write for that file handle. However, if it does 401 * then we should still do our darndest to handle it by resending the unwritten 402 * portion. 403 */ 404 TEST_F(Write, indirect_io_short_write) 405 { 406 const char FULLPATH[] = "mountpoint/some_file.txt"; 407 const char RELPATH[] = "some_file.txt"; 408 const char *CONTENTS = "abcdefghijklmnop"; 409 uint64_t ino = 42; 410 int fd; 411 ssize_t bufsize = strlen(CONTENTS); 412 ssize_t bufsize0 = 11; 413 ssize_t bufsize1 = strlen(CONTENTS) - bufsize0; 414 const char *contents1 = CONTENTS + bufsize0; 415 416 expect_lookup(RELPATH, ino, 0); 417 expect_open(ino, 0, 1); 418 expect_write(ino, 0, bufsize, bufsize0, CONTENTS); 419 expect_write(ino, bufsize0, bufsize1, bufsize1, contents1); 420 421 fd = open(FULLPATH, O_WRONLY); 422 ASSERT_LE(0, fd) << strerror(errno); 423 424 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 425 leak(fd); 426 } 427 428 /* It is an error if the daemon claims to have written more data than we sent */ 429 TEST_F(Write, indirect_io_long_write) 430 { 431 const char FULLPATH[] = "mountpoint/some_file.txt"; 432 const char RELPATH[] = "some_file.txt"; 433 const char *CONTENTS = "abcdefghijklmnop"; 434 uint64_t ino = 42; 435 int fd; 436 ssize_t bufsize = strlen(CONTENTS); 437 ssize_t bufsize_out = 100; 438 off_t some_other_size = 25; 439 struct stat sb; 440 441 expect_lookup(RELPATH, ino, 0); 442 expect_open(ino, 0, 1); 443 expect_write(ino, 0, bufsize, bufsize_out, CONTENTS); 444 expect_getattr(ino, some_other_size); 445 446 fd = open(FULLPATH, O_WRONLY); 447 ASSERT_LE(0, fd) << strerror(errno); 448 449 ASSERT_EQ(-1, write(fd, CONTENTS, bufsize)) << strerror(errno); 450 ASSERT_EQ(EINVAL, errno); 451 452 /* 453 * Following such an error, we should requery the server for the file's 454 * size. 455 */ 456 fstat(fd, &sb); 457 ASSERT_EQ(sb.st_size, some_other_size); 458 459 leak(fd); 460 } 461 462 /* 463 * Don't crash if the server returns a write that can't be represented as a 464 * signed 32 bit number. Regression test for 465 * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=263263 466 */ 467 TEST_F(Write, indirect_io_very_long_write) 468 { 469 const char FULLPATH[] = "mountpoint/some_file.txt"; 470 const char RELPATH[] = "some_file.txt"; 471 const char *CONTENTS = "abcdefghijklmnop"; 472 uint64_t ino = 42; 473 int fd; 474 ssize_t bufsize = strlen(CONTENTS); 475 ssize_t bufsize_out = 3 << 30; 476 477 expect_lookup(RELPATH, ino, 0); 478 expect_open(ino, 0, 1); 479 expect_write(ino, 0, bufsize, bufsize_out, CONTENTS); 480 481 fd = open(FULLPATH, O_WRONLY); 482 ASSERT_LE(0, fd) << strerror(errno); 483 484 ASSERT_EQ(-1, write(fd, CONTENTS, bufsize)) << strerror(errno); 485 ASSERT_EQ(EINVAL, errno); 486 leak(fd); 487 } 488 489 /* 490 * When the direct_io option is used, filesystems are allowed to write less 491 * data than requested. We should return the short write to userland. 492 */ 493 TEST_F(Write, direct_io_short_write) 494 { 495 const char FULLPATH[] = "mountpoint/some_file.txt"; 496 const char RELPATH[] = "some_file.txt"; 497 const char *CONTENTS = "abcdefghijklmnop"; 498 uint64_t ino = 42; 499 int fd; 500 ssize_t bufsize = strlen(CONTENTS); 501 ssize_t halfbufsize = bufsize / 2; 502 503 expect_lookup(RELPATH, ino, 0); 504 expect_open(ino, FOPEN_DIRECT_IO, 1); 505 expect_write(ino, 0, bufsize, halfbufsize, CONTENTS); 506 507 fd = open(FULLPATH, O_WRONLY); 508 ASSERT_LE(0, fd) << strerror(errno); 509 510 ASSERT_EQ(halfbufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 511 leak(fd); 512 } 513 514 /* 515 * An insidious edge case: the filesystem returns a short write, and the 516 * difference between what we requested and what it actually wrote crosses an 517 * iov element boundary 518 */ 519 TEST_F(Write, direct_io_short_write_iov) 520 { 521 const char FULLPATH[] = "mountpoint/some_file.txt"; 522 const char RELPATH[] = "some_file.txt"; 523 const char *CONTENTS0 = "abcdefgh"; 524 const char *CONTENTS1 = "ijklmnop"; 525 const char *EXPECTED0 = "abcdefghijklmnop"; 526 uint64_t ino = 42; 527 int fd; 528 ssize_t size0 = strlen(CONTENTS0) - 1; 529 ssize_t size1 = strlen(CONTENTS1) + 1; 530 ssize_t totalsize = size0 + size1; 531 struct iovec iov[2]; 532 533 expect_lookup(RELPATH, ino, 0); 534 expect_open(ino, FOPEN_DIRECT_IO, 1); 535 expect_write(ino, 0, totalsize, size0, EXPECTED0); 536 537 fd = open(FULLPATH, O_WRONLY); 538 ASSERT_LE(0, fd) << strerror(errno); 539 540 iov[0].iov_base = __DECONST(void*, CONTENTS0); 541 iov[0].iov_len = strlen(CONTENTS0); 542 iov[1].iov_base = __DECONST(void*, CONTENTS1); 543 iov[1].iov_len = strlen(CONTENTS1); 544 ASSERT_EQ(size0, writev(fd, iov, 2)) << strerror(errno); 545 leak(fd); 546 } 547 548 /* fusefs should respect RLIMIT_FSIZE */ 549 TEST_P(WriteRlimitFsize, rlimit_fsize) 550 { 551 const char FULLPATH[] = "mountpoint/some_file.txt"; 552 const char RELPATH[] = "some_file.txt"; 553 const char *CONTENTS = "abcdefgh"; 554 struct rlimit rl; 555 ssize_t bufsize = strlen(CONTENTS); 556 off_t offset = 1'000'000'000; 557 uint64_t ino = 42; 558 int fd, oflag; 559 560 oflag = GetParam(); 561 562 expect_lookup(RELPATH, ino, 0); 563 expect_open(ino, 0, 1); 564 565 rl.rlim_cur = offset; 566 rl.rlim_max = m_initial_limit.rlim_max; 567 ASSERT_EQ(0, setrlimit(RLIMIT_FSIZE, &rl)) << strerror(errno); 568 ASSERT_NE(SIG_ERR, signal(SIGXFSZ, sigxfsz_handler)) << strerror(errno); 569 570 fd = open(FULLPATH, O_WRONLY | oflag); 571 572 ASSERT_LE(0, fd) << strerror(errno); 573 574 ASSERT_EQ(-1, pwrite(fd, CONTENTS, bufsize, offset)); 575 EXPECT_EQ(EFBIG, errno); 576 EXPECT_EQ(1, s_sigxfsz); 577 leak(fd); 578 } 579 580 /* 581 * When crossing the RLIMIT_FSIZE boundary, writes should be truncated, not 582 * aborted. 583 * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=164793 584 */ 585 TEST_P(WriteRlimitFsize, rlimit_fsize_truncate) 586 { 587 const char FULLPATH[] = "mountpoint/some_file.txt"; 588 const char RELPATH[] = "some_file.txt"; 589 const char *CONTENTS = "abcdefghijklmnopqrstuvwxyz"; 590 struct rlimit rl; 591 ssize_t bufsize = strlen(CONTENTS); 592 uint64_t ino = 42; 593 off_t offset = 1 << 30; 594 off_t limit = offset + strlen(CONTENTS) / 2; 595 int fd, oflag; 596 597 oflag = GetParam(); 598 599 expect_lookup(RELPATH, ino, 0); 600 expect_open(ino, 0, 1); 601 expect_write(ino, offset, bufsize / 2, bufsize / 2, CONTENTS); 602 603 rl.rlim_cur = limit; 604 rl.rlim_max = m_initial_limit.rlim_max; 605 ASSERT_EQ(0, setrlimit(RLIMIT_FSIZE, &rl)) << strerror(errno); 606 ASSERT_NE(SIG_ERR, signal(SIGXFSZ, sigxfsz_handler)) << strerror(errno); 607 608 fd = open(FULLPATH, O_WRONLY | oflag); 609 610 ASSERT_LE(0, fd) << strerror(errno); 611 612 ASSERT_EQ(bufsize / 2, pwrite(fd, CONTENTS, bufsize, offset)) 613 << strerror(errno); 614 leak(fd); 615 } 616 617 INSTANTIATE_TEST_CASE_P(W, WriteRlimitFsize, 618 Values(0, O_DIRECT) 619 ); 620 621 /* 622 * A short read indicates EOF. Test that nothing bad happens if we get EOF 623 * during the R of a RMW operation. 624 */ 625 TEST_F(Write, eof_during_rmw) 626 { 627 const char FULLPATH[] = "mountpoint/some_file.txt"; 628 const char RELPATH[] = "some_file.txt"; 629 const char *CONTENTS = "abcdefgh"; 630 const char *INITIAL = "XXXXXXXXXX"; 631 uint64_t ino = 42; 632 uint64_t offset = 1; 633 ssize_t bufsize = strlen(CONTENTS) + 1; 634 off_t orig_fsize = 10; 635 off_t truncated_fsize = 5; 636 int fd; 637 638 FuseTest::expect_lookup(RELPATH, ino, S_IFREG | 0644, orig_fsize, 1); 639 expect_open(ino, 0, 1); 640 expect_read(ino, 0, orig_fsize, truncated_fsize, INITIAL, O_RDWR); 641 maybe_expect_write(ino, offset, bufsize, CONTENTS); 642 643 fd = open(FULLPATH, O_RDWR); 644 ASSERT_LE(0, fd) << strerror(errno); 645 646 ASSERT_EQ(bufsize, pwrite(fd, CONTENTS, bufsize, offset)) 647 << strerror(errno); 648 leak(fd); 649 } 650 651 /* 652 * VOP_STRATEGY should not query the server for the file's size, even if its 653 * cached attributes have expired. 654 * Regression test for https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=256937 655 */ 656 TEST_P(WriteEofDuringVnopStrategy, eof_during_vop_strategy) 657 { 658 const char FULLPATH[] = "mountpoint/some_file.txt"; 659 const char RELPATH[] = "some_file.txt"; 660 Sequence seq; 661 const off_t filesize = 2 * m_maxbcachebuf; 662 void *contents; 663 uint64_t ino = 42; 664 uint64_t attr_valid = 0; 665 uint64_t attr_valid_nsec = 0; 666 mode_t mode = S_IFREG | 0644; 667 int fd; 668 int ngetattrs; 669 670 ngetattrs = GetParam(); 671 contents = calloc(1, filesize); 672 673 EXPECT_LOOKUP(FUSE_ROOT_ID, RELPATH) 674 .WillRepeatedly(Invoke( 675 ReturnImmediate([=](auto in __unused, auto& out) { 676 SET_OUT_HEADER_LEN(out, entry); 677 out.body.entry.attr.mode = mode; 678 out.body.entry.nodeid = ino; 679 out.body.entry.attr.nlink = 1; 680 out.body.entry.attr.size = filesize; 681 out.body.entry.attr_valid = attr_valid; 682 out.body.entry.attr_valid_nsec = attr_valid_nsec; 683 }))); 684 expect_open(ino, 0, 1); 685 EXPECT_CALL(*m_mock, process( 686 ResultOf([=](auto in) { 687 return (in.header.opcode == FUSE_GETATTR && 688 in.header.nodeid == ino); 689 }, Eq(true)), 690 _) 691 ).Times(Between(ngetattrs - 1, ngetattrs)) 692 .InSequence(seq) 693 .WillRepeatedly(Invoke(ReturnImmediate([=](auto i __unused, auto& out) { 694 SET_OUT_HEADER_LEN(out, attr); 695 out.body.attr.attr.ino = ino; 696 out.body.attr.attr.mode = mode; 697 out.body.attr.attr_valid = attr_valid; 698 out.body.attr.attr_valid_nsec = attr_valid_nsec; 699 out.body.attr.attr.size = filesize; 700 }))); 701 EXPECT_CALL(*m_mock, process( 702 ResultOf([=](auto in) { 703 return (in.header.opcode == FUSE_GETATTR && 704 in.header.nodeid == ino); 705 }, Eq(true)), 706 _) 707 ).InSequence(seq) 708 .WillRepeatedly(Invoke(ReturnImmediate([=](auto i __unused, auto& out) { 709 SET_OUT_HEADER_LEN(out, attr); 710 out.body.attr.attr.ino = ino; 711 out.body.attr.attr.mode = mode; 712 out.body.attr.attr_valid = attr_valid; 713 out.body.attr.attr_valid_nsec = attr_valid_nsec; 714 out.body.attr.attr.size = filesize / 2; 715 }))); 716 expect_write(ino, 0, filesize / 2, filesize / 2, contents); 717 718 fd = open(FULLPATH, O_RDWR); 719 ASSERT_LE(0, fd) << strerror(errno); 720 ASSERT_EQ(filesize / 2, write(fd, contents, filesize / 2)) 721 << strerror(errno); 722 723 } 724 725 INSTANTIATE_TEST_CASE_P(W, WriteEofDuringVnopStrategy, 726 Values(1, 2, 3) 727 ); 728 729 /* 730 * If the kernel cannot be sure which uid, gid, or pid was responsible for a 731 * write, then it must set the FUSE_WRITE_CACHE bit 732 */ 733 /* https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=236378 */ 734 TEST_F(Write, mmap) 735 { 736 const char FULLPATH[] = "mountpoint/some_file.txt"; 737 const char RELPATH[] = "some_file.txt"; 738 const char *CONTENTS = "abcdefgh"; 739 uint64_t ino = 42; 740 int fd; 741 ssize_t bufsize = strlen(CONTENTS); 742 void *p; 743 uint64_t offset = 10; 744 size_t len; 745 void *zeros, *expected; 746 747 len = getpagesize(); 748 749 zeros = calloc(1, len); 750 ASSERT_NE(nullptr, zeros); 751 expected = calloc(1, len); 752 ASSERT_NE(nullptr, expected); 753 memmove((uint8_t*)expected + offset, CONTENTS, bufsize); 754 755 expect_lookup(RELPATH, ino, len); 756 expect_open(ino, 0, 1); 757 expect_read(ino, 0, len, len, zeros); 758 /* 759 * Writes from the pager may or may not be associated with the correct 760 * pid, so they must set FUSE_WRITE_CACHE. 761 */ 762 FuseTest::expect_write(ino, 0, len, len, FUSE_WRITE_CACHE, 0, expected); 763 expect_flush(ino, 1, ReturnErrno(0)); 764 expect_release(ino, ReturnErrno(0)); 765 766 fd = open(FULLPATH, O_RDWR); 767 ASSERT_LE(0, fd) << strerror(errno); 768 769 p = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); 770 ASSERT_NE(MAP_FAILED, p) << strerror(errno); 771 772 memmove((uint8_t*)p + offset, CONTENTS, bufsize); 773 774 ASSERT_EQ(0, munmap(p, len)) << strerror(errno); 775 close(fd); // Write mmap'd data on close 776 777 free(expected); 778 free(zeros); 779 780 leak(fd); 781 } 782 783 TEST_F(Write, pwrite) 784 { 785 const char FULLPATH[] = "mountpoint/some_file.txt"; 786 const char RELPATH[] = "some_file.txt"; 787 const char *CONTENTS = "abcdefgh"; 788 uint64_t ino = 42; 789 uint64_t offset = m_maxbcachebuf; 790 int fd; 791 ssize_t bufsize = strlen(CONTENTS); 792 793 expect_lookup(RELPATH, ino, 0); 794 expect_open(ino, 0, 1); 795 expect_write(ino, offset, bufsize, bufsize, CONTENTS); 796 797 fd = open(FULLPATH, O_WRONLY); 798 ASSERT_LE(0, fd) << strerror(errno); 799 800 ASSERT_EQ(bufsize, pwrite(fd, CONTENTS, bufsize, offset)) 801 << strerror(errno); 802 leak(fd); 803 } 804 805 /* Writing a file should update its cached mtime and ctime */ 806 TEST_F(Write, timestamps) 807 { 808 const char FULLPATH[] = "mountpoint/some_file.txt"; 809 const char RELPATH[] = "some_file.txt"; 810 const char *CONTENTS = "abcdefgh"; 811 ssize_t bufsize = strlen(CONTENTS); 812 uint64_t ino = 42; 813 struct stat sb0, sb1; 814 int fd; 815 816 expect_lookup(RELPATH, ino, 0); 817 expect_open(ino, 0, 1); 818 maybe_expect_write(ino, 0, bufsize, CONTENTS); 819 820 fd = open(FULLPATH, O_RDWR); 821 ASSERT_LE(0, fd) << strerror(errno); 822 ASSERT_EQ(0, fstat(fd, &sb0)) << strerror(errno); 823 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 824 825 nap(); 826 827 ASSERT_EQ(0, fstat(fd, &sb1)) << strerror(errno); 828 829 EXPECT_EQ(sb0.st_atime, sb1.st_atime); 830 EXPECT_NE(sb0.st_mtime, sb1.st_mtime); 831 EXPECT_NE(sb0.st_ctime, sb1.st_ctime); 832 833 leak(fd); 834 } 835 836 TEST_F(Write, write) 837 { 838 const char FULLPATH[] = "mountpoint/some_file.txt"; 839 const char RELPATH[] = "some_file.txt"; 840 const char *CONTENTS = "abcdefgh"; 841 uint64_t ino = 42; 842 int fd; 843 ssize_t bufsize = strlen(CONTENTS); 844 845 expect_lookup(RELPATH, ino, 0); 846 expect_open(ino, 0, 1); 847 expect_write(ino, 0, bufsize, bufsize, CONTENTS); 848 849 fd = open(FULLPATH, O_WRONLY); 850 ASSERT_LE(0, fd) << strerror(errno); 851 852 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 853 leak(fd); 854 } 855 856 /* fuse(4) should not issue writes of greater size than the daemon requests */ 857 TEST_F(WriteMaxWrite, write) 858 { 859 const char FULLPATH[] = "mountpoint/some_file.txt"; 860 const char RELPATH[] = "some_file.txt"; 861 int *contents; 862 uint64_t ino = 42; 863 int fd; 864 ssize_t halfbufsize, bufsize; 865 866 halfbufsize = m_mock->m_maxwrite; 867 if (halfbufsize >= m_maxbcachebuf || halfbufsize >= m_maxphys) 868 GTEST_SKIP() << "Must lower m_maxwrite for this test"; 869 bufsize = halfbufsize * 2; 870 contents = (int*)malloc(bufsize); 871 ASSERT_NE(nullptr, contents); 872 for (int i = 0; i < (int)bufsize / (int)sizeof(i); i++) { 873 contents[i] = i; 874 } 875 876 expect_lookup(RELPATH, ino, 0); 877 expect_open(ino, 0, 1); 878 maybe_expect_write(ino, 0, halfbufsize, contents); 879 maybe_expect_write(ino, halfbufsize, halfbufsize, 880 &contents[halfbufsize / sizeof(int)]); 881 882 fd = open(FULLPATH, O_WRONLY); 883 ASSERT_LE(0, fd) << strerror(errno); 884 885 ASSERT_EQ(bufsize, write(fd, contents, bufsize)) << strerror(errno); 886 leak(fd); 887 888 free(contents); 889 } 890 891 TEST_F(Write, write_nothing) 892 { 893 const char FULLPATH[] = "mountpoint/some_file.txt"; 894 const char RELPATH[] = "some_file.txt"; 895 const char *CONTENTS = ""; 896 uint64_t ino = 42; 897 int fd; 898 ssize_t bufsize = 0; 899 900 expect_lookup(RELPATH, ino, 0); 901 expect_open(ino, 0, 1); 902 903 fd = open(FULLPATH, O_WRONLY); 904 ASSERT_LE(0, fd) << strerror(errno); 905 906 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 907 leak(fd); 908 } 909 910 TEST_F(Write_7_8, write) 911 { 912 const char FULLPATH[] = "mountpoint/some_file.txt"; 913 const char RELPATH[] = "some_file.txt"; 914 const char *CONTENTS = "abcdefgh"; 915 uint64_t ino = 42; 916 int fd; 917 ssize_t bufsize = strlen(CONTENTS); 918 919 expect_lookup(RELPATH, ino, 0); 920 expect_open(ino, 0, 1); 921 expect_write_7_8(ino, 0, bufsize, bufsize, CONTENTS); 922 923 fd = open(FULLPATH, O_WRONLY); 924 ASSERT_LE(0, fd) << strerror(errno); 925 926 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 927 leak(fd); 928 } 929 930 /* In writeback mode, dirty data should be written on close */ 931 TEST_F(WriteBackAsync, close) 932 { 933 const char FULLPATH[] = "mountpoint/some_file.txt"; 934 const char RELPATH[] = "some_file.txt"; 935 const char *CONTENTS = "abcdefgh"; 936 uint64_t ino = 42; 937 int fd; 938 ssize_t bufsize = strlen(CONTENTS); 939 940 expect_lookup(RELPATH, ino, 0); 941 expect_open(ino, 0, 1); 942 expect_write(ino, 0, bufsize, bufsize, CONTENTS); 943 EXPECT_CALL(*m_mock, process( 944 ResultOf([=](auto in) { 945 return (in.header.opcode == FUSE_SETATTR); 946 }, Eq(true)), 947 _) 948 ).WillRepeatedly(Invoke(ReturnImmediate([=](auto i __unused, auto& out) { 949 SET_OUT_HEADER_LEN(out, attr); 950 out.body.attr.attr.ino = ino; // Must match nodeid 951 }))); 952 expect_flush(ino, 1, ReturnErrno(0)); 953 expect_release(ino, ReturnErrno(0)); 954 955 fd = open(FULLPATH, O_RDWR); 956 ASSERT_LE(0, fd) << strerror(errno); 957 958 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 959 close(fd); 960 } 961 962 /* In writeback mode, adjacent writes will be clustered together */ 963 TEST_F(WriteCluster, clustering) 964 { 965 const char FULLPATH[] = "mountpoint/some_file.txt"; 966 const char RELPATH[] = "some_file.txt"; 967 uint64_t ino = 42; 968 int i, fd; 969 void *wbuf, *wbuf2x; 970 ssize_t bufsize = m_maxbcachebuf; 971 off_t filesize = 5 * bufsize; 972 973 wbuf = malloc(bufsize); 974 ASSERT_NE(nullptr, wbuf) << strerror(errno); 975 memset(wbuf, 'X', bufsize); 976 wbuf2x = malloc(2 * bufsize); 977 ASSERT_NE(nullptr, wbuf2x) << strerror(errno); 978 memset(wbuf2x, 'X', 2 * bufsize); 979 980 expect_lookup(RELPATH, ino, filesize); 981 expect_open(ino, 0, 1); 982 /* 983 * Writes of bufsize-bytes each should be clustered into greater sizes. 984 * The amount of clustering is adaptive, so the first write actually 985 * issued will be 2x bufsize and subsequent writes may be larger 986 */ 987 expect_write(ino, 0, 2 * bufsize, 2 * bufsize, wbuf2x); 988 expect_write(ino, 2 * bufsize, 2 * bufsize, 2 * bufsize, wbuf2x); 989 expect_flush(ino, 1, ReturnErrno(0)); 990 expect_release(ino, ReturnErrno(0)); 991 992 fd = open(FULLPATH, O_RDWR); 993 ASSERT_LE(0, fd) << strerror(errno); 994 995 for (i = 0; i < 4; i++) { 996 ASSERT_EQ(bufsize, write(fd, wbuf, bufsize)) 997 << strerror(errno); 998 } 999 close(fd); 1000 free(wbuf2x); 1001 free(wbuf); 1002 } 1003 1004 /* 1005 * When clustering writes, an I/O error to any of the cluster's children should 1006 * not panic the system on unmount 1007 */ 1008 /* 1009 * Regression test for bug 238585 1010 * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=238565 1011 */ 1012 TEST_F(WriteCluster, cluster_write_err) 1013 { 1014 const char FULLPATH[] = "mountpoint/some_file.txt"; 1015 const char RELPATH[] = "some_file.txt"; 1016 uint64_t ino = 42; 1017 int i, fd; 1018 void *wbuf; 1019 ssize_t bufsize = m_maxbcachebuf; 1020 off_t filesize = 4 * bufsize; 1021 1022 wbuf = malloc(bufsize); 1023 ASSERT_NE(nullptr, wbuf) << strerror(errno); 1024 memset(wbuf, 'X', bufsize); 1025 1026 expect_lookup(RELPATH, ino, filesize); 1027 expect_open(ino, 0, 1); 1028 EXPECT_CALL(*m_mock, process( 1029 ResultOf([=](auto in) { 1030 return (in.header.opcode == FUSE_WRITE); 1031 }, Eq(true)), 1032 _) 1033 ).WillRepeatedly(Invoke(ReturnErrno(EIO))); 1034 expect_flush(ino, 1, ReturnErrno(0)); 1035 expect_release(ino, ReturnErrno(0)); 1036 1037 fd = open(FULLPATH, O_RDWR); 1038 ASSERT_LE(0, fd) << strerror(errno); 1039 1040 for (i = 0; i < 3; i++) { 1041 ASSERT_EQ(bufsize, write(fd, wbuf, bufsize)) 1042 << strerror(errno); 1043 } 1044 close(fd); 1045 free(wbuf); 1046 } 1047 1048 /* 1049 * In writeback mode, writes to an O_WRONLY file could trigger reads from the 1050 * server. The FUSE protocol explicitly allows that. 1051 */ 1052 TEST_F(WriteBack, rmw) 1053 { 1054 const char FULLPATH[] = "mountpoint/some_file.txt"; 1055 const char RELPATH[] = "some_file.txt"; 1056 const char *CONTENTS = "abcdefgh"; 1057 const char *INITIAL = "XXXXXXXXXX"; 1058 uint64_t ino = 42; 1059 uint64_t offset = 1; 1060 off_t fsize = 10; 1061 int fd; 1062 ssize_t bufsize = strlen(CONTENTS); 1063 1064 FuseTest::expect_lookup(RELPATH, ino, S_IFREG | 0644, fsize, 1); 1065 expect_open(ino, 0, 1); 1066 expect_read(ino, 0, fsize, fsize, INITIAL, O_WRONLY); 1067 maybe_expect_write(ino, offset, bufsize, CONTENTS); 1068 1069 fd = open(FULLPATH, O_WRONLY); 1070 ASSERT_LE(0, fd) << strerror(errno); 1071 1072 ASSERT_EQ(bufsize, pwrite(fd, CONTENTS, bufsize, offset)) 1073 << strerror(errno); 1074 leak(fd); 1075 } 1076 1077 /* 1078 * Without direct_io, writes should be committed to cache 1079 */ 1080 TEST_F(WriteBack, cache) 1081 { 1082 const char FULLPATH[] = "mountpoint/some_file.txt"; 1083 const char RELPATH[] = "some_file.txt"; 1084 const char *CONTENTS = "abcdefgh"; 1085 uint64_t ino = 42; 1086 int fd; 1087 ssize_t bufsize = strlen(CONTENTS); 1088 uint8_t readbuf[bufsize]; 1089 1090 expect_lookup(RELPATH, ino, 0); 1091 expect_open(ino, 0, 1); 1092 expect_write(ino, 0, bufsize, bufsize, CONTENTS); 1093 1094 fd = open(FULLPATH, O_RDWR); 1095 ASSERT_LE(0, fd) << strerror(errno); 1096 1097 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1098 /* 1099 * A subsequent read should be serviced by cache, without querying the 1100 * filesystem daemon 1101 */ 1102 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 1103 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 1104 leak(fd); 1105 } 1106 1107 /* 1108 * With O_DIRECT, writes should be not committed to cache. Admittedly this is 1109 * an odd test, because it would be unusual to use O_DIRECT for writes but not 1110 * reads. 1111 */ 1112 TEST_F(WriteBack, o_direct) 1113 { 1114 const char FULLPATH[] = "mountpoint/some_file.txt"; 1115 const char RELPATH[] = "some_file.txt"; 1116 const char *CONTENTS = "abcdefgh"; 1117 uint64_t ino = 42; 1118 int fd; 1119 ssize_t bufsize = strlen(CONTENTS); 1120 uint8_t readbuf[bufsize]; 1121 1122 expect_lookup(RELPATH, ino, 0); 1123 expect_open(ino, 0, 1); 1124 FuseTest::expect_write(ino, 0, bufsize, bufsize, 0, FUSE_WRITE_CACHE, 1125 CONTENTS); 1126 expect_read(ino, 0, bufsize, bufsize, CONTENTS); 1127 1128 fd = open(FULLPATH, O_RDWR | O_DIRECT); 1129 ASSERT_LE(0, fd) << strerror(errno); 1130 1131 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1132 /* A subsequent read must query the daemon because cache is empty */ 1133 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 1134 ASSERT_EQ(0, fcntl(fd, F_SETFL, 0)) << strerror(errno); 1135 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 1136 leak(fd); 1137 } 1138 1139 TEST_F(WriteBack, direct_io) 1140 { 1141 const char FULLPATH[] = "mountpoint/some_file.txt"; 1142 const char RELPATH[] = "some_file.txt"; 1143 const char *CONTENTS = "abcdefgh"; 1144 uint64_t ino = 42; 1145 int fd; 1146 ssize_t bufsize = strlen(CONTENTS); 1147 uint8_t readbuf[bufsize]; 1148 1149 expect_lookup(RELPATH, ino, 0); 1150 expect_open(ino, FOPEN_DIRECT_IO, 1); 1151 FuseTest::expect_write(ino, 0, bufsize, bufsize, 0, FUSE_WRITE_CACHE, 1152 CONTENTS); 1153 expect_read(ino, 0, bufsize, bufsize, CONTENTS); 1154 1155 fd = open(FULLPATH, O_RDWR); 1156 ASSERT_LE(0, fd) << strerror(errno); 1157 1158 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1159 /* A subsequent read must query the daemon because cache is empty */ 1160 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 1161 ASSERT_EQ(0, fcntl(fd, F_SETFL, 0)) << strerror(errno); 1162 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 1163 leak(fd); 1164 } 1165 1166 /* 1167 * mmap should still be possible even if the server used direct_io. Mmap will 1168 * still use the cache, though. 1169 * 1170 * Regression test for bug 247276 1171 * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=247276 1172 */ 1173 TEST_F(WriteBack, mmap_direct_io) 1174 { 1175 const char FULLPATH[] = "mountpoint/some_file.txt"; 1176 const char RELPATH[] = "some_file.txt"; 1177 const char *CONTENTS = "abcdefgh"; 1178 uint64_t ino = 42; 1179 int fd; 1180 size_t len; 1181 ssize_t bufsize = strlen(CONTENTS); 1182 void *p, *zeros; 1183 1184 len = getpagesize(); 1185 zeros = calloc(1, len); 1186 ASSERT_NE(nullptr, zeros); 1187 1188 expect_lookup(RELPATH, ino, len); 1189 expect_open(ino, FOPEN_DIRECT_IO, 1); 1190 expect_read(ino, 0, len, len, zeros); 1191 expect_flush(ino, 1, ReturnErrno(0)); 1192 FuseTest::expect_write(ino, 0, len, len, FUSE_WRITE_CACHE, 0, zeros); 1193 expect_release(ino, ReturnErrno(0)); 1194 1195 fd = open(FULLPATH, O_RDWR); 1196 ASSERT_LE(0, fd) << strerror(errno); 1197 1198 p = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); 1199 ASSERT_NE(MAP_FAILED, p) << strerror(errno); 1200 1201 memmove((uint8_t*)p, CONTENTS, bufsize); 1202 1203 ASSERT_EQ(0, munmap(p, len)) << strerror(errno); 1204 close(fd); // Write mmap'd data on close 1205 1206 free(zeros); 1207 } 1208 1209 /* 1210 * When mounted with -o async, the writeback cache mode should delay writes 1211 */ 1212 TEST_F(WriteBackAsync, delay) 1213 { 1214 const char FULLPATH[] = "mountpoint/some_file.txt"; 1215 const char RELPATH[] = "some_file.txt"; 1216 const char *CONTENTS = "abcdefgh"; 1217 uint64_t ino = 42; 1218 int fd; 1219 ssize_t bufsize = strlen(CONTENTS); 1220 1221 expect_lookup(RELPATH, ino, 0); 1222 expect_open(ino, 0, 1); 1223 /* Write should be cached, but FUSE_WRITE shouldn't be sent */ 1224 EXPECT_CALL(*m_mock, process( 1225 ResultOf([=](auto in) { 1226 return (in.header.opcode == FUSE_WRITE); 1227 }, Eq(true)), 1228 _) 1229 ).Times(0); 1230 1231 fd = open(FULLPATH, O_RDWR); 1232 ASSERT_LE(0, fd) << strerror(errno); 1233 1234 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1235 1236 /* Don't close the file because that would flush the cache */ 1237 leak(fd); 1238 } 1239 1240 /* 1241 * A direct write should not evict dirty cached data from outside of its own 1242 * byte range. 1243 */ 1244 TEST_F(WriteBackAsync, direct_io_ignores_unrelated_cached) 1245 { 1246 const char FULLPATH[] = "mountpoint/some_file.txt"; 1247 const char RELPATH[] = "some_file.txt"; 1248 const char CONTENTS0[] = "abcdefgh"; 1249 const char CONTENTS1[] = "ijklmnop"; 1250 uint64_t ino = 42; 1251 int fd; 1252 ssize_t bufsize = strlen(CONTENTS0) + 1; 1253 ssize_t fsize = 2 * m_maxbcachebuf; 1254 char readbuf[bufsize]; 1255 void *zeros; 1256 1257 zeros = calloc(1, m_maxbcachebuf); 1258 ASSERT_NE(nullptr, zeros); 1259 1260 expect_lookup(RELPATH, ino, fsize); 1261 expect_open(ino, 0, 1); 1262 expect_read(ino, 0, m_maxbcachebuf, m_maxbcachebuf, zeros); 1263 FuseTest::expect_write(ino, m_maxbcachebuf, bufsize, bufsize, 0, 0, 1264 CONTENTS1); 1265 1266 fd = open(FULLPATH, O_RDWR); 1267 ASSERT_LE(0, fd) << strerror(errno); 1268 1269 // Cache first block with dirty data. This will entail first reading 1270 // the existing data. 1271 ASSERT_EQ(bufsize, pwrite(fd, CONTENTS0, bufsize, 0)) 1272 << strerror(errno); 1273 1274 // Write directly to second block 1275 ASSERT_EQ(0, fcntl(fd, F_SETFL, O_DIRECT)) << strerror(errno); 1276 ASSERT_EQ(bufsize, pwrite(fd, CONTENTS1, bufsize, m_maxbcachebuf)) 1277 << strerror(errno); 1278 1279 // Read from the first block again. Should be serviced by cache. 1280 ASSERT_EQ(0, fcntl(fd, F_SETFL, 0)) << strerror(errno); 1281 ASSERT_EQ(bufsize, pread(fd, readbuf, bufsize, 0)) << strerror(errno); 1282 ASSERT_STREQ(readbuf, CONTENTS0); 1283 1284 leak(fd); 1285 free(zeros); 1286 } 1287 1288 /* 1289 * If a direct io write partially overlaps one or two blocks of dirty cached 1290 * data, No dirty data should be lost. Admittedly this is a weird test, 1291 * because it would be unusual to use O_DIRECT and the writeback cache. 1292 */ 1293 TEST_F(WriteBackAsync, direct_io_partially_overlaps_cached_block) 1294 { 1295 const char FULLPATH[] = "mountpoint/some_file.txt"; 1296 const char RELPATH[] = "some_file.txt"; 1297 uint64_t ino = 42; 1298 int fd; 1299 off_t bs = m_maxbcachebuf; 1300 ssize_t fsize = 3 * bs; 1301 void *readbuf, *zeros, *ones, *zeroones, *onezeros; 1302 1303 readbuf = malloc(bs); 1304 ASSERT_NE(nullptr, readbuf) << strerror(errno); 1305 zeros = calloc(1, 3 * bs); 1306 ASSERT_NE(nullptr, zeros); 1307 ones = calloc(1, 2 * bs); 1308 ASSERT_NE(nullptr, ones); 1309 memset(ones, 1, 2 * bs); 1310 zeroones = calloc(1, bs); 1311 ASSERT_NE(nullptr, zeroones); 1312 memset((uint8_t*)zeroones + bs / 2, 1, bs / 2); 1313 onezeros = calloc(1, bs); 1314 ASSERT_NE(nullptr, onezeros); 1315 memset(onezeros, 1, bs / 2); 1316 1317 expect_lookup(RELPATH, ino, fsize); 1318 expect_open(ino, 0, 1); 1319 1320 fd = open(FULLPATH, O_RDWR); 1321 ASSERT_LE(0, fd) << strerror(errno); 1322 1323 /* Cache first and third blocks with dirty data. */ 1324 ASSERT_EQ(3 * bs, pwrite(fd, zeros, 3 * bs, 0)) << strerror(errno); 1325 1326 /* 1327 * Write directly to all three blocks. The partially written blocks 1328 * will be flushed because they're dirty. 1329 */ 1330 FuseTest::expect_write(ino, 0, bs, bs, 0, 0, zeros); 1331 FuseTest::expect_write(ino, 2 * bs, bs, bs, 0, 0, zeros); 1332 /* The direct write is split in two because of the m_maxwrite value */ 1333 FuseTest::expect_write(ino, bs / 2, bs, bs, 0, 0, ones); 1334 FuseTest::expect_write(ino, 3 * bs / 2, bs, bs, 0, 0, ones); 1335 ASSERT_EQ(0, fcntl(fd, F_SETFL, O_DIRECT)) << strerror(errno); 1336 ASSERT_EQ(2 * bs, pwrite(fd, ones, 2 * bs, bs / 2)) << strerror(errno); 1337 1338 /* 1339 * Read from both the valid and invalid portions of the first and third 1340 * blocks again. This will entail FUSE_READ operations because these 1341 * blocks were invalidated by the direct write. 1342 */ 1343 expect_read(ino, 0, bs, bs, zeroones); 1344 expect_read(ino, 2 * bs, bs, bs, onezeros); 1345 ASSERT_EQ(0, fcntl(fd, F_SETFL, 0)) << strerror(errno); 1346 ASSERT_EQ(bs / 2, pread(fd, readbuf, bs / 2, 0)) << strerror(errno); 1347 EXPECT_EQ(0, memcmp(zeros, readbuf, bs / 2)); 1348 ASSERT_EQ(bs / 2, pread(fd, readbuf, bs / 2, 5 * bs / 2)) 1349 << strerror(errno); 1350 EXPECT_EQ(0, memcmp(zeros, readbuf, bs / 2)); 1351 ASSERT_EQ(bs / 2, pread(fd, readbuf, bs / 2, bs / 2)) 1352 << strerror(errno); 1353 EXPECT_EQ(0, memcmp(ones, readbuf, bs / 2)); 1354 ASSERT_EQ(bs / 2, pread(fd, readbuf, bs / 2, 2 * bs)) 1355 << strerror(errno); 1356 EXPECT_EQ(0, memcmp(ones, readbuf, bs / 2)); 1357 1358 leak(fd); 1359 free(zeroones); 1360 free(onezeros); 1361 free(ones); 1362 free(zeros); 1363 free(readbuf); 1364 } 1365 1366 /* 1367 * In WriteBack mode, writes may be cached beyond what the server thinks is the 1368 * EOF. In this case, a short read at EOF should _not_ cause fusefs to update 1369 * the file's size. 1370 */ 1371 TEST_F(WriteBackAsync, eof) 1372 { 1373 const char FULLPATH[] = "mountpoint/some_file.txt"; 1374 const char RELPATH[] = "some_file.txt"; 1375 const char *CONTENTS0 = "abcdefgh"; 1376 const char *CONTENTS1 = "ijklmnop"; 1377 uint64_t ino = 42; 1378 int fd; 1379 off_t offset = m_maxbcachebuf; 1380 ssize_t wbufsize = strlen(CONTENTS1); 1381 off_t old_filesize = (off_t)strlen(CONTENTS0); 1382 ssize_t rbufsize = 2 * old_filesize; 1383 char readbuf[rbufsize]; 1384 size_t holesize = rbufsize - old_filesize; 1385 char hole[holesize]; 1386 struct stat sb; 1387 ssize_t r; 1388 1389 expect_lookup(RELPATH, ino, 0); 1390 expect_open(ino, 0, 1); 1391 expect_read(ino, 0, m_maxbcachebuf, old_filesize, CONTENTS0); 1392 1393 fd = open(FULLPATH, O_RDWR); 1394 ASSERT_LE(0, fd) << strerror(errno); 1395 1396 /* Write and cache data beyond EOF */ 1397 ASSERT_EQ(wbufsize, pwrite(fd, CONTENTS1, wbufsize, offset)) 1398 << strerror(errno); 1399 1400 /* Read from the old EOF */ 1401 r = pread(fd, readbuf, rbufsize, 0); 1402 ASSERT_LE(0, r) << strerror(errno); 1403 EXPECT_EQ(rbufsize, r) << "read should've synthesized a hole"; 1404 EXPECT_EQ(0, memcmp(CONTENTS0, readbuf, old_filesize)); 1405 bzero(hole, holesize); 1406 EXPECT_EQ(0, memcmp(hole, readbuf + old_filesize, holesize)); 1407 1408 /* The file's size should still be what was established by pwrite */ 1409 ASSERT_EQ(0, fstat(fd, &sb)) << strerror(errno); 1410 EXPECT_EQ(offset + wbufsize, sb.st_size); 1411 leak(fd); 1412 } 1413 1414 /* 1415 * When a file has dirty writes that haven't been flushed, the server's notion 1416 * of its mtime and ctime will be wrong. The kernel should ignore those if it 1417 * gets them from a FUSE_GETATTR before flushing. 1418 */ 1419 TEST_F(WriteBackAsync, timestamps) 1420 { 1421 const char FULLPATH[] = "mountpoint/some_file.txt"; 1422 const char RELPATH[] = "some_file.txt"; 1423 const char *CONTENTS = "abcdefgh"; 1424 ssize_t bufsize = strlen(CONTENTS); 1425 uint64_t ino = 42; 1426 uint64_t attr_valid = 0; 1427 uint64_t attr_valid_nsec = 0; 1428 uint64_t server_time = 12345; 1429 mode_t mode = S_IFREG | 0644; 1430 int fd; 1431 1432 struct stat sb; 1433 1434 EXPECT_LOOKUP(FUSE_ROOT_ID, RELPATH) 1435 .WillRepeatedly(Invoke( 1436 ReturnImmediate([=](auto in __unused, auto& out) { 1437 SET_OUT_HEADER_LEN(out, entry); 1438 out.body.entry.attr.mode = mode; 1439 out.body.entry.nodeid = ino; 1440 out.body.entry.attr.nlink = 1; 1441 out.body.entry.attr_valid = attr_valid; 1442 out.body.entry.attr_valid_nsec = attr_valid_nsec; 1443 }))); 1444 expect_open(ino, 0, 1); 1445 EXPECT_CALL(*m_mock, process( 1446 ResultOf([=](auto in) { 1447 return (in.header.opcode == FUSE_GETATTR && 1448 in.header.nodeid == ino); 1449 }, Eq(true)), 1450 _) 1451 ).WillRepeatedly(Invoke( 1452 ReturnImmediate([=](auto i __unused, auto& out) { 1453 SET_OUT_HEADER_LEN(out, attr); 1454 out.body.attr.attr.ino = ino; 1455 out.body.attr.attr.mode = mode; 1456 out.body.attr.attr_valid = attr_valid; 1457 out.body.attr.attr_valid_nsec = attr_valid_nsec; 1458 out.body.attr.attr.atime = server_time; 1459 out.body.attr.attr.mtime = server_time; 1460 out.body.attr.attr.ctime = server_time; 1461 }))); 1462 1463 fd = open(FULLPATH, O_RDWR); 1464 ASSERT_LE(0, fd) << strerror(errno); 1465 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1466 1467 ASSERT_EQ(0, fstat(fd, &sb)) << strerror(errno); 1468 EXPECT_EQ((time_t)server_time, sb.st_atime); 1469 EXPECT_NE((time_t)server_time, sb.st_mtime); 1470 EXPECT_NE((time_t)server_time, sb.st_ctime); 1471 1472 leak(fd); 1473 } 1474 1475 /* Any dirty timestamp fields should be flushed during a SETATTR */ 1476 TEST_F(WriteBackAsync, timestamps_during_setattr) 1477 { 1478 const char FULLPATH[] = "mountpoint/some_file.txt"; 1479 const char RELPATH[] = "some_file.txt"; 1480 const char *CONTENTS = "abcdefgh"; 1481 ssize_t bufsize = strlen(CONTENTS); 1482 uint64_t ino = 42; 1483 const mode_t newmode = 0755; 1484 int fd; 1485 1486 expect_lookup(RELPATH, ino, 0); 1487 expect_open(ino, 0, 1); 1488 EXPECT_CALL(*m_mock, process( 1489 ResultOf([=](auto in) { 1490 uint32_t valid = FATTR_MODE | FATTR_MTIME | FATTR_CTIME; 1491 return (in.header.opcode == FUSE_SETATTR && 1492 in.header.nodeid == ino && 1493 in.body.setattr.valid == valid); 1494 }, Eq(true)), 1495 _) 1496 ).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) { 1497 SET_OUT_HEADER_LEN(out, attr); 1498 out.body.attr.attr.ino = ino; 1499 out.body.attr.attr.mode = S_IFREG | newmode; 1500 }))); 1501 1502 fd = open(FULLPATH, O_RDWR); 1503 ASSERT_LE(0, fd) << strerror(errno); 1504 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1505 ASSERT_EQ(0, fchmod(fd, newmode)) << strerror(errno); 1506 1507 leak(fd); 1508 } 1509 1510 /* fuse_init_out.time_gran controls the granularity of timestamps */ 1511 TEST_P(TimeGran, timestamps_during_setattr) 1512 { 1513 const char FULLPATH[] = "mountpoint/some_file.txt"; 1514 const char RELPATH[] = "some_file.txt"; 1515 const char *CONTENTS = "abcdefgh"; 1516 ssize_t bufsize = strlen(CONTENTS); 1517 uint64_t ino = 42; 1518 const mode_t newmode = 0755; 1519 int fd; 1520 1521 expect_lookup(RELPATH, ino, 0); 1522 expect_open(ino, 0, 1); 1523 EXPECT_CALL(*m_mock, process( 1524 ResultOf([=](auto in) { 1525 uint32_t valid = FATTR_MODE | FATTR_MTIME | FATTR_CTIME; 1526 return (in.header.opcode == FUSE_SETATTR && 1527 in.header.nodeid == ino && 1528 in.body.setattr.valid == valid && 1529 in.body.setattr.mtimensec % m_time_gran == 0 && 1530 in.body.setattr.ctimensec % m_time_gran == 0); 1531 }, Eq(true)), 1532 _) 1533 ).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) { 1534 SET_OUT_HEADER_LEN(out, attr); 1535 out.body.attr.attr.ino = ino; 1536 out.body.attr.attr.mode = S_IFREG | newmode; 1537 }))); 1538 1539 fd = open(FULLPATH, O_RDWR); 1540 ASSERT_LE(0, fd) << strerror(errno); 1541 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1542 ASSERT_EQ(0, fchmod(fd, newmode)) << strerror(errno); 1543 1544 leak(fd); 1545 } 1546 1547 INSTANTIATE_TEST_CASE_P(RA, TimeGran, Range(0u, 10u)); 1548 1549 /* 1550 * Without direct_io, writes should be committed to cache 1551 */ 1552 TEST_F(Write, writethrough) 1553 { 1554 const char FULLPATH[] = "mountpoint/some_file.txt"; 1555 const char RELPATH[] = "some_file.txt"; 1556 const char *CONTENTS = "abcdefgh"; 1557 uint64_t ino = 42; 1558 int fd; 1559 ssize_t bufsize = strlen(CONTENTS); 1560 uint8_t readbuf[bufsize]; 1561 1562 expect_lookup(RELPATH, ino, 0); 1563 expect_open(ino, 0, 1); 1564 expect_write(ino, 0, bufsize, bufsize, CONTENTS); 1565 1566 fd = open(FULLPATH, O_RDWR); 1567 ASSERT_LE(0, fd) << strerror(errno); 1568 1569 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1570 /* 1571 * A subsequent read should be serviced by cache, without querying the 1572 * filesystem daemon 1573 */ 1574 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 1575 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 1576 leak(fd); 1577 } 1578 1579 /* Writes that extend a file should update the cached file size */ 1580 TEST_F(Write, update_file_size) 1581 { 1582 const char FULLPATH[] = "mountpoint/some_file.txt"; 1583 const char RELPATH[] = "some_file.txt"; 1584 const char *CONTENTS = "abcdefgh"; 1585 struct stat sb; 1586 uint64_t ino = 42; 1587 int fd; 1588 ssize_t bufsize = strlen(CONTENTS); 1589 1590 expect_lookup(RELPATH, ino, 0); 1591 expect_open(ino, 0, 1); 1592 expect_write(ino, 0, bufsize, bufsize, CONTENTS); 1593 1594 fd = open(FULLPATH, O_RDWR); 1595 ASSERT_LE(0, fd) << strerror(errno); 1596 1597 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1598 /* Get cached attributes */ 1599 ASSERT_EQ(0, fstat(fd, &sb)) << strerror(errno); 1600 ASSERT_EQ(bufsize, sb.st_size); 1601 leak(fd); 1602 } 1603