1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2019 The FreeBSD Foundation 5 * 6 * This software was developed by BFF Storage Systems, LLC under sponsorship 7 * from the FreeBSD Foundation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * $FreeBSD$ 31 */ 32 33 extern "C" { 34 #include <sys/param.h> 35 #include <sys/mman.h> 36 #include <sys/resource.h> 37 #include <sys/stat.h> 38 #include <sys/time.h> 39 #include <sys/uio.h> 40 41 #include <aio.h> 42 #include <fcntl.h> 43 #include <signal.h> 44 #include <unistd.h> 45 } 46 47 #include "mockfs.hh" 48 #include "utils.hh" 49 50 using namespace testing; 51 52 class Write: public FuseTest { 53 54 public: 55 void SetUp() { 56 FuseTest::SetUp(); 57 } 58 59 void TearDown() { 60 struct sigaction sa; 61 62 bzero(&sa, sizeof(sa)); 63 sa.sa_handler = SIG_DFL; 64 sigaction(SIGXFSZ, &sa, NULL); 65 66 FuseTest::TearDown(); 67 } 68 69 void expect_lookup(const char *relpath, uint64_t ino, uint64_t size) 70 { 71 FuseTest::expect_lookup(relpath, ino, S_IFREG | 0644, size, 1); 72 } 73 74 void expect_release(uint64_t ino, ProcessMockerT r) 75 { 76 EXPECT_CALL(*m_mock, process( 77 ResultOf([=](auto in) { 78 return (in.header.opcode == FUSE_RELEASE && 79 in.header.nodeid == ino); 80 }, Eq(true)), 81 _) 82 ).WillRepeatedly(Invoke(r)); 83 } 84 85 void expect_write(uint64_t ino, uint64_t offset, uint64_t isize, 86 uint64_t osize, const void *contents) 87 { 88 FuseTest::expect_write(ino, offset, isize, osize, 0, 0, contents); 89 } 90 91 /* Expect a write that may or may not come, depending on the cache mode */ 92 void maybe_expect_write(uint64_t ino, uint64_t offset, uint64_t size, 93 const void *contents) 94 { 95 EXPECT_CALL(*m_mock, process( 96 ResultOf([=](auto in) { 97 const char *buf = (const char*)in.body.bytes + 98 sizeof(struct fuse_write_in); 99 100 assert(size <= sizeof(in.body.bytes) - 101 sizeof(struct fuse_write_in)); 102 return (in.header.opcode == FUSE_WRITE && 103 in.header.nodeid == ino && 104 in.body.write.offset == offset && 105 in.body.write.size == size && 106 0 == bcmp(buf, contents, size)); 107 }, Eq(true)), 108 _) 109 ).Times(AtMost(1)) 110 .WillRepeatedly(Invoke( 111 ReturnImmediate([=](auto in __unused, auto& out) { 112 SET_OUT_HEADER_LEN(out, write); 113 out.body.write.size = size; 114 }) 115 )); 116 } 117 118 }; 119 120 class Write_7_8: public FuseTest { 121 122 public: 123 virtual void SetUp() { 124 m_kernel_minor_version = 8; 125 FuseTest::SetUp(); 126 } 127 128 void expect_lookup(const char *relpath, uint64_t ino, uint64_t size) 129 { 130 FuseTest::expect_lookup_7_8(relpath, ino, S_IFREG | 0644, size, 1); 131 } 132 133 }; 134 135 class AioWrite: public Write { 136 virtual void SetUp() { 137 if (!is_unsafe_aio_enabled()) 138 GTEST_SKIP() << 139 "vfs.aio.enable_unsafe must be set for this test"; 140 FuseTest::SetUp(); 141 } 142 }; 143 144 /* Tests for the writeback cache mode */ 145 class WriteBack: public Write { 146 public: 147 virtual void SetUp() { 148 m_init_flags |= FUSE_WRITEBACK_CACHE; 149 FuseTest::SetUp(); 150 if (IsSkipped()) 151 return; 152 } 153 154 void expect_write(uint64_t ino, uint64_t offset, uint64_t isize, 155 uint64_t osize, const void *contents) 156 { 157 FuseTest::expect_write(ino, offset, isize, osize, FUSE_WRITE_CACHE, 0, 158 contents); 159 } 160 }; 161 162 class WriteBackAsync: public WriteBack { 163 public: 164 virtual void SetUp() { 165 m_async = true; 166 m_maxwrite = 65536; 167 WriteBack::SetUp(); 168 } 169 }; 170 171 class TimeGran: public WriteBackAsync, public WithParamInterface<unsigned> { 172 public: 173 virtual void SetUp() { 174 m_time_gran = 1 << GetParam(); 175 WriteBackAsync::SetUp(); 176 } 177 }; 178 179 /* Tests for clustered writes with WriteBack cacheing */ 180 class WriteCluster: public WriteBack { 181 public: 182 virtual void SetUp() { 183 m_async = true; 184 m_maxwrite = 1 << 25; // Anything larger than MAXPHYS will suffice 185 WriteBack::SetUp(); 186 if (m_maxphys < 2 * DFLTPHYS) 187 GTEST_SKIP() << "MAXPHYS must be at least twice DFLTPHYS" 188 << " for this test"; 189 if (m_maxphys < 2 * m_maxbcachebuf) 190 GTEST_SKIP() << "MAXPHYS must be at least twice maxbcachebuf" 191 << " for this test"; 192 } 193 }; 194 195 /* Tests relating to the server's max_write property */ 196 class WriteMaxWrite: public Write { 197 public: 198 virtual void SetUp() { 199 /* 200 * For this test, m_maxwrite must be less than either m_maxbcachebuf or 201 * maxphys. 202 */ 203 m_maxwrite = 32768; 204 Write::SetUp(); 205 } 206 }; 207 208 class WriteEofDuringVnopStrategy: public Write, public WithParamInterface<int> 209 {}; 210 211 class WriteRlimitFsize: public Write, public WithParamInterface<int> { 212 public: 213 static sig_atomic_t s_sigxfsz; 214 struct rlimit m_initial_limit; 215 216 void SetUp() { 217 s_sigxfsz = 0; 218 getrlimit(RLIMIT_FSIZE, &m_initial_limit); 219 FuseTest::SetUp(); 220 } 221 222 void TearDown() { 223 setrlimit(RLIMIT_FSIZE, &m_initial_limit); 224 225 FuseTest::TearDown(); 226 } 227 }; 228 229 sig_atomic_t WriteRlimitFsize::s_sigxfsz = 0; 230 231 void sigxfsz_handler(int __unused sig) { 232 WriteRlimitFsize::s_sigxfsz = 1; 233 } 234 235 /* AIO writes need to set the header's pid field correctly */ 236 /* https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=236379 */ 237 TEST_F(AioWrite, DISABLED_aio_write) 238 { 239 const char FULLPATH[] = "mountpoint/some_file.txt"; 240 const char RELPATH[] = "some_file.txt"; 241 const char *CONTENTS = "abcdefgh"; 242 uint64_t ino = 42; 243 uint64_t offset = 4096; 244 int fd; 245 ssize_t bufsize = strlen(CONTENTS); 246 struct aiocb iocb, *piocb; 247 248 expect_lookup(RELPATH, ino, 0); 249 expect_open(ino, 0, 1); 250 expect_write(ino, offset, bufsize, bufsize, CONTENTS); 251 252 fd = open(FULLPATH, O_WRONLY); 253 ASSERT_LE(0, fd) << strerror(errno); 254 255 iocb.aio_nbytes = bufsize; 256 iocb.aio_fildes = fd; 257 iocb.aio_buf = __DECONST(void *, CONTENTS); 258 iocb.aio_offset = offset; 259 iocb.aio_sigevent.sigev_notify = SIGEV_NONE; 260 ASSERT_EQ(0, aio_write(&iocb)) << strerror(errno); 261 ASSERT_EQ(bufsize, aio_waitcomplete(&piocb, NULL)) << strerror(errno); 262 leak(fd); 263 } 264 265 /* 266 * When a file is opened with O_APPEND, we should forward that flag to 267 * FUSE_OPEN (tested by Open.o_append) but still attempt to calculate the 268 * offset internally. That way we'll work both with filesystems that 269 * understand O_APPEND (and ignore the offset) and filesystems that don't (and 270 * simply use the offset). 271 * 272 * Note that verifying the O_APPEND flag in FUSE_OPEN is done in the 273 * Open.o_append test. 274 */ 275 TEST_F(Write, append) 276 { 277 const ssize_t BUFSIZE = 9; 278 const char FULLPATH[] = "mountpoint/some_file.txt"; 279 const char RELPATH[] = "some_file.txt"; 280 const char CONTENTS[BUFSIZE] = "abcdefgh"; 281 uint64_t ino = 42; 282 /* 283 * Set offset to a maxbcachebuf boundary so we don't need to RMW when 284 * using writeback caching 285 */ 286 uint64_t initial_offset = m_maxbcachebuf; 287 int fd; 288 289 expect_lookup(RELPATH, ino, initial_offset); 290 expect_open(ino, 0, 1); 291 expect_write(ino, initial_offset, BUFSIZE, BUFSIZE, CONTENTS); 292 293 /* Must open O_RDWR or fuse(4) implicitly sets direct_io */ 294 fd = open(FULLPATH, O_RDWR | O_APPEND); 295 ASSERT_LE(0, fd) << strerror(errno); 296 297 ASSERT_EQ(BUFSIZE, write(fd, CONTENTS, BUFSIZE)) << strerror(errno); 298 leak(fd); 299 } 300 301 /* If a file is cached, then appending to the end should not cause a read */ 302 TEST_F(Write, append_to_cached) 303 { 304 const ssize_t BUFSIZE = 9; 305 const char FULLPATH[] = "mountpoint/some_file.txt"; 306 const char RELPATH[] = "some_file.txt"; 307 char *oldcontents, *oldbuf; 308 const char CONTENTS[BUFSIZE] = "abcdefgh"; 309 uint64_t ino = 42; 310 /* 311 * Set offset in between maxbcachebuf boundary to test buffer handling 312 */ 313 uint64_t oldsize = m_maxbcachebuf / 2; 314 int fd; 315 316 oldcontents = (char*)calloc(1, oldsize); 317 ASSERT_NE(nullptr, oldcontents) << strerror(errno); 318 oldbuf = (char*)malloc(oldsize); 319 ASSERT_NE(nullptr, oldbuf) << strerror(errno); 320 321 expect_lookup(RELPATH, ino, oldsize); 322 expect_open(ino, 0, 1); 323 expect_read(ino, 0, oldsize, oldsize, oldcontents); 324 maybe_expect_write(ino, oldsize, BUFSIZE, CONTENTS); 325 326 /* Must open O_RDWR or fuse(4) implicitly sets direct_io */ 327 fd = open(FULLPATH, O_RDWR | O_APPEND); 328 ASSERT_LE(0, fd) << strerror(errno); 329 330 /* Read the old data into the cache */ 331 ASSERT_EQ((ssize_t)oldsize, read(fd, oldbuf, oldsize)) 332 << strerror(errno); 333 334 /* Write the new data. There should be no more read operations */ 335 ASSERT_EQ(BUFSIZE, write(fd, CONTENTS, BUFSIZE)) << strerror(errno); 336 leak(fd); 337 free(oldbuf); 338 free(oldcontents); 339 } 340 341 TEST_F(Write, append_direct_io) 342 { 343 const ssize_t BUFSIZE = 9; 344 const char FULLPATH[] = "mountpoint/some_file.txt"; 345 const char RELPATH[] = "some_file.txt"; 346 const char CONTENTS[BUFSIZE] = "abcdefgh"; 347 uint64_t ino = 42; 348 uint64_t initial_offset = 4096; 349 int fd; 350 351 expect_lookup(RELPATH, ino, initial_offset); 352 expect_open(ino, FOPEN_DIRECT_IO, 1); 353 expect_write(ino, initial_offset, BUFSIZE, BUFSIZE, CONTENTS); 354 355 fd = open(FULLPATH, O_WRONLY | O_APPEND); 356 ASSERT_LE(0, fd) << strerror(errno); 357 358 ASSERT_EQ(BUFSIZE, write(fd, CONTENTS, BUFSIZE)) << strerror(errno); 359 leak(fd); 360 } 361 362 /* A direct write should evict any overlapping cached data */ 363 TEST_F(Write, direct_io_evicts_cache) 364 { 365 const char FULLPATH[] = "mountpoint/some_file.txt"; 366 const char RELPATH[] = "some_file.txt"; 367 const char CONTENTS0[] = "abcdefgh"; 368 const char CONTENTS1[] = "ijklmnop"; 369 uint64_t ino = 42; 370 int fd; 371 ssize_t bufsize = strlen(CONTENTS0) + 1; 372 char readbuf[bufsize]; 373 374 expect_lookup(RELPATH, ino, bufsize); 375 expect_open(ino, 0, 1); 376 expect_read(ino, 0, bufsize, bufsize, CONTENTS0); 377 expect_write(ino, 0, bufsize, bufsize, CONTENTS1); 378 379 fd = open(FULLPATH, O_RDWR); 380 ASSERT_LE(0, fd) << strerror(errno); 381 382 // Prime cache 383 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 384 385 // Write directly, evicting cache 386 ASSERT_EQ(0, fcntl(fd, F_SETFL, O_DIRECT)) << strerror(errno); 387 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 388 ASSERT_EQ(bufsize, write(fd, CONTENTS1, bufsize)) << strerror(errno); 389 390 // Read again. Cache should be bypassed 391 expect_read(ino, 0, bufsize, bufsize, CONTENTS1); 392 ASSERT_EQ(0, fcntl(fd, F_SETFL, 0)) << strerror(errno); 393 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 394 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 395 ASSERT_STREQ(readbuf, CONTENTS1); 396 397 leak(fd); 398 } 399 400 /* 401 * If the server doesn't return FOPEN_DIRECT_IO during FUSE_OPEN, then it's not 402 * allowed to return a short write for that file handle. However, if it does 403 * then we should still do our darndest to handle it by resending the unwritten 404 * portion. 405 */ 406 TEST_F(Write, indirect_io_short_write) 407 { 408 const char FULLPATH[] = "mountpoint/some_file.txt"; 409 const char RELPATH[] = "some_file.txt"; 410 const char *CONTENTS = "abcdefghijklmnop"; 411 uint64_t ino = 42; 412 int fd; 413 ssize_t bufsize = strlen(CONTENTS); 414 ssize_t bufsize0 = 11; 415 ssize_t bufsize1 = strlen(CONTENTS) - bufsize0; 416 const char *contents1 = CONTENTS + bufsize0; 417 418 expect_lookup(RELPATH, ino, 0); 419 expect_open(ino, 0, 1); 420 expect_write(ino, 0, bufsize, bufsize0, CONTENTS); 421 expect_write(ino, bufsize0, bufsize1, bufsize1, contents1); 422 423 fd = open(FULLPATH, O_WRONLY); 424 ASSERT_LE(0, fd) << strerror(errno); 425 426 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 427 leak(fd); 428 } 429 430 /* It is an error if the daemon claims to have written more data than we sent */ 431 TEST_F(Write, indirect_io_long_write) 432 { 433 const char FULLPATH[] = "mountpoint/some_file.txt"; 434 const char RELPATH[] = "some_file.txt"; 435 const char *CONTENTS = "abcdefghijklmnop"; 436 uint64_t ino = 42; 437 int fd; 438 ssize_t bufsize = strlen(CONTENTS); 439 ssize_t bufsize_out = 100; 440 off_t some_other_size = 25; 441 struct stat sb; 442 443 expect_lookup(RELPATH, ino, 0); 444 expect_open(ino, 0, 1); 445 expect_write(ino, 0, bufsize, bufsize_out, CONTENTS); 446 expect_getattr(ino, some_other_size); 447 448 fd = open(FULLPATH, O_WRONLY); 449 ASSERT_LE(0, fd) << strerror(errno); 450 451 ASSERT_EQ(-1, write(fd, CONTENTS, bufsize)) << strerror(errno); 452 ASSERT_EQ(EINVAL, errno); 453 454 /* 455 * Following such an error, we should requery the server for the file's 456 * size. 457 */ 458 fstat(fd, &sb); 459 ASSERT_EQ(sb.st_size, some_other_size); 460 461 leak(fd); 462 } 463 464 /* 465 * Don't crash if the server returns a write that can't be represented as a 466 * signed 32 bit number. Regression test for 467 * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=263263 468 */ 469 TEST_F(Write, indirect_io_very_long_write) 470 { 471 const char FULLPATH[] = "mountpoint/some_file.txt"; 472 const char RELPATH[] = "some_file.txt"; 473 const char *CONTENTS = "abcdefghijklmnop"; 474 uint64_t ino = 42; 475 int fd; 476 ssize_t bufsize = strlen(CONTENTS); 477 ssize_t bufsize_out = 3 << 30; 478 479 expect_lookup(RELPATH, ino, 0); 480 expect_open(ino, 0, 1); 481 expect_write(ino, 0, bufsize, bufsize_out, CONTENTS); 482 483 fd = open(FULLPATH, O_WRONLY); 484 ASSERT_LE(0, fd) << strerror(errno); 485 486 ASSERT_EQ(-1, write(fd, CONTENTS, bufsize)) << strerror(errno); 487 ASSERT_EQ(EINVAL, errno); 488 leak(fd); 489 } 490 491 /* 492 * When the direct_io option is used, filesystems are allowed to write less 493 * data than requested. We should return the short write to userland. 494 */ 495 TEST_F(Write, direct_io_short_write) 496 { 497 const char FULLPATH[] = "mountpoint/some_file.txt"; 498 const char RELPATH[] = "some_file.txt"; 499 const char *CONTENTS = "abcdefghijklmnop"; 500 uint64_t ino = 42; 501 int fd; 502 ssize_t bufsize = strlen(CONTENTS); 503 ssize_t halfbufsize = bufsize / 2; 504 505 expect_lookup(RELPATH, ino, 0); 506 expect_open(ino, FOPEN_DIRECT_IO, 1); 507 expect_write(ino, 0, bufsize, halfbufsize, CONTENTS); 508 509 fd = open(FULLPATH, O_WRONLY); 510 ASSERT_LE(0, fd) << strerror(errno); 511 512 ASSERT_EQ(halfbufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 513 leak(fd); 514 } 515 516 /* 517 * An insidious edge case: the filesystem returns a short write, and the 518 * difference between what we requested and what it actually wrote crosses an 519 * iov element boundary 520 */ 521 TEST_F(Write, direct_io_short_write_iov) 522 { 523 const char FULLPATH[] = "mountpoint/some_file.txt"; 524 const char RELPATH[] = "some_file.txt"; 525 const char *CONTENTS0 = "abcdefgh"; 526 const char *CONTENTS1 = "ijklmnop"; 527 const char *EXPECTED0 = "abcdefghijklmnop"; 528 uint64_t ino = 42; 529 int fd; 530 ssize_t size0 = strlen(CONTENTS0) - 1; 531 ssize_t size1 = strlen(CONTENTS1) + 1; 532 ssize_t totalsize = size0 + size1; 533 struct iovec iov[2]; 534 535 expect_lookup(RELPATH, ino, 0); 536 expect_open(ino, FOPEN_DIRECT_IO, 1); 537 expect_write(ino, 0, totalsize, size0, EXPECTED0); 538 539 fd = open(FULLPATH, O_WRONLY); 540 ASSERT_LE(0, fd) << strerror(errno); 541 542 iov[0].iov_base = __DECONST(void*, CONTENTS0); 543 iov[0].iov_len = strlen(CONTENTS0); 544 iov[1].iov_base = __DECONST(void*, CONTENTS1); 545 iov[1].iov_len = strlen(CONTENTS1); 546 ASSERT_EQ(size0, writev(fd, iov, 2)) << strerror(errno); 547 leak(fd); 548 } 549 550 /* fusefs should respect RLIMIT_FSIZE */ 551 TEST_P(WriteRlimitFsize, rlimit_fsize) 552 { 553 const char FULLPATH[] = "mountpoint/some_file.txt"; 554 const char RELPATH[] = "some_file.txt"; 555 const char *CONTENTS = "abcdefgh"; 556 struct rlimit rl; 557 ssize_t bufsize = strlen(CONTENTS); 558 off_t offset = 1'000'000'000; 559 uint64_t ino = 42; 560 int fd, oflag; 561 562 oflag = GetParam(); 563 564 expect_lookup(RELPATH, ino, 0); 565 expect_open(ino, 0, 1); 566 567 rl.rlim_cur = offset; 568 rl.rlim_max = m_initial_limit.rlim_max; 569 ASSERT_EQ(0, setrlimit(RLIMIT_FSIZE, &rl)) << strerror(errno); 570 ASSERT_NE(SIG_ERR, signal(SIGXFSZ, sigxfsz_handler)) << strerror(errno); 571 572 fd = open(FULLPATH, O_WRONLY | oflag); 573 574 ASSERT_LE(0, fd) << strerror(errno); 575 576 ASSERT_EQ(-1, pwrite(fd, CONTENTS, bufsize, offset)); 577 EXPECT_EQ(EFBIG, errno); 578 EXPECT_EQ(1, s_sigxfsz); 579 leak(fd); 580 } 581 582 /* 583 * When crossing the RLIMIT_FSIZE boundary, writes should be truncated, not 584 * aborted. 585 * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=164793 586 */ 587 TEST_P(WriteRlimitFsize, rlimit_fsize_truncate) 588 { 589 const char FULLPATH[] = "mountpoint/some_file.txt"; 590 const char RELPATH[] = "some_file.txt"; 591 const char *CONTENTS = "abcdefghijklmnopqrstuvwxyz"; 592 struct rlimit rl; 593 ssize_t bufsize = strlen(CONTENTS); 594 uint64_t ino = 42; 595 off_t offset = 1 << 30; 596 off_t limit = offset + strlen(CONTENTS) / 2; 597 int fd, oflag; 598 599 oflag = GetParam(); 600 601 expect_lookup(RELPATH, ino, 0); 602 expect_open(ino, 0, 1); 603 expect_write(ino, offset, bufsize / 2, bufsize / 2, CONTENTS); 604 605 rl.rlim_cur = limit; 606 rl.rlim_max = m_initial_limit.rlim_max; 607 ASSERT_EQ(0, setrlimit(RLIMIT_FSIZE, &rl)) << strerror(errno); 608 ASSERT_NE(SIG_ERR, signal(SIGXFSZ, sigxfsz_handler)) << strerror(errno); 609 610 fd = open(FULLPATH, O_WRONLY | oflag); 611 612 ASSERT_LE(0, fd) << strerror(errno); 613 614 ASSERT_EQ(bufsize / 2, pwrite(fd, CONTENTS, bufsize, offset)) 615 << strerror(errno); 616 leak(fd); 617 } 618 619 INSTANTIATE_TEST_CASE_P(W, WriteRlimitFsize, 620 Values(0, O_DIRECT) 621 ); 622 623 /* 624 * A short read indicates EOF. Test that nothing bad happens if we get EOF 625 * during the R of a RMW operation. 626 */ 627 TEST_F(Write, eof_during_rmw) 628 { 629 const char FULLPATH[] = "mountpoint/some_file.txt"; 630 const char RELPATH[] = "some_file.txt"; 631 const char *CONTENTS = "abcdefgh"; 632 const char *INITIAL = "XXXXXXXXXX"; 633 uint64_t ino = 42; 634 uint64_t offset = 1; 635 ssize_t bufsize = strlen(CONTENTS) + 1; 636 off_t orig_fsize = 10; 637 off_t truncated_fsize = 5; 638 int fd; 639 640 FuseTest::expect_lookup(RELPATH, ino, S_IFREG | 0644, orig_fsize, 1); 641 expect_open(ino, 0, 1); 642 expect_read(ino, 0, orig_fsize, truncated_fsize, INITIAL, O_RDWR); 643 maybe_expect_write(ino, offset, bufsize, CONTENTS); 644 645 fd = open(FULLPATH, O_RDWR); 646 ASSERT_LE(0, fd) << strerror(errno); 647 648 ASSERT_EQ(bufsize, pwrite(fd, CONTENTS, bufsize, offset)) 649 << strerror(errno); 650 leak(fd); 651 } 652 653 /* 654 * VOP_STRATEGY should not query the server for the file's size, even if its 655 * cached attributes have expired. 656 * Regression test for https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=256937 657 */ 658 TEST_P(WriteEofDuringVnopStrategy, eof_during_vop_strategy) 659 { 660 const char FULLPATH[] = "mountpoint/some_file.txt"; 661 const char RELPATH[] = "some_file.txt"; 662 Sequence seq; 663 const off_t filesize = 2 * m_maxbcachebuf; 664 void *contents; 665 uint64_t ino = 42; 666 uint64_t attr_valid = 0; 667 uint64_t attr_valid_nsec = 0; 668 mode_t mode = S_IFREG | 0644; 669 int fd; 670 int ngetattrs; 671 672 ngetattrs = GetParam(); 673 contents = calloc(1, filesize); 674 675 EXPECT_LOOKUP(FUSE_ROOT_ID, RELPATH) 676 .WillRepeatedly(Invoke( 677 ReturnImmediate([=](auto in __unused, auto& out) { 678 SET_OUT_HEADER_LEN(out, entry); 679 out.body.entry.attr.mode = mode; 680 out.body.entry.nodeid = ino; 681 out.body.entry.attr.nlink = 1; 682 out.body.entry.attr.size = filesize; 683 out.body.entry.attr_valid = attr_valid; 684 out.body.entry.attr_valid_nsec = attr_valid_nsec; 685 }))); 686 expect_open(ino, 0, 1); 687 EXPECT_CALL(*m_mock, process( 688 ResultOf([=](auto in) { 689 return (in.header.opcode == FUSE_GETATTR && 690 in.header.nodeid == ino); 691 }, Eq(true)), 692 _) 693 ).Times(Between(ngetattrs - 1, ngetattrs)) 694 .InSequence(seq) 695 .WillRepeatedly(Invoke(ReturnImmediate([=](auto i __unused, auto& out) { 696 SET_OUT_HEADER_LEN(out, attr); 697 out.body.attr.attr.ino = ino; 698 out.body.attr.attr.mode = mode; 699 out.body.attr.attr_valid = attr_valid; 700 out.body.attr.attr_valid_nsec = attr_valid_nsec; 701 out.body.attr.attr.size = filesize; 702 }))); 703 EXPECT_CALL(*m_mock, process( 704 ResultOf([=](auto in) { 705 return (in.header.opcode == FUSE_GETATTR && 706 in.header.nodeid == ino); 707 }, Eq(true)), 708 _) 709 ).InSequence(seq) 710 .WillRepeatedly(Invoke(ReturnImmediate([=](auto i __unused, auto& out) { 711 SET_OUT_HEADER_LEN(out, attr); 712 out.body.attr.attr.ino = ino; 713 out.body.attr.attr.mode = mode; 714 out.body.attr.attr_valid = attr_valid; 715 out.body.attr.attr_valid_nsec = attr_valid_nsec; 716 out.body.attr.attr.size = filesize / 2; 717 }))); 718 expect_write(ino, 0, filesize / 2, filesize / 2, contents); 719 720 fd = open(FULLPATH, O_RDWR); 721 ASSERT_LE(0, fd) << strerror(errno); 722 ASSERT_EQ(filesize / 2, write(fd, contents, filesize / 2)) 723 << strerror(errno); 724 725 } 726 727 INSTANTIATE_TEST_CASE_P(W, WriteEofDuringVnopStrategy, 728 Values(1, 2, 3) 729 ); 730 731 /* 732 * If the kernel cannot be sure which uid, gid, or pid was responsible for a 733 * write, then it must set the FUSE_WRITE_CACHE bit 734 */ 735 /* https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=236378 */ 736 TEST_F(Write, mmap) 737 { 738 const char FULLPATH[] = "mountpoint/some_file.txt"; 739 const char RELPATH[] = "some_file.txt"; 740 const char *CONTENTS = "abcdefgh"; 741 uint64_t ino = 42; 742 int fd; 743 ssize_t bufsize = strlen(CONTENTS); 744 void *p; 745 uint64_t offset = 10; 746 size_t len; 747 void *zeros, *expected; 748 749 len = getpagesize(); 750 751 zeros = calloc(1, len); 752 ASSERT_NE(nullptr, zeros); 753 expected = calloc(1, len); 754 ASSERT_NE(nullptr, expected); 755 memmove((uint8_t*)expected + offset, CONTENTS, bufsize); 756 757 expect_lookup(RELPATH, ino, len); 758 expect_open(ino, 0, 1); 759 expect_read(ino, 0, len, len, zeros); 760 /* 761 * Writes from the pager may or may not be associated with the correct 762 * pid, so they must set FUSE_WRITE_CACHE. 763 */ 764 FuseTest::expect_write(ino, 0, len, len, FUSE_WRITE_CACHE, 0, expected); 765 expect_flush(ino, 1, ReturnErrno(0)); 766 expect_release(ino, ReturnErrno(0)); 767 768 fd = open(FULLPATH, O_RDWR); 769 ASSERT_LE(0, fd) << strerror(errno); 770 771 p = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); 772 ASSERT_NE(MAP_FAILED, p) << strerror(errno); 773 774 memmove((uint8_t*)p + offset, CONTENTS, bufsize); 775 776 ASSERT_EQ(0, munmap(p, len)) << strerror(errno); 777 close(fd); // Write mmap'd data on close 778 779 free(expected); 780 free(zeros); 781 782 leak(fd); 783 } 784 785 TEST_F(Write, pwrite) 786 { 787 const char FULLPATH[] = "mountpoint/some_file.txt"; 788 const char RELPATH[] = "some_file.txt"; 789 const char *CONTENTS = "abcdefgh"; 790 uint64_t ino = 42; 791 uint64_t offset = m_maxbcachebuf; 792 int fd; 793 ssize_t bufsize = strlen(CONTENTS); 794 795 expect_lookup(RELPATH, ino, 0); 796 expect_open(ino, 0, 1); 797 expect_write(ino, offset, bufsize, bufsize, CONTENTS); 798 799 fd = open(FULLPATH, O_WRONLY); 800 ASSERT_LE(0, fd) << strerror(errno); 801 802 ASSERT_EQ(bufsize, pwrite(fd, CONTENTS, bufsize, offset)) 803 << strerror(errno); 804 leak(fd); 805 } 806 807 /* Writing a file should update its cached mtime and ctime */ 808 TEST_F(Write, timestamps) 809 { 810 const char FULLPATH[] = "mountpoint/some_file.txt"; 811 const char RELPATH[] = "some_file.txt"; 812 const char *CONTENTS = "abcdefgh"; 813 ssize_t bufsize = strlen(CONTENTS); 814 uint64_t ino = 42; 815 struct stat sb0, sb1; 816 int fd; 817 818 expect_lookup(RELPATH, ino, 0); 819 expect_open(ino, 0, 1); 820 maybe_expect_write(ino, 0, bufsize, CONTENTS); 821 822 fd = open(FULLPATH, O_RDWR); 823 ASSERT_LE(0, fd) << strerror(errno); 824 ASSERT_EQ(0, fstat(fd, &sb0)) << strerror(errno); 825 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 826 827 nap(); 828 829 ASSERT_EQ(0, fstat(fd, &sb1)) << strerror(errno); 830 831 EXPECT_EQ(sb0.st_atime, sb1.st_atime); 832 EXPECT_NE(sb0.st_mtime, sb1.st_mtime); 833 EXPECT_NE(sb0.st_ctime, sb1.st_ctime); 834 835 leak(fd); 836 } 837 838 TEST_F(Write, write) 839 { 840 const char FULLPATH[] = "mountpoint/some_file.txt"; 841 const char RELPATH[] = "some_file.txt"; 842 const char *CONTENTS = "abcdefgh"; 843 uint64_t ino = 42; 844 int fd; 845 ssize_t bufsize = strlen(CONTENTS); 846 847 expect_lookup(RELPATH, ino, 0); 848 expect_open(ino, 0, 1); 849 expect_write(ino, 0, bufsize, bufsize, CONTENTS); 850 851 fd = open(FULLPATH, O_WRONLY); 852 ASSERT_LE(0, fd) << strerror(errno); 853 854 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 855 leak(fd); 856 } 857 858 /* fuse(4) should not issue writes of greater size than the daemon requests */ 859 TEST_F(WriteMaxWrite, write) 860 { 861 const char FULLPATH[] = "mountpoint/some_file.txt"; 862 const char RELPATH[] = "some_file.txt"; 863 int *contents; 864 uint64_t ino = 42; 865 int fd; 866 ssize_t halfbufsize, bufsize; 867 868 halfbufsize = m_mock->m_maxwrite; 869 if (halfbufsize >= m_maxbcachebuf || halfbufsize >= m_maxphys) 870 GTEST_SKIP() << "Must lower m_maxwrite for this test"; 871 bufsize = halfbufsize * 2; 872 contents = (int*)malloc(bufsize); 873 ASSERT_NE(nullptr, contents); 874 for (int i = 0; i < (int)bufsize / (int)sizeof(i); i++) { 875 contents[i] = i; 876 } 877 878 expect_lookup(RELPATH, ino, 0); 879 expect_open(ino, 0, 1); 880 maybe_expect_write(ino, 0, halfbufsize, contents); 881 maybe_expect_write(ino, halfbufsize, halfbufsize, 882 &contents[halfbufsize / sizeof(int)]); 883 884 fd = open(FULLPATH, O_WRONLY); 885 ASSERT_LE(0, fd) << strerror(errno); 886 887 ASSERT_EQ(bufsize, write(fd, contents, bufsize)) << strerror(errno); 888 leak(fd); 889 890 free(contents); 891 } 892 893 TEST_F(Write, write_nothing) 894 { 895 const char FULLPATH[] = "mountpoint/some_file.txt"; 896 const char RELPATH[] = "some_file.txt"; 897 const char *CONTENTS = ""; 898 uint64_t ino = 42; 899 int fd; 900 ssize_t bufsize = 0; 901 902 expect_lookup(RELPATH, ino, 0); 903 expect_open(ino, 0, 1); 904 905 fd = open(FULLPATH, O_WRONLY); 906 ASSERT_LE(0, fd) << strerror(errno); 907 908 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 909 leak(fd); 910 } 911 912 TEST_F(Write_7_8, write) 913 { 914 const char FULLPATH[] = "mountpoint/some_file.txt"; 915 const char RELPATH[] = "some_file.txt"; 916 const char *CONTENTS = "abcdefgh"; 917 uint64_t ino = 42; 918 int fd; 919 ssize_t bufsize = strlen(CONTENTS); 920 921 expect_lookup(RELPATH, ino, 0); 922 expect_open(ino, 0, 1); 923 expect_write_7_8(ino, 0, bufsize, bufsize, CONTENTS); 924 925 fd = open(FULLPATH, O_WRONLY); 926 ASSERT_LE(0, fd) << strerror(errno); 927 928 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 929 leak(fd); 930 } 931 932 /* In writeback mode, dirty data should be written on close */ 933 TEST_F(WriteBackAsync, close) 934 { 935 const char FULLPATH[] = "mountpoint/some_file.txt"; 936 const char RELPATH[] = "some_file.txt"; 937 const char *CONTENTS = "abcdefgh"; 938 uint64_t ino = 42; 939 int fd; 940 ssize_t bufsize = strlen(CONTENTS); 941 942 expect_lookup(RELPATH, ino, 0); 943 expect_open(ino, 0, 1); 944 expect_write(ino, 0, bufsize, bufsize, CONTENTS); 945 EXPECT_CALL(*m_mock, process( 946 ResultOf([=](auto in) { 947 return (in.header.opcode == FUSE_SETATTR); 948 }, Eq(true)), 949 _) 950 ).WillRepeatedly(Invoke(ReturnImmediate([=](auto i __unused, auto& out) { 951 SET_OUT_HEADER_LEN(out, attr); 952 out.body.attr.attr.ino = ino; // Must match nodeid 953 }))); 954 expect_flush(ino, 1, ReturnErrno(0)); 955 expect_release(ino, ReturnErrno(0)); 956 957 fd = open(FULLPATH, O_RDWR); 958 ASSERT_LE(0, fd) << strerror(errno); 959 960 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 961 close(fd); 962 } 963 964 /* In writeback mode, adjacent writes will be clustered together */ 965 TEST_F(WriteCluster, clustering) 966 { 967 const char FULLPATH[] = "mountpoint/some_file.txt"; 968 const char RELPATH[] = "some_file.txt"; 969 uint64_t ino = 42; 970 int i, fd; 971 void *wbuf, *wbuf2x; 972 ssize_t bufsize = m_maxbcachebuf; 973 off_t filesize = 5 * bufsize; 974 975 wbuf = malloc(bufsize); 976 ASSERT_NE(nullptr, wbuf) << strerror(errno); 977 memset(wbuf, 'X', bufsize); 978 wbuf2x = malloc(2 * bufsize); 979 ASSERT_NE(nullptr, wbuf2x) << strerror(errno); 980 memset(wbuf2x, 'X', 2 * bufsize); 981 982 expect_lookup(RELPATH, ino, filesize); 983 expect_open(ino, 0, 1); 984 /* 985 * Writes of bufsize-bytes each should be clustered into greater sizes. 986 * The amount of clustering is adaptive, so the first write actually 987 * issued will be 2x bufsize and subsequent writes may be larger 988 */ 989 expect_write(ino, 0, 2 * bufsize, 2 * bufsize, wbuf2x); 990 expect_write(ino, 2 * bufsize, 2 * bufsize, 2 * bufsize, wbuf2x); 991 expect_flush(ino, 1, ReturnErrno(0)); 992 expect_release(ino, ReturnErrno(0)); 993 994 fd = open(FULLPATH, O_RDWR); 995 ASSERT_LE(0, fd) << strerror(errno); 996 997 for (i = 0; i < 4; i++) { 998 ASSERT_EQ(bufsize, write(fd, wbuf, bufsize)) 999 << strerror(errno); 1000 } 1001 close(fd); 1002 free(wbuf2x); 1003 free(wbuf); 1004 } 1005 1006 /* 1007 * When clustering writes, an I/O error to any of the cluster's children should 1008 * not panic the system on unmount 1009 */ 1010 /* 1011 * Regression test for bug 238585 1012 * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=238565 1013 */ 1014 TEST_F(WriteCluster, cluster_write_err) 1015 { 1016 const char FULLPATH[] = "mountpoint/some_file.txt"; 1017 const char RELPATH[] = "some_file.txt"; 1018 uint64_t ino = 42; 1019 int i, fd; 1020 void *wbuf; 1021 ssize_t bufsize = m_maxbcachebuf; 1022 off_t filesize = 4 * bufsize; 1023 1024 wbuf = malloc(bufsize); 1025 ASSERT_NE(nullptr, wbuf) << strerror(errno); 1026 memset(wbuf, 'X', bufsize); 1027 1028 expect_lookup(RELPATH, ino, filesize); 1029 expect_open(ino, 0, 1); 1030 EXPECT_CALL(*m_mock, process( 1031 ResultOf([=](auto in) { 1032 return (in.header.opcode == FUSE_WRITE); 1033 }, Eq(true)), 1034 _) 1035 ).WillRepeatedly(Invoke(ReturnErrno(EIO))); 1036 expect_flush(ino, 1, ReturnErrno(0)); 1037 expect_release(ino, ReturnErrno(0)); 1038 1039 fd = open(FULLPATH, O_RDWR); 1040 ASSERT_LE(0, fd) << strerror(errno); 1041 1042 for (i = 0; i < 3; i++) { 1043 ASSERT_EQ(bufsize, write(fd, wbuf, bufsize)) 1044 << strerror(errno); 1045 } 1046 close(fd); 1047 free(wbuf); 1048 } 1049 1050 /* 1051 * In writeback mode, writes to an O_WRONLY file could trigger reads from the 1052 * server. The FUSE protocol explicitly allows that. 1053 */ 1054 TEST_F(WriteBack, rmw) 1055 { 1056 const char FULLPATH[] = "mountpoint/some_file.txt"; 1057 const char RELPATH[] = "some_file.txt"; 1058 const char *CONTENTS = "abcdefgh"; 1059 const char *INITIAL = "XXXXXXXXXX"; 1060 uint64_t ino = 42; 1061 uint64_t offset = 1; 1062 off_t fsize = 10; 1063 int fd; 1064 ssize_t bufsize = strlen(CONTENTS); 1065 1066 FuseTest::expect_lookup(RELPATH, ino, S_IFREG | 0644, fsize, 1); 1067 expect_open(ino, 0, 1); 1068 expect_read(ino, 0, fsize, fsize, INITIAL, O_WRONLY); 1069 maybe_expect_write(ino, offset, bufsize, CONTENTS); 1070 1071 fd = open(FULLPATH, O_WRONLY); 1072 ASSERT_LE(0, fd) << strerror(errno); 1073 1074 ASSERT_EQ(bufsize, pwrite(fd, CONTENTS, bufsize, offset)) 1075 << strerror(errno); 1076 leak(fd); 1077 } 1078 1079 /* 1080 * Without direct_io, writes should be committed to cache 1081 */ 1082 TEST_F(WriteBack, cache) 1083 { 1084 const char FULLPATH[] = "mountpoint/some_file.txt"; 1085 const char RELPATH[] = "some_file.txt"; 1086 const char *CONTENTS = "abcdefgh"; 1087 uint64_t ino = 42; 1088 int fd; 1089 ssize_t bufsize = strlen(CONTENTS); 1090 uint8_t readbuf[bufsize]; 1091 1092 expect_lookup(RELPATH, ino, 0); 1093 expect_open(ino, 0, 1); 1094 expect_write(ino, 0, bufsize, bufsize, CONTENTS); 1095 1096 fd = open(FULLPATH, O_RDWR); 1097 ASSERT_LE(0, fd) << strerror(errno); 1098 1099 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1100 /* 1101 * A subsequent read should be serviced by cache, without querying the 1102 * filesystem daemon 1103 */ 1104 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 1105 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 1106 leak(fd); 1107 } 1108 1109 /* 1110 * With O_DIRECT, writes should be not committed to cache. Admittedly this is 1111 * an odd test, because it would be unusual to use O_DIRECT for writes but not 1112 * reads. 1113 */ 1114 TEST_F(WriteBack, o_direct) 1115 { 1116 const char FULLPATH[] = "mountpoint/some_file.txt"; 1117 const char RELPATH[] = "some_file.txt"; 1118 const char *CONTENTS = "abcdefgh"; 1119 uint64_t ino = 42; 1120 int fd; 1121 ssize_t bufsize = strlen(CONTENTS); 1122 uint8_t readbuf[bufsize]; 1123 1124 expect_lookup(RELPATH, ino, 0); 1125 expect_open(ino, 0, 1); 1126 FuseTest::expect_write(ino, 0, bufsize, bufsize, 0, FUSE_WRITE_CACHE, 1127 CONTENTS); 1128 expect_read(ino, 0, bufsize, bufsize, CONTENTS); 1129 1130 fd = open(FULLPATH, O_RDWR | O_DIRECT); 1131 ASSERT_LE(0, fd) << strerror(errno); 1132 1133 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1134 /* A subsequent read must query the daemon because cache is empty */ 1135 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 1136 ASSERT_EQ(0, fcntl(fd, F_SETFL, 0)) << strerror(errno); 1137 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 1138 leak(fd); 1139 } 1140 1141 TEST_F(WriteBack, direct_io) 1142 { 1143 const char FULLPATH[] = "mountpoint/some_file.txt"; 1144 const char RELPATH[] = "some_file.txt"; 1145 const char *CONTENTS = "abcdefgh"; 1146 uint64_t ino = 42; 1147 int fd; 1148 ssize_t bufsize = strlen(CONTENTS); 1149 uint8_t readbuf[bufsize]; 1150 1151 expect_lookup(RELPATH, ino, 0); 1152 expect_open(ino, FOPEN_DIRECT_IO, 1); 1153 FuseTest::expect_write(ino, 0, bufsize, bufsize, 0, FUSE_WRITE_CACHE, 1154 CONTENTS); 1155 expect_read(ino, 0, bufsize, bufsize, CONTENTS); 1156 1157 fd = open(FULLPATH, O_RDWR); 1158 ASSERT_LE(0, fd) << strerror(errno); 1159 1160 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1161 /* A subsequent read must query the daemon because cache is empty */ 1162 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 1163 ASSERT_EQ(0, fcntl(fd, F_SETFL, 0)) << strerror(errno); 1164 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 1165 leak(fd); 1166 } 1167 1168 /* 1169 * mmap should still be possible even if the server used direct_io. Mmap will 1170 * still use the cache, though. 1171 * 1172 * Regression test for bug 247276 1173 * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=247276 1174 */ 1175 TEST_F(WriteBack, mmap_direct_io) 1176 { 1177 const char FULLPATH[] = "mountpoint/some_file.txt"; 1178 const char RELPATH[] = "some_file.txt"; 1179 const char *CONTENTS = "abcdefgh"; 1180 uint64_t ino = 42; 1181 int fd; 1182 size_t len; 1183 ssize_t bufsize = strlen(CONTENTS); 1184 void *p, *zeros; 1185 1186 len = getpagesize(); 1187 zeros = calloc(1, len); 1188 ASSERT_NE(nullptr, zeros); 1189 1190 expect_lookup(RELPATH, ino, len); 1191 expect_open(ino, FOPEN_DIRECT_IO, 1); 1192 expect_read(ino, 0, len, len, zeros); 1193 expect_flush(ino, 1, ReturnErrno(0)); 1194 FuseTest::expect_write(ino, 0, len, len, FUSE_WRITE_CACHE, 0, zeros); 1195 expect_release(ino, ReturnErrno(0)); 1196 1197 fd = open(FULLPATH, O_RDWR); 1198 ASSERT_LE(0, fd) << strerror(errno); 1199 1200 p = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); 1201 ASSERT_NE(MAP_FAILED, p) << strerror(errno); 1202 1203 memmove((uint8_t*)p, CONTENTS, bufsize); 1204 1205 ASSERT_EQ(0, munmap(p, len)) << strerror(errno); 1206 close(fd); // Write mmap'd data on close 1207 1208 free(zeros); 1209 } 1210 1211 /* 1212 * When mounted with -o async, the writeback cache mode should delay writes 1213 */ 1214 TEST_F(WriteBackAsync, delay) 1215 { 1216 const char FULLPATH[] = "mountpoint/some_file.txt"; 1217 const char RELPATH[] = "some_file.txt"; 1218 const char *CONTENTS = "abcdefgh"; 1219 uint64_t ino = 42; 1220 int fd; 1221 ssize_t bufsize = strlen(CONTENTS); 1222 1223 expect_lookup(RELPATH, ino, 0); 1224 expect_open(ino, 0, 1); 1225 /* Write should be cached, but FUSE_WRITE shouldn't be sent */ 1226 EXPECT_CALL(*m_mock, process( 1227 ResultOf([=](auto in) { 1228 return (in.header.opcode == FUSE_WRITE); 1229 }, Eq(true)), 1230 _) 1231 ).Times(0); 1232 1233 fd = open(FULLPATH, O_RDWR); 1234 ASSERT_LE(0, fd) << strerror(errno); 1235 1236 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1237 1238 /* Don't close the file because that would flush the cache */ 1239 leak(fd); 1240 } 1241 1242 /* 1243 * A direct write should not evict dirty cached data from outside of its own 1244 * byte range. 1245 */ 1246 TEST_F(WriteBackAsync, direct_io_ignores_unrelated_cached) 1247 { 1248 const char FULLPATH[] = "mountpoint/some_file.txt"; 1249 const char RELPATH[] = "some_file.txt"; 1250 const char CONTENTS0[] = "abcdefgh"; 1251 const char CONTENTS1[] = "ijklmnop"; 1252 uint64_t ino = 42; 1253 int fd; 1254 ssize_t bufsize = strlen(CONTENTS0) + 1; 1255 ssize_t fsize = 2 * m_maxbcachebuf; 1256 char readbuf[bufsize]; 1257 void *zeros; 1258 1259 zeros = calloc(1, m_maxbcachebuf); 1260 ASSERT_NE(nullptr, zeros); 1261 1262 expect_lookup(RELPATH, ino, fsize); 1263 expect_open(ino, 0, 1); 1264 expect_read(ino, 0, m_maxbcachebuf, m_maxbcachebuf, zeros); 1265 FuseTest::expect_write(ino, m_maxbcachebuf, bufsize, bufsize, 0, 0, 1266 CONTENTS1); 1267 1268 fd = open(FULLPATH, O_RDWR); 1269 ASSERT_LE(0, fd) << strerror(errno); 1270 1271 // Cache first block with dirty data. This will entail first reading 1272 // the existing data. 1273 ASSERT_EQ(bufsize, pwrite(fd, CONTENTS0, bufsize, 0)) 1274 << strerror(errno); 1275 1276 // Write directly to second block 1277 ASSERT_EQ(0, fcntl(fd, F_SETFL, O_DIRECT)) << strerror(errno); 1278 ASSERT_EQ(bufsize, pwrite(fd, CONTENTS1, bufsize, m_maxbcachebuf)) 1279 << strerror(errno); 1280 1281 // Read from the first block again. Should be serviced by cache. 1282 ASSERT_EQ(0, fcntl(fd, F_SETFL, 0)) << strerror(errno); 1283 ASSERT_EQ(bufsize, pread(fd, readbuf, bufsize, 0)) << strerror(errno); 1284 ASSERT_STREQ(readbuf, CONTENTS0); 1285 1286 leak(fd); 1287 free(zeros); 1288 } 1289 1290 /* 1291 * If a direct io write partially overlaps one or two blocks of dirty cached 1292 * data, No dirty data should be lost. Admittedly this is a weird test, 1293 * because it would be unusual to use O_DIRECT and the writeback cache. 1294 */ 1295 TEST_F(WriteBackAsync, direct_io_partially_overlaps_cached_block) 1296 { 1297 const char FULLPATH[] = "mountpoint/some_file.txt"; 1298 const char RELPATH[] = "some_file.txt"; 1299 uint64_t ino = 42; 1300 int fd; 1301 off_t bs = m_maxbcachebuf; 1302 ssize_t fsize = 3 * bs; 1303 void *readbuf, *zeros, *ones, *zeroones, *onezeros; 1304 1305 readbuf = malloc(bs); 1306 ASSERT_NE(nullptr, readbuf) << strerror(errno); 1307 zeros = calloc(1, 3 * bs); 1308 ASSERT_NE(nullptr, zeros); 1309 ones = calloc(1, 2 * bs); 1310 ASSERT_NE(nullptr, ones); 1311 memset(ones, 1, 2 * bs); 1312 zeroones = calloc(1, bs); 1313 ASSERT_NE(nullptr, zeroones); 1314 memset((uint8_t*)zeroones + bs / 2, 1, bs / 2); 1315 onezeros = calloc(1, bs); 1316 ASSERT_NE(nullptr, onezeros); 1317 memset(onezeros, 1, bs / 2); 1318 1319 expect_lookup(RELPATH, ino, fsize); 1320 expect_open(ino, 0, 1); 1321 1322 fd = open(FULLPATH, O_RDWR); 1323 ASSERT_LE(0, fd) << strerror(errno); 1324 1325 /* Cache first and third blocks with dirty data. */ 1326 ASSERT_EQ(3 * bs, pwrite(fd, zeros, 3 * bs, 0)) << strerror(errno); 1327 1328 /* 1329 * Write directly to all three blocks. The partially written blocks 1330 * will be flushed because they're dirty. 1331 */ 1332 FuseTest::expect_write(ino, 0, bs, bs, 0, 0, zeros); 1333 FuseTest::expect_write(ino, 2 * bs, bs, bs, 0, 0, zeros); 1334 /* The direct write is split in two because of the m_maxwrite value */ 1335 FuseTest::expect_write(ino, bs / 2, bs, bs, 0, 0, ones); 1336 FuseTest::expect_write(ino, 3 * bs / 2, bs, bs, 0, 0, ones); 1337 ASSERT_EQ(0, fcntl(fd, F_SETFL, O_DIRECT)) << strerror(errno); 1338 ASSERT_EQ(2 * bs, pwrite(fd, ones, 2 * bs, bs / 2)) << strerror(errno); 1339 1340 /* 1341 * Read from both the valid and invalid portions of the first and third 1342 * blocks again. This will entail FUSE_READ operations because these 1343 * blocks were invalidated by the direct write. 1344 */ 1345 expect_read(ino, 0, bs, bs, zeroones); 1346 expect_read(ino, 2 * bs, bs, bs, onezeros); 1347 ASSERT_EQ(0, fcntl(fd, F_SETFL, 0)) << strerror(errno); 1348 ASSERT_EQ(bs / 2, pread(fd, readbuf, bs / 2, 0)) << strerror(errno); 1349 EXPECT_EQ(0, memcmp(zeros, readbuf, bs / 2)); 1350 ASSERT_EQ(bs / 2, pread(fd, readbuf, bs / 2, 5 * bs / 2)) 1351 << strerror(errno); 1352 EXPECT_EQ(0, memcmp(zeros, readbuf, bs / 2)); 1353 ASSERT_EQ(bs / 2, pread(fd, readbuf, bs / 2, bs / 2)) 1354 << strerror(errno); 1355 EXPECT_EQ(0, memcmp(ones, readbuf, bs / 2)); 1356 ASSERT_EQ(bs / 2, pread(fd, readbuf, bs / 2, 2 * bs)) 1357 << strerror(errno); 1358 EXPECT_EQ(0, memcmp(ones, readbuf, bs / 2)); 1359 1360 leak(fd); 1361 free(zeroones); 1362 free(onezeros); 1363 free(ones); 1364 free(zeros); 1365 free(readbuf); 1366 } 1367 1368 /* 1369 * In WriteBack mode, writes may be cached beyond what the server thinks is the 1370 * EOF. In this case, a short read at EOF should _not_ cause fusefs to update 1371 * the file's size. 1372 */ 1373 TEST_F(WriteBackAsync, eof) 1374 { 1375 const char FULLPATH[] = "mountpoint/some_file.txt"; 1376 const char RELPATH[] = "some_file.txt"; 1377 const char *CONTENTS0 = "abcdefgh"; 1378 const char *CONTENTS1 = "ijklmnop"; 1379 uint64_t ino = 42; 1380 int fd; 1381 off_t offset = m_maxbcachebuf; 1382 ssize_t wbufsize = strlen(CONTENTS1); 1383 off_t old_filesize = (off_t)strlen(CONTENTS0); 1384 ssize_t rbufsize = 2 * old_filesize; 1385 char readbuf[rbufsize]; 1386 size_t holesize = rbufsize - old_filesize; 1387 char hole[holesize]; 1388 struct stat sb; 1389 ssize_t r; 1390 1391 expect_lookup(RELPATH, ino, 0); 1392 expect_open(ino, 0, 1); 1393 expect_read(ino, 0, m_maxbcachebuf, old_filesize, CONTENTS0); 1394 1395 fd = open(FULLPATH, O_RDWR); 1396 ASSERT_LE(0, fd) << strerror(errno); 1397 1398 /* Write and cache data beyond EOF */ 1399 ASSERT_EQ(wbufsize, pwrite(fd, CONTENTS1, wbufsize, offset)) 1400 << strerror(errno); 1401 1402 /* Read from the old EOF */ 1403 r = pread(fd, readbuf, rbufsize, 0); 1404 ASSERT_LE(0, r) << strerror(errno); 1405 EXPECT_EQ(rbufsize, r) << "read should've synthesized a hole"; 1406 EXPECT_EQ(0, memcmp(CONTENTS0, readbuf, old_filesize)); 1407 bzero(hole, holesize); 1408 EXPECT_EQ(0, memcmp(hole, readbuf + old_filesize, holesize)); 1409 1410 /* The file's size should still be what was established by pwrite */ 1411 ASSERT_EQ(0, fstat(fd, &sb)) << strerror(errno); 1412 EXPECT_EQ(offset + wbufsize, sb.st_size); 1413 leak(fd); 1414 } 1415 1416 /* 1417 * When a file has dirty writes that haven't been flushed, the server's notion 1418 * of its mtime and ctime will be wrong. The kernel should ignore those if it 1419 * gets them from a FUSE_GETATTR before flushing. 1420 */ 1421 TEST_F(WriteBackAsync, timestamps) 1422 { 1423 const char FULLPATH[] = "mountpoint/some_file.txt"; 1424 const char RELPATH[] = "some_file.txt"; 1425 const char *CONTENTS = "abcdefgh"; 1426 ssize_t bufsize = strlen(CONTENTS); 1427 uint64_t ino = 42; 1428 uint64_t attr_valid = 0; 1429 uint64_t attr_valid_nsec = 0; 1430 uint64_t server_time = 12345; 1431 mode_t mode = S_IFREG | 0644; 1432 int fd; 1433 1434 struct stat sb; 1435 1436 EXPECT_LOOKUP(FUSE_ROOT_ID, RELPATH) 1437 .WillRepeatedly(Invoke( 1438 ReturnImmediate([=](auto in __unused, auto& out) { 1439 SET_OUT_HEADER_LEN(out, entry); 1440 out.body.entry.attr.mode = mode; 1441 out.body.entry.nodeid = ino; 1442 out.body.entry.attr.nlink = 1; 1443 out.body.entry.attr_valid = attr_valid; 1444 out.body.entry.attr_valid_nsec = attr_valid_nsec; 1445 }))); 1446 expect_open(ino, 0, 1); 1447 EXPECT_CALL(*m_mock, process( 1448 ResultOf([=](auto in) { 1449 return (in.header.opcode == FUSE_GETATTR && 1450 in.header.nodeid == ino); 1451 }, Eq(true)), 1452 _) 1453 ).WillRepeatedly(Invoke( 1454 ReturnImmediate([=](auto i __unused, auto& out) { 1455 SET_OUT_HEADER_LEN(out, attr); 1456 out.body.attr.attr.ino = ino; 1457 out.body.attr.attr.mode = mode; 1458 out.body.attr.attr_valid = attr_valid; 1459 out.body.attr.attr_valid_nsec = attr_valid_nsec; 1460 out.body.attr.attr.atime = server_time; 1461 out.body.attr.attr.mtime = server_time; 1462 out.body.attr.attr.ctime = server_time; 1463 }))); 1464 1465 fd = open(FULLPATH, O_RDWR); 1466 ASSERT_LE(0, fd) << strerror(errno); 1467 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1468 1469 ASSERT_EQ(0, fstat(fd, &sb)) << strerror(errno); 1470 EXPECT_EQ((time_t)server_time, sb.st_atime); 1471 EXPECT_NE((time_t)server_time, sb.st_mtime); 1472 EXPECT_NE((time_t)server_time, sb.st_ctime); 1473 1474 leak(fd); 1475 } 1476 1477 /* Any dirty timestamp fields should be flushed during a SETATTR */ 1478 TEST_F(WriteBackAsync, timestamps_during_setattr) 1479 { 1480 const char FULLPATH[] = "mountpoint/some_file.txt"; 1481 const char RELPATH[] = "some_file.txt"; 1482 const char *CONTENTS = "abcdefgh"; 1483 ssize_t bufsize = strlen(CONTENTS); 1484 uint64_t ino = 42; 1485 const mode_t newmode = 0755; 1486 int fd; 1487 1488 expect_lookup(RELPATH, ino, 0); 1489 expect_open(ino, 0, 1); 1490 EXPECT_CALL(*m_mock, process( 1491 ResultOf([=](auto in) { 1492 uint32_t valid = FATTR_MODE | FATTR_MTIME | FATTR_CTIME; 1493 return (in.header.opcode == FUSE_SETATTR && 1494 in.header.nodeid == ino && 1495 in.body.setattr.valid == valid); 1496 }, Eq(true)), 1497 _) 1498 ).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) { 1499 SET_OUT_HEADER_LEN(out, attr); 1500 out.body.attr.attr.ino = ino; 1501 out.body.attr.attr.mode = S_IFREG | newmode; 1502 }))); 1503 1504 fd = open(FULLPATH, O_RDWR); 1505 ASSERT_LE(0, fd) << strerror(errno); 1506 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1507 ASSERT_EQ(0, fchmod(fd, newmode)) << strerror(errno); 1508 1509 leak(fd); 1510 } 1511 1512 /* fuse_init_out.time_gran controls the granularity of timestamps */ 1513 TEST_P(TimeGran, timestamps_during_setattr) 1514 { 1515 const char FULLPATH[] = "mountpoint/some_file.txt"; 1516 const char RELPATH[] = "some_file.txt"; 1517 const char *CONTENTS = "abcdefgh"; 1518 ssize_t bufsize = strlen(CONTENTS); 1519 uint64_t ino = 42; 1520 const mode_t newmode = 0755; 1521 int fd; 1522 1523 expect_lookup(RELPATH, ino, 0); 1524 expect_open(ino, 0, 1); 1525 EXPECT_CALL(*m_mock, process( 1526 ResultOf([=](auto in) { 1527 uint32_t valid = FATTR_MODE | FATTR_MTIME | FATTR_CTIME; 1528 return (in.header.opcode == FUSE_SETATTR && 1529 in.header.nodeid == ino && 1530 in.body.setattr.valid == valid && 1531 in.body.setattr.mtimensec % m_time_gran == 0 && 1532 in.body.setattr.ctimensec % m_time_gran == 0); 1533 }, Eq(true)), 1534 _) 1535 ).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) { 1536 SET_OUT_HEADER_LEN(out, attr); 1537 out.body.attr.attr.ino = ino; 1538 out.body.attr.attr.mode = S_IFREG | newmode; 1539 }))); 1540 1541 fd = open(FULLPATH, O_RDWR); 1542 ASSERT_LE(0, fd) << strerror(errno); 1543 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1544 ASSERT_EQ(0, fchmod(fd, newmode)) << strerror(errno); 1545 1546 leak(fd); 1547 } 1548 1549 INSTANTIATE_TEST_CASE_P(RA, TimeGran, Range(0u, 10u)); 1550 1551 /* 1552 * Without direct_io, writes should be committed to cache 1553 */ 1554 TEST_F(Write, writethrough) 1555 { 1556 const char FULLPATH[] = "mountpoint/some_file.txt"; 1557 const char RELPATH[] = "some_file.txt"; 1558 const char *CONTENTS = "abcdefgh"; 1559 uint64_t ino = 42; 1560 int fd; 1561 ssize_t bufsize = strlen(CONTENTS); 1562 uint8_t readbuf[bufsize]; 1563 1564 expect_lookup(RELPATH, ino, 0); 1565 expect_open(ino, 0, 1); 1566 expect_write(ino, 0, bufsize, bufsize, CONTENTS); 1567 1568 fd = open(FULLPATH, O_RDWR); 1569 ASSERT_LE(0, fd) << strerror(errno); 1570 1571 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1572 /* 1573 * A subsequent read should be serviced by cache, without querying the 1574 * filesystem daemon 1575 */ 1576 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 1577 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 1578 leak(fd); 1579 } 1580 1581 /* Writes that extend a file should update the cached file size */ 1582 TEST_F(Write, update_file_size) 1583 { 1584 const char FULLPATH[] = "mountpoint/some_file.txt"; 1585 const char RELPATH[] = "some_file.txt"; 1586 const char *CONTENTS = "abcdefgh"; 1587 struct stat sb; 1588 uint64_t ino = 42; 1589 int fd; 1590 ssize_t bufsize = strlen(CONTENTS); 1591 1592 expect_lookup(RELPATH, ino, 0); 1593 expect_open(ino, 0, 1); 1594 expect_write(ino, 0, bufsize, bufsize, CONTENTS); 1595 1596 fd = open(FULLPATH, O_RDWR); 1597 ASSERT_LE(0, fd) << strerror(errno); 1598 1599 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1600 /* Get cached attributes */ 1601 ASSERT_EQ(0, fstat(fd, &sb)) << strerror(errno); 1602 ASSERT_EQ(bufsize, sb.st_size); 1603 leak(fd); 1604 } 1605