1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2019 The FreeBSD Foundation 5 * 6 * This software was developed by BFF Storage Systems, LLC under sponsorship 7 * from the FreeBSD Foundation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * $FreeBSD$ 31 */ 32 33 extern "C" { 34 #include <sys/param.h> 35 #include <sys/mman.h> 36 #include <sys/resource.h> 37 #include <sys/stat.h> 38 #include <sys/time.h> 39 #include <sys/uio.h> 40 41 #include <aio.h> 42 #include <fcntl.h> 43 #include <signal.h> 44 #include <unistd.h> 45 } 46 47 #include "mockfs.hh" 48 #include "utils.hh" 49 50 using namespace testing; 51 52 class Write: public FuseTest { 53 54 public: 55 static sig_atomic_t s_sigxfsz; 56 57 void SetUp() { 58 s_sigxfsz = 0; 59 FuseTest::SetUp(); 60 } 61 62 void TearDown() { 63 struct sigaction sa; 64 65 bzero(&sa, sizeof(sa)); 66 sa.sa_handler = SIG_DFL; 67 sigaction(SIGXFSZ, &sa, NULL); 68 69 FuseTest::TearDown(); 70 } 71 72 void expect_lookup(const char *relpath, uint64_t ino, uint64_t size) 73 { 74 FuseTest::expect_lookup(relpath, ino, S_IFREG | 0644, size, 1); 75 } 76 77 void expect_release(uint64_t ino, ProcessMockerT r) 78 { 79 EXPECT_CALL(*m_mock, process( 80 ResultOf([=](auto in) { 81 return (in.header.opcode == FUSE_RELEASE && 82 in.header.nodeid == ino); 83 }, Eq(true)), 84 _) 85 ).WillRepeatedly(Invoke(r)); 86 } 87 88 void expect_write(uint64_t ino, uint64_t offset, uint64_t isize, 89 uint64_t osize, const void *contents) 90 { 91 FuseTest::expect_write(ino, offset, isize, osize, 0, 0, contents); 92 } 93 94 /* Expect a write that may or may not come, depending on the cache mode */ 95 void maybe_expect_write(uint64_t ino, uint64_t offset, uint64_t size, 96 const void *contents) 97 { 98 EXPECT_CALL(*m_mock, process( 99 ResultOf([=](auto in) { 100 const char *buf = (const char*)in.body.bytes + 101 sizeof(struct fuse_write_in); 102 103 return (in.header.opcode == FUSE_WRITE && 104 in.header.nodeid == ino && 105 in.body.write.offset == offset && 106 in.body.write.size == size && 107 0 == bcmp(buf, contents, size)); 108 }, Eq(true)), 109 _) 110 ).Times(AtMost(1)) 111 .WillRepeatedly(Invoke( 112 ReturnImmediate([=](auto in __unused, auto& out) { 113 SET_OUT_HEADER_LEN(out, write); 114 out.body.write.size = size; 115 }) 116 )); 117 } 118 119 }; 120 121 sig_atomic_t Write::s_sigxfsz = 0; 122 123 class Write_7_8: public FuseTest { 124 125 public: 126 virtual void SetUp() { 127 m_kernel_minor_version = 8; 128 FuseTest::SetUp(); 129 } 130 131 void expect_lookup(const char *relpath, uint64_t ino, uint64_t size) 132 { 133 FuseTest::expect_lookup_7_8(relpath, ino, S_IFREG | 0644, size, 1); 134 } 135 136 }; 137 138 class AioWrite: public Write { 139 virtual void SetUp() { 140 if (!is_unsafe_aio_enabled()) 141 GTEST_SKIP() << 142 "vfs.aio.enable_unsafe must be set for this test"; 143 FuseTest::SetUp(); 144 } 145 }; 146 147 /* Tests for the writeback cache mode */ 148 class WriteBack: public Write { 149 public: 150 virtual void SetUp() { 151 m_init_flags |= FUSE_WRITEBACK_CACHE; 152 FuseTest::SetUp(); 153 if (IsSkipped()) 154 return; 155 } 156 157 void expect_write(uint64_t ino, uint64_t offset, uint64_t isize, 158 uint64_t osize, const void *contents) 159 { 160 FuseTest::expect_write(ino, offset, isize, osize, FUSE_WRITE_CACHE, 0, 161 contents); 162 } 163 }; 164 165 class WriteBackAsync: public WriteBack { 166 public: 167 virtual void SetUp() { 168 m_async = true; 169 m_maxwrite = 65536; 170 WriteBack::SetUp(); 171 } 172 }; 173 174 class TimeGran: public WriteBackAsync, public WithParamInterface<unsigned> { 175 public: 176 virtual void SetUp() { 177 m_time_gran = 1 << GetParam(); 178 WriteBackAsync::SetUp(); 179 } 180 }; 181 182 /* Tests for clustered writes with WriteBack cacheing */ 183 class WriteCluster: public WriteBack { 184 public: 185 virtual void SetUp() { 186 m_async = true; 187 m_maxwrite = 1 << 25; // Anything larger than MAXPHYS will suffice 188 WriteBack::SetUp(); 189 if (m_maxphys < 2 * DFLTPHYS) 190 GTEST_SKIP() << "MAXPHYS must be at least twice DFLTPHYS" 191 << " for this test"; 192 if (m_maxphys < 2 * m_maxbcachebuf) 193 GTEST_SKIP() << "MAXPHYS must be at least twice maxbcachebuf" 194 << " for this test"; 195 } 196 }; 197 198 /* Tests relating to the server's max_write property */ 199 class WriteMaxWrite: public Write { 200 public: 201 virtual void SetUp() { 202 /* 203 * For this test, m_maxwrite must be less than either m_maxbcachebuf or 204 * maxphys. 205 */ 206 m_maxwrite = 32768; 207 Write::SetUp(); 208 } 209 }; 210 211 void sigxfsz_handler(int __unused sig) { 212 Write::s_sigxfsz = 1; 213 } 214 215 /* AIO writes need to set the header's pid field correctly */ 216 /* https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=236379 */ 217 TEST_F(AioWrite, DISABLED_aio_write) 218 { 219 const char FULLPATH[] = "mountpoint/some_file.txt"; 220 const char RELPATH[] = "some_file.txt"; 221 const char *CONTENTS = "abcdefgh"; 222 uint64_t ino = 42; 223 uint64_t offset = 4096; 224 int fd; 225 ssize_t bufsize = strlen(CONTENTS); 226 struct aiocb iocb, *piocb; 227 228 expect_lookup(RELPATH, ino, 0); 229 expect_open(ino, 0, 1); 230 expect_write(ino, offset, bufsize, bufsize, CONTENTS); 231 232 fd = open(FULLPATH, O_WRONLY); 233 ASSERT_LE(0, fd) << strerror(errno); 234 235 iocb.aio_nbytes = bufsize; 236 iocb.aio_fildes = fd; 237 iocb.aio_buf = __DECONST(void *, CONTENTS); 238 iocb.aio_offset = offset; 239 iocb.aio_sigevent.sigev_notify = SIGEV_NONE; 240 ASSERT_EQ(0, aio_write(&iocb)) << strerror(errno); 241 ASSERT_EQ(bufsize, aio_waitcomplete(&piocb, NULL)) << strerror(errno); 242 leak(fd); 243 } 244 245 /* 246 * When a file is opened with O_APPEND, we should forward that flag to 247 * FUSE_OPEN (tested by Open.o_append) but still attempt to calculate the 248 * offset internally. That way we'll work both with filesystems that 249 * understand O_APPEND (and ignore the offset) and filesystems that don't (and 250 * simply use the offset). 251 * 252 * Note that verifying the O_APPEND flag in FUSE_OPEN is done in the 253 * Open.o_append test. 254 */ 255 TEST_F(Write, append) 256 { 257 const ssize_t BUFSIZE = 9; 258 const char FULLPATH[] = "mountpoint/some_file.txt"; 259 const char RELPATH[] = "some_file.txt"; 260 const char CONTENTS[BUFSIZE] = "abcdefgh"; 261 uint64_t ino = 42; 262 /* 263 * Set offset to a maxbcachebuf boundary so we don't need to RMW when 264 * using writeback caching 265 */ 266 uint64_t initial_offset = m_maxbcachebuf; 267 int fd; 268 269 expect_lookup(RELPATH, ino, initial_offset); 270 expect_open(ino, 0, 1); 271 expect_write(ino, initial_offset, BUFSIZE, BUFSIZE, CONTENTS); 272 273 /* Must open O_RDWR or fuse(4) implicitly sets direct_io */ 274 fd = open(FULLPATH, O_RDWR | O_APPEND); 275 ASSERT_LE(0, fd) << strerror(errno); 276 277 ASSERT_EQ(BUFSIZE, write(fd, CONTENTS, BUFSIZE)) << strerror(errno); 278 leak(fd); 279 } 280 281 /* If a file is cached, then appending to the end should not cause a read */ 282 TEST_F(Write, append_to_cached) 283 { 284 const ssize_t BUFSIZE = 9; 285 const char FULLPATH[] = "mountpoint/some_file.txt"; 286 const char RELPATH[] = "some_file.txt"; 287 char *oldcontents, *oldbuf; 288 const char CONTENTS[BUFSIZE] = "abcdefgh"; 289 uint64_t ino = 42; 290 /* 291 * Set offset in between maxbcachebuf boundary to test buffer handling 292 */ 293 uint64_t oldsize = m_maxbcachebuf / 2; 294 int fd; 295 296 oldcontents = (char*)calloc(1, oldsize); 297 ASSERT_NE(nullptr, oldcontents) << strerror(errno); 298 oldbuf = (char*)malloc(oldsize); 299 ASSERT_NE(nullptr, oldbuf) << strerror(errno); 300 301 expect_lookup(RELPATH, ino, oldsize); 302 expect_open(ino, 0, 1); 303 expect_read(ino, 0, oldsize, oldsize, oldcontents); 304 maybe_expect_write(ino, oldsize, BUFSIZE, CONTENTS); 305 306 /* Must open O_RDWR or fuse(4) implicitly sets direct_io */ 307 fd = open(FULLPATH, O_RDWR | O_APPEND); 308 ASSERT_LE(0, fd) << strerror(errno); 309 310 /* Read the old data into the cache */ 311 ASSERT_EQ((ssize_t)oldsize, read(fd, oldbuf, oldsize)) 312 << strerror(errno); 313 314 /* Write the new data. There should be no more read operations */ 315 ASSERT_EQ(BUFSIZE, write(fd, CONTENTS, BUFSIZE)) << strerror(errno); 316 leak(fd); 317 free(oldbuf); 318 free(oldcontents); 319 } 320 321 TEST_F(Write, append_direct_io) 322 { 323 const ssize_t BUFSIZE = 9; 324 const char FULLPATH[] = "mountpoint/some_file.txt"; 325 const char RELPATH[] = "some_file.txt"; 326 const char CONTENTS[BUFSIZE] = "abcdefgh"; 327 uint64_t ino = 42; 328 uint64_t initial_offset = 4096; 329 int fd; 330 331 expect_lookup(RELPATH, ino, initial_offset); 332 expect_open(ino, FOPEN_DIRECT_IO, 1); 333 expect_write(ino, initial_offset, BUFSIZE, BUFSIZE, CONTENTS); 334 335 fd = open(FULLPATH, O_WRONLY | O_APPEND); 336 ASSERT_LE(0, fd) << strerror(errno); 337 338 ASSERT_EQ(BUFSIZE, write(fd, CONTENTS, BUFSIZE)) << strerror(errno); 339 leak(fd); 340 } 341 342 /* A direct write should evict any overlapping cached data */ 343 TEST_F(Write, direct_io_evicts_cache) 344 { 345 const char FULLPATH[] = "mountpoint/some_file.txt"; 346 const char RELPATH[] = "some_file.txt"; 347 const char CONTENTS0[] = "abcdefgh"; 348 const char CONTENTS1[] = "ijklmnop"; 349 uint64_t ino = 42; 350 int fd; 351 ssize_t bufsize = strlen(CONTENTS0) + 1; 352 char readbuf[bufsize]; 353 354 expect_lookup(RELPATH, ino, bufsize); 355 expect_open(ino, 0, 1); 356 expect_read(ino, 0, bufsize, bufsize, CONTENTS0); 357 expect_write(ino, 0, bufsize, bufsize, CONTENTS1); 358 359 fd = open(FULLPATH, O_RDWR); 360 ASSERT_LE(0, fd) << strerror(errno); 361 362 // Prime cache 363 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 364 365 // Write directly, evicting cache 366 ASSERT_EQ(0, fcntl(fd, F_SETFL, O_DIRECT)) << strerror(errno); 367 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 368 ASSERT_EQ(bufsize, write(fd, CONTENTS1, bufsize)) << strerror(errno); 369 370 // Read again. Cache should be bypassed 371 expect_read(ino, 0, bufsize, bufsize, CONTENTS1); 372 ASSERT_EQ(0, fcntl(fd, F_SETFL, 0)) << strerror(errno); 373 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 374 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 375 ASSERT_STREQ(readbuf, CONTENTS1); 376 377 leak(fd); 378 } 379 380 /* 381 * If the server doesn't return FOPEN_DIRECT_IO during FUSE_OPEN, then it's not 382 * allowed to return a short write for that file handle. However, if it does 383 * then we should still do our darndest to handle it by resending the unwritten 384 * portion. 385 */ 386 TEST_F(Write, indirect_io_short_write) 387 { 388 const char FULLPATH[] = "mountpoint/some_file.txt"; 389 const char RELPATH[] = "some_file.txt"; 390 const char *CONTENTS = "abcdefghijklmnop"; 391 uint64_t ino = 42; 392 int fd; 393 ssize_t bufsize = strlen(CONTENTS); 394 ssize_t bufsize0 = 11; 395 ssize_t bufsize1 = strlen(CONTENTS) - bufsize0; 396 const char *contents1 = CONTENTS + bufsize0; 397 398 expect_lookup(RELPATH, ino, 0); 399 expect_open(ino, 0, 1); 400 expect_write(ino, 0, bufsize, bufsize0, CONTENTS); 401 expect_write(ino, bufsize0, bufsize1, bufsize1, contents1); 402 403 fd = open(FULLPATH, O_WRONLY); 404 ASSERT_LE(0, fd) << strerror(errno); 405 406 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 407 leak(fd); 408 } 409 410 /* 411 * When the direct_io option is used, filesystems are allowed to write less 412 * data than requested. We should return the short write to userland. 413 */ 414 TEST_F(Write, direct_io_short_write) 415 { 416 const char FULLPATH[] = "mountpoint/some_file.txt"; 417 const char RELPATH[] = "some_file.txt"; 418 const char *CONTENTS = "abcdefghijklmnop"; 419 uint64_t ino = 42; 420 int fd; 421 ssize_t bufsize = strlen(CONTENTS); 422 ssize_t halfbufsize = bufsize / 2; 423 424 expect_lookup(RELPATH, ino, 0); 425 expect_open(ino, FOPEN_DIRECT_IO, 1); 426 expect_write(ino, 0, bufsize, halfbufsize, CONTENTS); 427 428 fd = open(FULLPATH, O_WRONLY); 429 ASSERT_LE(0, fd) << strerror(errno); 430 431 ASSERT_EQ(halfbufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 432 leak(fd); 433 } 434 435 /* 436 * An insidious edge case: the filesystem returns a short write, and the 437 * difference between what we requested and what it actually wrote crosses an 438 * iov element boundary 439 */ 440 TEST_F(Write, direct_io_short_write_iov) 441 { 442 const char FULLPATH[] = "mountpoint/some_file.txt"; 443 const char RELPATH[] = "some_file.txt"; 444 const char *CONTENTS0 = "abcdefgh"; 445 const char *CONTENTS1 = "ijklmnop"; 446 const char *EXPECTED0 = "abcdefghijklmnop"; 447 uint64_t ino = 42; 448 int fd; 449 ssize_t size0 = strlen(CONTENTS0) - 1; 450 ssize_t size1 = strlen(CONTENTS1) + 1; 451 ssize_t totalsize = size0 + size1; 452 struct iovec iov[2]; 453 454 expect_lookup(RELPATH, ino, 0); 455 expect_open(ino, FOPEN_DIRECT_IO, 1); 456 expect_write(ino, 0, totalsize, size0, EXPECTED0); 457 458 fd = open(FULLPATH, O_WRONLY); 459 ASSERT_LE(0, fd) << strerror(errno); 460 461 iov[0].iov_base = __DECONST(void*, CONTENTS0); 462 iov[0].iov_len = strlen(CONTENTS0); 463 iov[1].iov_base = __DECONST(void*, CONTENTS1); 464 iov[1].iov_len = strlen(CONTENTS1); 465 ASSERT_EQ(size0, writev(fd, iov, 2)) << strerror(errno); 466 leak(fd); 467 } 468 469 /* fusefs should respect RLIMIT_FSIZE */ 470 TEST_F(Write, rlimit_fsize) 471 { 472 const char FULLPATH[] = "mountpoint/some_file.txt"; 473 const char RELPATH[] = "some_file.txt"; 474 const char *CONTENTS = "abcdefgh"; 475 struct rlimit rl; 476 ssize_t bufsize = strlen(CONTENTS); 477 off_t offset = 1'000'000'000; 478 uint64_t ino = 42; 479 int fd; 480 481 expect_lookup(RELPATH, ino, 0); 482 expect_open(ino, 0, 1); 483 484 rl.rlim_cur = offset; 485 rl.rlim_max = 10 * offset; 486 ASSERT_EQ(0, setrlimit(RLIMIT_FSIZE, &rl)) << strerror(errno); 487 ASSERT_NE(SIG_ERR, signal(SIGXFSZ, sigxfsz_handler)) << strerror(errno); 488 489 fd = open(FULLPATH, O_WRONLY); 490 491 ASSERT_LE(0, fd) << strerror(errno); 492 493 ASSERT_EQ(-1, pwrite(fd, CONTENTS, bufsize, offset)); 494 EXPECT_EQ(EFBIG, errno); 495 EXPECT_EQ(1, s_sigxfsz); 496 leak(fd); 497 } 498 499 /* 500 * A short read indicates EOF. Test that nothing bad happens if we get EOF 501 * during the R of a RMW operation. 502 */ 503 TEST_F(Write, eof_during_rmw) 504 { 505 const char FULLPATH[] = "mountpoint/some_file.txt"; 506 const char RELPATH[] = "some_file.txt"; 507 const char *CONTENTS = "abcdefgh"; 508 const char *INITIAL = "XXXXXXXXXX"; 509 uint64_t ino = 42; 510 uint64_t offset = 1; 511 ssize_t bufsize = strlen(CONTENTS) + 1; 512 off_t orig_fsize = 10; 513 off_t truncated_fsize = 5; 514 int fd; 515 516 FuseTest::expect_lookup(RELPATH, ino, S_IFREG | 0644, orig_fsize, 1); 517 expect_open(ino, 0, 1); 518 expect_read(ino, 0, orig_fsize, truncated_fsize, INITIAL, O_RDWR); 519 maybe_expect_write(ino, offset, bufsize, CONTENTS); 520 521 fd = open(FULLPATH, O_RDWR); 522 ASSERT_LE(0, fd) << strerror(errno); 523 524 ASSERT_EQ(bufsize, pwrite(fd, CONTENTS, bufsize, offset)) 525 << strerror(errno); 526 leak(fd); 527 } 528 529 /* 530 * If the kernel cannot be sure which uid, gid, or pid was responsible for a 531 * write, then it must set the FUSE_WRITE_CACHE bit 532 */ 533 /* https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=236378 */ 534 TEST_F(Write, mmap) 535 { 536 const char FULLPATH[] = "mountpoint/some_file.txt"; 537 const char RELPATH[] = "some_file.txt"; 538 const char *CONTENTS = "abcdefgh"; 539 uint64_t ino = 42; 540 int fd; 541 ssize_t bufsize = strlen(CONTENTS); 542 void *p; 543 uint64_t offset = 10; 544 size_t len; 545 void *zeros, *expected; 546 547 len = getpagesize(); 548 549 zeros = calloc(1, len); 550 ASSERT_NE(nullptr, zeros); 551 expected = calloc(1, len); 552 ASSERT_NE(nullptr, expected); 553 memmove((uint8_t*)expected + offset, CONTENTS, bufsize); 554 555 expect_lookup(RELPATH, ino, len); 556 expect_open(ino, 0, 1); 557 expect_read(ino, 0, len, len, zeros); 558 /* 559 * Writes from the pager may or may not be associated with the correct 560 * pid, so they must set FUSE_WRITE_CACHE. 561 */ 562 FuseTest::expect_write(ino, 0, len, len, FUSE_WRITE_CACHE, 0, expected); 563 expect_flush(ino, 1, ReturnErrno(0)); 564 expect_release(ino, ReturnErrno(0)); 565 566 fd = open(FULLPATH, O_RDWR); 567 ASSERT_LE(0, fd) << strerror(errno); 568 569 p = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); 570 ASSERT_NE(MAP_FAILED, p) << strerror(errno); 571 572 memmove((uint8_t*)p + offset, CONTENTS, bufsize); 573 574 ASSERT_EQ(0, munmap(p, len)) << strerror(errno); 575 close(fd); // Write mmap'd data on close 576 577 free(expected); 578 free(zeros); 579 580 leak(fd); 581 } 582 583 TEST_F(Write, pwrite) 584 { 585 const char FULLPATH[] = "mountpoint/some_file.txt"; 586 const char RELPATH[] = "some_file.txt"; 587 const char *CONTENTS = "abcdefgh"; 588 uint64_t ino = 42; 589 uint64_t offset = m_maxbcachebuf; 590 int fd; 591 ssize_t bufsize = strlen(CONTENTS); 592 593 expect_lookup(RELPATH, ino, 0); 594 expect_open(ino, 0, 1); 595 expect_write(ino, offset, bufsize, bufsize, CONTENTS); 596 597 fd = open(FULLPATH, O_WRONLY); 598 ASSERT_LE(0, fd) << strerror(errno); 599 600 ASSERT_EQ(bufsize, pwrite(fd, CONTENTS, bufsize, offset)) 601 << strerror(errno); 602 leak(fd); 603 } 604 605 /* Writing a file should update its cached mtime and ctime */ 606 TEST_F(Write, timestamps) 607 { 608 const char FULLPATH[] = "mountpoint/some_file.txt"; 609 const char RELPATH[] = "some_file.txt"; 610 const char *CONTENTS = "abcdefgh"; 611 ssize_t bufsize = strlen(CONTENTS); 612 uint64_t ino = 42; 613 struct stat sb0, sb1; 614 int fd; 615 616 expect_lookup(RELPATH, ino, 0); 617 expect_open(ino, 0, 1); 618 maybe_expect_write(ino, 0, bufsize, CONTENTS); 619 620 fd = open(FULLPATH, O_RDWR); 621 ASSERT_LE(0, fd) << strerror(errno); 622 ASSERT_EQ(0, fstat(fd, &sb0)) << strerror(errno); 623 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 624 625 nap(); 626 627 ASSERT_EQ(0, fstat(fd, &sb1)) << strerror(errno); 628 629 EXPECT_EQ(sb0.st_atime, sb1.st_atime); 630 EXPECT_NE(sb0.st_mtime, sb1.st_mtime); 631 EXPECT_NE(sb0.st_ctime, sb1.st_ctime); 632 633 leak(fd); 634 } 635 636 TEST_F(Write, write) 637 { 638 const char FULLPATH[] = "mountpoint/some_file.txt"; 639 const char RELPATH[] = "some_file.txt"; 640 const char *CONTENTS = "abcdefgh"; 641 uint64_t ino = 42; 642 int fd; 643 ssize_t bufsize = strlen(CONTENTS); 644 645 expect_lookup(RELPATH, ino, 0); 646 expect_open(ino, 0, 1); 647 expect_write(ino, 0, bufsize, bufsize, CONTENTS); 648 649 fd = open(FULLPATH, O_WRONLY); 650 ASSERT_LE(0, fd) << strerror(errno); 651 652 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 653 leak(fd); 654 } 655 656 /* fuse(4) should not issue writes of greater size than the daemon requests */ 657 TEST_F(WriteMaxWrite, write) 658 { 659 const char FULLPATH[] = "mountpoint/some_file.txt"; 660 const char RELPATH[] = "some_file.txt"; 661 int *contents; 662 uint64_t ino = 42; 663 int fd; 664 ssize_t halfbufsize, bufsize; 665 666 halfbufsize = m_mock->m_maxwrite; 667 if (halfbufsize >= m_maxbcachebuf || halfbufsize >= m_maxphys) 668 GTEST_SKIP() << "Must lower m_maxwrite for this test"; 669 bufsize = halfbufsize * 2; 670 contents = (int*)malloc(bufsize); 671 ASSERT_NE(nullptr, contents); 672 for (int i = 0; i < (int)bufsize / (int)sizeof(i); i++) { 673 contents[i] = i; 674 } 675 676 expect_lookup(RELPATH, ino, 0); 677 expect_open(ino, 0, 1); 678 maybe_expect_write(ino, 0, halfbufsize, contents); 679 maybe_expect_write(ino, halfbufsize, halfbufsize, 680 &contents[halfbufsize / sizeof(int)]); 681 682 fd = open(FULLPATH, O_WRONLY); 683 ASSERT_LE(0, fd) << strerror(errno); 684 685 ASSERT_EQ(bufsize, write(fd, contents, bufsize)) << strerror(errno); 686 leak(fd); 687 688 free(contents); 689 } 690 691 TEST_F(Write, write_nothing) 692 { 693 const char FULLPATH[] = "mountpoint/some_file.txt"; 694 const char RELPATH[] = "some_file.txt"; 695 const char *CONTENTS = ""; 696 uint64_t ino = 42; 697 int fd; 698 ssize_t bufsize = 0; 699 700 expect_lookup(RELPATH, ino, 0); 701 expect_open(ino, 0, 1); 702 703 fd = open(FULLPATH, O_WRONLY); 704 ASSERT_LE(0, fd) << strerror(errno); 705 706 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 707 leak(fd); 708 } 709 710 TEST_F(Write_7_8, write) 711 { 712 const char FULLPATH[] = "mountpoint/some_file.txt"; 713 const char RELPATH[] = "some_file.txt"; 714 const char *CONTENTS = "abcdefgh"; 715 uint64_t ino = 42; 716 int fd; 717 ssize_t bufsize = strlen(CONTENTS); 718 719 expect_lookup(RELPATH, ino, 0); 720 expect_open(ino, 0, 1); 721 expect_write_7_8(ino, 0, bufsize, bufsize, CONTENTS); 722 723 fd = open(FULLPATH, O_WRONLY); 724 ASSERT_LE(0, fd) << strerror(errno); 725 726 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 727 leak(fd); 728 } 729 730 /* In writeback mode, dirty data should be written on close */ 731 TEST_F(WriteBackAsync, close) 732 { 733 const char FULLPATH[] = "mountpoint/some_file.txt"; 734 const char RELPATH[] = "some_file.txt"; 735 const char *CONTENTS = "abcdefgh"; 736 uint64_t ino = 42; 737 int fd; 738 ssize_t bufsize = strlen(CONTENTS); 739 740 expect_lookup(RELPATH, ino, 0); 741 expect_open(ino, 0, 1); 742 expect_write(ino, 0, bufsize, bufsize, CONTENTS); 743 EXPECT_CALL(*m_mock, process( 744 ResultOf([=](auto in) { 745 return (in.header.opcode == FUSE_SETATTR); 746 }, Eq(true)), 747 _) 748 ).WillRepeatedly(Invoke(ReturnImmediate([=](auto i __unused, auto& out) { 749 SET_OUT_HEADER_LEN(out, attr); 750 out.body.attr.attr.ino = ino; // Must match nodeid 751 }))); 752 expect_flush(ino, 1, ReturnErrno(0)); 753 expect_release(ino, ReturnErrno(0)); 754 755 fd = open(FULLPATH, O_RDWR); 756 ASSERT_LE(0, fd) << strerror(errno); 757 758 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 759 close(fd); 760 } 761 762 /* In writeback mode, adjacent writes will be clustered together */ 763 TEST_F(WriteCluster, clustering) 764 { 765 const char FULLPATH[] = "mountpoint/some_file.txt"; 766 const char RELPATH[] = "some_file.txt"; 767 uint64_t ino = 42; 768 int i, fd; 769 void *wbuf, *wbuf2x; 770 ssize_t bufsize = m_maxbcachebuf; 771 off_t filesize = 5 * bufsize; 772 773 wbuf = malloc(bufsize); 774 ASSERT_NE(nullptr, wbuf) << strerror(errno); 775 memset(wbuf, 'X', bufsize); 776 wbuf2x = malloc(2 * bufsize); 777 ASSERT_NE(nullptr, wbuf2x) << strerror(errno); 778 memset(wbuf2x, 'X', 2 * bufsize); 779 780 expect_lookup(RELPATH, ino, filesize); 781 expect_open(ino, 0, 1); 782 /* 783 * Writes of bufsize-bytes each should be clustered into greater sizes. 784 * The amount of clustering is adaptive, so the first write actually 785 * issued will be 2x bufsize and subsequent writes may be larger 786 */ 787 expect_write(ino, 0, 2 * bufsize, 2 * bufsize, wbuf2x); 788 expect_write(ino, 2 * bufsize, 2 * bufsize, 2 * bufsize, wbuf2x); 789 expect_flush(ino, 1, ReturnErrno(0)); 790 expect_release(ino, ReturnErrno(0)); 791 792 fd = open(FULLPATH, O_RDWR); 793 ASSERT_LE(0, fd) << strerror(errno); 794 795 for (i = 0; i < 4; i++) { 796 ASSERT_EQ(bufsize, write(fd, wbuf, bufsize)) 797 << strerror(errno); 798 } 799 close(fd); 800 free(wbuf2x); 801 free(wbuf); 802 } 803 804 /* 805 * When clustering writes, an I/O error to any of the cluster's children should 806 * not panic the system on unmount 807 */ 808 /* 809 * Disabled because it panics. 810 * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=238565 811 */ 812 TEST_F(WriteCluster, DISABLED_cluster_write_err) 813 { 814 const char FULLPATH[] = "mountpoint/some_file.txt"; 815 const char RELPATH[] = "some_file.txt"; 816 uint64_t ino = 42; 817 int i, fd; 818 void *wbuf; 819 ssize_t bufsize = m_maxbcachebuf; 820 off_t filesize = 4 * bufsize; 821 822 wbuf = malloc(bufsize); 823 ASSERT_NE(nullptr, wbuf) << strerror(errno); 824 memset(wbuf, 'X', bufsize); 825 826 expect_lookup(RELPATH, ino, filesize); 827 expect_open(ino, 0, 1); 828 EXPECT_CALL(*m_mock, process( 829 ResultOf([=](auto in) { 830 return (in.header.opcode == FUSE_WRITE); 831 }, Eq(true)), 832 _) 833 ).WillRepeatedly(Invoke(ReturnErrno(EIO))); 834 expect_flush(ino, 1, ReturnErrno(0)); 835 expect_release(ino, ReturnErrno(0)); 836 837 fd = open(FULLPATH, O_RDWR); 838 ASSERT_LE(0, fd) << strerror(errno); 839 840 for (i = 0; i < 3; i++) { 841 ASSERT_EQ(bufsize, write(fd, wbuf, bufsize)) 842 << strerror(errno); 843 } 844 close(fd); 845 free(wbuf); 846 } 847 848 /* 849 * In writeback mode, writes to an O_WRONLY file could trigger reads from the 850 * server. The FUSE protocol explicitly allows that. 851 */ 852 TEST_F(WriteBack, rmw) 853 { 854 const char FULLPATH[] = "mountpoint/some_file.txt"; 855 const char RELPATH[] = "some_file.txt"; 856 const char *CONTENTS = "abcdefgh"; 857 const char *INITIAL = "XXXXXXXXXX"; 858 uint64_t ino = 42; 859 uint64_t offset = 1; 860 off_t fsize = 10; 861 int fd; 862 ssize_t bufsize = strlen(CONTENTS); 863 864 FuseTest::expect_lookup(RELPATH, ino, S_IFREG | 0644, fsize, 1); 865 expect_open(ino, 0, 1); 866 expect_read(ino, 0, fsize, fsize, INITIAL, O_WRONLY); 867 maybe_expect_write(ino, offset, bufsize, CONTENTS); 868 869 fd = open(FULLPATH, O_WRONLY); 870 ASSERT_LE(0, fd) << strerror(errno); 871 872 ASSERT_EQ(bufsize, pwrite(fd, CONTENTS, bufsize, offset)) 873 << strerror(errno); 874 leak(fd); 875 } 876 877 /* 878 * Without direct_io, writes should be committed to cache 879 */ 880 TEST_F(WriteBack, cache) 881 { 882 const char FULLPATH[] = "mountpoint/some_file.txt"; 883 const char RELPATH[] = "some_file.txt"; 884 const char *CONTENTS = "abcdefgh"; 885 uint64_t ino = 42; 886 int fd; 887 ssize_t bufsize = strlen(CONTENTS); 888 uint8_t readbuf[bufsize]; 889 890 expect_lookup(RELPATH, ino, 0); 891 expect_open(ino, 0, 1); 892 expect_write(ino, 0, bufsize, bufsize, CONTENTS); 893 894 fd = open(FULLPATH, O_RDWR); 895 ASSERT_LE(0, fd) << strerror(errno); 896 897 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 898 /* 899 * A subsequent read should be serviced by cache, without querying the 900 * filesystem daemon 901 */ 902 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 903 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 904 leak(fd); 905 } 906 907 /* 908 * With O_DIRECT, writes should be not committed to cache. Admittedly this is 909 * an odd test, because it would be unusual to use O_DIRECT for writes but not 910 * reads. 911 */ 912 TEST_F(WriteBack, o_direct) 913 { 914 const char FULLPATH[] = "mountpoint/some_file.txt"; 915 const char RELPATH[] = "some_file.txt"; 916 const char *CONTENTS = "abcdefgh"; 917 uint64_t ino = 42; 918 int fd; 919 ssize_t bufsize = strlen(CONTENTS); 920 uint8_t readbuf[bufsize]; 921 922 expect_lookup(RELPATH, ino, 0); 923 expect_open(ino, 0, 1); 924 FuseTest::expect_write(ino, 0, bufsize, bufsize, 0, FUSE_WRITE_CACHE, 925 CONTENTS); 926 expect_read(ino, 0, bufsize, bufsize, CONTENTS); 927 928 fd = open(FULLPATH, O_RDWR | O_DIRECT); 929 ASSERT_LE(0, fd) << strerror(errno); 930 931 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 932 /* A subsequent read must query the daemon because cache is empty */ 933 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 934 ASSERT_EQ(0, fcntl(fd, F_SETFL, 0)) << strerror(errno); 935 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 936 leak(fd); 937 } 938 939 TEST_F(WriteBack, direct_io) 940 { 941 const char FULLPATH[] = "mountpoint/some_file.txt"; 942 const char RELPATH[] = "some_file.txt"; 943 const char *CONTENTS = "abcdefgh"; 944 uint64_t ino = 42; 945 int fd; 946 ssize_t bufsize = strlen(CONTENTS); 947 uint8_t readbuf[bufsize]; 948 949 expect_lookup(RELPATH, ino, 0); 950 expect_open(ino, FOPEN_DIRECT_IO, 1); 951 FuseTest::expect_write(ino, 0, bufsize, bufsize, 0, FUSE_WRITE_CACHE, 952 CONTENTS); 953 expect_read(ino, 0, bufsize, bufsize, CONTENTS); 954 955 fd = open(FULLPATH, O_RDWR); 956 ASSERT_LE(0, fd) << strerror(errno); 957 958 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 959 /* A subsequent read must query the daemon because cache is empty */ 960 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 961 ASSERT_EQ(0, fcntl(fd, F_SETFL, 0)) << strerror(errno); 962 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 963 leak(fd); 964 } 965 966 /* 967 * mmap should still be possible even if the server used direct_io. Mmap will 968 * still use the cache, though. 969 * 970 * Regression test for bug 247276 971 * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=247276 972 */ 973 TEST_F(WriteBack, mmap_direct_io) 974 { 975 const char FULLPATH[] = "mountpoint/some_file.txt"; 976 const char RELPATH[] = "some_file.txt"; 977 const char *CONTENTS = "abcdefgh"; 978 uint64_t ino = 42; 979 int fd; 980 size_t len; 981 ssize_t bufsize = strlen(CONTENTS); 982 void *p, *zeros; 983 984 len = getpagesize(); 985 zeros = calloc(1, len); 986 ASSERT_NE(nullptr, zeros); 987 988 expect_lookup(RELPATH, ino, len); 989 expect_open(ino, FOPEN_DIRECT_IO, 1); 990 expect_read(ino, 0, len, len, zeros); 991 expect_flush(ino, 1, ReturnErrno(0)); 992 FuseTest::expect_write(ino, 0, len, len, FUSE_WRITE_CACHE, 0, zeros); 993 expect_release(ino, ReturnErrno(0)); 994 995 fd = open(FULLPATH, O_RDWR); 996 ASSERT_LE(0, fd) << strerror(errno); 997 998 p = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); 999 ASSERT_NE(MAP_FAILED, p) << strerror(errno); 1000 1001 memmove((uint8_t*)p, CONTENTS, bufsize); 1002 1003 ASSERT_EQ(0, munmap(p, len)) << strerror(errno); 1004 close(fd); // Write mmap'd data on close 1005 1006 free(zeros); 1007 } 1008 1009 /* 1010 * When mounted with -o async, the writeback cache mode should delay writes 1011 */ 1012 TEST_F(WriteBackAsync, delay) 1013 { 1014 const char FULLPATH[] = "mountpoint/some_file.txt"; 1015 const char RELPATH[] = "some_file.txt"; 1016 const char *CONTENTS = "abcdefgh"; 1017 uint64_t ino = 42; 1018 int fd; 1019 ssize_t bufsize = strlen(CONTENTS); 1020 1021 expect_lookup(RELPATH, ino, 0); 1022 expect_open(ino, 0, 1); 1023 /* Write should be cached, but FUSE_WRITE shouldn't be sent */ 1024 EXPECT_CALL(*m_mock, process( 1025 ResultOf([=](auto in) { 1026 return (in.header.opcode == FUSE_WRITE); 1027 }, Eq(true)), 1028 _) 1029 ).Times(0); 1030 1031 fd = open(FULLPATH, O_RDWR); 1032 ASSERT_LE(0, fd) << strerror(errno); 1033 1034 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1035 1036 /* Don't close the file because that would flush the cache */ 1037 leak(fd); 1038 } 1039 1040 /* 1041 * A direct write should not evict dirty cached data from outside of its own 1042 * byte range. 1043 */ 1044 TEST_F(WriteBackAsync, direct_io_ignores_unrelated_cached) 1045 { 1046 const char FULLPATH[] = "mountpoint/some_file.txt"; 1047 const char RELPATH[] = "some_file.txt"; 1048 const char CONTENTS0[] = "abcdefgh"; 1049 const char CONTENTS1[] = "ijklmnop"; 1050 uint64_t ino = 42; 1051 int fd; 1052 ssize_t bufsize = strlen(CONTENTS0) + 1; 1053 ssize_t fsize = 2 * m_maxbcachebuf; 1054 char readbuf[bufsize]; 1055 void *zeros; 1056 1057 zeros = calloc(1, m_maxbcachebuf); 1058 ASSERT_NE(nullptr, zeros); 1059 1060 expect_lookup(RELPATH, ino, fsize); 1061 expect_open(ino, 0, 1); 1062 expect_read(ino, 0, m_maxbcachebuf, m_maxbcachebuf, zeros); 1063 FuseTest::expect_write(ino, m_maxbcachebuf, bufsize, bufsize, 0, 0, 1064 CONTENTS1); 1065 1066 fd = open(FULLPATH, O_RDWR); 1067 ASSERT_LE(0, fd) << strerror(errno); 1068 1069 // Cache first block with dirty data. This will entail first reading 1070 // the existing data. 1071 ASSERT_EQ(bufsize, pwrite(fd, CONTENTS0, bufsize, 0)) 1072 << strerror(errno); 1073 1074 // Write directly to second block 1075 ASSERT_EQ(0, fcntl(fd, F_SETFL, O_DIRECT)) << strerror(errno); 1076 ASSERT_EQ(bufsize, pwrite(fd, CONTENTS1, bufsize, m_maxbcachebuf)) 1077 << strerror(errno); 1078 1079 // Read from the first block again. Should be serviced by cache. 1080 ASSERT_EQ(0, fcntl(fd, F_SETFL, 0)) << strerror(errno); 1081 ASSERT_EQ(bufsize, pread(fd, readbuf, bufsize, 0)) << strerror(errno); 1082 ASSERT_STREQ(readbuf, CONTENTS0); 1083 1084 leak(fd); 1085 free(zeros); 1086 } 1087 1088 /* 1089 * If a direct io write partially overlaps one or two blocks of dirty cached 1090 * data, No dirty data should be lost. Admittedly this is a weird test, 1091 * because it would be unusual to use O_DIRECT and the writeback cache. 1092 */ 1093 TEST_F(WriteBackAsync, direct_io_partially_overlaps_cached_block) 1094 { 1095 const char FULLPATH[] = "mountpoint/some_file.txt"; 1096 const char RELPATH[] = "some_file.txt"; 1097 uint64_t ino = 42; 1098 int fd; 1099 off_t bs = m_maxbcachebuf; 1100 ssize_t fsize = 3 * bs; 1101 void *readbuf, *zeros, *ones, *zeroones, *onezeros; 1102 1103 readbuf = malloc(bs); 1104 ASSERT_NE(nullptr, readbuf) << strerror(errno); 1105 zeros = calloc(1, 3 * bs); 1106 ASSERT_NE(nullptr, zeros); 1107 ones = calloc(1, 2 * bs); 1108 ASSERT_NE(nullptr, ones); 1109 memset(ones, 1, 2 * bs); 1110 zeroones = calloc(1, bs); 1111 ASSERT_NE(nullptr, zeroones); 1112 memset((uint8_t*)zeroones + bs / 2, 1, bs / 2); 1113 onezeros = calloc(1, bs); 1114 ASSERT_NE(nullptr, onezeros); 1115 memset(onezeros, 1, bs / 2); 1116 1117 expect_lookup(RELPATH, ino, fsize); 1118 expect_open(ino, 0, 1); 1119 1120 fd = open(FULLPATH, O_RDWR); 1121 ASSERT_LE(0, fd) << strerror(errno); 1122 1123 /* Cache first and third blocks with dirty data. */ 1124 ASSERT_EQ(3 * bs, pwrite(fd, zeros, 3 * bs, 0)) << strerror(errno); 1125 1126 /* 1127 * Write directly to all three blocks. The partially written blocks 1128 * will be flushed because they're dirty. 1129 */ 1130 FuseTest::expect_write(ino, 0, bs, bs, 0, 0, zeros); 1131 FuseTest::expect_write(ino, 2 * bs, bs, bs, 0, 0, zeros); 1132 /* The direct write is split in two because of the m_maxwrite value */ 1133 FuseTest::expect_write(ino, bs / 2, bs, bs, 0, 0, ones); 1134 FuseTest::expect_write(ino, 3 * bs / 2, bs, bs, 0, 0, ones); 1135 ASSERT_EQ(0, fcntl(fd, F_SETFL, O_DIRECT)) << strerror(errno); 1136 ASSERT_EQ(2 * bs, pwrite(fd, ones, 2 * bs, bs / 2)) << strerror(errno); 1137 1138 /* 1139 * Read from both the valid and invalid portions of the first and third 1140 * blocks again. This will entail FUSE_READ operations because these 1141 * blocks were invalidated by the direct write. 1142 */ 1143 expect_read(ino, 0, bs, bs, zeroones); 1144 expect_read(ino, 2 * bs, bs, bs, onezeros); 1145 ASSERT_EQ(0, fcntl(fd, F_SETFL, 0)) << strerror(errno); 1146 ASSERT_EQ(bs / 2, pread(fd, readbuf, bs / 2, 0)) << strerror(errno); 1147 EXPECT_EQ(0, memcmp(zeros, readbuf, bs / 2)); 1148 ASSERT_EQ(bs / 2, pread(fd, readbuf, bs / 2, 5 * bs / 2)) 1149 << strerror(errno); 1150 EXPECT_EQ(0, memcmp(zeros, readbuf, bs / 2)); 1151 ASSERT_EQ(bs / 2, pread(fd, readbuf, bs / 2, bs / 2)) 1152 << strerror(errno); 1153 EXPECT_EQ(0, memcmp(ones, readbuf, bs / 2)); 1154 ASSERT_EQ(bs / 2, pread(fd, readbuf, bs / 2, 2 * bs)) 1155 << strerror(errno); 1156 EXPECT_EQ(0, memcmp(ones, readbuf, bs / 2)); 1157 1158 leak(fd); 1159 free(zeroones); 1160 free(onezeros); 1161 free(ones); 1162 free(zeros); 1163 free(readbuf); 1164 } 1165 1166 /* 1167 * In WriteBack mode, writes may be cached beyond what the server thinks is the 1168 * EOF. In this case, a short read at EOF should _not_ cause fusefs to update 1169 * the file's size. 1170 */ 1171 TEST_F(WriteBackAsync, eof) 1172 { 1173 const char FULLPATH[] = "mountpoint/some_file.txt"; 1174 const char RELPATH[] = "some_file.txt"; 1175 const char *CONTENTS0 = "abcdefgh"; 1176 const char *CONTENTS1 = "ijklmnop"; 1177 uint64_t ino = 42; 1178 int fd; 1179 off_t offset = m_maxbcachebuf; 1180 ssize_t wbufsize = strlen(CONTENTS1); 1181 off_t old_filesize = (off_t)strlen(CONTENTS0); 1182 ssize_t rbufsize = 2 * old_filesize; 1183 char readbuf[rbufsize]; 1184 size_t holesize = rbufsize - old_filesize; 1185 char hole[holesize]; 1186 struct stat sb; 1187 ssize_t r; 1188 1189 expect_lookup(RELPATH, ino, 0); 1190 expect_open(ino, 0, 1); 1191 expect_read(ino, 0, m_maxbcachebuf, old_filesize, CONTENTS0); 1192 1193 fd = open(FULLPATH, O_RDWR); 1194 ASSERT_LE(0, fd) << strerror(errno); 1195 1196 /* Write and cache data beyond EOF */ 1197 ASSERT_EQ(wbufsize, pwrite(fd, CONTENTS1, wbufsize, offset)) 1198 << strerror(errno); 1199 1200 /* Read from the old EOF */ 1201 r = pread(fd, readbuf, rbufsize, 0); 1202 ASSERT_LE(0, r) << strerror(errno); 1203 EXPECT_EQ(rbufsize, r) << "read should've synthesized a hole"; 1204 EXPECT_EQ(0, memcmp(CONTENTS0, readbuf, old_filesize)); 1205 bzero(hole, holesize); 1206 EXPECT_EQ(0, memcmp(hole, readbuf + old_filesize, holesize)); 1207 1208 /* The file's size should still be what was established by pwrite */ 1209 ASSERT_EQ(0, fstat(fd, &sb)) << strerror(errno); 1210 EXPECT_EQ(offset + wbufsize, sb.st_size); 1211 leak(fd); 1212 } 1213 1214 /* 1215 * When a file has dirty writes that haven't been flushed, the server's notion 1216 * of its mtime and ctime will be wrong. The kernel should ignore those if it 1217 * gets them from a FUSE_GETATTR before flushing. 1218 */ 1219 TEST_F(WriteBackAsync, timestamps) 1220 { 1221 const char FULLPATH[] = "mountpoint/some_file.txt"; 1222 const char RELPATH[] = "some_file.txt"; 1223 const char *CONTENTS = "abcdefgh"; 1224 ssize_t bufsize = strlen(CONTENTS); 1225 uint64_t ino = 42; 1226 uint64_t attr_valid = 0; 1227 uint64_t attr_valid_nsec = 0; 1228 uint64_t server_time = 12345; 1229 mode_t mode = S_IFREG | 0644; 1230 int fd; 1231 1232 struct stat sb; 1233 1234 EXPECT_LOOKUP(FUSE_ROOT_ID, RELPATH) 1235 .WillRepeatedly(Invoke( 1236 ReturnImmediate([=](auto in __unused, auto& out) { 1237 SET_OUT_HEADER_LEN(out, entry); 1238 out.body.entry.attr.mode = mode; 1239 out.body.entry.nodeid = ino; 1240 out.body.entry.attr.nlink = 1; 1241 out.body.entry.attr_valid = attr_valid; 1242 out.body.entry.attr_valid_nsec = attr_valid_nsec; 1243 }))); 1244 expect_open(ino, 0, 1); 1245 EXPECT_CALL(*m_mock, process( 1246 ResultOf([=](auto in) { 1247 return (in.header.opcode == FUSE_GETATTR && 1248 in.header.nodeid == ino); 1249 }, Eq(true)), 1250 _) 1251 ).WillRepeatedly(Invoke( 1252 ReturnImmediate([=](auto i __unused, auto& out) { 1253 SET_OUT_HEADER_LEN(out, attr); 1254 out.body.attr.attr.ino = ino; 1255 out.body.attr.attr.mode = mode; 1256 out.body.attr.attr_valid = attr_valid; 1257 out.body.attr.attr_valid_nsec = attr_valid_nsec; 1258 out.body.attr.attr.atime = server_time; 1259 out.body.attr.attr.mtime = server_time; 1260 out.body.attr.attr.ctime = server_time; 1261 }))); 1262 1263 fd = open(FULLPATH, O_RDWR); 1264 ASSERT_LE(0, fd) << strerror(errno); 1265 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1266 1267 ASSERT_EQ(0, fstat(fd, &sb)) << strerror(errno); 1268 EXPECT_EQ((time_t)server_time, sb.st_atime); 1269 EXPECT_NE((time_t)server_time, sb.st_mtime); 1270 EXPECT_NE((time_t)server_time, sb.st_ctime); 1271 1272 leak(fd); 1273 } 1274 1275 /* Any dirty timestamp fields should be flushed during a SETATTR */ 1276 TEST_F(WriteBackAsync, timestamps_during_setattr) 1277 { 1278 const char FULLPATH[] = "mountpoint/some_file.txt"; 1279 const char RELPATH[] = "some_file.txt"; 1280 const char *CONTENTS = "abcdefgh"; 1281 ssize_t bufsize = strlen(CONTENTS); 1282 uint64_t ino = 42; 1283 const mode_t newmode = 0755; 1284 int fd; 1285 1286 expect_lookup(RELPATH, ino, 0); 1287 expect_open(ino, 0, 1); 1288 EXPECT_CALL(*m_mock, process( 1289 ResultOf([=](auto in) { 1290 uint32_t valid = FATTR_MODE | FATTR_MTIME | FATTR_CTIME; 1291 return (in.header.opcode == FUSE_SETATTR && 1292 in.header.nodeid == ino && 1293 in.body.setattr.valid == valid); 1294 }, Eq(true)), 1295 _) 1296 ).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) { 1297 SET_OUT_HEADER_LEN(out, attr); 1298 out.body.attr.attr.ino = ino; 1299 out.body.attr.attr.mode = S_IFREG | newmode; 1300 }))); 1301 1302 fd = open(FULLPATH, O_RDWR); 1303 ASSERT_LE(0, fd) << strerror(errno); 1304 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1305 ASSERT_EQ(0, fchmod(fd, newmode)) << strerror(errno); 1306 1307 leak(fd); 1308 } 1309 1310 /* fuse_init_out.time_gran controls the granularity of timestamps */ 1311 TEST_P(TimeGran, timestamps_during_setattr) 1312 { 1313 const char FULLPATH[] = "mountpoint/some_file.txt"; 1314 const char RELPATH[] = "some_file.txt"; 1315 const char *CONTENTS = "abcdefgh"; 1316 ssize_t bufsize = strlen(CONTENTS); 1317 uint64_t ino = 42; 1318 const mode_t newmode = 0755; 1319 int fd; 1320 1321 expect_lookup(RELPATH, ino, 0); 1322 expect_open(ino, 0, 1); 1323 EXPECT_CALL(*m_mock, process( 1324 ResultOf([=](auto in) { 1325 uint32_t valid = FATTR_MODE | FATTR_MTIME | FATTR_CTIME; 1326 return (in.header.opcode == FUSE_SETATTR && 1327 in.header.nodeid == ino && 1328 in.body.setattr.valid == valid && 1329 in.body.setattr.mtimensec % m_time_gran == 0 && 1330 in.body.setattr.ctimensec % m_time_gran == 0); 1331 }, Eq(true)), 1332 _) 1333 ).WillOnce(Invoke(ReturnImmediate([=](auto in __unused, auto& out) { 1334 SET_OUT_HEADER_LEN(out, attr); 1335 out.body.attr.attr.ino = ino; 1336 out.body.attr.attr.mode = S_IFREG | newmode; 1337 }))); 1338 1339 fd = open(FULLPATH, O_RDWR); 1340 ASSERT_LE(0, fd) << strerror(errno); 1341 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1342 ASSERT_EQ(0, fchmod(fd, newmode)) << strerror(errno); 1343 1344 leak(fd); 1345 } 1346 1347 INSTANTIATE_TEST_CASE_P(RA, TimeGran, Range(0u, 10u)); 1348 1349 /* 1350 * Without direct_io, writes should be committed to cache 1351 */ 1352 TEST_F(Write, writethrough) 1353 { 1354 const char FULLPATH[] = "mountpoint/some_file.txt"; 1355 const char RELPATH[] = "some_file.txt"; 1356 const char *CONTENTS = "abcdefgh"; 1357 uint64_t ino = 42; 1358 int fd; 1359 ssize_t bufsize = strlen(CONTENTS); 1360 uint8_t readbuf[bufsize]; 1361 1362 expect_lookup(RELPATH, ino, 0); 1363 expect_open(ino, 0, 1); 1364 expect_write(ino, 0, bufsize, bufsize, CONTENTS); 1365 1366 fd = open(FULLPATH, O_RDWR); 1367 ASSERT_LE(0, fd) << strerror(errno); 1368 1369 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1370 /* 1371 * A subsequent read should be serviced by cache, without querying the 1372 * filesystem daemon 1373 */ 1374 ASSERT_EQ(0, lseek(fd, 0, SEEK_SET)) << strerror(errno); 1375 ASSERT_EQ(bufsize, read(fd, readbuf, bufsize)) << strerror(errno); 1376 leak(fd); 1377 } 1378 1379 /* Writes that extend a file should update the cached file size */ 1380 TEST_F(Write, update_file_size) 1381 { 1382 const char FULLPATH[] = "mountpoint/some_file.txt"; 1383 const char RELPATH[] = "some_file.txt"; 1384 const char *CONTENTS = "abcdefgh"; 1385 struct stat sb; 1386 uint64_t ino = 42; 1387 int fd; 1388 ssize_t bufsize = strlen(CONTENTS); 1389 1390 expect_lookup(RELPATH, ino, 0); 1391 expect_open(ino, 0, 1); 1392 expect_write(ino, 0, bufsize, bufsize, CONTENTS); 1393 1394 fd = open(FULLPATH, O_RDWR); 1395 ASSERT_LE(0, fd) << strerror(errno); 1396 1397 ASSERT_EQ(bufsize, write(fd, CONTENTS, bufsize)) << strerror(errno); 1398 /* Get cached attributes */ 1399 ASSERT_EQ(0, fstat(fd, &sb)) << strerror(errno); 1400 ASSERT_EQ(bufsize, sb.st_size); 1401 leak(fd); 1402 } 1403